N-Heterocyclic Carbene-Catalyzed Enantioselective Synthesis of

Spirocyclic Ketones Bearing gem-Difluoromethylenes

Zheng Liang, Jibin, Li, Chaolei Liu, Yiwei Zhu,* Ding Du*

^{*a*} State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P. R. China

^bSchool of Chemistry and Environmental Engineering, Anhui Polytechnic University,

Wuhu, Anhui 241000, P. R. China

Email: <u>yiwei.zhu@ahpu.edu.cn</u> (Y. Zhu); <u>ddmn9999@cpu.edu.cn</u> (D. Du)

Table of the content

1. General methods and materials	.S2
2. General experimental procedure for the synthesis of racemic products 3	.S2
3. General experimental procedure for the synthesis of products 3	.S3
4. Procedure for the scale-up synthesis of 3a	.S3
5. Procedure for the synthesis of product 6	.S3
6. Study on the [4+2] annulation of vinyl enolate with ketone 2a	.S4
7. Characterization of the products	.S6
8. Copies of the NMR spectraS	521
9. Copies of the HPLC spectraS	575

1. General methods and materials

All reactions were carried out under an atmosphere of nitrogen in dry glassware, and were monitored by analytical thin-layer chromatography (TLC), which was visualized by ultraviolet light (254 nm). All solvents were obtained from commercial sources and were purified according to standard procedures. Purification of the products was accomplished by flash chromatography using silica gel (200~300 mesh). Substrates $\mathbf{1}^1$ and $\mathbf{2}^2$ were known compounds and were prepared according to known procedures. All NMR spectra were recorded on spectrometers, running at 300 MHz or 400 MHz for ¹H and 75 MHz or 100 MHz for ¹³C respectively. Chemical shifts (δ) and coupling constants (*J*) are reported in ppm and Hz respectively. The solvent signals were used as references (residual CHCl₃ in CDCl₃ : $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.0$ ppm). The following abbreviations are used to indicate the multiplicity in NMR spectra: s (singlet); d (doublet); t (triplet); q (quartet); m (multiplet). High resolution mass spectrometry (HRMS) was recorded on TOF perimer for ES⁺. The d.r. values were determined *via* chiral HPLC analysis.

2. General experimental procedure for the synthesis of racemic products 3

To an oven-dried 10 mL flask was charged with substrate 1 (0.2 mmol, 1.0 equiv.), substrate 2 (0.24 mmol, 1.2 equiv.), Cs_2CO_3 (97.7 mg, 0.3 mmol, 1.5 equiv.), precatalyst J (6.3 mg, 0.02 mmol, 10 mol%). Then anhydrous PhMe (4 mL) was added to the flask. The resulting mixture was stirred under nitrogen atmosphere at rt typically for 4 h. After completion of the reaction as monitored by TLC, the reaction mixture was concentrated under reduced pressure. The residue was purified by chromatography on silica gel using

PE/EtOAc (8:1) as the eluent to afford racemic products 3.

3. General experimental procedure for the synthesis of products 3

To an oven-dried 10 mL flask was charged with substrate **1** (0.2 mmol, 1.0 equiv.), substrate **2** (0.24 mmol, 1.2 equiv.), *t*BuOK (33.7 mg, 0.3 mmol, 1.5 equiv.), precatalyst **F** (8.2 mg, 0.02 mmol, 10 mol%). Then anhydrous PhMe (4 mL) was added to the flask. The resulting mixture was stirred under nitrogen atmosphere at -20°C (typically for 30 h). After completion of the reaction as monitored by TLC, the reaction mixture was concentrated under reduced pressure. The residue was purified by chromatography on silica gel using PE/EtOAc (8:1) as the eluent to afford products **3**.

4. Procedure for the scale-up Synthesis of 3a

To an oven-dried 50 mL bottle was charged with substrate **1a** (1.0 mmol, 1.0 equiv.), substrate **2a** (1.2 mmol, 1.2 equiv.), *t*BuOK (1.5 mmol, 1.5 equiv.), precatalyst **F** (41.3 mg, 0.1 mmol, 10 mol%). Then anhydrous PhMe (20 mL) was added to the flask. The resulting mixture was stirred under nitrogen atmosphere at -20°C for 5 days. After completion of the reaction as monitored by TLC, the reaction mixture was concentrated under reduced pressure. The residue was purified by chromatography on silica gel using PE/EtOAc (8:1) as the eluent to afford product **3a** (226.7mg, 65%, 98:2 er, >20:1 dr).

5. Procedure for the synthesis of product 6

Compound **3a** (0.1 mmol), NaOH (0.1 mmol), H₂O/MeOH (10%, 2 mL) were charged in a 10 mL round bottom flask. Then, the reaction mixture was stirred at room temperature for 3 h. After the reaction was completed as detected by TLC, the PH of the reaction mixture was adjusted to 5 with 1M HCl, and the mixture was extracted with EtOAc. The combined organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude product was purified by recrystallization to afford the product 6 as a white solid (33.0 mg, 90%, 97:3 er).

6. Study on the [4+2] annulation of vinyl enolate with ketone 2a Procedure for the synthesis of product 8

To an oven-dried 10 mL flask was charged with substrate 7 (0.1 mmol, 1.0 equiv.), substrate **2a** (0.12 mmol, 1.2 equiv.), Cs_2CO_3 (97.7 mg, 0.3 mmol, 3.0 equiv.), pyBOP (78 mg, 0.15 mmol, 1.5 equiv.), precatalyst **G** (8.2 mg, 0.02 mmol, 10 mol%). Then anhydrous PhMe (4 mL) was added to the flask. The resulting mixture was stirred under nitrogen atmosphere at -20°C for 24h. After completion of the reaction as monitored by TLC, the reaction mixture was concentrated under reduced pressure. The residue was purified by chromatography on silica gel using PE/EtOAc (5:1) as the eluent to afford product **8** as a white solid (56.8 mg, 87% yield, 90:10 er).

 Table S1 Reaction condition optimization for the synthesis of 8 using acid 7 as the precursor

8	G	pyBOP	CsOAc	PhMe	rt	73	65:35 er
9	G	pyBOP	K_2CO_3	PhMe	rt	75	72:28 er
10	G	pyBOP	K_2HPO_4	PhMe	rt	65	70:30 er
11	G	pyBOP	Cs_2CO_3	DCM	rt	67	70:30 er
12	G	pyBOP	Cs_2CO_3	CH ₃ CN	rt	52	50:50 er
13	G	pyBOP	Cs_2CO_3	THF	rt	77	78:22 er
14	G	pyBOP	Cs_2CO_3	1,4-dioxane	rt	79	75:25 er
15	G	HBTU	Cs_2CO_3	PhMe	rt	85	83:17 er
16	G	pyBOP	Cs_2CO_3	PhMe	$0^{\circ}C$	88	86:14 er
17	G	pyBOP	Cs ₂ CO ₃	PhMe	-20°C	87	90:10 er

Reaction Conditions: all reactions were performed in a 10 mL flask on a 0.1 mmol scale with 1. 0 equiv of 2a, 1.2 equiv of 7, 10 mol% of an NHC precursor, 1.5 equiv. of PCR, 3.0 equiv. of a b ase in an anhydrous solvent (4 mL) at temp. under N₂.

 Table S2. Reaction condition optimization for the synthesis of 8 using enal 9 as the precursor

	Ph 9	сно + 🗍	0 F DQ (2a	NHC (10 mol %) 1.5 eq.), base (1.5 sol., temp.	eq.) Ph	O O F F
entry	NHC	base	sol.	temp.	yield (%)	er
1	Α	Cs_2CO_3	PhMe	rt	77	50:50 er
2	В	Cs_2CO_3	PhMe	rt	85	79:21 er
3	D	Cs_2CO_3	PhMe	rt	80	50:50 er
4	G	Cs ₂ CO ₃	PhMe	rt	87	85:15 er
5	Н	Cs_2CO_3	PhMe	rt	89	76:24 er
6	Ι	Cs ₂ CO ₃	PhMe	rt	82	85:15 er

Reaction Conditions: all reactions were performed in a 10 mL flask on a 0.1 mmol scale with 1. 0 equiv of **2a**, 1.2 equiv of **9**, 10 mol% of an NHC precursor, 1.5 equiv. of DQ, 1.5 equiv. of Cs_2 CO₃ in anhydrous PhMe (2 mL) at temp. under N₂.

Table S3. Reaction condition optimization for the synthesis of 8 using 2-bromoenal 10as the precursor

	Ph C Br	HO +	0 F 0 2a	NHC (10 mol %) base (1.5 eq.) sol., temp.		O F F O
entry	NHC	base	sol.	temp.	yield (%)	er
1	Α	Cs_2CO_3	PhMe	rt	81	50:50 er
2	В	Cs_2CO_3	PhMe	rt	76	77:23 er
3	D	Cs_2CO_3	PhMe	rt	84	50:50 er
4	G	Cs_2CO_3	PhMe	rt	85	83:27 er

	5 I	Cs_2CO_3	PhMe	rt	74	62:38 er
--	-----	------------	------	----	----	----------

Reaction Conditions: all reactions were performed in a 10 mL flask on a 0.1 mmol scale with 1. 0 equiv of 2a, 1.2 equiv of 10, 10 mol% of an NHC precursor, 1.5 equiv. of Cs_2CO_3 in anhydrou s PhMe (2 mL) at temp. under N₂.

7. Characterization of the products

(2S,3R)-3-(4-chlorophenyl)-2',2'-difluoro-3,4-dihydro-5H-spiro[furan-2,1'-

indene]-3',5(2'H)-dione (3a). White solid, MP: 160-162 °C; 58.6 mg, 84% yield, 96:4 er, >20:1 dr. $[\alpha]_D^{23} = +7.444$ (C = 0.403 in CHCl₃). HPLC DAICEL CHIRALCEL IC, n-hexane/2- propanol

= 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 12.41 min (major), 14.95 min (minor). ¹H NMR (300 MHz, Chloroform-d) δ 8.05-7.96 (m, 1H), 7.95-7.81 (m, 2H), 7.80-7.69 (m, 1H), 7.13 (d, *J* = 8.5 Hz, 2H), 6.56-6.52 (m, 2H), 4.05 (ddd, *J* = 12.8, 7.6, 4.2 Hz, 1H), 3.51 (ddd, *J* = 16.5, 13.9, 2.3 Hz, 1H), 2.99 (ddd, *J* = 17.0, 7.6, 1.7 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 185.3 (dd, ²*J*_{C-F} = 25.6, 23.3 Hz), 172.72, 146.4 (d, ⁴*J*_{C-F} = 4.1 Hz), 138.31, 134.89, 133.4 (dd, ⁴*J*_{C-F} = 4.5, 2.3 Hz), 132.07, 129.7 (d, ⁴*J*_{C-F} = 3.3 Hz), 128.94, 128.7 (d, ⁴*J*_{C-F} = 1.8 Hz), 124.74, 124.7 (d, ⁴*J*_{C-F} = 1.9 Hz), 115.6 (dd, ¹*J*_{C-F} = 273.5, 261.6 Hz), 86.5 (dd, ²*J*_{C-F} = 21.4, 16.9 Hz), 52.02, 31.9 (d, ⁴*J*_{C-F} = 2.8 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -109.0 (d, *J* = 270.7Hz), - 128.9 (d, *J* = 270.7Hz). HRMS (ESI) calcd for C₁₈H₁₂ClF₂O₃ (M+H)⁺: 349.0438, found 349.0422.

(2S,3R)-2',2'-difluoro-3-phenyl-3,4-dihydro-5H-spiro[furan-2,1'-indene]-3',5(2'H)-

dione (3b). White solid, MP: 133-135 °C; 52.2 mg, 83% yield, 96:4 er, >20:1 dr. $[\alpha]_D^{23} = +31.884$ (C = 0.276 in CHCl₃). HPLC DAICEL CHIRALCEL IC, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 12.79 min (major), 15.48 min

(minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (t, *J* = 7.5 Hz, 1H), 7.92 (d, *J* = 7.8 Hz, 1H), 7.82 (d, *J* = 7.7 Hz, 1H), 7.73 (t, *J* = 7.5 Hz, 1H), 7.23 (t, *J* = 7.4 Hz, 1H), 7.15 (t, *J* = 7.5 Hz, 2H), 6.60 (d, *J* = 7.7 Hz, 2H), 4.08 (ddd, *J* = 12.9, 7.6, 4.3 Hz, 1H), 3.57

(ddd, J = 16.5, 13.9, 2.3 Hz, 1H), 2.99 (ddd, J = 17.1, 7.6, 1.7 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.4 (dd, ²*J*_{C-F} = 25.5, 23.3 Hz), 173.2, 146.7 (d, ³*J*_{C-F} = 8.0 Hz), 138.1, 133.5 (dd, ⁴*J*_{C-F} = 4.7, 2.1 Hz), 131.9, 130.0 (d, ⁴*J*_{C-F} = 1.6Hz), 128.8, 128.6, 128.5 (d, ⁴*J*_{C-F} = 3.1 Hz), 124.7 (d, ⁴*J*_{C-F} = 1.4 Hz), 124.5, 115.8 (dd, ¹*J*_{C-F} = 274.3, 260.3 Hz), 86.9 (dd, ²*J*_{C-F} = 21.3, 16.8 Hz), 52.6, 31.8 (d, ⁴*J*_{C-F} = 2.9 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -109.0(d, *J* = 264.24 Hz), -129.4 (d, *J* = 270.7.0 Hz). HRMS (ESI) calcd for C₁₈H₁₃F₂O₃ (M+H)⁺: 315.0828, found 315.0837.

(2S,3R)-2',2'-difluoro-3-(4-fluorophenyl)-3,4-dihydro-5H-spiro[furan-2,1'-

indene]-3',5(2'H)-dione (3c). White solid, MP: 158-159 °C; 43.2 mg, 65% yield, 98:2 er, >20:1 dr. $[\alpha]_D^{23} = -39.140$ (C = 0.155 in CHCl₃). HPLC DAICEL CHIRALCEL IC, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 11.93

min (major), 14.19 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (t, *J* = 7.5 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.82 (d, *J* = 7.7 Hz, 1H), 7.73 (t, *J* = 7.5 Hz, 1H), 6.84 (t, *J* = 8.4 Hz, 2H), 6.60-6.56 (m, 2H), 4.05 (ddd, *J* = 12.9, 7.6, 4.3 Hz, 1H), 3.51 (ddd, *J* = 16.6, 13.9, 2.3 Hz, 1H), 3.05-2.92 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.3 (dd, ²*J*_{C-F} = 25.3, 23.3 Hz), 172.9, 162.7 (d, ¹*J*_{C-F} = 250.1 Hz), 146.4 (d, ³*J*_{C-F} = 8.0 Hz), 138.3, 133.4 (dd, ⁴*J*_{C-F} = 4.6, 2.2 Hz), 132.0, 130.2 (dd, ³*J*_{C-F} = 8.3, 3.3 Hz), 125.8, 124.7 (d, ⁴*J*_{C-F} = 1.4 Hz), 124.6, 115.74 (dd, ¹*J*_{C-F} = 273.9, 260.6 Hz), 115.73 (d, ²*J*_{C-F} = 21.7 Hz), 86.7 (dd, ²*J*_{C-F} = 21.2, 16.9 Hz), 52.0, 31.0 (d, ⁴*J*_{C-F} = 2.9 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -109.1 (d, *J* = 270.7Hz), -112.23, -129.5 (d, *J* = 270.7Hz). HRMS (ESI) calcd for C₁₉H₁₅F₂O₄: 345.0933, found 345.0934. HRMS (ESI) calcd for C₁₈H₁₂F₃O₃ (M+H)⁺: 333.0734, found 333.0737.

(2S,3R)-3-(4-bromophenyl)-2',2'-difluoro-3,4-dihydro-5H-spiro[furan-2,1'-indene]-

3',5(2'H)-dione (3d). White solid, MP: 180-181 °C; 48.0 mg, 61% yield, 97:3 er, >20:1 dr. $[\alpha]_D^{23} = -39.140$ (C = 0.155 in CHCl₃). HPLC DAICEL CHIRALCEL IC, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 13.68 min

(major), 16.06 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (t, *J* = 7.5 Hz,

1H), 7.92 (d, J = 7.8 Hz, 1H), 7.85 (d, J = 7.7 Hz, 1H), 7.75 (t, J = 7.5 Hz, 1H), 7.28 (d, J = 8.4 Hz, 2H), 6.50-6.47 (m, 2H), 4.05 (ddd, J = 12.7, 7.5, 4.2 Hz, 1H), 3.51 (ddd, J = 16.4, 13.8, 2.2 Hz, 1H), 3.00 (ddd, J = 17.0, 7.6, 1.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 185.4 (dd, ² $J_{C-F} = 25.4, 23.3$ Hz), 172.7, 146.4 (d, ³ $J_{C-F} = 7.9$ Hz), 138.3, 133.4 (dd, ⁴ $J_{C-F} = 4.6, 1.7$ Hz), 132.1, 131.9, 130.0 (d, ⁴ $J_{C-F} = 3.3$ Hz), 129.3 (d, ⁴ $J_{C-F} = 1.9$ Hz), 124.74, 124.70, 123.0, 115.6 (dd, ¹ $J_{C-F} = 273.7, 261.6$ Hz), 86.4 (dd, ² $J_{C-F} = 21.3, 16.8$ Hz), 52.0, 31.9 (d, ⁴ $J_{C-F} = 2.8$ Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -109.0 (d, J = 270.7Hz), -128.7 (d, J = 274.5Hz). HRMS (ESI) calcd for C₁₈H₁₂BrF₂O₃ (M+H)⁺: 392.9933, 394.9912, found 392.39930, 394.9903.

(2S,3R)-2',2'-difluoro-3-(p-tolyl)-3,4-dihydro-5H-spiro[furan-2,1'-indene]-

3',5(2'H)-dione (3e). White solid, MP: 170-172 °C; 48.0 mg, 75% yield, 98:2 er, >20:1 dr. $[\alpha]_D^{23} = -9.524$ (C = 0.154 in CHCl₃). HPLC DAICEL CHIRALCEL IC, n-hexane/2-propanol = 85/15, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 16.57 min

(major), 19.84 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (t, *J* = 7.5 Hz, 1H), 7.91 (d, *J* = 7.7 Hz, 1H), 7.81 (d, *J* = 7.7 Hz, 1H), 7.72 (t, *J* = 7.5 Hz, 1H), 6.94 (d, *J* = 7.8 Hz, 2H), 6.48 (d, *J* = 5.8 Hz, 2H), 4.03 (ddd, *J* = 13.0, 7.5, 4.3 Hz, 1H), 3.54 (ddd, *J* = 16.7, 14.0, 2.4 Hz, 1H), 2.96 (ddd, *J* = 17.0, 7.5, 1.7 Hz, 1H), 2.25 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.4 (dd, ²*J*_{C-F} = 25.2, 23.3 Hz), 173.4, 146.8 (d, ³*J*_{C-F} = 8.0 Hz), 138.7, 138.1, 133.5 (dd, ⁴*J*_{C-F} = 4.7, 2.1 Hz), 131.8, 129.4, 128.3 (d, ⁴*J*_{C-F} = 3.1 Hz), 126.7 (d, ⁴*J*_{C-F} = 1.8 Hz), 124.7 (d, ⁴*J*_{C-F} = 1.2 Hz), 124.5, 115.8 (dd, ¹*J*_{C-F} = 274.7, 259.8 Hz), 86.8 (dd, ²*J*_{C-F} = 21.2, 16.7 Hz), 52.5, 31.9 (d, ⁴*J*_{C-F} = 2.9 Hz), 21.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -108.9(d, *J* = 270.7Hz), -129.8 (d, *J* = 270.7Hz). HRMS (ESI) calcd for C₁₉H₁₄F₂NaO₃ (M+Na)⁺: 351.0804, found 351.0812.

(2S,3R)-2',2'-difluoro-3-(4-methoxyphenyl)-3,4-dihydro-5H-spiro[furan-2,1'-

indene]-3',5(2'H)-dione (3f). White solid, MP: 191-192 °C; 58.5 mg, 85% yield, 95.5:4.5 er, >20:1 dr. $[\alpha]_D^{23} = -0.683$ (C = 0.293 in CHCl₃). HPLC DAICEL CHIRALCEL IC, n-hexane/2-propanol = 85/15, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention

time: 23.63 min (major), 29.44 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (t, J = 7.6 Hz, 1H), 7.89 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 7.7 Hz, 1H), 7.71 (t, J = 7.5 Hz, 1H), 6.66 (d, J = 8.8 Hz, 2H), 6.55-6.45 (m, 2H), 3.99 (ddd, J = 12.9, 7.6, 4.4 Hz, 1H), 3.72 (s, 3H), 3.51 (ddd, J = 16.8, 14.1, 2.4 Hz, 1H), 2.96 (ddd, J = 17.1, 7.6, 1.9 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.3 (t, ² $J_{C-F} = 23.2$ Hz), 173.4, 159.8, 146.7 (d, ³ $J_{C-F} = 8.3$ Hz), 138.1, 133.4 (d, ⁴ $J_{C-F} = 3.3$ Hz), 129.7, 129.7, 124.6 (d, ⁴ $J_{C-F} = 1.7$ Hz), 124.5, 121.4 (d, ⁴ $J_{C-F} = 1.7$ Hz), 115.9 (dd, ¹ $J_{C-F} = 274.7$, 259.7 Hz), 114.0, 86.9 (dd, ² $J_{C-F} = 25.6$, 23.1 Hz), 55.3, 52.3, 32.0 (d, ⁴ $J_{C-F} = 3.1$ Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -109.0 (d, J = 267.0Hz), -130.3 (d, J = 267.0Hz). HRMS (ESI) calcd for C₁₉H₁₅F₂O₄ (M+H)⁺: 345.0933, found 345.0934.

(2S,3R)-3-([1,1'-biphenyl]-4-yl)-2',2'-difluoro-3,4-dihydro-5H-spiro[furan-2,1'-

indene]-3',5(2'H)-dione (3g). White solid, MP: 188-189 °C; 54.7 mg, 70% yield, 97:3 er, >20:1 dr. $[\alpha]_D^{23} = 62.319$ (C = 0.391 in CHCl₃). HPLC DAICEL CHIRALCEL IC, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 16.94

min (major), 22.31 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (t, *J* = 7.5 Hz, 1H), 7.94 (d, *J* = 7.8 Hz, 1H), 7.84 (d, *J* = 7.7 Hz, 1H), 7.74 (t, *J* = 7.5 Hz, 1H), 7.50 (d, *J* = 7.5 Hz, 2H), 7.44-7.30 (m, 5H), 6.68 (dd, *J* = 8.3, 2.3 Hz, 2H), 4.13 (ddd, *J* = 12.9, 7.6, 4.2 Hz, 1H), 3.60 (ddd, *J* = 16.6, 13.7, 2.2 Hz, 1H), 3.02 (dd, *J* = 17.0, 7.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 185.4 (dd, ²*J*_{C-F} = 25.4, 23.1 Hz), 173.2, 146.7 (d, ³*J*_{C-F} = 7.9 Hz), 141.5, 140.0, 138.2, 133.5 (dd, ⁴*J*_{C-F} = 4.4, 1.8 Hz), 131.9, 128.9 (d, ⁴*J*_{C-F} = 1.9 Hz), 128.9, 128.8 (d, ⁴*J*_{C-F} = 3.1 Hz), 127.8, 127.2, 127.1, 124.7 (d, ⁴*J*_{C-F} = 1.6 Hz), 124.6, 115.8 (dd, ¹*J*_{C-F} = 274.0, 260.6 Hz), 86.8 (dd, ²*J*_{C-F} = 21.3, 16.8 Hz), 52.3, 31.9 (d, ⁴*J*_{C-F} = 2.8 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 109.0 (d, *J* = 270.7Hz), -129.0 (d, *J* = 270.7Hz). HRMS (ESI) calcd for C₁₉H₁₄F₂NaO₃ (M+Na)⁺: 391.1140, found 391.1134.

(2*S*,3*R*)-2',2'-difluoro-3-(4-(trifluoromethyl)phenyl)-3,4-dihydro-5H-spiro[furan-2,1'-indene]-3',5(2'H)-dione (3h). White solid, MP: 180-181 °C; 50.5 mg, 66% yield,

94:6 er, >20:1 dr. $[\alpha]_D^{23}$ = -4.444 (C = 0.240 in CHCl₃). HPLC DAICEL CHIRALCEL IC, n-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, λ = 254 nm, retention time: 31.92 min (major), 37.19 min (minor). ¹H NMR (300 MHz, Chloroform-*d*) δ 8.03 (t,

J = 7.5 Hz, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 7.7 Hz, 1H), 7.77 (t, J = 7.4 Hz, 1H), 7.42 (d, J = 8.0 Hz, 2H), 6.76 (d, J = 8.0 Hz, 2H), 4.17 (ddd, J = 12.8, 7.5, 4.0 Hz, 1H), 3.57 (ddd, J = 16.2, 13.6, 2.1 Hz, 1H), 3.05 (dd, J = 17.0, 7.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 185.4 (t, ² $J_{C-F} = 23.5$ Hz), 172.4, 146.3 (d, ³ $J_{C-F} = 7.9$ Hz), 138.5, 134.7, 133.4 (dd, ⁴ $J_{C-F} = 4.5$, 2.7 Hz), 132.3, 131.0 (q, ¹ $J_{C-F} = 32.5$ Hz), 128.8 (d, ⁴ $J_{C-F} = 3.2$ Hz), 125.6 (q, ³ $J_{C-F} = 3.7$ Hz), 123.7 (q, ¹ $J_{C-F} = 272.5$ Hz), 124.9, 124.8, 115 .5 (dd, ¹ $J_{C-F} = 272.8$, 262.7 Hz), 86.4 (dd, ² $J_{C-F} = 21.8$, 17.2 Hz), 52.0, 31.9 (d, ⁴ $J_{C-F} = 2.6$ Hz). ¹⁹F NMR (282 MHz, Chloroform-*d*) δ -62.84, -109.2 (d, J = 272.8 Hz), -127.7 (d, J = 272.8 Hz). HRMS (ESI) calcd for C₁₉H₁₁F₅KO₃ (M+K)⁺ : 421.0260, found 421.0630.

(2*S*,3*R*)-2',2'-difluoro-3-(4-nitrophenyl)-3,4-dihydro-5H-spiro[furan-2,1'-indene]-^{O₂N</sub> 3',5(2'H)-dione (3i). Yellow solid, MP: 175-177 °C; 39.5 mg, 55% yield, 95:5 er, >20:1 dr. $[\alpha]_D^{23} = 15.385$ (C = 0.013 in CHCl₃). HPLC DAICEL CHIRALCEL IC, n-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 15.27 min}

(major), 19.06 min (minor). ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.33 (d, *J* = 7.8 Hz, 1H), 8.28-8.20 (m, 1H), 8.05 (d, *J* = 8.4 Hz, 2H), 7.93 (q, *J* = 8.2, 7.6 Hz, 2H), 7.01 (d, *J* = 6.9 Hz, 2H), 4.75 (ddd, *J* = 12.7, 7.7, 3.8 Hz, 1H), 3.88-3.70 (m, 1H), 3.16 (dd, *J* = 17.4, 7.8 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 186.3(dd, ²*J*_{C-F} = 25.5, 23.7 Hz), 173.52, 147.46, 146.7(d, ³*J*_{C-F} = 7.2 Hz), 140.11, 133.32, 132.40, 130.25, 130.22, 126.49, 125.09, 123.72, 115.8 (dd, ¹*J*_{C-F} = 272.0, 259.7 Hz), 86.0 (dd, ²*J*_{C-F} = 20.9, 15.0 Hz), 49.96, 31.86. ¹⁹F NMR (282 MHz, DMSO-*d*₆) δ -109.6 (d, *J* = 270.3 Hz), -125.9 (d, *J* = 270.2 Hz). HRMS (ESI) calcd for C₁₈H₁₁F₂KNO₅ (M+K)⁺: 398.0237, found 398.0219.

4-((2*S*,3*R*)-2',2'-difluoro-3',5-dioxo-2',3',4,5-tetrahydro-3H-spiro[furan-2,1'inden]-3-yl)benzonitrile (3j). White solid, MP: 150-152 °C; 40.7 mg, 60% yield, 95:5

er, 5:1 dr. $[\alpha]_D^{23} = 49.083$ (C = 0.218 in CHCl₃). HPLC DAICEL CHIRALCEL IC, n-hexane/Ethanol = 70/30, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: for major diastereomer: 17.41 min (major), 20.78 min (minor); for minor diastereomer: 29.21 min

(major), 33.92 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (t, *J* = 7.6 Hz, 1H), 7.94 (d, *J* = 7.8 Hz, 1H), 7.86 (d, *J* = 7.7 Hz, 1H), 7.78 (t, *J* = 7.5 Hz, 1H), 7.45 (d, *J* = 8.2 Hz, 2H), 6.77-6.74 (m, 2H), 4.17 (ddd, *J* = 12.5, 7.6, 3.9 Hz, 1H), 3.54 (ddd, *J* = 16.0, 13.6, 2.1 Hz, 1H), 3.05 (ddd, *J* = 17.0, 7.6, 1.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.3 (dd, ²*J*_{C-F} = 25.3, 23.8 Hz), 172.1, 146.1 (d, ³*J*_{C-F} = 7.5 Hz), 138.6, 136.0, 133.3 (dd, ⁴*J*_{C-F} = 4.5, 2.8 Hz), 132.42, 132.37, 129.1 (d, ⁴*J*_{C-F} = 3.3 Hz), 124.9, 124.8, 118.0, 115.4 (dd, ¹*J*_{C-F} = 272.3, 263.5 Hz), 112.8, 86.30 (dd, ²*J*_{C-F} = 21.6, 17.1 Hz), 52.0, 31.8 (d, ⁴*J*_{C-F} = 2.6 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -109.5 (d, *J* = 274.5 Hz), -127.3 (d, *J* = 270.7 Hz). HRMS (ESI) calcd for C₁₉H₁₂F₂NO₃ (M+H)⁺: 340.0780, found 340.0784.

(2S,3R)-2',2'-difluoro-3-(3-fluorophenyl)-3,4-dihydro-5H-spiro[furan-2,1'-indene]-

3',5(2'H)-dione (3k).White solid, MP: 117-119 °C; 49.8 mg, 75% yield, 99:1 er, >20:1 dr. $[\alpha]_D^{23} = -15.569$ (C = 0.167 in CHCl₃). HPLC DAICEL CHIRALCEL IG, n-hexane/Ethanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 20.16 min (major),

23.50 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (t, *J* = 7.5 Hz, 1H), 7.92 (d, *J* = 7.8 Hz, 1H), 7.85 (d, *J* = 7.7 Hz, 1H), 7.75 (t, *J* = 7.5 Hz, 1H), 7.15-7.09 (m, 1H), 6.95-6.90 (m, 1H), 6.46 - 6.26 (m, 2H), 4.10 (ddd, *J* = 12.7, 7.6, 4.1 Hz, 1H), 3.51 (ddd, *J* = 16.4, 13.8, 2.2 Hz, 1H), 3.09 - 2.94 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.4 (dd, ²*J*_{C-F} =25.3, 23.4 Hz), 172.7, 162.51(d, ¹*J*_{C-F} =248.5 Hz), 146.4(d, ³*J*_{C-F} = 7.9 Hz), 138.3, 133.5 (dd, ⁴*J*_{C-F} = 4.5, 2.2 Hz), 132.8(dd, ³*J*_{C-F} = 7.5, 1.9 Hz), 132.1, 130.3(d, ³*J*_{C-F} = 8.4 Hz), 124.7, 124.040 (d, ⁴*J*_{C-F} = 6.0 Hz), 124.039, 115.8(d, ²*J*_{C-F} = 21.1 Hz), 115.5590(dd, ¹*J*_{C-F} = 279.2, 259.6 Hz), 115.5589 (d, ²*J*_{C-F} = 25.8 Hz), 86.5 (dd, ²*J*_{C-F} = 21.6, 16.9 Hz), 52.0, 31.9 (d, ⁴*J*_{C-F} =2.8 Hz). ¹⁹F NMR (376 MHz,

Chloroform-*d*) δ -109.1 (d, J = 270.7Hz), -111.57, -128.5 (d, J = 274.5Hz). HRMS (ESI) calcd for C₁₈H₁₂F₃O₃ (M+H)⁺: 333.0734, found 333.0737.

(2S,3R)-3-(3-chlorophenyl)-2',2'-difluoro-3,4-dihydro-5H-spiro[furan-2,1'-indene]-

3',5(2'H)-dione (3l). White solid, MP: 155-156 °C; 53.0 mg, 76% yield, 97:3 er, >20:1 dr. $[\alpha]_D^{23} = -7.375$ (C = 0.348 in CHCl₃). HPLC DAICEL CHIRALCEL IC, n-hexane/2-propanol = 93/7, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 30.16 min

(major), 37.24 min (minor). ¹H NMR (300 MHz, Chloroform-*d*) δ 8.04-7.99 (m, 1H), 7.95-7.79 (m, 2H), 7.80-7.70 (m, 1H), 7.20 (d, J = 8.3 Hz, 1H), 7.09 (t, J = 7.9 Hz, 1H), 6.65 - 6.40 (m, 2H), 4.06 (ddd, J = 12.6, 7.6, 4.1 Hz, 1H), 3.51 (ddd, J = 16.4, 13.8, 2.2 Hz, 1H), 3.00 (ddd, J = 17.0, 7.6, 1.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.4 (dd, ² $J_{C-F} = 25.6$, 23.9 Hz), 172.6, 146.4 (d, ³ $J_{C-F} = 7.8$ Hz), 138.4, 134.6, 133.5 (dd, ⁴ $J_{C-F} = 4.4$, 2.4 Hz), 132.4 (d, ⁴ $J_{C-F} = 1.9$ Hz), 132.1, 129.9, 129.0, 128.7, 128.7, 126.4 (d, ⁴ $J_{C-F} = 3.2$ Hz), 124.7, 115.5 (dd, ¹ $J_{C-F} = 273.5$, 261.9 Hz), 86.5 (dd, ² $J_{C-F} = 21.4$, 16.8 Hz), 52.0, 31.8 (d, ⁴ $J_{C-F} = 2.7$ Hz). ¹⁹F NMR (282 MHz, Chloroform-*d*) δ - 109.1 (d, J = 271.8 Hz), -128.6 (d, J = 271.8 Hz). HRMS (ESI) calcd for C₁₈H₁₂ClF₂O₃ (M+H)⁺: 349.0438, found 349.0442.

(2S,3R)-3-(3-bromophenyl)-2',2'-difluoro-3,4-dihydro-5H-spiro[furan-2,1'-

indene]-3',5(2'H)-dione (3m). White solid, MP: 172-174 °C; 49.5 mg, 63% yield, 97:3 er, 3.5:1 dr. $[\alpha]_D^{23} = -7.375$ (C = 0.348 in CHCl₃). HPLC DAICEL CHIRALCEL IC, n-hexane/2-propanol =

90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: for minor diastereomer: 14.90 min (minor), 18.62 min (major); for major diastereomer: 22.99 min (major), 28.82 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (t, *J* = 7.5 Hz, 1H), 7.97-7.82 (m, 2H), 7.76 (t, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 7.9 Hz, 1H), 7.03 (t, *J* = 7.9 Hz, 1H), 6.68 (s, 1H), 6.56 (d, *J* = 7.6 Hz, 1H), 4.06 (ddd, *J* = 12.6, 7.5, 4.1 Hz, 1H), 3.50 (ddd, *J* = 16.3, 13.7, 2.2 Hz, 1H), 3.00 (ddd, *J* = 17.0, 7.6, 1.7 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.3 (dd, ²*J*_{C-F} = 28.3, 23.3 Hz), 172.6, 146.3 (d, ³*J*_{C-F} = 7.9 Hz), 138.4, 133.5 (dd, ⁴*J*_{C-F} = 4.7, 2.5 Hz), 132.6 (d, ⁴*J*_{C-F} = 1.9 Hz), 132.1, 131.9, 131.6,

131.6, 130.1, 126.8 (d, ${}^{4}J_{C-F} = 3.3 \text{ Hz}$), 124.7, 122.6, 115.5 (dd, ${}^{1}J_{C-F} = 273.6$, 261.9 Hz), 86.5 (dd, ${}^{2}J_{C-F} = 21.5$, 17.0 Hz), 51.9, 31.7 (d, ${}^{4}J_{C-F} = 2.8 \text{ Hz}$). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -109.2 (d, *J* = 270.7Hz), -128.6 (d, *J* = 270.7Hz). HRMS (ESI) calcd for C₁₈H₁₂BrF₂O₃ (M+H)⁺ : 392.9933, 394.9912, found 392.39930, 394.9903.

(2S,3R)-2',2'-difluoro-3-(3-methoxyphenyl)-3,4-dihydro-5H-spiro[furan-2,1'-

indene]-3',5(2'H)-dione (3n). White solid, MP: 130-132 °C; 53.0 mg, 77% yield, 98:2 er, >20:1 dr. $[\alpha]_D^{23} = -11.463$ (C = 0.410 in CHCl₃). HPLC DAICEL CHIRALCEL IC, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 15.11

min (major), 17.98 min (minor) ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (t, *J* = 6.9 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.83 (d, *J* = 7.7 Hz, 1H), 7.73 (t, *J* = 7.3 Hz, 1H), 7.06 (t, *J* = 8.0 Hz, 1H), 6.74 (dd, *J* = 8.2, 2.4 Hz, 1H), 6.20 (d, *J* = 7.6 Hz, 1H), 6.08 (s, 1H), 4.06 (ddd, *J* = 12.8, 7.5, 4.3 Hz, 1H), 3.58 (s, 3H), 3.52 (ddd, *J* = 16.5, 13.9, 2.2 Hz, 1H), 2.98 (ddd, *J* = 17.0, 7.6, 1.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.5 (dd, ²*J*_{C-F} = 25.1, 23.3 Hz), 173.1, 159.5, 146.8 (d, ³*J*_{C-F} = 8.6 Hz), 138.2, 133.6 (dd, ⁴*J*_{C-F} = 4.6, 2.3 Hz), 131.9, 131.6 (d, ⁴*J*_{C-F} = 1.8 Hz), 129.7, 124.7 (d, ⁴*J*_{C-F} = 1.7 Hz), 124.5, 120.5 (d, ⁴*J*_{C-F} = 3.2 Hz), 115.7 (dd, ¹*J*_{C-F} = 274.7, 260.3 Hz), 114.5 (d, ⁴*J*_{C-F} = 2.9 Hz), 113.9, 86.7 (dd, ²*J*_{C-F} = 21.3, 16.8 Hz), 55.1, 52.3, 31.9 (d, ⁴*J*_{C-F} = 2.8 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -108.9 (d, *J* = 270.7Hz), -129.1 (d, *J* = 270.7Hz). HRMS (ESI) calcd for C₁₉H₁₅F₂O₄ (M+H)⁺ : 345.0933, found 345.0934.

(2S,3R)-2',2'-difluoro-3-(m-tolyl)-3,4-dihydro-5H-spiro[furan-2,1'-indene]-

3',5(2'H)-dione (30). White solid, MP: 128-130 °C; 38.7 mg, 59% yield, 96:4 er, >20:1 dr. $[\alpha]_D^{23} = -32.873$ (C = 0.145 in CHCl₃). HPLC DAICEL CHIRALCEL IC, n-hexane/2-propanol = 85/15,

flow rate = 1.0 mL/min, λ = 254 nm, retention time: 14.46 min (major), 17.96 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (t, *J* = 7.5 Hz, 1H), 7.91 (d, *J* = 7.7 Hz, 1H), 7.81 (d, *J* = 7.7 Hz, 1H), 7.72 (t, *J* = 7.5 Hz, 1H), 6.94 (d, *J* = 7.8 Hz, 2H), 6.48 (d, *J* = 5.8 Hz, 2H), 4.03 (ddd, *J* = 13.0, 7.5, 4.3 Hz, 1H), 3.54 (ddd, *J* = 16.7, 14.0, 2.4 Hz, 1H), 2.96 (ddd, *J* = 17.0, 7.5, 1.7 Hz, 1H), 2.25 (s, 3H). ¹³C NMR (101 MHz,

Chloroform-d) δ 185.4 (dd, ²*J*_{C-F} = 25.2,23.3 Hz), 173.4, 146.8 (d, ³*J*_{C-F} = 8.0Hz), 138.7, 138.1, 133.5 (dd, ⁴*J*_{C-F} = 4.7, 2.1 Hz), 131.8, 129.4, 128.3 (d, ⁴*J*_{C-F} = 3.1 Hz), 126.7 (d, ⁴*J*_{C-F} = 1.8 Hz), 124.7 (d, ⁴*J*_{C-F} = 1.2 Hz), 124.5, 115.8 (dd, ¹*J*_{C-F} = 274.7, 259.8 Hz), 86.8 (dd, ²*J*_{C-F} = 21.2, 16.7 Hz), 52.5, 31.9 (d, ⁴*J*_{C-F} = 2.9 Hz), 21.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -108.9 (d, *J* = 270.7Hz), -129.8 (d, *J* = 267.0Hz). HRMS (ESI) calcd for C₁₉H₁₄F₂NaO₃ (M+Na)⁺ : 351.0804, found 351.0812.

(2S,3R)-2',2'-difluoro-3-(2-fluorophenyl)-3,4-dihydro-5H-spiro[furan-2,1'-

indene]-3',5(2'H)-dione (3p). White solid, MP: 130-131 °C; 46.5 mg, 70% yield, 98:2 er, >20:1 dr. $[\alpha]_D^{23} = -8.491$ (C = 0.212 in CHCl₃). HPLC DAICEL CHIRALCEL IG, n-hexane/Ethanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 17.61 min (major),

21.05 min (minor). ¹H NMR (400 MHz, Chloroform-d) δ 7.89-7.82 (m, 2H), 7.71 (d, J = 7.7 Hz, 1H), 7.61 (t, J = 7.4 Hz, 1H), 7.21-7.12 (m, 2H), 7.04 (t, J = 7.6 Hz, 1H), 6.69 (t, J = 9.5 Hz, 1H), 4.29 (ddd, J = 12.5, 7.8, 3.7 Hz, 1H), 3.57-3.44 (m, 1H), 2.93 (dd, J = 17.2, 7.9 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.4 (dd, ²*J*_{C-F} = 25.1, 23.3 Hz), 172.9, 161.0 (d, ¹*J*_{C-F} = 249.7 Hz), 146.7 (d, ³*J*_{C-F} = 7.5 Hz), 138.0, 132.6, 131.7, 130.9 (d, ³*J*_{C-F} = 8.3 Hz), 130.0 (dd, ³*J*_{C-F} = 7.2, 3.1 Hz), 124.7 (d, ²*J*_{C-F} = 34.1 Hz), 124.5, 117.6, 117.5, 115.9 (dd, ¹*J*_{C-F} = 272.6, 261.9 Hz), 115.7 (d, ²*J*_{C-F} = 22.7 Hz), 86.4 (dd, ²*J*_{C-F} = 21.7, 17.1 Hz), 45.5, 34.2 (t, ⁴*J*_{C-F} = 1.6 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -110.5 (d, *J* = 270.7 Hz), -114.7 (d, *J* = 3.8 Hz), -128.5 (dd, *J* = 270.7, 3.8 Hz). HRMS (ESI) calcd for C₁₈H₁₂F₃O₃ (M+H)⁺ : 333.0734, found 333.0737.

(2S,3R)-3-(2-chlorophenyl)-2',2'-difluoro-3,4-dihydro-5H-spiro[furan-2,1'-indene]-

3',5(2'H)-dione (3q). White solid, MP: 152-153 °C; 47.4 mg, 68% yield, 98:2 er, 3.6:1 dr. $[\alpha]_D^{23} = -11.779$ (C = 0.416 in CHCl₃). HPLC DAICEL CHIRALCEL IG, n-hexane/Ethanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: for minor diastereomer: 12.70

min (minor), 15.08 min (major); for major diastereomer: 17.77 min (major), 19.76 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97-7.85 (m, 2H), 7.76 (d, *J* = 7.7 Hz, 1H), 7.70-7.63 (m, 1H), 7.52 (t, *J* = 7.3 Hz, 1H), 7.30 (t, *J* = 7.4 Hz, 1H), 7.24-7.17

(m, 1H), 7.15-7.12 (m, 1H), 4.63 (ddd, J = 12.2, 8.1, 3.6 Hz, 1H), 3.49 (ddd, J = 17.3, 12.6, 2.1 Hz, 1H), 3.06 (dd, J = 17.3, 8.1 Hz, 1H).¹³C NMR (101 MHz, Chloroform-*d*) δ 185.2 (dd, ${}^{2}J_{C-F} = 24.8$, 23.1 Hz), 172.8, 146.7 (d, ${}^{3}J_{C-F} = 7.0$ Hz), 137.8, 135.8, 132.5 (dd, ${}^{4}J_{C-F} = 4.4$, 2.3 Hz), 131.8, 130.5 (d, ${}^{3}J_{C-F} = 7.0$ Hz), 130.2, 130.1, 128.1, 127.2, 125.3 (d, ${}^{4}J_{C-F} = 1.6$ Hz), 124.9, 116.2 (dd, ${}^{1}J_{C-F} = 273.1$, 261.6 Hz), 86.7 (dd, ${}^{2}J_{C-F} = 22.0$, 17.1 Hz), 47.2, 33.7 (d, ${}^{1}J_{C-F} = 2.3$ Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 110.2 (d, J = 267.0 Hz), -128.1 (d, J = 267.0 Hz). HRMS (ESI) calcd for C₁₈H₁₂ClF₂O₃ (M+H)⁺: 349.0438, found 349.0442.

(2S,3R)-3-(2-bromophenyl)-2',2'-difluoro-3,4-dihydro-5H-spiro[furan-2,1'-indene]-Br 3',5(2'H)-dione (3r). White solid, MP: 162-164 °C; 47.2 mg, 60% yield, 98:2 er, 5:1 dr. $[\alpha]_D^{23} = -11.276$ (C = 0.269 in CHCl₃). HPLC DAICEL CHIRALCEL IG, n-hexane/Ethanol = 95/5, flow rate = 1.0 mL/min, λ = 254 nm, retention time: for minor diastereomer: 19.44 min (minor),

23.66 min (major); for major diastereomer: 32.43 min (major), 35.38 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98-7.83 (m, 2H), 7.79 (d, J = 7.7 Hz, 1H), 7.73-7.63 (m, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.36 (m, 2H), 7.14 (m, 1H), 4.66 (ddd, J = 11.8, 8.3, 3.4 Hz, 1H), 3.44 (ddd, J = 17.5, 11.9, 2.1 Hz, 1H), 3.12 (ddd, J = 17.4, 8.3, 1.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.3 (dd, ² $J_{C-F} = 24.6$, 23.7 Hz), 172.8, 146.7 (d, ³ $J_{C-F} = 7.3$ Hz), 137.8, 133.6, 132.6, 131.9, 130.5, 130.3, 127.9, 126.8, 125.6, 125.0, 116.2 (dd, ¹ $J_{C-F} = 272.4$, 262.5 Hz), 86.8 (dd, ² $J_{C-F} = 22.4$, 17.2 Hz), 49.1, 34.4 (d, ⁴ $J_{C-F} = 1.9$ Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.1 (d, J = 267.0 Hz), -127.1 (d, J = 267.0 Hz). HRMS (ESI) calcd for C₁₈H₁₂BrF₂O₃ (M+H)⁺ : 392.9933, 394.9912, found 392.39930, 394.9903.

(2S,3R)-2',2'-difluoro-3-(o-tolyl)-3,4-dihydro-5H-spiro[furan-2,1'-indene]-

3',5(2'H)-dione (3s). White solid, MP: 192-193 °C; 42.7 mg, 65% yield, 97.5:2.5 er, 3.6:1 dr. $[\alpha]_D^{23} = -17.087$ (C = 0.119 in CHCl₃). HPLC DAICEL CHIRALCEL IG, n-hexane/Ethanol = 94/6, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: for minor diastereomer:

18.09 min (major), 23.32 min (minor); for major diastereomer: 29.70 min (major),

32.20 min (minor). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98-7.83 (m, 2H), 7.79 (d, J = 7.7 Hz, 1H), 7.73-7.63 (m, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.36 (m, 2H), 7.14 (m, 1H), 4.66 (ddd, J = 11.8, 8.3, 3.4 Hz, 1H), 3.44 (ddd, J = 17.5, 11.9, 2.1 Hz, 1H), 3.12 (ddd, J = 17.4, 8.3, 1.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.3 (dd, ² $J_{C-F} = 24.6$, 23.7 Hz), 172.8, 146.7 (d, ³ $J_{C-F} = 7.3$ Hz), 137.8, 133.6, 132.6, 131.9, 130.5, 130.3, 127.9, 126.8, 125.6, 125.0, 116.2 (dd, ¹ $J_{C-F} = 272.4$, 262.5 Hz), 86.8 (dd, ² $J_{C-F} = 22.4$, 17.2 Hz), 49.1, 34.4 (d, ⁴ $J_{C-F} = 1.9$ Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.1 (d, J = 267.0 Hz), -127.1 (d, J = 267.0 Hz). HRMS (ESI) calcd for C₁₉H₁₄F₂NaO₃ (M+Na)⁺: 351.0804, found 351.0812.

(2S,3R)-2',2'-difluoro-3-(2-methoxyphenyl)-3,4-dihydro-5H-spiro[furan-2,1'-

indene]-3',5(2'H)-dione (3t). White solid, MP: 164-165 °C; 47.5 mg, 69% yield, 96:4 er, >20:1 dr. $[\alpha]_D^{23} = -75.877$ (C = 0.228 in CHCl₃). HPLC DAICEL CHIRALCEL IC, n-hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 15.21 min

(major), 19.94 min (minor). ¹H NMR (300 MHz, Chloroform-*d*) δ 7.92 (d, *J* = 6.4 Hz, 2H), 7.73 (d, *J* = 7.7 Hz, 1H), 7.66-7.60 (m, 1H), 7.39-7.28 (m, 1H), 7.26-7.20 (m, 1H), 6.95 (t, *J* = 7.6 Hz, 1H), 6.55 (d, *J* = 8.2 Hz, 1H), 4.50 (ddd, *J* = 12.7, 8.0, 3.9 Hz, 1H), 3.53 (ddd, *J* = 16.4, 13.7, 2.3 Hz, 1H), 3.01 (s, 3H), 2.90 (ddd, *J* = 17.1, 8.0, 1.7 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 185.5 (dd, ²*J*_{C-F} = 24.2, 23.2 Hz), 173.7, 157.0, 148.3 (d, ³*J*_{C-F} = 7.5 Hz), 137.1, 132.6 (dd, ⁴*J*_{C-F} = 4.0, 2.0Hz), 131.0, 130.3, 129.7 (d, ³*J*_{C-F} = 8.0 Hz), 125.0 (d, ⁴*J*_{C-F} = 1.5 Hz), 124.0, 120.7, 118.2, 116.3 (dd, ¹*J*_{C-F} = 2.7 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -109.9 (d, *J* = 267.0 Hz), -129.1 (d, *J* = 263.2 Hz). HRMS (ESI) calcd for C₁₉H₁₅F₂O₄ (M+H)⁺: 345.0933, found 345.0934.

(2S,3R)-2',2'-difluoro-3-(naphthalen-2-yl)-3,4-dihydro-5H-spiro[furan-2,1'-

indene]-3',5(2'H)-dione (3u). White solid, MP: 213-215 °C; 42.3 mg, 58% yield, 97:3 er, >20:1 dr. $[\alpha]_D^{23} = 33.452$ (C = 0.278 in CHCl₃). HPLC DAICEL CHIRALCEL IG, n-hexane/Ethanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 13.22 min (major), 16.01 min (minor). ¹H NMR (300 MHz, Chloroform-*d*) δ 8.09-7.94 (m, 2H), 7.84-7.70 (m, 3H), 7.59 (d, J = 8.3 Hz, 2H), 7.48-7.41 (m, 2H), 7.15 (s, 1H), 6.57 (dd, J = 8.6, 2.1 Hz, 1H), 4.26 (ddd, J = 12.8, 7.5, 4.2 Hz, 1H), 3.70 (ddd, J = 16.4, 13.9, 2.3 Hz, 1H), 3.08 (ddd, J = 16.9, 7.5, 1.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.4 (dd, ${}^{2}J_{C-F} = 25.4$, 24.0 Hz), 173.2, 146.8 (d, ${}^{3}J_{C-F} = 8.0$ Hz), 138.2, 133.5 (dd, ${}^{4}J_{C-F} = 4.6$, 2.8 Hz), 132.94, 132.86, 131.9, 128.4, 128.1 (d, ${}^{4}J_{C-F} = 3.1$ Hz), 127.9, 127.7, 127.5 (d, ${}^{4}J_{C-F} = 1.9$ Hz), 126.9, 126.8, 125.3 (d, ${}^{4}J_{C-F} = 2.8$ Hz), 124.8, 124.6, 115.7 (dd, ${}^{1}J_{C-F} = 274.1$, 260.9 Hz), 86.8 (dd, ${}^{2}J_{C-F} = 21.3$, 16.8 Hz), 52.6, 32.0 (d, ${}^{4}J_{C-F} = 2.9$ Hz). ¹⁹F NMR (282 MHz, Chloroform-*d*) δ -109.1 (d, J = 270.7 Hz), -128.8 (d, J = 270.7 Hz). HRMS (ESI) calcd for C₂₂H₁₅F₂O₃ (M+H)⁺: 365.0984, found 365.0991.

(2S,3R)-2',2'-difluoro-3-(naphthalen-1-yl)-3,4-dihydro-5H-spiro[furan-2,1'-

indene]-3',5(2'H)-dione (3v). White solid, MP: 249-251 °C; 39.3 mg, 54% yield, 97:3 er, >20:1 dr. $[\alpha]_D^{23} = -25.510$ (C = 0.098 in CHCl₃). HPLC DAICEL CHIRALCEL IG, n-hexane/Ethanol = 85/15, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 12.35 min (major),

15.09 min (minor). ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.34 (d, *J* = 7.8 Hz, 1H), 8.14 (t, *J* = 7.8 Hz, 1H), 7.84-7.73 (m, 3H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 1H), 7.33 (d, *J* = 7.8 Hz, 1H), 7.23 (t, *J* = 7.4 Hz, 1H), 6.84 -6.65 (m, 2H), 5.28 (ddd, *J* = 12.6, 7.8, 4.1 Hz, 1H), 3.91 (ddd, *J* = 17.5, 12.9, 2.4 Hz, 1H), 3.15-3.03 (m, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 184.94 (t, ²*J*_{C-F} = 23.5 Hz), 174.43, 147.0 (d, ³*J*_{C-F} = 7.6 Hz), 139.14, 133.41, 132.38, 132.06,132.0 (d, ⁴*J*_{C-F} = 3.2 Hz), 129.58, 129.02, 128.4 (d, ³*J*_{C-F} = 8.9 Hz), 126.61, 126.16, 126.00, 125.53, 125.47, 124.61, 121.83, 116.8 (dd, ¹*J*_{C-F} = 277.5, 254.4 Hz), 86.8 (dd, ²*J*_{C-F} = 20.7, 16.3 Hz), 45.78, 33.08. ¹⁹F NMR (282 MHz, DMSO-*d*₆) δ -108.0 (d, *J* = 345.9 Hz), -130.0 (d, *J* = 349.7 Hz). HRMS (ESI) calcd for C₂₂H₁₅F₂O₃ (M+H)⁺: 365.0984, found 365.0991.

(2S,3S)-2',2'-difluoro-3-(thiophen-2-yl)-3,4-dihydro-5H-spiro[furan-2,1'-indene]-

3',5(2'H)-dione (3w). Yellow solid, MP: 145-146 °C; 42.9 mg, 67% yield, 98:2 er, >20:1 dr. $[\alpha]_D^{23} = 33.452$ (C = 0.278 in CHCl₃). HPLC DAICEL CHIRALCEL IG, n-hexane/Ethanol = 80/20, flow rate = 1.0

mL/min, $\lambda = 254$ nm, retention time: 10.67 min (major), 13.72 min (minor). ¹H NMR (300 MHz, Chloroform-*d*) δ 8.03-7.93 (m, 1H), 7.88 (d, J = 8.1 Hz, 2H), 7.74 (t, J = 7.3 Hz, 1H), 7.14 (dd, J = 5.2, 1.1 Hz, 1H), 6.86 (dd, J = 5.2, 3.6 Hz, 1H), 6.54 (s, 1H), 4.33-4.14 (m, 1H), 3.48 (ddd, J = 16.5, 13.8, 2.5 Hz, 1H), 3.12 (ddd, J = 17.1, 7.7, 1.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 185.4 (dd, ² $J_{C-F} = 275.2$, 258.9 Hz), 172.5, 146.0 (d, ³ $J_{C-F} = 8.0$ Hz), 138.2, 133.8 (dd, ⁴ $J_{C-F} = 4.6$, 2.1 Hz), 132.7 (d, ⁴ $J_{C-F} = 1.8$ Hz), 132.0, 127.5 (d, ⁴ $J_{C-F} = 3.4$ Hz), 127.3, 126.3, 124.7 (d, ⁴ $J_{C-F} = 1.7$ Hz), 124.6, 115.7 (dd, ¹ $J_{C-F} = 25.2$, 23.2 Hz), 86.3 (dd, ² $J_{C-F} = 20.9$, 17.0 Hz), 48.5, 33.7 (d, ⁴ $J_{C-F} = 3.2$ Hz). ¹⁹F NMR (282 MHz, Chloroform-*d*) δ -108.8 (d, J = 270.7 Hz), -130.0 (d, J = 270.7 Hz). HRMS (ESI) calcd for C₁₆H₁₁F₂O₃S (M+H)⁺ : 321.0392, found 321.0393.

(2S,3S)-3-(benzo[b]thiophen-2-yl)-2',2'-difluoro-3,4-dihydro-5H-spiro[furan-2,1'-

indene]-3',5(2'H)-dione (3x). Yellow solid, MP: 213-215 °C; 39.3 mg, 53% yield, 97:3 er, >20:1 dr. $[\alpha]_D^{23} = 4.977$ (C = 0.221 in CHCl₃). HPLC DAICEL CHIRALCEL IG, n-hexane/Ethanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 18.06

min (major), 21.66 min (minor).¹H NMR (400 MHz, DMSO-*d*₆) δ 8.29 (d, *J* = 7.8 Hz, 1H), 8.26-8.15 (m, 1H), 8.03 (d, *J* = 7.7 Hz, 1H), 7.93 (t, *J* = 7.5 Hz, 1H), 7.82-7.71 (m, 2H), 7.39-7.22 (m, 3H), 4.85 (ddd, *J* = 12.4, 7.6, 4.3 Hz, 1H), 3.67 (ddd, *J* = 17.2, 13.1, 2.1 Hz, 1H), 3.29 (dd, *J* = 17.3, 7.7 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 186.01 (t, ²*J*_{C-F} = 24.6 Hz), 172.76, 146.08 (d, ³*J*_{C-F} = 7.8 Hz), 139.34, 138.72, 138.64, 135.08, 135.06, 132.89, 132.81, 126.08, 124.72, 124.58, 124.0 (d, ⁴*J*_{C-F} = 3.3 Hz), 123.55, 122.27, 115.39 (dd, ¹*J*_{C-F} = 275.2, 258.9 Hz), 84.91 (dd, ²*J*_{C-F} = 21.0, 16.3 Hz), 47.05, 32.89. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -107.8 (d, *J* = 270.7 Hz), -128.0 (d, *J* = 270.7 Hz). HRMS (ESI) calcd for C₂₀H₁₃F₂O₃S (M+H)⁺: 371.0548, found 371.0551.

(2S,3R)-4',5',6',7'-tetrachloro-3-(4-chlorophenyl)-2',2'-difluoro-3,4-dihydro-5Hspiro[furan-2,1'-indene]-3',5(2'H)-dione (3y). White solid, MP: 208-209 °C; 52.5 mg,

54% yield, 92:8 er, >20:1 dr. $[\alpha]_D^{23} = +33.452$ (C = 0.278 in CHCl₃). HPLC DAICEL CHIRALCEL IG, nhexane/Ethanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 7.28 min (major), 8.83 min (minor) $_{\circ}$ ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 (d, *J* = 8.2 Hz, 2H), 6.66 (d, *J* = 6.0 Hz, 2H), 4.45 (ddd, *J* = 13.2, 8.0, 4.2 Hz, 1H), 3.51 (ddd, *J* = 16.7, 13.9, 2.5 Hz, 1H), 3.03 (dd, *J* = 17.1, 8.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.07 (t, ²*J*_{C-F} = 26.9 Hz), 162.96, 134.58, 131.8 (d, ³*J*_{C-F} = 9.0 Hz), 129.20, 126.12, 121.83, 121.53, 120.93, 120.90, 119.89, 118.52, 105.33 (dd, ¹*J*_{C-F} = 274.5, 255.4 Hz), 76.6(dd, ²*J*_{C-F} = 22.1, 16.7 Hz), 38.16, 21.4(d, ⁴*J*_{C-F} = 2.9 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.9 (d, *J* = 267.0 Hz), -131.2 (d, *J* = 270.7 Hz). HRMS (ESI) calcd for C₁₈H₈C₁₅F₂O (M+H)⁺: 484.8879, found 484.8911.

(R)-3-(4-chlorophenyl)-3-((S)-2,2-difluoro-1-hydroxy-3-oxo-2,3-dihydro-1H-

inden-1-yl)propanoic acid (6). White solid, MP: 163-165 °C; 66.0 mg, 90% yield, 97:3 er, >20:1 dr. $[\alpha]_D^{23} = 537.143$ (C = 0.070 in CHCl₃). HPLC DAICEL CHIRALCEL IC, n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 6.69

min (minor), 8.54 min (major). ¹H NMR (400 MHz, DMSO- d_6) δ 12.23 (s, 1H), 7.95 (m, J = 7.4, 1.5 Hz, 1H), 7.66 (m, J = 22.0, 14.7, 7.7 Hz, 3H), 7.13 (d, J = 8.3 Hz, 2H), 6.81 (d, J = 8.0 Hz, 2H), 3.79-3.68 (m, 1H), 3.41 (s, 1H), 3.02 (d, J = 16.5 Hz, 1H), 2.78-2.66 (m, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 188.3 (dd, ² $J_{C-F} = 25.9$, 24.1 Hz), 172.54, 151.8 (d, ³ $J_{C-F} = 9.8$ Hz), 137.76, 135.71, 131.82, 131.49, 131.28, 130.75, 127.61, 126.24, 123.50, 117.4 (dd, ¹ $J_{C-F} = 274.3$, 254.2 Hz), 77.9 (dd, ² $J_{C-F} = 20.8$, 17.7 Hz), 49.75, 33.5 (d, ⁴ $J_{C-F} = 5.1$ Hz). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -108.6 (d, J = 270.7 Hz), -129.5 (d, J = 267.0Hz). HRMS (ESI) calcd for C₁₈H₁₄ClF₂O₄ (M+H)⁺ : 367.0543, found 367.0543.

2,2-difluoro-4'-phenylspiro[indene-1,2'-pyran]-3,6'(2H,3'H)-dione (8). White solid,

MP: 185-187 °C; 56.8 mg, 87% yield, 90:10 er. $[\alpha]_D^{23} = 83.162$ (C = 0.679 in CHCl₃). HPLC DAICEL CHIRALCEL IC, n-hexane/2-propanol = 60/40, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: 13.23 min (major), 19.35 min (minor) ° ¹H NMR (300 MHz,

Chloroform-d) δ 7.92 (m, 3H), 7.72 (t, J = 7.0 Hz, 1H), 7.56 (m, 2H), 7.52-7.40 (m,

3H), 6.49 (d, J = 2.4 Hz, 1H), 3.50 (dq, J = 17.9, 3.2 Hz, 1H), 3.27 (dd, J = 17.9, 2.7 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 187.9 (t, ² $J_{C-F} = 26.4$ Hz), 162.53, 152.80, 148.4 (t, ⁴ $J_{C-F} = 4.0$ Hz), 138.20, 135.32, 132.17, 132.0 (t, ⁴ $J_{C-F} = 3.8$ Hz), 131.24, 129.20, 126.30, 125.77, 125.21, 114.3 (dd, ¹ $J_{C-F} = 273.2$, 265.2 Hz), 111.61, 81.1 (dd, ² $J_{C-F} = 23.5$, 18.2 Hz), 31.2 (d, ³ $J_{C-F} = 6.4$ Hz). ¹⁹F NMR (282 MHz, Chloroform-*d*) δ -115.8 (d, J = 279.7 Hz), -117.7 (d, J = 280.0 Hz). HRMS (ESI) calcd for C₁₉H₁₃F₂O₃ (M+H)⁺ : 327.0827, found 327.0827.

References:

- 1. Zhang, J.; Liang, Z.; Zhang, S.; Du, D. Org. Chem. Front. 2022, 9, 3763-3768.
- 2. Matarlo, J.; Evans, C.; Sharma I; Tonge, P. Biochem. 2015, 54, 6514-6524.

8. Copies of the NMR Spectra

3a ¹H NMR (300 MHz, Chloroform-d)/ 13 C{1H} NMR (101 MHz, Chloroform-d)

3a¹⁹F NMR (376 MHz, Chloroform-*d*)

3b ¹H NMR (400 MHz, Chloroform-d)/¹³C{1H} NMR (101 MHz, Chloroform-d)

3c ¹H NMR (400 MHz, Chloroform-d)/¹³C{H} NMR (101 MHz, Chloroform-d)

3d ¹H NMR (400 MHz, Chloroform-d)/¹³C{H} NMR (101 MHz, Chloroform-d)

3d ¹⁹F NMR (376 MHz, Chloroform-d)

3e ¹H NMR (400 MHz, Chloroform-d)/ ¹³C{1H} NMR (101 MHz, Chloroform-d)

3e¹⁹F NMR (376 MHz, Chloroform-*d*)

3f ¹H NMR (400 MHz, Chloroform-d)/¹³C{H} NMR (101 MHz, Chloroform-d)

3f¹⁹F NMR (376 MHz, Chloroform-*d*)

3g ¹H NMR (400 MHz, Chloroform-d)/¹³C{H} NMR (101 MHz, Chloroform-d)

3g ¹⁹F NMR (376 MHz, Chloroform-*d*)

3h ¹H NMR (300 MHz, Chloroform-*d*)/¹³C{H} NMR (101 MHz, Chloroform-d)

3i ¹H NMR (300 MHz, DMSO-*d*₆)/¹³C{H} NMR (101 MHz, DMSO-*d*₆)

3i ¹⁹F NMR (282 MHz, DMSO-*d*₆)

3j ¹H NMR (400 MHz, Chloroform-d)/¹³C{H} NMR (101 MHz, Chloroform-d)

3k ¹H NMR (400 MHz, Chloroform-d)/¹³C {H} NMR (101 MHz, Chloroform-d)

31 ¹H NMR (300 MHz, Chloroform-d)/¹³C{1H} NMR (101 MHz, Chloroform-d)

3m ¹H NMR (400 MHz, Chloroform-d)/¹³C{H} NMR (101 MHz, Chloroform-d)

3n ¹H NMR (400 MHz, Chloroform-d)/¹³C {H} NMR (101 MHz, Chloroform-d)

30 ¹H NMR (400 MHz, Chloroform-d)/¹³C{H} NMR (101 MHz, Chloroform-d)

30 ¹⁹F NMR (376 MHz, Chloroform-*d*)

3p ¹H NMR (400 MHz, Chloroform-d)/¹³C{H} NMR (101 MHz, Chloroform-*d*)

3p ¹⁹F NMR (376 MHz, Chloroform-*d*)

3q ¹H NMR (400 MHz, Chloroform-d)/¹³C {H} NMR (101 MHz, Chloroform-d)

3q ¹⁹F NMR (376 MHz, Chloroform-*d*)

3r ¹H NMR (400 MHz, Chloroform-d)/¹³C{H} NMR (101 MHz, Chloroform-d)

3r¹⁹F NMR (376 MHz, Chloroform-*d*)

3s ¹H NMR (400 MHz, Chloroform-d)/¹³C{H} NMR (101 MHz, Chloroform-d)

3s¹⁹F NMR (376 MHz, Chloroform-*d*)

3t ¹H NMR (300 MHz, Chloroform-d)/¹³C{H} NMR (101 MHz, Chloroform-d)

3t¹⁹F NMR (376 MHz, Chloroform-d)

3u ¹H NMR (300 MHz, Chloroform-d)/¹³C {H} NMR (101 MHz, Chloroform-d)

3u ¹⁹F NMR (282 MHz, Chloroform-*d*)

3v ¹H NMR (300 MHz, DMSO- d_6)/¹³C {H} NMR (101 MHz, DMSO- d_6)

3v ¹⁹F NMR (282 MHz, DMSO-*d*₆)

3w ¹H NMR (300 MHz, Chloroform-*d*)/¹³C{1H} NMR (101 MHz, Chloroform-*d*)

3w ¹⁹F NMR (282 MHz, Chloroform-*d*)

3x ¹H NMR (400 MHz, DMSO- d_6)/¹³C {H} NMR (101 MHz, DMSO- d_6)

3x ¹⁹F NMR (376 MHz, DMSO-*d*₆)

3y ¹H NMR (400 MHz, Chloroform-*d*)/¹³C{H} NMR (101 MHz, Chloroform-*d*)

6 ¹H NMR (400 MHz, DMSO-*d*₆)/¹³C{H} NMR (101 MHz, DMSO-*d*₆)

6¹⁹F NMR (376 MHz, DMSO-*d*₆)

8 ¹H NMR (300 MHz, Chloroform-d)/¹³C{H} NMR (101 MHz, Chloroform-d)

8¹⁹F NMR (282 MHz, Chloroform-d)

9. Copies of the HPLC spectra

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.750	16951030	455470	28.546	28.876
2	14.014	16664573	443712	28.064	28.131
3	15.643	12851173	362650	21.642	22.992
4	19.637	12914070	315485	21.748	20.001
Total		59380847	1577317	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.928	74362663	2011650	97.666	97.728
2	14.193	1777079	46774	2.334	2.272
Total		76139741	2058424	100.000	100.000

3d

S79

3f

S81

97920444

1721715

100.000

100.000

Total

Peak#	Ret. Time	Area	Height	Area %	Height %
1	31.923	24869296	352533	94.421	94.150
2	37.190	1469472	21906	5.579	5.850
Total		26338768	374438	100.000	100.000

3i

Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.441	22318893	479939	43.475	48.002
2	20.691	22353397	435442	43.542	43.552
3	29.328	3286130	44141	6.401	4.415
4	33.895	3379397	40304	6.583	4.031
Total		51337817	999826	100.000	100.000

1	17.408	87855464	1809210	80.055	85.101
2	20.783	4439636	88445	4.045	4.160
3	29.213	16708746	219248	15.225	10.313
4	33.917	740519	9056	0.675	0.426
Total		109744365	2125958	100 000	100 000

S85

Peak#	Ret. Time	Area	Height	Area %	Height %
1	32.034	15967380	308380	46.472	50.722
2	38.790	16339999	257701	47.556	42.387
3	41.945	1140760	22874	3.320	3.762
4	43.636	911293	19021	2.652	3.129
Total		34359433	607975	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.873	1315800	38826	3.909	5.724
2	18.621	1306884	36416	3.883	5.368
3	22.980	15235459	318853	45.266	47.004
4	28.584	15799724	284251	46.942	41.904
Total		33657867	678345	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.899	1171635	31575	4.185	5.163
2	18.616	5069859	137966	18.110	22.561
3	22.990	21084618	429541	75.315	70.240
4	28.824	669147	12451	2.390	2.036
Total		27995260	611533	100.000	100.000

3m

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.745	279105	6372	1.808	1.983
2	12.214	312360	7902	2.024	2.459
3	15.155	7478779	155583	48.449	48.411
4	17.919	7366307	151520	47.720	47.147
Total		15436550	321377	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.105	33763376	712216	97.960	97.861
2	17.978	703088	15570	2.040	2.139
Total		34466464	727787	100.000	100.000

S90

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.862	28961247	1613444	17.862	23.773
2	15.205	29483837	1355190	18.184	19.968
3	17.998	51236523	1958613	31.600	28.859
4	19.898	52457477	1859704	32.353	27.401
Total		162139084	6786951	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.696	2749489	124771	3.198	4.299
2	15.077	16523369	601147	19.221	20.713
3	17.770	65248536	2125697	75.900	73.244
4	19.764	1445422	50601	1.681	1.744
Total		85966816	2902217	100.000	100.000

420233

24582089

9936

508989

1.710

100.000

1.952

100.000

4

Total

35.380

3s

S93

711372

1026371

19677

76.553

100.000

1.930

69.309

100.000

1.917

3

4

Total

29.695

32.200

33947759

44345638

855864

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.663	7580426	170032	49.044	52.120
2	20.353	7875831	156197	50.956	47.880
Total		15456257	326230	100.000	100.000

S95

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.044	8656502	424415	49.886	55.131
2	15.743	8696175	345412	50.114	44.869
Total		17352677	769827	100.000	100.000

S97

Total

Peak#	Ret. Time	Area	Height	Area %	Height %
1	18.062	43510809	741951	96.971	96.362
2	21.662	1359133	28009	3.029	3.638
Total		44869942	769960	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	7.288	4780647	303990	49.165	51.628
2	8.837	4943092	284822	50.835	48.372
Total		9723739	588813	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	7.275	69976967	3985585	92.430	93.040
2	8.827	5731275	298164	7.570	6.960
Total		75708242	4283749	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.581	7254233	546695	49.521	56.806
2	8.492	7394562	415700	50.479	43.194
Total		14648794	962395	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.693	172406	9027	3.542	3.646
2	8.539	4695735	238525	96.458	96.354
Total		4868141	247552	100.000	100.000

6

8