Supporting Information

Palladium-Catalyzed Asymmetric (4+3) Cycloaddition of N-2,2,2-Trifluoroethylisatin Ketimines: Access to Optically Active Spirooxindoles

Yinggao Meng, Manman Song, Yue Wang, Yuxin Wang and Er-Qing Li *

College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China General Experimental Details.

1. General Experimental Details	S1
2. Optimization of the Reaction Conditions	S2
2.1. Optimization of reaction conditions	S2
3. The data of compound 1j, 1k, 1p-1x.	S3
4. General Procedure for Reactions	S7
5. Copies of ¹ H NMR, ¹³ C NMR, ¹⁹ F NMR Spectra	S22
6. Copies of HPLC Chromatograms	S68
7. Scale-up Synthesis	S92
8. X-ray crystal structure	S96

1. General Experimental Details

All reactions were performed under nitrogen using solvents dried by standardmethods. NMR spectra were obtained using Bruker AV300 spectrometer. Chemicalshifts are expressed in parts per million (ppm) downfield from internal TMS. HRMSspectra were obtained on an Agilent 1290-6540 UHPLC Q-Tof HR-MS spectrometer. X-ray crystallographic analyses were performed on an Oxford diffraction Gemini Ediffractometer. Melting Point: heating rate: 4°C/min, the thermometer was notcorrected. Enantiomer excesses were determined by chiral HPLC analysis on Chiralcel IG/AD-H/IB-N-5 in comparison with the authentic racemates. Chiral HPLC analysisrecorded on Shanghaiyice instruments and Equipment Co. Ltd. and ShimadzuLC-20A. Silica gel (200-300 mesh) was used for the chromatographic separations. All commercially available reagents were used without further purification. The compound 1^[1] and 2a^[2] were prepared according to literature methods.

2. Optimization of the Reaction Conditions

2.1. Optimization of reaction conditions.

Table S1. Screening of the solvents.^a

l	$\bigvee_{N}^{N} CF_{3} + O$	Pd ₂ (dba) ₃ (5 mol L2 (10 m solvent, 3-5	CHCl ₃ %) nol%) N ₂ , rt h	$\sim CF_3$ $\sim CF_3$ $\sim O$
	1a	2a		За
entry	solvent	yield ^b	dr ^c	ee ^d
1	THF	43%	>20:1	92%
2	MTBE	60%	>20:1	94%
3	Et ₂ O	55%	20:1	84%
4	1,4-dioxane	35%	>20:1	96%
5	EA	49%	>20:1	92%
6	toluene	30%	9:1	80%
7	DCM	38%	15:1	64%

^a Reaction conditions: under N₂, the mixture of **1a** (0.1 mmol), **2a** (0.15 mmol), Pd₂(dba)₃•CHCl₃
(5 mol%), **L2** (10 mol%) in solvent (1.0 mL) at room temperature for 3-20 h. ^b Isolated yield.
^c Determined by ¹H NMR analysis. ^d Determined by HPLC analysis.

	$ \begin{array}{c} $	0 0 0 0 0 0 0 0 0 2a	[Pd] (5 mol%) L2 (10 mol%) → MTBE, N ₂ , rt 13 h		SF ₃
entry	[Pd]		yield ^b	dr ^c	ee ^d
1	$Pd_2(dba)_3 \cdot c$	CHCl ₃	60%	>20:1	94%
2	Pd ₂ (dba	a)3	44%	>20:1	80%

Table S2. Screening of the Pd catalysts.^a

3	$Pd(dba)_2$	49%	>20:1	60%
4	$Pd(OAc)_2$	Х	Х	Х
5	$[Pd(\eta-allyl)Cl]_2$	Х	Х	X

^{*a*} Reaction conditions: under N₂, the mixture of **1a** (0.1 mmol), **2a** (0.15 mmol), [Pd] (5 mol%), **L2** (10 mol%) in MBTE (1.0 mL) at room temperature for 13 h. ^{*b*} Isolated yield. ^{*c*} Determined by ¹H NMR analysis. ^{*d*} Determined by HPLC analysis.

 Table S3. Screening of loading of Pd catalysts. a

	NCF ₃ N +	O Pd2(dba O L MTBE 3-) ₃ ·CHCl ₃ .2 , N ₂ , rt 5 h		CF ₃
	1a	2a		3a	
entry	Pd ₂ (dba) ₃ ·CHCl ₃	L3	yield ^b	dr ^c	ee ^d
1	3 mol%	6 mol %	46%	>20:1	90%
2	4 mol %	8 mol %	44%	>20:1	84%
3	5 mol %	10 mol %	60%	>20:1	94%
4	5 mol %	15 mol %	41%	>20:1	94%
5	5.5 mol %	11 mol %	49%	>20:1	90%
6	6 mol %	12 mol %	55%	>20:1	92%
7	7 mol %	14 mol %	51%	>20:1	94%

^{*a*} Reaction conditions: under N₂, the mixture of **1a**, (0.1 mmol), **2a** (0.15 mmol), in MBTE (1.0 mL) at room temperature for 13 h. ^{*b*} Isolated yield. ^{*c*} Determined by ¹H NMR analysis. ^{*d*} Determined by HPLC analysis.

3. The data of compound 1j, 1k, 1p-1x.

The compounds 1j, 1k, 1p - 1x were prepared according to previous literature.^[1]

(Z)-1-((perfluorophenyl) methyl)-3-((2, 2, 2-trifluoroethyl) imino)indolin-2-one 1j. Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 6.9 Hz, 1H), 7.47 (td, J = 7.9, 1.0 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H), 6.88 (d, J = 7.9 Hz, 1H), 5.02 (s, 2H), 4.85 (q, J = 9.7 Hz, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 159.0, 154.6, 150.6, 141.3, 136.2, 126.5, 125.7, 124.4, 121.7, 116.2, 53.8, 44.4, 34.5, 31.3 ppm; HRMS (m/z)(m/z) [M+H]⁺ Calcd for C₁₇H₉F₈N₂O⁺[M+Na]⁺ : 431.0401, found 431.0402.

(Z)-1-(prop-2-yn-1-yl)-3-((2, 2, 2-trifluoroethyl)imino)indolin-2-one 1k.

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.5 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.20 – 7.15 (m, 1H), 7.08 (d, J = 7.9 Hz, 1H), 4.84 (q, J = 9.7 Hz, 2H), 4.53 (d, J = 2.4 Hz, 2H), 2.31 (t, J = 2.4 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 157.5, 155.2, 144.4, 133.8, 123.8, 123.2, 120.7, 109.8, 76.1, 72.9, 53.8, 53.6, 29.0 ppm; HRMS (m/z)(m/z) [M+H]⁺ Calcd for C₁₃H₁₀F₃N₂O ⁺ [M+Na]⁺ : 267.0740, found 267.0739.

(Z)-6-bromo-1-(4-(tert-butyl) benzyl)-3-((2, 2, 2-trifluoroethyl) imino) indolin-2one 1p.

Yellow solid. ¹H NMR (400MHz, CDCl₃) δ 7.60 (d, J = 8.0 Hz, 1H), 7.42 – 7.39 (m, 2H), 7.29 – 7.25 (m, 3H), 6.99 (d, J = 1.4 Hz, 1H), 4.86 (m, 4H), 1.33 (s, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 154.7, 151.3, 131.4, 128.0, 127.1, 126.6, 126.1, 124.2, 113.2, 53.9, 34.6, 31.3 ppm. HRMS (m/z)(m/z) [M+H]⁺ Calcd for C₂₁H₂₁BrF₃N₂O⁺: 453.0787, found 453.0784.

(Z)-7-bromo-1-(4-(tert-butyl) benzyl)-3-((2, 2, 2-trifluoroethyl) imino)indolin-2one 1q. Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (dd, J = 7.4, 0.9 Hz, 1H), 7.57 (dd, J = 8.1, 0.9 Hz, 1H), 7.39 – 7.35 (m, 2H), 7.22 (d, J = 8.3 Hz, 2H), 7.06 – 6.97 (m, 1H), 5.42 (s, 2H), 4.86 (q, J = 9.7 Hz, 2H), 1.32 (s, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 154.5, 150.5, 142.8, 139.5, 133.3, 126.4, 125.7, 124.7, 122.3, 103.2, 54.2, 53.9, 43.9, 34.5, 31.3 ppm; HRMS (m/z)(m/z) [M+H]⁺ Calcd for C₂₁H₂₁BrF₃N₂O⁺[M+H]⁺: 453.0784, found 453.0788.

(Z)-1-(4-(tert-butyl)benzyl)-7-fluoro-3-((2, 2, 2-trifluoroethyl)imino)indolin-2-one 1r.

Yellow solid. ¹H NMR (400 MHz, CDCl3) δ 7.61 – 7.49 (m, 1H), 7.44 – 7.25 (m, 4H), 7.18 (m, 1H), 7.10 – 6.94 (m, 1H), 5.04 (d, *J* = 19.0 Hz, 2H), 4.88 (m, 2H), 1.32 (d, *J* = 18.6 Hz, 9H) ppm; ¹³C NMR (101 MHz, CDCl3) δ 158.3, 158.3, 155.0, 151.0, 133.1, 133.0, 127.6, 125.7, 124.2, 124.1, 123.5, 122.0, 121.9, 121.8, 121.7, 119.1, 53.9, 53.6, 53.5, 45.2, 34.6, 34.5, 31.3 ppm; HRMS (m/z)(m/z) [M+H]⁺ Calcd for C₂₁H₂₁F₄N₂O⁺[M+H]⁺ : 393.1585, found 393.1583.

(*Z*)-1-(4-(tert-butyl)benzyl)-6-fluoro-3-((2, 2, 2-trifluoroethyl)imino)indolin-2-one 1s.

Yellow solid. ¹H NMR (400 MHz, CDCl3) δ 7.73 (dd, J = 8.2, 5.6 Hz, 1H), 7.41 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 8.1 Hz, 2H), 6.82 – 6.73 (m, 2H), 6.55 (dd, J = 8.7, 1.7 Hz, 1H), 4.89 (m, 4H), 1.33 (s, 9H) ppm; ¹³C NMR (101 MHz, CDCl3) δ 167.6, 165.1, 154.3, 151.3, 147.6, 147.5, 131.4, 127.2, 126.0, 125.1, 125.0, 110.2, 110.0, 98.9, 98.6, 53.7, 53.4, 53.1, 43.5, 34.6, 31.3 ppm; HRMS (m/z)(m/z) [M+H]⁺ Calcd for C₂₁H₂₁F₄N₂O⁺[M+H]⁺ : 393.1585, found 393.1588.

(Z)-1-(4-(*tert*-butyl)benzyl)-7-chloro-3-((2, 2, 2-trifluoroethyl)imino) indolin-2one 1t.

Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.70 (m, 1H), 7.40 – 7.37 (m, 3H), 7.26 (d, J = 8.4 Hz, 2H), 7.09 – 7.05 (m, 1H), 5.37 (s, 2H), 4.88 (q, J = 9.7 Hz, 2H), 1.33 (s, 9H).; ¹³C NMR (101 MHz, CDCl₃) δ 159.0, 154.6, 150.6, 141.3, 136.2, 126.5, 125.7, 124.4, 121.7, 116.2, 53.8, 44.4, 34.5, 31.3 ppm; HRMS (m/z)(m/z) [M+H]⁺ Calcd for C₂₁H₂₁ClF₃N₂O⁺[M+H]⁺ : 409.1289, found 409.1292.

(Z)-1-(4-(tert-butyl) benzyl)-6-chloro-3-((2, 2, 2-trifluoroethyl) imino) indolin-2one 1u.

Yellow solid. ¹H NMR (400MHz, CDCl3) δ 7.67 (d, J = 8.0 Hz, 1H), 7.40 (m, J = 8.3 Hz, 2H), 7.29 – 7.25 (m, 2H), 7.09 (dd, J = 8.0, 1.7 Hz, 1H), 6.82 (d, J = 1.6 Hz, 1H), 4.89 – 4.86 (m, 3H), 1.33 (s, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 158.5, 154.6, 127.1, 126.1, 124.1, 123.6, 119.1, 53.9, 53.6, 43.5, 34.6, 31.3 ppm; HRMS (m/z)(m/z) [M+H]⁺ Calcd for C₂₁H₂₁ClF₃N₂O⁺ [M+H]⁺ : 409.1289, found 409.1295.

(*Z*)-1-(4-(tert-butyl)benzyl)-7-methoxy-3-((2, 2, 2-trifluoroethyl)imino)indolin- 2one 1w.

Yellow solid. ¹H NMR (400 MHz, CDCl3) δ 7.39 – 7.35 (m, 3H), 7.31 (m, 2H), 7.07 – 7.01 (m, 2H), 5.17 (s, 2H), 4.88 (q, *J* = 9.5 Hz, 2H), 3.83 (s, 3H), 1.33 (s, 9H) ppm; ¹³C NMR (101 MHz, CDCl3) δ 158.9, 156.1, 150.4, 145.2, 134.5, 133.7, 127.4, 125.4, 124.0, 122.3, 117.7, 115.6, 55.9, 54.2, 53.8, 53.5, 45.4, 34.5, 31.3 ppm; HRMS (m/z)(m/z) [M+H]⁺ Calcd for C₂₂H₂₄F₃N₂O₂⁺ [M+H]⁺ : 405.1784, found 405.1784.

methyl (*Z*)-1-(4-(tert-butyl)benzyl)-2-oxo-3-((2, 2, 2-trifluoroethyl)imino)indoline -7-carboxylate 1x

Yellow solid. ¹**H NMR (400 MHz, CDCI3)** δ 7.90 (dd, J = 7.4, 1.2 Hz, 1H), 7.60 – 7.52 (dd, J=8.0, 4.0 Hz, 1H), 7.28 (m, 3H, overlapped with the peak of chloroform), 7.12 (t, J = 7.7 Hz, 1H), 6.99 (d, J = 8.3 Hz, 2H), 5.25 (s, 2H), 4.89 (q, J = 9.8 Hz, 2H), 3.61 (s, 3H), 1.28 (s, 9H) ppm; ¹³C NMR (101 MHz, CDCI3) δ 166.3, 159.3, 154.4, 150.5, 143.3, 134.4, 131.7, 125.5, 122.7, 122.5, 118.0, 54.2, 53.8, 52.5, 44.5, 34.5, 31.3, 29.7 ppm; **HRMS** (m/z)(m/z) [M+H]⁺ Calcd for C₂₂H₂₄F₃N₂O₃⁺ [M+H]⁺ : 433.1734, found 433.1732.

4. General Procedure for Reactions

To a flame dried sealing tube, $Pd_2(dba)_3 \cdot CHCl_3(0.005 \text{ mmol}, 5.2 \text{ mg})$, L2 (0.01 mmol, 5.4 mg), freshly distilled anhydrous MTBE (1.0 mL) were added. The resulting mixture was allowed to stir for 30 min. Then, compound 1 (0.1 mmol) and compound 2a (0.15 mmol) were added subsequently. The resulting reaction mixture was stirred at room temperature for 3 h (monitored by TLC). The residue was subjected to column chromatography on silica gel, using a mixture of petroleum ether and ethyl acetate as eluent, to give desired product 3.

3a: Purified by silica gel chromatography using PE/EA 6:1, white solid, 60% yield, 18.7 mg, 94% ee, dr> 20:1; MP: 127.6-128.4°C. $[\alpha]_D = + 31$ (c = 0.1, CH₂Cl₂, 32.1 °C). ¹H NMR (**300 MHz, CDCl₃**): δ 7.37-7.32 (m, 2H), 7.08 (t, J = 7.5 Hz, 1H), 6.87 (d, J = 7.8 Hz, 1H), 5.40 (dd, J = 9.9, 4.8 Hz, 1H), 5.25 (s, 1H), 5.00 (s, 1H), 4.58 (d, J = 13.5 Hz, 1H), 4.37 (d, J = 13.2 Hz, 1H), 3.20 (s, 3H), 2.88 (d, J = 14.1 Hz, 1H), 2.71 (d, J = 13.8 Hz, 1H), 2.44 (d, J = 10.2 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 177.1, 142.8, 140.6, 131.5, 129.6, 122.9, 122.5 (q, J = 279.75 Hz), 122.4, 119.1, 108.6, 82.2 (q, J = 33.00 Hz), 74.0, 59.6, 44.4, 26.2 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -80.86 (d, J = 5.6 Hz) ppm. HRMS (m/z) [M+Na]⁺ Calcd for C₁₅H₁₅F₃N₂NaO₂⁺ 335.0983, found 335.0984. HPLC (Chiralpak IG-H, *n*-hexane/*i*-propanol = 99.2/0.8, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 34.48 min (major), 47.72 min (minor).

3b: Purified by silica gel chromatography using PE/EA 5:1, yellow oil, 58% yield, 24.2 mg, 88% ee, dr> 20:1; $[\alpha]_D = + 37$ (c = 0.1, CH₂Cl₂, 33.0 °C). ¹H NMR (**300 MHz, CDCl₃**): δ 7.32 (d, J = 7.3 Hz, 1H), 7.24-7.20 (m, 3H), 7.05-7.00 (m, 1H), 6.86-6.83 (m, 2H), 6.76 (d, J = 7.8 Hz, 1H), 5.45 (dd, J = 9.6, 4.5Hz, 2H), 5.26 (s, 1H), 5.01 (s, 1H), 4.88 (d, J = 15.3Hz, 1H), 4.77 (d, J = 15.6 Hz, 1H), 4.60 (d, J = 13.2 Hz, 1H), 4.38 (d, J = 13.2 Hz, 1H), 3.77 (s, 3H), 2.92 (d, J = 14.1 Hz, 1H), 2.76 (d, J = 14.1 Hz, 1H), 2.47 (d, J = 5.1 Hz, 1H) ppm. ¹³C NMR (**75** MHz, CDCl₃): δ 177.2, 159.1, 141.8, 140.6, 131.7, 129.4, 128.5, 127.6, 122.8, 122.5 (q, J = 279.00 Hz), 122.4, 119.2, 114.3, 109.6, 82.2 (q, J = 32.25 Hz), 74.1, 59.6, 55.3, 44.5, 43.0 ppm. ¹⁹F NMR (**282** MHz, CDCl₃) δ -80.87 (d, J = 5.6 Hz) ppm. HRMS (m/z) [M + H]⁺ Calcd for C₂₂H₂₂F₃N₂O₃⁺ 419.1583, found 419.1588. HPLC (Chiralpak AD-H, *n*-

hexane/*i*-propanol = 95/5, flow rate = 1.0 mL/min, l = 254 nm) tR =15.42 min (major), 19.71 min (minor).

3c: Purified by silica gel chromatography using PE/EA 5:1, yellow oil, 53% yield, 22.5 mg, 91% ee, dr> 20:1; $[\alpha]_D = +17$ (c = 0.1, CH₂Cl₂,33.4 °C). ¹H NMR (**300 MHz, CDCl₃**): δ 7.35-7.19 (m, 6H), 7.03 (t, J = 7.5 Hz, 1H), 6.74 (d, J = 7.8 Hz, 1H), 5.45 (dd, J = 10.2, 4.8 Hz, 1H), 5.26(s, 1H), 5.02 (s, 1H), 4.96 (d, J = 15.9Hz, 1H), 4.83 (d, J = 15.6Hz, 1H), 4.60 (d, J = 13.5Hz, 1H), 4.39 (d, J = 13.2Hz, 1H), 2.95 (d, J = 13.8Hz, 1H), 2.78 (d, J = 14.1Hz, 1H), 2.48 (d, J = 11.1 Hz, 1H) ppm. ¹³C NMR (**75** MHz, CDCl₃): δ 177.2, 141.8, 140.6, 135.6, 131.7, 129.5, 128.9, 127.7, 127.1, 122.9, 122.5(q, J = 279.75 Hz), 122.4, 119.2, 109.6, 82.2 (q, J = 33.00 Hz), 74.1, 59.6, 44.5, 43.5 ppm. ¹⁹F NMR (**282** MHz, CDCl₃) δ -80.81 (d, J = 2.8 Hz) ppm. HRMS (m/z) [M + H]⁺ Calcd for C₂₁H₂₀F₃N₂O₂⁺ 389.1477, found 389.1484. HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 98/2, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 17.86 min (major), 25.72 min (minor).

3d: Purified by silica gel chromatography using PE/EA 5:1, yellow oil, 73% yield, 29.6 mg, 88% ee, dr> 20:1; $[\alpha]_D = +23$ (c = 0.1, CH₂Cl₂, 33.3°C). ¹H NMR (**300 MHz, CDCl₃**): δ 7.34 (d, J = 7.4 Hz, 1H), 7.28-7.21 (m, 3H), 7.07-6.98 (m, 3H), 6.73 (d, J = 7.8 Hz, 1H), 5.44 (td, J = 9.9, 5.1 Hz, 1H), 5.27 (s, 1H), 5.02 (s, 1H), 4.86 (dd, J = 20.4, 15.6 Hz, 2H), 4.60 (d, J = 13.2 Hz, 1H), 4.39 (d, J = 13.2 Hz, 1H), 2.93 (d, J = 13.8 Hz, 1H), 2.77 (d, J = 14.1 Hz, 1H), 2.47 (d, J = 11.7 Hz, 1H) ppm. ¹³C NMR (**75** MHz, CDCl₃): δ 177.2, 162.2 (d, J = 250.50 Hz), 141.6, 140.5, 131.7, 131.3(d, J = 3.75 Hz), 129.5, 128.9, 128.8, 123.0, 122.6, 122.5(q, J = 279.00 Hz), 119.3, 115.9, 115.7, 109.5, 82.1(q, J = 33.00 Hz), 74.1, 59.5, 44.4, 42.8 ppm. ¹⁹F NMR (**282** MHz,

CDCl₃) δ -80.76 (d, J = 5.6 Hz), -115.39 (d, J = 5.6 Hz) ppm. **HRMS** (m/z) [M + H]⁺ Calcd for C₂₁H₁₉F₄N₂O₂⁺ 407.1383, found 407.1383. **HPLC** (Chiralpak AD-H, *n*-hexane/*i*-propanol = 95/5, flow rate = 1.0 mL/min, l = 254 nm) tR =10.47 min (major), 14.39 min (minor).

3e: Purified by silica gel chromatography using PE/EA 5:1, yellow oil, 78% yield, 34.6 mg, 94% ee, dr: 93:7; $[\alpha]_D = + 21$ (c = 0.1, CH₂Cl₂, 29.8 °C). ¹H NMR (**300 MHz, CDCl₃**): δ 7.35-7.32 (m, 3H), 7.21 (d, J = 8.1 Hz, 3H), 7.03 (t, J = 7.2 Hz, 1H), 6.77 (d, J = 7.8 Hz, 1H), 5.47 (dd, J = 10.5, 5.1 Hz, 1H), 5.26 (s, 1H), 5.02 (s, 1H), 4.93 (d, J = 15.6 Hz, 1H), 4.77 (d, J = 15.6 Hz, 1H), 4.60 (d, J = 13.5 Hz, 1H), 4.38 (d, J = 13.2 Hz, 1H), 2.94 (d, J = 14.1 Hz, 1H), 2.77 (d, J = 13.8 Hz, 1H), 2.49 (d, J = 10.2 Hz, 1H), 1.28 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 177.2, 150.7, 142.0, 140.6, 132.6, 131.7, 129.5, 126.9, 125.8, 122.8, 122.6 (q, J = 279.75 Hz), 122.4, 119.2, 109.7, 82.2 (q, J = 32.25Hz), 74.1, 59.6, 44.6, 43.2, 34.5, 31.3 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -80.99 (d, J = 5.6 Hz,) ppm. HRMS (m/z) [M + H]⁺ Calcd for C₂₅H₂₈F₃N₂O₂⁺ 445.2103, found 445.2110. HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 99/1, flow rate = 1.0 mL/min, 1 = 254 nm) tR =24.38 min (major), 34.79 min (minor).

3f: Purified by silica gel chromatography using PE/EA 5:1, white solid, 50% yield, 20.2 mg, 92% ee, dr: 94 :6; MP: 102.5-104.3 °C. $[\alpha]_D = +42$ (c = 0.1, CH₂Cl₂, 29.4 °C). ¹**H NMR (300 MHz, CDCl₃)**: δ 7.41-7.24 (m, 4H), 7.12-7.02 (m, 3H), 6.82 (d, J = 7.8 Hz, 1H), 5.43 (dd, J =9.3, 4.5 Hz, 1H), 5.27 (s, 1H), 5.05 (s, 1H), 4.60 (d, J = 13.3 Hz, 1H), 4.38 (d, J = 13.2 Hz, 1H), 3.86 (s, 3H), 3.00 (d, J = 14.1 Hz, 1H), 2.83

(d, J = 13.8 Hz, 1H), 2.51 (d, J = 10.2 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 176.6, 159.2, 143.1, 140.5, 131.3, 129.5, 127.8, 126.5, 123.2, 122.7, 122.5(q, J = 279.75 Hz), 119.3, 114.9, 109.8, 82.2 (q, J = 32.25 Hz), 74.0, 59.6, 55.6, 44.7 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -80.83 (d, J = 5.6 Hz) ppm. HRMS (m/z) [M + H]⁺ Calcd for C₂₁H₂₀F₃N₂O₃⁺ 405.1426, found 405.1429. HPLC (Chiralpak AD, *n*hexane/*i*-propanol = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 9.85 min (major), 12.63 min (minor).

3g: Purified by silica gel chromatography using PE/EA 5:1, yellow oil, 65% yield, 26.1 mg, 94 % ee, dr: 97 :3; $[\alpha]_D = +27$ (c = 0.1, CH₂Cl₂, 30.9 °C). ¹H NMR (**300 MHz, CDCl₃**): δ 7.32 (d, J = 7.5 Hz, 1H), 7.21-7.10 (m, 5H), 7.02 (t, J = 7.5 Hz, 1H), 6.75 (d, J = 7.8 Hz, 1H), 5.46 (dd, J = 10.5, 5.1 Hz, 1H), 5.26 (s, 1H), 5.01 (s, 1H), 4.92 (d, J = 15.6 Hz, 1H), 4.77 (d, J = 15.6 Hz, 1H), 4.59 (d, J = 13.2 Hz, 1H), 4.38 (d, J = 13.2 Hz, 1H), 2.93 (d, J = 13.8 Hz, 1H), 2.76 (d, J = 14.1 Hz, 1H), 2.48 (d, J =10.2 Hz, 1H), 2.30 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 177.2, 141.9, 140.6, 137.4, 132.6, 131.7, 129.5, 129.4, 127.2, 122.8, 122.6 (q, J = 279.00 Hz), 122.4, 119.2, 109.7, 82.2 (q, J = 32.25 Hz), 74.1, 59.6, 44.5, 43.3, 21.1 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -80.86 (d, J = 5.6 Hz) ppm. HRMS (m/z) [M + H]⁺ Calcd for C₂₂H₂₂F₃N₂O₂⁺ 403.1633, found 403.1640. HPLC (Chiralpak AD-H, *n*-hexane/*i*propanol = 97/3, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 13.86 min (major), 19.24 min (minor).

3h: Purified by silica gel chromatography using PE/EA 5:1, yellow oil, 67% yield, 31.2 mg, 88% ee, dr: 95 :5; $[\alpha]_D = +21$ (c = 0.1, CH₂Cl₂, 31 °C). ¹H NMR (300 MHz, CDCl₃): δ 7.44 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 7.4 Hz, 1H), 7.23-7.14 (m, 3H), 7.05

(t, J = 7.5 Hz, 1H), 6.70 (d, J = 7.8 Hz, 1H), 5.42 (s, 1H), 5.27 (s, 1H), 5.02 (s, 1H), 4.83 (dd, J = 20.4, 15.9 Hz, 2H), 4.60 (d, J = 13.3 Hz, 1H), 4.38 (d, J = 13.2 Hz, 1H), 2.93 (d, J = 14.0 Hz, 1H), 2.78 (d, J = 14.0 Hz, 1H), 2.48 (d, J = 11.5 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 177.2, 141.5, 140.5, 134.6, 132.0, 131.6, 129.5, 128.9, 123.1, 122.6, 122.5(q, J = 279.75 Hz), 121.7, 119.3, 109.4, 82.1(q, J = 33.00 Hz), 74.1, 59.5, 44.4, 42.9 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -81.07 (d, J = 5.6 Hz) ppm. HRMS (m/z) [M + H]⁺ Calcd for C₂₁H₁₉BrF₃N₂O₂⁺ 467.0582, found 467.0590. HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 95/5, flow rate = 1.0 mL/min, 1 = 254 nm) tR =12.80 min (major), 19.43 min (minor).

3i: Purified by silica gel chromatography using PE/EA 5:1, yellow oil, 63% yield, 29.3 mg, 90% ee, dr: 90 : 10; $[\alpha]_D = + 14$ (c = 0.1, CH₂Cl₂, 28.6 °C). ¹H NMR (**300 MHz, CDCl₃**): δ 7.60-7.57 (m, 1H), 7.37 (d, J = 7.5 Hz, 1H), 7.24-7.19 (m, 2H), 7.16-7.04 (m, 3H), 6.70 (d, J = 7.8 Hz, 1H), 5.44 (td, J = 9.9, 4.8 Hz, 1H), 5.28 (s, 1H), 5.05 (s, 1H), 5.00-4.92 (m, 2H), 4.61 (d, J = 13.2 Hz, 1H), 4.39 (d, J = 13.2 Hz, 1H), 2.98 (d, J = 14.1 Hz, 1H), 2.83 (d, J = 14.1 Hz, 1H), 2.52 (d, J = 10.8 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 177.3, 141.6, 140.5, 134.2, 133.0, 131.6, 129.6, 129.2, 127.9, 127.7, 123.2, 122.8, 122.5(d, J = 279.75 Hz), 122.5, 119.4, 109.7, 82.1(q, J = 33.00 Hz), 74.1, 59.6, 44.4, 43.5 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ - 81.07 (d, J = 5.6 Hz,) ppm. HRMS (m/z) [M + H]⁺ Calcd for C₂₁H₁₉BrF₃N₂O₂⁺ 467.0582, found 467.0590. HPLC (Chiralpak IG-H, *n*-hexane/*i*-propanol = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm) tR =7.24 min (minor), 8.29 min (major).

3j: Purified by silica gel chromatography using PE/EA 6:1, white solid, 66% yield, 31.5 mg, 92% ee, dr: 97 :3; MP: 108.2-110.8 °C. $[\alpha]_D = + 17$ (c = 0.1, CH₂Cl₂, 29.6 °C). ¹**H NMR (300 MHz, CDCl₃**): δ 7.36-7.27 (m, 2H), 7.09 (t, J = 7.5 Hz, 1H), 6.79 (d, J = 7.8 Hz, 1H), 5.41 (d, J = 5.7 Hz, 1H), 5.27 (s, 1H), 5.19 (d, J = 15.3 Hz, 1H), 5.00 (s, 1H), 4.83 (d, J = 15.6 Hz, 1H), 4.59 (d, J = 13.5 Hz, 1H), 4.39 (d, J = 13.5 Hz, 1H), 2.80 (dd, J = 27.3, 14.1 Hz, 2H), 2.44 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 176.2, 147.4-147.0 (m), 144.1-143.7 (m), 140.7, 140.0, 139.7-139.1 (m), 136.2-135.8 (m), 131.5, 129.7, 123.4, 122.7, 122.5(q, J = 279.00 Hz), 119.4, 109.2-108.7 (m), 108.4, 81.9 (q, J = 33.00 Hz), 74.0, 59.5, 44.6, 31.8 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -80.91 (d, J = 5.6 Hz), -142.29-142.40 (m), -154.53 (t, J = 22.56 Hz), -162.09-162.27 (m) ppm. HRMS (m/z) [M + H]⁺ Calcd for C₂₁H₁₅F₈N₂O₂⁺ 479.1000, found 479.1013. HPLC (Chiralpak IB-H, *n*-hexane/*i*-propanol = 99/1, flow rate = 1.0 mL/min, 1 = 254 nm) tR =31.13 min (minor), 39.17 min (major).

3k: Purified by silica gel chromatography using PE/EA 5:1, white solid, 55% yield, 18.5 mg, 89 % ee, dr> 20:1; MP: 179.3-180.6 °C. $[\alpha]_D = +53$ (c = 0.1, CH₂Cl₂, 32.8 °C). ¹H NMR (**300 MHz, CDCl₃**): δ 7.40-7.34 (m, 2H), 7.14-7.09 (m, 2H), 5.37 (dd, J = 10.5, 4.8 Hz, 1H), 5.25(s, 1H), 5.00(s, 1H), 4.67-4.56 (m, 2H), 4.38-4.31 (m, 2H), 2.88 (d, J = 14.1 Hz, 1H), 2.72 (d, J = 14.1 Hz, 1H), 2.44 (d, J = 11.1 Hz, 1H), 2.27 (s, 1H) ppm. ¹³C NMR (**75 MHz, CDCl₃**): δ 176.1, 140.9, 140.3, 131.4, 129.6, 123.3, 122.6, 122.5(q, J = 279.75 Hz), 119.3, 109.7, 82.2 (q, J = 33.00 Hz), 76.7, 74.0, 72.7, 59.7, 44.4, 29.3 ppm. ¹⁹F NMR (**282 MHz, CDCl₃**) δ -80.88 (d, J = 2.8 Hz) ppm. HRMS (m/z) [M+H]⁺ Calcd for C₁₇H₁₆F₃N₂O₂⁺ 337.1164, found 337.1161. HPLC (Chiralpak IG-H, *n*-hexane/*i*-propanol = 95/5, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 9.92 min (minor), 11.57 min (major).

31: Purified by silica gel chromatography using PE/EA 5:1, white solid; 70% yield, 25.9 mg, 94% ee, dr: 95 :5; MP: 101.2-102.5 °C. $[\alpha]_D = + 37$ (c = 0.1, CH₂Cl₂, 30.7 °C).¹**H NMR (300 MHz, CDCl₃)**: δ 7.37-7.29 (m, 2H), 7.10 (t, J = 7.5 Hz, 1H), 6.75 (d, J = 8.1 Hz, 1H), 5.38 (td, J = 9.9, 4.8 Hz, 1H), 5.24 (s, 1H), 5.00 (s, 1H), 4.69-4.57 (m, 2H), 4.37 (d, J = 13.2 Hz, 1H), 4.25 (d, J = 17.7 Hz, 1H), 3.77 (s, 3H), 2.90 (d, J = 14.1 Hz, 1H), 2.77 (d, J = 14.1 Hz, 1H), 2.48 (d, J = 11.4 Hz, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 177.0, 167.9, 141.3, 140.1, 131.3, 129.6, 123.3, 122.7, 122.5(q, J = 279.75 Hz), 119.4, 108.6, 82.1 (q, J = 32.25 Hz), 74.0, 59.7, 52.7, 44.7, 41.0 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -80.78 (d, J = 5.6 Hz) ppm. HRMS (m/z) [M+H]⁺ Calcd for C₁₇H₁₈F₃N₂O₄⁺ 371.1219, found 371.1221. HPLC (Chiralpak IB-H, *n*-hexane/*i*-propanol = 95/5, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 16.53 min (major), 30.50 min (minor).

3m: Purified by silica gel chromatography using PE/EA 6:1, yellow oil, 62% yield, 22.7 mg, 94 % ee, dr> 20 :1; $[\alpha]_D = +$ 18 (c = 0.1, CH₂Cl₂, 33.1 °C). ¹H NMR (**300 MHz, CDCl₃**): δ 7.35-7.28 (m, 2H), 7.08-7.02 (m, 1H), 6.95 (d, J = 8.1 Hz, 1H), 5.40 (d, J = 3.9 Hz, 1H), 5.24 (s, 1H), 4.98 (s, 1H), 4.77-4.65 (m, 1H), 4.57 (d, J = 13.2 Hz, 1H), 4.35 (d, J = 13.2 Hz, 1H), 2.87 (d, J = 14.1 Hz, 1H), 2.67 (d, J = 13.8 Hz, 1H), 2.40 (s, 1H), 2.12-2.03 (m, 2H), 1.99-1.89 (m, 4H), 1.77-1.70 (m, 2H) ppm. ¹³C NMR (**75** MHz, CDCl₃): δ 177.2, 141.4, 140.7, 132.0, 129.2, 122.7, 122.5 (q, J = 279.00 Hz), 122.3, 118.9, 110.1, 82.3 (q, J = 33.00 Hz), 74.0, 59.3, 52.3, 44.6, 27.8, 27.5, 25.2 ppm. ¹⁹F NMR (**282** MHz, CDCl₃) δ -80.77 (d, J = 2.8 Hz) ppm. HRMS (m/z) [M+H]⁺ Calcd for C₁₉H₂₂F₃N₂O₂⁺ 367.1633, found 367.1624. HPLC (Chiralpak IG-H,

n-hexane/*i*-propanol = 99/1, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 15.12 min (major), 19.43 min (minor).

3n: Purified by silica gel chromatography using PE/EA 5:1, yellow oil, 62% yield, 22.1 mg, 90 % ee, dr> 20 :1; $[\alpha]_D = +23$ (c = 0.1, CH₂Cl₂, 31.5 °C). ¹H NMR (300 MHz, CDCl₃): δ 7.38-7.33 (m, 2H), 7.14-7.08 (m, 2H), 5.37 (d, J = 3.3 Hz, 1H), 5.26 (s, 1H), 5.17 (dd, J = 19.5, 11.1 Hz, 2H), 5.01 (s, 1H), 4.59 (d, J = 13.2 Hz, 1H), 4.37 (d, J = 13.2 Hz, 1H), 3.55 (dd, J = 11.4, 7.2 Hz, 2H), 2.89 (d, J = 14.1 Hz, 1H), 2.76 (d, J = 14.1 Hz, 1H), 2.45 (s, 1H), 1.18 (t, J = 6.9 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 177.5, 141.1, 140.4, 131.2, 129.7, 123.4, 122.5, 122.4(q, J = 279.75 Hz), 119.3, 110.2, 82.1 (q, J = 33.00 Hz), 74.1, 69.8, 64.3, 59.8, 44.5, 14.9 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -80.87 (d, J = 5.6 Hz) ppm. HRMS (m/z) [M + H]⁺ Calcd for C₁₇H₂₀F₃N₂O₃⁺ 357.1426, found 357.1435. HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 97/3, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 7.63 min (major), 9.15 min (minor).

30: Purified by silica gel chromatography using PE/EA 5:1, yellow oil, 69% yield, 28.8 mg, 84% ee, dr> 20 :1; $[\alpha]_D = +28$ (c = 0.1, CH₂Cl₂, 32.3 °C). ¹H NMR (**300 MHz, CDCl₃**): δ 7.38-7.33 (m, 2H), 7.31-7.28 (m, 5H), 7.14-7.09 (m, 2H), 5.37 (td, J = 9.9, 4.8 Hz, 1H), 5.29-5.18 (m, 3H), 4.99 (s, 1H), 4.60-4.50 (m, 3H), 4.35 (d, J = 13.5 Hz, 1H), 2.85 (d, J = 14.1 Hz, 1H), 2.67 (d, J = 13.8 Hz, 1H), 2.44 (d, J = 11.4 Hz, 1H) ppm. ¹³C NMR (**75** MHz, CDCl₃): δ 177.6, 141.0, 140.4, 137.2, 131.2, 129.7, 128.4, 127.9, 123.4, 122.6, 122.4(q, J = 270.75 Hz), 119.3, 110.2, 82.1 (q, J = 32.25 Hz), 74.1, 70.6, 69.5, 59.8, 44.4 ppm. ¹⁹F NMR (**282** MHz, CDCl₃) δ -80.97 (d, J = 5.6 Hz) ppm. HRMS (m/z) [M + H]⁺ Calcd for C₂₂H₂₂F₃N₂O₃⁺ 419.1583, found

419.1591. **HPLC** (Chiralpak IG-H, *n*-hexane/*i*-propanol = 99/1, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 24.13 min (minor), 27.02 min (major).

3p: Purified by silica gel chromatography using PE/EA 5:1, yellow oil, 47% yield, 24.5 mg, 86% ee, dr: 97 :3; $[\alpha]_D = +9$ (c = 0.1, CH₂Cl₂, 31.1 °C). ¹H NMR (**300 MHz**, **CDCl₃**): δ 7.36 (d, J = 8.1Hz, 2H), 7.21-7.15 (m, 4H), 6.92 (d, J = 0.6 Hz, 1H), 5.41 (dd, J = 9.0, 4.2 Hz, 1H), 5.26 (s, 1H), 5.00 (s, 1H), 4.89 (d, J = 15.6 Hz, 1H), 4.74 (d, J = 15.9 Hz, 1H), 4.58 (d, J = 13.2 Hz, 1H), 4.36 (d, J = 13.2 Hz, 1H), 2.92 (d, J = 13.8 Hz, 1H), 2.72 (d, J = 14.1 Hz, 1H), 2.44 (d, J = 10.5 Hz, 1H), 1.29 (s, 9H) ppm. ¹³C NMR (**75 MHz, CDCl₃**): δ 177.0, 150.9, 143.4, 140.3, 132.0, 130.5, 126.8, 125.9, 125.7, 123.9, 123.2, 122.5 (q, J = 279.75 Hz), 119.4, 113.0, 82.2 (q, J = 33.00 Hz), 74.0, 59.4, 44.4, 43.3, 34.6, 31.3 ppm. ¹⁹F NMR (**282 MHz, CDCl₃**) δ -80.80 (d, J = 5.6 Hz) ppm. HRMS (m/z) [M + H]⁺ Calcd for C₂₅H₂₇BrF₃N₂O₂⁺ 523.1208, found 523.1202. HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 95/5, flow rate = 1.0 mL/min, 1 = 254 nm) tR =7.70 min (major), 10.20 min (minor).

3q: Purified by silica gel chromatography using PE/EA 5:1, white solid, 63% yield, 32.9 mg, 97% ee, dr> 20 :1; MP: 102.6-103.8 °C. $[\alpha]_D = + 34$ (c = 0.1, CH₂Cl₂, 30.8 °C). ¹H NMR (**300 MHz, CDCl₃**): δ 7.38 (d, J = 8.4 Hz, 1H), 7.33-7.28 (m, 3H), 7.16 (d, J = 8.4 Hz, 2H), 6.91 (t, J = 7.5 Hz, 1H), 5.45-5.29 (m, 3H), 5.25 (s, 1H), 4.98 (s, 1H), 4.59 (d, J = 13.5 Hz, 1H), 4.38 (d, J = 13.5 Hz, 1H), 2.89 (d, J = 13.8 Hz, 1H), 2.78 (d, J = 13.8 Hz, 1H), 2.45 (d, J = 10.8 Hz, 1H), 1.28 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 177.8, 150.1, 140.2, 139.6, 135.4, 134.9, 134.0, 126.1, 125.5, 124.2, 122.5 (q, J = 279.75 Hz), 121.5, 119.5, 103.1, 82.0 (q, J = 32.25 Hz), 74.0, 58.9, 44.9, 43.9, 34.5, 31.3 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -80.83 (d, J = 5.6 Hz) ppm.

HRMS (m/z) $[M + H]^+$ Calcd for $C_{25}H_{27}BrF_3N_2O_2^+$ 523.1208, found 523.1202. **HPLC** (Chiralpak AD-H, *n*-hexane/*i*-propanol = 97/3, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 9.35 min (major), 12.03min (minor).

3r: Purified by silica gel chromatography using PE/EA 5:1, yellow oil, 64% yield, 29.5 mg, 93% ee, dr: 94 :6; $[\alpha]_D = +23$ (c = 0.1, CH₂Cl₂, 31.5 °C). ¹H NMR (**300 MHz, CDCl₃**): δ 7.34-7.24 (m, 4H), 7.13-7.10 (m, 1H), 7.03-6.97 (m, 2H), 5.44 (dd, J = 9.4, 4.5 Hz, 1H), 5.26 (s, 1H), 5.05-4.94 (m, 3H), 4.59 (d, J = 13.3 Hz, 1H), 4.38 (d, J = 13.3 Hz, 1H), 2.89 (d, J = 14.0 Hz, 1H), 2.75 (d, J = 14.0 Hz, 1H), 2.45 (d, J = 10.9 Hz, 1H), 1.28 (s, 9H) ppm. ¹³C NMR (**75** MHz, CDCl₃): δ 176.8, 150.6, 147.6 (d, J = 244.50 Hz), 140.2, 134.4(d, J = 3.00 Hz), 133.8, 128.7 (d, J = 9.00 Hz), 127.2 (d, J = 0.75 Hz), 125.6, 123.7 (d, J = 6.00 Hz), 122.5 (q, J = 278.25 Hz), 119.5, 118.3 (d, J = 3.75 Hz), 117.7 (d, J = 20.25 Hz), 82.0 (q, J = 32.25 Hz), 74.1, 59.7 (d, J = 1.50 Hz), 44.8 (d, J = 5.25 Hz), 44.6, 34.5, 31.3 ppm. ¹⁹F NMR (**282** MHz, CDCl₃) δ -80.89 (d, J = 5.6 Hz), -133.72 (d, J = 8.4 Hz) ppm. HRMS (m/z) [M + H]⁺ Calcd for C₂₅H₂₇F₄N₂O₂⁺ 463.2009, found 463.2013. HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol =80/20, flow rate = 1.0 mL/min, 1 = 254 nm) tR =5.18 min (major), 5.90 min (minor).

3s: Purified by silica gel chromatography using PE/EA 5:1, yellow oil, 61% yield, 28.2 mg, 86% ee, dr: 95 :5; $[\alpha]_D = +20$ (c = 0.1, CH₂Cl₂, 31.2 °C). ¹H NMR (300 MHz, CDCl₃): δ 7.35 (d, J = 8.4 Hz, 2H), 7.30-7.27 (m, 1H), 7.19 (d, J = 8.1 Hz, 2H), 6.70 (td, J = 9.6, 2.4 Hz, 1H), 6.50 (dd, J = 9.0, 2.4 Hz, 1H), 5.42 (s, 1H), 5.27 (s, 1H), 5.01 (s, 1H), 4.90 (d, J = 15.6 Hz, 1H), 4.75 (d, J = 15.6 Hz, 1H), 4.59 (d, J = 13.5 Hz,

1H), 4.37 (d, J = 13.5 Hz, 1H), 2.94 (d, J = 14.1 Hz, 1H), 2.74 (d, J = 13.8 Hz, 1H), 2.45 (s, 1H), 1.29 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 177.4 , 163.6 (d, J =245.25 Hz), 150.9, 143.7 (d, J = 12.00 Hz), 140.4, 132.0, 127.1 (d, J = 3.00 Hz), 126.9, 125.9, 123.7 (d, J = 9.75 Hz), 122.5 (q, J = 279.00 Hz), 119.3, 108.9 (d, J =22.50 Hz), 98.5 (d, J = 27.75 Hz), 82.1 (q, J = 33.00 Hz), 74.0, 59.3, 44.5, 43.4, 34.5, 31.3 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -80.82 (d, J = 5.6 Hz); -110.98 ppm. HRMS (m/z) [M + H]⁺ Calcd for C₂₅H₂₇F₄N₂O₂⁺ 463.2009, found 463.2012. HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 95/5, flow rate = 1.0 mL/min, 1 = 254 nm) tR =8.05 min (major), 10.32 min (minor).

3t: Purified by silica gel chromatography using PE/EA 5:1, white solid, 54% yield, 25.8 mg, 94% ee, dr: 95 :5; **MP:** 111.3-112.5°C. $[\alpha]_D = +47$ (c = 0.1, CH₂Cl₂, 30.4°C). ¹**H NMR (300 MHz, CDCl₃**): δ 7.32 (d, J = 8.4 Hz, 2H), 7.26-7.24 (m, 1H), 7.09 (d, J = 8.4 Hz, 2H), 7.21-7.16 (m, 3H), 6.98 (t, J = 7.5 Hz, 1H), 5.43 (td, J = 9.6, 4.5 Hz, 1H), 5.37-5.24 (m, 3H), 4.99 (s, 1H), 4.59 (d, J = 13.2 Hz, 1H), 4.39 (d, J = 13.5 Hz, 1H), 2.90 (d, J = 13.8 Hz, 1H), 2.75 (d, J = 13.8 Hz, 1H), 2.45 (d, J = 11.4 Hz, 1H), 1.28 (s, 9H) ppm. ¹³**C NMR (75 MHz, CDCl₃**): δ 177.6, 150.2, 140.2, 138.1, 134.5, 134.2, 132.0, 126.3, 125.5, 123.8, 120.9, 122.6 (q, J = 278.25 Hz), 119.5, 116.1, 82.0 (q, J = 33.00 Hz), 74.1, 59.0, 44.8, 44.2, 34.5, 31.3 ppm. ¹⁹**F NMR (282 MHz, CDCl₃**) δ -80.83 (d, J = 5.6 Hz,) ppm. **HRMS** (m/z) [M + H]⁺ Calcd for C₂₅H₂₇ClF₃N₂O₂⁺ 479.1713, found 479.1718. **HPLC** (Chiralpak AD-H, *n*-hexane/*i*-propanol = 99/1, flow rate = 1.0 mL/min, 1 = 254 nm) tR =17.76 min (major), 24.71 min (minor).

3u: Purified by silica gel chromatography using PE/EA 5:1, yellow oil, 57% yield, 27.2 mg, 86% ee, dr: 85:15; $[\alpha]_D = +20$ (c = 0.1, CH₂Cl₂, 33.1 °C). ¹H NMR (300 MHz, CDCl₃): δ 7.36 (d, J = 8.1 Hz, 2H), 7.23 (t, J = 9.9 Hz, 3H), 7.01 (d, J = 7.2 Hz, 1H), 6.77 (s, 1H), 5.41 (s, 1H), 5.27 (s, 1H), 5.01 (s, 1H), 4.90 (d, J = 15.6 Hz, 1H), 4.75 (d, J = 15.6 Hz, 1H), 4.59 (d, J = 13.2 Hz, 1H), 4.37 (d, J = 13.2 Hz, 1H), 2.93 (d, J = 14.1 Hz, 1H), 2.73 (d, J = 14.1 Hz, 1H), 2.43 (s, 1H), 1.30 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 177.1, 150.9, 143.3, 140.3, 135.4, 131.9, 129.9, 126.8, 125.9, 123.5, 122.7, 122.4 (q, J = 279.00 Hz), 119.4, 110.3, 82.2 (q, J = 33.00 Hz), 74.0, 59.4, 44.4, 43.3, 34.6, 31.3 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -80.90 (d, J = 5.6 Hz) ppm. HRMS (m/z) [M + H]⁺ Calcd forC₂₅H₂₇ClF₃N₂O₂⁺ 479.1713, found 479.1719. HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm) tR =6.03 min (major), 7.64min (minor).

3v: Purified by silica gel chromatography using PE/EA 5:1, white solid, 68% yield, 31.1 mg, 92% ee, dr: 94 : 6; **MP:** 104.4-105.8 °C. $[\alpha]_D = +25$ (c = 0.1, CH₂Cl₂, 28.9 °C). ¹**H NMR (300 MHz, CDCl₃**): δ 7.32 (d, J = 8.4 Hz, 2H), 7.21 (dd, J = 6.3, 1.8 Hz, 1H), 7.09 (d, J = 8.4 Hz, 2H), 7.00-6.93 (m, 2H), 5.47 (d, J = 4.2 Hz, 1H), 5.25 (s, 1H), 5.13 (s, 2H), 5.03 (s, 1H), 4.60 (d, J = 13.5 Hz, 1H), 4.40 (d, J = 13.5 Hz, 1H), 2.93 (d, J = 14.1 Hz, 1H), 2.82 (d, J = 14.1 Hz, 1H), 2.47 (s, 1H), 2.31 (s, 3H), 1.28 (s, 9H) ppm. ¹³C **NMR (75 MHz, CDCl₃**): δ 178.1, 150.2, 140.7, 139.9, 134.3, 133.3, 132.5, 125.8, 125.4, 123.0, 122.5 (q, J = 288.25 Hz), 120.7, 120.2, 119.2, 82.0 (q, J = 33.00 Hz), 74.1, 58.7, 45.0, 44.4, 34.5, 31.3, 19.0 ppm. ¹⁹F **NMR (282 MHz, CDCl₃**) δ -81.10 (d, J = 5.6 Hz,) ppm. **HRMS** (m/z) [M + H]⁺ Calcd for C₂₆H₃₀F₃N₂O₂⁺ 459.2259, found 459.2266. **HPLC** (Chiralpak AD-H, *n*-hexane/*i*-propanol = 95/5, flow rate = 1.0 mL/min, 1 = 254 nm) tR =6.69 min (major), 11.96min (minor).

3w: Purified by silica gel chromatography using PE/EA 5:1, yellow oil, 55% yield, 26.1 mg, 90% ee, dr: 90 : 10; $[\alpha]_D = + 14$ (c = 0.1, CH₂Cl₂, 33.1 °C). ¹H NMR (300 MHz, CDCl₃): δ 7.30 (d, J = 8.1 Hz, 2H), 7.24-7.21 (m, 2H), 7.03-6.93 (m, 2H), 6.85 (d, J = 8.1 Hz, 1H), 5.47 (td, J = 10.2, 4.8 Hz, 1H), 5.24 (s, 1H), 5.18-5.07 (m, 2H), 4.97 (s, 1H), 4.58 (d, J = 13.2 Hz, 1H), 4.38 (d, J = 13.2 Hz, 1H), 3.72 (s, 3H), 2.86 (d, J = 14.1 Hz, 1H), 2.75 (d, J = 13.8 Hz, 1H), 2.43 (d, J = 11.1 Hz, 1H), 1.28 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 177.4, 149.9, 145.4, 140.6, 135.2, 133.3, 130.0, 127.0, 125.3, 123.7, 122.6 (q, J = 279.75 Hz), 119.1, 114.8, 113.6, 82.0 (q, J = 33.00 Hz), 74.1, 59.5, 55.9, 45.1, 44.8, 34.5, 31.3 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ - 81.07 (d, J = 5.6 Hz) ppm. HRMS (m/z) [M + H]⁺ Calcd for C₂₆H₃₀F₃N₂O₃⁺ 475.2209, found 475.2216. HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 95/5, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 8.96 min (major), 18.84 min (minor).

3x: Purified by silica gel chromatography using PE/EA 5:1, yellow oil, 49% yield, 24.6 mg, 92% ee, dr> 20 :1; $[\alpha]_D = +27$ (c = 0.1, CH₂Cl₂, 30.1 °C). ¹H NMR (300 MHz, CDCl₃): δ 7.48-7.39 (m, 2H), 7.25 (d, J = 7.2 Hz, 2H), 7.05 (t, J = 8.1 Hz, 1H), 6.96 (d, J = 8.4 Hz, 2H), 5.48 (td, J = 9.9, 4.8 Hz, 1H), 5.37-5.28 (m, 2H), 5.06 (d, J = 18.0 Hz, 2H), 4.61 (d, J = 13.5 Hz, 1H), 4.41 (d, J = 13.2 Hz, 1H), 3.61 (s, 3H), 2.94 (d, J = 14.1 Hz, 1H), 2.83 (d, J = 14.1 Hz, 1H), 2.48 (d, J = 11.4 Hz, 1H), 1.25 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 178.0, 166.7, 150.2, 140.2, 139.9, 133.6, 132.2, 130.2, 126.5, 125.4, 124.9, 122.5 (q, J = 279.00 Hz), 122.2, 119.5, 117.6, 81.9 (q, J = 33.00 Hz), 74.1, 58.2, 52.4, 44.7, 44.2, 34.4, 31.3 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -80.83 (d, J = 5.6 Hz) ppm. HRMS (m/z) [M + H]⁺ Calcd for C₂₇H₃₀F₃N₂O₄⁺

503.2158, found 503.2164. **HPLC** (Chiralpak IB-H, *n*-hexane/*i*-propanol = 99/1, flow rate = 1.0 mL/min, l = 254 nm) tR =13.00 min (minor), 16.04 min (major).

- (a) Niu, B.; Wu, X.; Wei, Y.; Shi, M. Palladium-Catalyzed Diastereoselective Formal [5+3] Cycloaddition for the Construction of Spirooxindoles Fused with an EightMembered Ring. Org. Lett. 2019, 21, 4859-4863. (b) Li, X.; Shen, Z.; Yan, W.; Wang, K.; Wang, R. Synthesis of Chiral α-Trifluoromethylamines with 2,2,2-Trifluoroethylamine as a "Building Block". Org. Lett. 2016, 18, 956-959.
- Mao, B.; Liu, H.; Yan, Z.; Xu, Y.; Xu, J.; Wang, W.; Wu, Y.; Guo, H. Palladium-Catalyzed Asymmetric [4+2] Cycloaddition of 2-Methylidenetrimethylene Carbonate with Alkenes: Access to Chiral Tetrahydropyran-Fused Spirocyclic Scaffolds. *Angew. Chem. Int. Ed.* 2020, *59*, 11316-11320.

5. Copies of ¹H NMR, ¹³C NMR, ¹⁹F NMR Spectra

¹³C NMR (CDCl₃, 101 MHz) NMR of **1j**

 $^{13}\mathrm{C}$ NMR (CDCl_3, 101 MHz) NMR of 1k

 $^1\mathrm{H}$ NMR (CDCl_3, 400 MHz) NMR of 1p

 $^{13}\mathrm{C}$ NMR (CDCl_3, 101 MHz) NMR of 1p

 $^{13}\mathrm{C}$ NMR (CDCl_3, 101 MHz) NMR of 1q

¹³C NMR (CDCl₃, 101 MHz) NMR of 1s

 $^1\mathrm{H}$ NMR (CDCl_3, 400 MHz) NMR of 1t

¹³C NMR (CDCl₃, 101 MHz) NMR of **1t**

¹³C NMR (CDCl₃, 101 MHz) NMR of **1u**

 $^{13}\mathrm{C}$ NMR (CDCl_3, 101 MHz) NMR of 1w

¹H NMR (CDCl₃, 400 MHz) NMR of 1x

 $^{13}\mathrm{C}$ NMR (CDCl_3, 101 MHz) NMR of 1w

¹³C NMR (CDCl₃, 75 MHz) NMR of 3a

60 50

40 30 20

150 140 130 120 110 100 90 80 70 f1 (ppm)

200

190 180 170

160

-20

-10

-10

10 0

<-80.85 -80.87

 $^{19}\mathrm{F}$ NMR (CDCl_3, 282 MHz) NMR of $\mathbf{3b}$

-0.000

 $^{13}\mathrm{C}$ NMR (CDCl_3, 75 MHz) NMR of 3c

¹³C NMR (CDCl₃, 75 MHz) NMR of **3e**

-0.000

 $^{13}\mathrm{C}$ NMR (CDCl_3, 75 MHz) NMR of 3g

2.535 2.697 2.535 2.697

0.000

¹³C NMR (CDCl₃, 75 MHz) NMR of **3i**

176.23 147.21 147.21 147.21 147.21 147.05 144.00 144.00 143.94 143.94 143.94 143.05 143.05 143.05 143.05 143.05 143.05 143.05 143.05 143.05 143.05 143.05 139.25 139.25 139.25 139.25 139.25 139.25 139.25 139.25 139.25 139.25 139.25 139.25 139.25 139.25 139.25 135.25 135.51 135.51 135.51 135.51 135.51 135.51 135.51 135.51 135.51 135.51 135.51 135.51 135.51 135.51 135.51 135.51 135.51 135.51 135.51 135.55 13

 $^{19}\mathrm{F}$ NMR (CDCl3, 282 MHz) NMR of 3j

-0.000

 $^{13}\mathrm{C}$ NMR (CDCl_3, 75 MHz) NMR of 3m

¹⁹F NMR (CDCl3, 282 MHz) NMR of **3n**

-0.000

¹³C NMR (CDCl₃, 75 MHz) NMR of **30**

-50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

¹⁹F NMR (CDCl3, 282 MHz) NMR of **3p**

 $^1\mathrm{H}$ NMR (CDCl_3, 300 MHz) NMR of 3q

-177.80

 $^{13}\mathrm{C}$ NMR (CDCl_3, 75 MHz) NMR of 3q

-176.79 -116.79 -145.995 -145.995 -145.995 -145.995 -145.995 -145.995 -145.995 -145.995 -145.995 -145.995 -113.455 -113.455 -113.455 -113.455 -113.455 -113.455 -113.455 -113.455 -113.455 -113.455 -113.455 -113.455 -113.455 -113.455 -113.455 -113.455 -113.455 -113.455 -114.5555 -114.5555 -114.5555 -114.5555 -114.5555 -114.5555 -114.555

 $^{19}\mathrm{F}$ NMR (CDCl3, 282 MHz) NMR of 3r

¹³C NMR (CDCl₃, 75 MHz) NMR of **3s**

 $^{13}\mathrm{C}$ NMR (CDCl₃, 75 MHz) NMR of 3u

¹⁹F NMR (CDCl3, 282 MHz) NMR of **3**x

6. Copies of HPLC Chromatograms

Discloser A 254 nm

Peak	Reten time (min)	Area (%)
1	35.655	50.692
2	49.725	49.308
total		100

Peak	Reten time (min)	Area (%)
1	34.477	97.016
2	47.719	2.984

Discloser A 254 nm

Peak	Reten time (min)	Area (%)
1	15.421	50.120
2	19.497	49.880
total		100

Peak	Reten time (min)	Area (%)
1	15.419	93.919
2	19.710	6.081
total		100

Discloser A 254 nm

Peak	Reten time (min)	Area (%)
1	18.015	50.107
2	25.331	49.893
total		100

Peak	Reten time (min)	Area (%)
1	17.857	95.623
2	25.716	4.377
total		100

Discloser A 254 nm

Peak	Reten time (min)	Area (%)
1	10.636	49.618
2	14.328	50.382
total		100

Peak	Reten time (min)	Area (%)
1	10.474	93.821
2	14.390	6.179
total		100

Peak	Reten time (min)	Area (%)
1	24.555	49.892
2	34.171	50.108
total		100

Peak	Reten time (min)	Area (%)
1	24.384	96.996
2	34.792	3.004
total		100

Peak	Reten time (min)	Area (%)
1	9.695	49.694
2	10.763	50.306
total		100

mV

Peak	Reten time (min)	Area (%)
1	9.623	3.955
2	10.700	96.045
total		100

Peak	Reten time (min)	Area (%)
1	14.241	50.051
2	19.245	49.949
total		100

Peak	Reten time (min)	Area (%)
1	13.861	97.344
2	19.242	2.656
total		100

Peak	Reten time (min)	Area (%)
1	12.928	49.732
2	19.096	50.268
total		100

Peak	Reten time (min)	Area (%)
1	12.797	93.855
2	19.432	6.145
total		100

Peak	Reten time (min)	Area (%)
1	7.246	50.377
2	8.402	49.623
total		100

mV

Peak	Reten time (min)	Area (%)
1	7.243	5.025
2	8.291	94.975
total		100

Peak	Reten time (min)	Area (%)
1	30.462	49.285
2	40.810	50.715
total		100

mV 1000-0 ℃F₃ ŃΗ 750-0 39.167 500-250-3j 31.129 0-25 30 35 40 45 min 20

Peak	Reten time (min)	Area (%)
1	31.129	3.927
2	39.167	96.073
total		100

Peak	Reten time (min)	Area (%)
1	9.319	49.177
2	10.820	50.823
total		100

mV

Peak	Reten time (min)	Area (%)
1	9.919	5.460
2	11.571	94.540
total		100

Peak	Reten time (min)	Area (%)
1	16.151	50.207
2	28.112	49.793
total		100

mV

Peak	Reten time (min)	Area (%)
1	16.530	96.711
2	30.502	3.289
total		100

Peak	Reten time (min)	Area (%)
1	15.131	49.686
2	19.356	50.314
total		100

Peak	Reten time (min)	Area (%)
1	15.124	96.775
2	19.427	3.225
total		100

Peak	Reten time (min)	Area (%)
1	7.635	50.053
2	9.088	49.947
total		100

mV

Peak	Reten time (min)	Area (%)
1	7.630	94.807
2	9.146	5.193
total		100

Peak	Reten time (min)	Area (%)
1	24.745	50.177
2	27.355	49.823
total		100

Peak	Reten time (min)	Area (%)
1	24.129	8.342
2	27.019	91.658
total		100

Peak	Reten time (min)	Area (%)
1	7.686	50.565
2	10.054	49.435
total		100

Peak	Reten time (min)	Area (%)
1	7.699	93.115
2	10.197	6.885
total		100

Peak	Reten time (min)	Area (%)
1	9.354	49.647
2	11.863	50.353
total		100

Peak	Reten time (min)	Area (%)
1	9.351	98.569
2	12.028	1.431
total		100

Peak	Reten time (min)	Area (%)
1	5.369	50.345
2	6.061	49.655
total		100

Peak	Reten time (min)	Area (%)
1	5.177	96.373
2	5.897	3.327
total		100

Peak	Reten time (min)	Area (%)
1	8.127	50.331
2	10.328	49.669
total		100

Peak	Reten time (min)	Area (%)
1	8.062	92.943
2	10.321	7.057
total		100

Peak	Reten time (min)	Area (%)
1	17.598	49.970
2	23.996	50.030
total		100

Peak	Reten time (min)	Area (%)
1	17.755	97.304
2	24.706	2.696
total		100

Peak	Reten time (min)	Area (%)
1	6.040	49.650
2	7.605	50.350
total		100

Peak	Reten time (min)	Area (%)
1	6.033	92.928
2	7.639	7.072
total		100

Peak	Reten time (min)	Area (%)
1	6.731	49.556
2	12.210	50.444
total		100

mV

Peak	Reten time (min)	Area (%)
1	6.686	96.227
2	11.957	3.773
total		100

Peak	Reten time (min)	Area (%)
1	9.074	49.972
2	19.655	50.028
total		100

Discloser A	A 254 nm
-------------	----------

Peak	Reten time (min)	Area (%)
1	8.958	95.002
2	18.841	4.998
total		100

Peak	Reten time (min)	Area (%)
1	12.597	49.562
2	16.234	50.438
total		100

mV 2000-CF₃ 1500-16.042 ĊO₂Me 1000-3x 500-12.997 0-17.5 10.0 15.0 12.5 20.0 min

Peak	Reten time (min)	Area (%)
1	12.997	3.612
2	16.042	96.388
total		100

7. Scale-up Synthesis

To a flame dried 25 mL sealing tube, $Pd_2(dba)_3 \cdot CHCl_3(0.005 \text{ mmol}, 15.6 \text{ mg})$, L2 (0.01 mmol, 16.2 mg), freshly distilled anhydrous MTBE (10.0 mL) were added. The resulting mixture was allowed to stir for 30 min. Then, compound **1v** (2 mmol) and compound **2a** (3 mmol) were added subsequently. The resulting reaction mixture was stirred at room temperature for 24 h (monitored by TLC). The residue was subjected to column chromatography on silica gel, using a mixture of petroleum ether and ethyl acetate as eluent, to give desired product **3v**.yield 54%, dr > 20 : 1, ee = 86%.

To a flame dried 10ml sealing tube, $Pd_2(dba)_3 \cdot CHCl_3(0.005 \text{ mmol}, 5.4 \text{ mg})$, L2 (0.01 mmol, 4.6 mg), freshly distilled anhydrous MTBE (1.0 mL) were added. The resulting mixture was allowed to stir for 30 min. Then, compound 1e (0.1 mmol) and compound 2b (0.15 mmol) were added subsequently. The resulting reaction mixture was stirred at room temperature for 8 h (monitored by TLC). The residue was subjected to column chromatography on silica gel, using a mixture of petroleum ether and ethyl acetate as eluent, to give desired product 3e.yield 51%, dr=10:1, ee=94%; yellow oil. ¹H NMR (300 MHz, CDCl_3): δ 7.33 (d, *J* = 8.1 Hz, 3H), 7.21 (d, *J* = 8.1 Hz, 3H), 7.03 (t, *J* = 14.4 Hz, 1H), 6.77 (d, *J* = 7.8 Hz, 1H), 5.46 (dd, *J* = 10.2, 4.8 Hz, 1H), 5.26 (s, 1H), 5.02 (s, 1H), 4.93 (d, *J* = 15.6 Hz, 1H), 4.78 (d, *J* = 15.6 Hz, 1H), 4.60 (d, *J* = 13.2 Hz, 1H), 4.39 (d, *J* = 13.2 Hz, 1H), 2.77 (d,

J = 13.8 Hz, 1H), 2.48 (d, J = 11.1 Hz, 1H), 1.28 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 177.2, 150.7, 142.0, 140.6, 132.5, 131.7, 129.4, 126.9, 125.8, 122.8, 122.5 (q, J = 279.75 Hz), 122.4, 119.1, 109.7, 82.2 (q, J = 33.00Hz), 74.1, 59.6, 44.6, 43.2, 34.5, 31.3 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -80.61 (d, J = 2.8 Hz,) ppm.

HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 99/1, flow rate = 1.0 mL/min, 1 = 254 nm) tR =22.49 min (major), 29.42min (minor).

¹H NMR (CDCl₃, 300 MHz) NMR of 3e

Peak	Reten time (min)	Area (%)
1	22.471	50.018
2	29.172	49.982
total		100

Peak	Reten time (min)	Area (%)
1	22.486	97.087
2	29.420	2.913
total		100

8. X-ray crystal structure

Table 1 Crystal data and structure refinement for **3v CCDC: 2132621** Identification code 2132621 Empirical formula $C_{26}H_{29}F_3N_2O_2$ Formula weight 458.51 Temperature/K 293(2) Crystal system trigonal Space group P3₂ a/Å 10.6182(3) b/Å 10.6182(3) c/Å 18.9438(6) α/° 90 β/° 90 γ/° 120 Volume/Å³ 1849.71(13) Ζ 3 $\rho_{calc}g/cm^3$ 1.235

Crystal structure of **3v** (CCDC: 2132621)

µ/mm ⁻¹	0.779
F(000)	726.0
Crystal size/mm ³	0.17 imes 0.13 imes 0.1
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	9.618 to 142.158
Index ranges	-12≤h≤10, -11≤k≤12, -22≤l≤23
Reflections collected	11383
Independent reflections	4668 [$R_{int} = 0.0302, R_{sigma} = 0.0350$]
Data/restraints/parameters	4668/59/319
Goodness-of-fit on F ²	1.050
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0427, wR_2 = 0.1128$
Final R indexes [all data]	$R_1 = 0.0504, wR_2 = 0.1226$
Largest diff. peak/hole / e Å-3	0.15/-0.13
Flack parameter	0.09(11)