Supporting Information

From Benzopyrroles to Phenylpyrroles: Remodeling of Indoles Enabled by Photoredox Catalysis

Wei Xu,^{a,b} Bin Cheng,^{*,a} Yaoge Zhang,^c Lijing Fang,^b Hongbin Zhai,^d Cuiping Wang^{*,c} and Taimin Wang^{*,a}

^a Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen, 518055, China.

^b Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China

^c School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China

^d State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China

E-mails: chengbin@szpt.edu.cn

wangtm@szpt.edu.cn cuiping1025@126.com

Contents

General Information	1
General Synthesis of N-Sulfonyl-3-Acyl Indoles	1
Characterization data of unknown substrates	2
Photochemical set-up	9
Optimization of reaction conditions	11
General procedure for the synthesis of 3-(o-aminophenyl)pyrroles	13
Mechanistic investigation	14
Characterization data of products	16
Copies of NMR spectra of unknown substrates and products	29

General Information

Reagents were purchased from commercial sources and were used as received unless otherwise noted. Anhydrous CH_2Cl_2 was refluxed with CaH_2 and freshly distilled prior to use. Ultradry *N*,*N*-dimethylformamide was used as obtained from commercial sources without further purification. Proton and carbon magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded on a *JEOL-400YH* (¹H NMR at 400 MHz, ¹³C NMR at 100 MHz and ¹⁹F NMR at 376 MHz) spectrometer with tetramethylsilane (TMS) or deuterated solvent resonance as the internal standard (¹H NMR: TMS at 0.00 ppm; ¹³C NMR: CDCl₃ at 77.0 ppm). All spectra are reported as parts per million. ¹H, ¹³C and ¹⁹F NMR data are reported as follows: chemical shift (ppm), multiplicity (app = apparent, s = singlet, d = doublet, t = triplet, q = quartet, sept = septet, dd = doublet of doublets, td = triplet of doublets, ddd = double of doublet of doublets, m = multiplet), coupling constants (Hz), and integration. High Resolution Mass Spectra (HRMS) were performed by Analytical Instrument Center at the State Key Laboratory of Chemical Oncogenomics of Peking University Shenzhen Graduate School on an Electron Spray Injection (ESI) mass spectrometer. Melting point was recorded on an SGW® X-4A melting point apparatus.

General Synthesis of N-Sulfonyl-3-Acyl Indoles

Commercially unavailable 3-acyl indoles **S2** were prepared via acylation of indoles following the practical protocol developed by Ottoni's group in 2001 (Ref: *Org. Lett.* **2001**, *3*, 1005-1007), and used directly for *N*-sulfonylation without any purification.

To a solution of indole **S1** (1.0 eq.) in anhydrous DCM at 0 °C under N₂ was added SnCl₄ (1.5 eq.) in a single portion via syringe. After the ice bath was removed, the mixture was stirred vigorously at room temperature for 30 min, and then acyl chloride (R^2COCl , 1.2 eq.) was added in small portions to the dark suspension, followed by the addition of MeNO₂. The reaction was quenched with cold water after it was stirred for 2 h at room temperature. Then the mixture was filtered under reduced pressure and the filtrate was extracted with ethyl acetate for three times. The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*, and the residue was used directly for next step.

The crude 3-acyl indole **S2** was suspended in DCM, then DMAP (0.1 eq.) and sulfonyl chloride (R^1SO_2Cl , 2.0 eq.) were added, followed by the addition of triethylamine (3.0 eq.) via

syringe at room temperature. The resulting mixture was stirred for 0.5–12 h for full consumption of 3-acyl indole **S2**, according to the result monitored by TLC. The volatile was carefully removed *in vacuo* before ethyl acetate was added, and the mixture was stirred vigorously for 10 min, then filtered. The filtrate was concentrated *in vacuo* to give a residue, which was purified through column chromatography with petroleum/ether ethyl acetate as the eluent to give the titled product **1**.

Characterization data of unknown substrates

1c

1-(1-(mesitylsulfonyl)-1*H*-indol-3-yl)ethan-1-one (**1c**)

white powder, **M. p.** = 112–113 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.36 (dt, J = 8.1, 1.1 Hz, 1H), 8.32 (s, 1H), 7.33–7.27 (m, 1H), 7.25–7.18 (m, 2H), 6.98 (s, 2H), 2.58 (s, 3H), 2.54 (s, 6H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 193.5, 144.9, 140.3, 134.7, 132.7, 132.6, 131.6, 127.1, 125.3, 124.4, 123.1, 119.5, 111.8, 27.7, 22.5, 21.0; **HRMS** (ESI) m/z: calcd for C₁₉H₂₀NO₃S⁺ [M+H]⁺, 342.1158; found, 342.1156;

1-(1-((2,4,6-triisopropylphenyl)sulfonyl)-1*H*-indol-3-yl)ethan-1-one (1d)

white powder, **M. p.** = 137–139 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.35 (dt, J = 8.0, 1.1 Hz, 1H), 8.26 (s, 1H), 7.32–7.27 (m, 1H), 7.25–7.17 (m, 4H), 4.16 (sept, J = 6.8 Hz, 2H), 2.91 (sept, J = 6.9 Hz, 1H), 2.58 (s, 3H), 1.24 (d, J = 6.9 Hz, 6H), 1.12 (d, J = 6.8 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃): δ 193.4, 155.4, 151.5, 135.0, 131.6, 130.3, 126.9, 125.2, 124.5, 124.3, 123.0, 120.1, 111.9, 34.2, 29.6, 27.7, 24.3, 23.3; **HRMS** (ESI) *m/z*: calcd for C₂₅H₃₂NO₃S⁺ [M+H]⁺, 426.2097; found, 426.2108;

1-(1-((2-fluorophenyl)sulfonyl)-1*H*-indol-3-yl)ethan-1-one (**1f**) white powder, **M. p.** = 115–117 °C; **¹H NMR** (400 MHz, CDCl₃): δ 8.38–8.32 (m, 2H), 8.14 (ddd, *J* = 7.9, 7.1, 1.8 Hz, 1H), 7.79–7.71 (m, 1H), 7.62–7.52 (m, 1H), 7.36–7.27 (m, 3H), 7.09 (ddd, *J* = 10.2, 8.4, 1.1 Hz, 1H), 2.59 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 193.4, 158.9 (d, *J* = 259.1 Hz), 137.1 (d, *J* = 8.8 Hz), 134.4, 133.0 (d, *J* = 2.9 Hz), 130.3, 127.3, 125.5, 125.2 (d, *J* = 13.3 Hz), 124.8, 124.7, 123.0, 121.0, 117.6 (*J* = 20.7 Hz), 112.6, 27.6; ¹⁹F **NMR** (376 MHz, CDCl₃): δ -107.4 (m, 1F); **HRMS** (ESI) *m*/*z*: calcd for C₁₆H₁₃FNO₃S⁺ [M+H]⁺, 318.0595; found, 318.0591;

1-(1-((3,5-bis(trifluoromethyl)phenyl)sulfonyl)-1*H*-indol-3-yl)ethan-1-one (**1h**) white powder, **M. p.** = 161–163 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.40 (s, 2H), 8.34 (d, *J* = 7.1 Hz, 1H), 8.18 (s, 1H), 8.10 (s, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.49–7.34 (m, 2H), 2.59 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 193.2, 140.0, 134.7, 133.6 (q, *J* = 34.9 Hz), 131.3, 128.2 (q, *J* = 3.6 Hz), 127.7, 127.2 (q, *J* = 3.8 Hz), 126.5, 125.6, 123.6, 123.0, 122.0 (q, *J* = 273.6 Hz), 112.6, 27.9; ¹⁹F **NMR** (376 MHz, CDCl₃): δ –63.0 (s, 6F); **HRMS** (ESI) *m*/*z*: calcd for C₁₈H₁₂F₆NO₃S⁺ [M+H]⁺, 436.0437; found, 436.0433;

1-(1-((2,4-dichlorophenyl)sulfonyl)-1*H*-indol-3-yl)ethan-1-one (**1i**) white powder, **M. p.** = 102–104 °C; **¹H NMR** (400 MHz, CDCl₃): δ 8.40–8.34 (m, 2H), 8.28 (d, *J* = 8.5 Hz, 1H), 7.58–7.54 (m, 1H), 7.52–7.45 (m, 2H), 7.35 (td, *J* = 7.6, 1.2 Hz, 1H), 7.30 (ddd, *J* = 8.6, 7.3, 1.4 Hz, 1H), 2.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 193.4, 141.9, 134.4, 133.91, 133.87, 133.5, 132.8, 132.5, 127.9, 127.5, 125.7, 125.1, 123.5, 120.7, 112.4, 27.8; **HRMS** (ESI) *m/z*: calcd for C₁₆H₁₂Cl₂NO₃S⁺ [M+H]⁺, 367.9909; found, 367.9908;

1-(1-(benzylsulfonyl)-1*H*-indol-3-yl)ethan-1-one (11)

white powder, **M. p.** = 104–106 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.41–8.34 (m, 1H), 7.88–7.80 (m, 1H), 7.44–7.36 (m, 3H), 7.33–7.27 (m, 1H), 7.17 (t, *J* = 7.8 Hz, 2H), 6.86–6.78 (m, 2H), 4.56 (s, 2H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 193.4, 135.2, 133.5, 130.3, 129.6, 128.8, 127.1, 126.2, 125.8, 124.9, 123.2, 120.2, 112.6, 59.8, 27.4; **HRMS** (ESI) *m/z*: calcd for C₁₇H₁₆NO₃S⁺ [M+H]⁺, 314.0845; found, 314.0843;

1-(1-(mesitylsulfonyl)-4-methyl-1*H*-indol-3-yl)ethan-1-one (**1p**)

light yellow crystal, **M. p.** = 143–144 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.32 (s, 1H), 7.12–7.06 (m, 1H), 7.06–6.99 (m, 2H), 6.96 (s, 2H), 2.71 (s, 3H), 2.61 (s, 3H), 2.52 (s, 6H), 2.27 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 193.1, 144.8, 140.2, 135.3, 134.0, 133.1, 132.6, 131.7, 126.4, 125.8, 125.3, 121.8, 109.3, 29.0, 22.7, 22.5, 21.0; **HRMS** (ESI) *m*/*z*: calcd for C₂₀H₂₂NO₃S⁺ [M+H]⁺, 356.1315; found, 356.1323;

1-(1-(mesitylsulfonyl)-5-methyl-1*H*-indol-3-yl)ethan-1-one (1q)

brown powder, **M. p.** = 142–144 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.28 (s, 1H), 8.16 (dt, J = 1.8, 0.8 Hz, 1H), 7.10–7.01 (m, 2H), 6.97 (s, 2H), 2.57 (s, 3H), 2.53 (s, 6H), 2.41 (s, 3H), 2.29 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 193.7, 144.8, 140.3, 134.3, 132.9, 132.8, 132.6, 131.7, 127.3, 126.7, 122.9, 119.3, 111.4, 27.7, 22.5, 21.3, 21.0; **HRMS** (ESI) m/z: calcd for C₂₀H₂₂NO₃S⁺ [M+H]⁺, 356.1315; found, 356.1309;

1-(1-(mesitylsulfonyl)-6-methyl-1*H*-indol-3-yl)ethan-1-one (**1r**)

clear crystal, **M. p.** = 166–168 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.24–8.18 (m, 2H), 7.13 (ddd, *J* = 8.1, 1.5, 0.7 Hz, 1H), 7.04 (dt, *J* = 1.6, 0.8 Hz, 1H), 6.99 (s, 2H), 2.56 (s, 3H), 2.55 (s, 6H), 2.35 (s, 3H), 2.31 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 193.6, 144.9, 140.3, 135.5, 135.2, 132.6, 132.2, 131.8, 126.0, 124.8, 122.7, 119.7, 112.0, 27.7, 22.6, 21.9, 21.1; **HRMS** (ESI) *m/z*: calcd for C₂₀H₂₂NO₃S⁺ [M+H]⁺, 356.1315; found, 356.1318;

1-(5-fluoro-1-(mesitylsulfonyl)-1*H*-indol-3-yl)ethan-1-one (1s)

white powder, **M. p.** = 154–155 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.32 (s, 1H), 8.05 (dd, J = 9.2, 2.6 Hz, 1H), 7.14 (dd, J = 9.0, 4.3 Hz, 1H), 7.00 (s, 2H), 6.96 (td, J = 9.0, 2.6 Hz, 1H), 2.57 (s, 3H), 2.54 (s, 6H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 193.2, 160.3 (d, J = 241.4 Hz), 145.2, 140.3, 133.9, 132.7, 131.4, 131.0, 128.3 (d, J = 11.0 Hz), 119.4 (d, J = 4.2 Hz), 113.6 (d, J = 26.1 Hz), 112.8 (d, J = 9.4 Hz), 108.9 (d, J = 25.2 Hz), 27.6, 22.6, 21.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -117.6 (m, 1F); **HRMS** (ESI) *m/z*: calcd for C₁₉H₁₉FNO₃S⁺ [M+H]⁺, 360.1064; found, 360.1076;

1-(5-chloro-1-(mesitylsulfonyl)-1*H*-indol-3-yl)ethan-1-one (1t)

brown powder, **M. p.** = 160–162 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.37 (d, J = 2.0 Hz, 1H), 8.30 (s, 1H), 7.18 (dd, J = 8.9, 2.1 Hz, 1H), 7.12 (dd, J = 8.8, 0.7 Hz, 1H), 6.99 (s, 2H), 2.57 (s, 3H), 2.52 (s, 6H), 2.30 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 193.1, 145.2, 140.3, 133.5, 133.0, 132.7, 131.3, 130.5, 128.2, 125.7, 122.8, 118.9, 112.8, 27.6, 22.5, 21.0; **HRMS** (ESI) *m/z*: calcd for C₁₉H₁₉ClNO₃S⁺ [M+H]⁺, 376.0769; found, 376.0776;

1-(5-bromo-1-(mesitylsulfonyl)-1*H*-indol-3-yl)ethan-1-one (**1u**)

brown powder, **M. p.** = 178–179 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.53 (d, J = 2.0 Hz, 1H), 8.28 (s, 1H), 7.31 (dd, J = 8.8, 2.0 Hz, 1H), 7.07 (d, J = 8.8 Hz, 1H), 6.99 (s, 2H), 2.57 (s, 3H), 2.52 (s, 6H), 2.30 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 193.1, 145.2, 140.3, 133.4, 133.3, 132.7, 131.3, 128.7, 128.3, 125.8, 118.8, 118.2, 113.2, 27.6, 22.5, 21.0; **HRMS** (ESI) *m/z*: calcd for C₁₉H₁₉BrNO₃S⁺ [M+H]⁺, 420.0264; found, 420.0258;

3-acetyl-1-(mesitylsulfonyl)-1*H*-indole-5-carbonitrile (**1v**)

brown powder, **M. p.** = 190–192 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.75 (dd, J = 1.7, 0.8 Hz, 1H), 8.38 (s, 1H), 7.48 (dd, J = 8.6, 1.6 Hz, 1H), 7.32 (dd, J = 8.7, 0.8 Hz, 1H), 7.03 (s, 2H), 2.60 (s, 3H), 2.54 (s, 6H), 2.33 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 192.9, 145.7, 140.4, 136.3, 134.1, 132.9, 131.0, 128.4, 128.3, 127.2, 119.0, 118.9, 112.9, 108.2, 27.7, 22.6, 21.1; **HRMS** (ESI) m/z: calcd for C₂₀H₁₉N₂O₃S⁺ [M+H]⁺, 367.1111; found, 367.1122;

methyl 3-acetyl-1-(mesitylsulfonyl)-1*H*-indole-5-carboxylate (**1w**) offwhite powder, **M. p.** = 155–157 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 9.04 (d, *J* = 1.8 Hz, 1H), 8.38 (s, 1H), 7.94 (dd, *J* = 8.8, 1.7 Hz, 1H), 7.26 (d, *J* = 8.8 Hz, 1H), 6.99 (s, 2H), 3.91 (s, 3H), 2.62 (s, 3H), 2.53 (s, 6H), 2.29 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 193.0, 166.8, 145.2, 140.2, 137.0, 133.6, 132.6, 131.2, 126.8, 126.6, 126.4, 125.2, 119.7, 111.6, 52.0, 27.7, 22.4, 21.0; **HRMS** (ESI) *m/z*: calcd for C₂₁H₂₂NO₅S⁺ [M+H]⁺, 400.1213; found, 400.1212;

1-(1-(mesitylsulfonyl)-5-methoxy-1*H*-indol-3-yl)ethan-1-one (1x)

gray powder, **M. p.** = 144–146 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.27 (s, 1H), 7.85 (d, J = 2.5 Hz, 1H), 7.07 (dd, J = 8.9, 0.6 Hz, 1H), 6.98 (s, 2H), 6.83 (dd, J = 9.0, 2.6 Hz, 1H), 3.84 (s, 3H), 2.57 (s, 3H), 2.53 (s, 6H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 193.7, 157.3, 144.9, 140.3, 133.1, 132.7, 131.7, 129.3, 128.2, 119.4, 115.3, 112.6, 104.5, 55.7, 27.6, 22.5, 21.1; **HRMS** (ESI) m/z: calcd for C₂₀H₂₂NO₄S⁺ [M+H]⁺, 372.1264; found, 372.1260;

1-(1-(mesitylsulfonyl)-1*H*-pyrrolo[2,3-*b*]pyridin-3-yl)ethan-1-one (**1y**) white powder, **M. p.** = 133–134 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.56 (dd, *J* = 8.0, 1.7 Hz, 1H), 8.49 (s, 1H), 8.26 (dd, *J* = 4.8, 1.7 Hz, 1H), 7.21 (dd, *J* = 7.9, 4.7 Hz, 1H), 6.96 (s, 2H), 2.71 (s, 6H), 2.60 (s, 3H), 2.27 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 193.3, 147.3, 145.8, 144.7, 141.3, 132.2, 132.0, 131.4, 131.3, 120.1, 119.7, 117.6, 27.2, 22.8, 21.0; **HRMS** (ESI) *m*/*z*: calcd for C₁₈H₁₉N₂O₃S⁺ [M+H]⁺, 343.1111; found, 343.1123;

1-(1-(mesitylsulfonyl)-2-methyl-1*H*-indol-3-yl)ethan-1-one (**1**z)

brown powder, **M. p.** = 124–126 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.17–8.09 (m, 1H), 7.97–7.88 (m, 1H), 7.34–7.27 (m, 2H), 6.95 (s, 2H), 2.64 (s, 3H), 2.57 (s, 3H), 2.38 (s, 6H), 2.29 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 195.9, 144.4, 142.9, 139.6, 136.6, 134.4, 132.3, 125.7, 124.4, 123.7, 120.7, 119.3, 114.7, 32.1, 22.2, 21.0, 13.0; **HRMS** (ESI) *m/z*: calcd for C₂₀H₂₂NO₃S⁺ [M+H]⁺, 356.1315; found, 356.1311;

1-(1-(mesitylsulfonyl)-1*H*-indol-3-yl)propan-1-one (**1A**)

brown powder, **M. p.** = 131–133 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.38 (dt, *J* = 8.0, 1.1 Hz, 1H), 8.34 (s, 1H), 7.33–7.27 (m, 1H), 7.23–7.17 (m, 2H), 6.97 (s, 2H), 2.95 (q, *J* = 7.4 Hz, 2H), 2.54 (s, 6H), 2.28 (s, 3H), 1.26 (t, *J* = 7.4 Hz, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 196.8, 144.9, 140.2, 134.6, 132.6, 132.0, 131.7, 127.3, 125.2, 124.3, 123.1, 118.8, 111.8, 33.1, 22.5, 21.0, 8.4; **HRMS** (ESI) *m/z*: calcd for C₂₀H₂₂NO₃S⁺ [M+H]⁺, 356.1315; found, 356.1325;

1-(1-(mesitylsulfonyl)-1*H*-indol-3-yl)butan-1-one (**1B**)

colorless crystal, **M. p.** = 131–133 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.38 (dt, J = 8.0, 1.1 Hz, 1H), 8.34 (s, 1H), 7.33–7.27 (m, 1H), 7.24–7.17 (m, 2H), 6.97 (s, 2H), 2.89 (t, J = 7.4 Hz, 2H), 2.54 (s, 6H), 2.28 (s, 3H), 1.87–1.76 (m, 2H), 1.03 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.4, 144.9, 140.2, 134.6, 132.6, 132.2, 131.7, 127.3, 125.2, 124.4, 123.2, 119.2, 111.8, 41.9, 22.5, 21.0, 18.1, 13.9; **HRMS** (ESI) *m/z*: calcd for C₂₁H₂₄NO₃S⁺ [M+H]⁺, 370.1471; found, 370.1471;

1-(1-(mesitylsulfonyl)-1*H*-indol-3-yl)hexan-1-one (**1C**)

colorless crystal, **M. p.** = 115–117 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.38 (dt, J = 8.0, 1.1 Hz, 1H), 8.32 (s, 1H), 7.31 (ddd, J = 8.1, 6.5, 1.8 Hz, 1H), 7.24–7.17 (m, 2H), 6.99 (s, 2H), 2.90 (t, J = 7.2 Hz, 2H), 2.54 (s, 6H), 2.30 (s, 3H), 1.84–1.73 (m, 2H), 1.44–1.32 (m, 4H), 0.97–0.87 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.7, 144.9, 140.3, 134.7, 132.7, 132.2, 131.8, 127.4, 125.3, 124.4, 123.3, 119.2, 111.8, 40.1, 31.6, 24.5, 22.6, 22.5, 21.1, 13.9; **HRMS** (ESI) *m/z*: calcd for C₂₃H₂₈NO₃S⁺ [M+H]⁺, 398.1784; found, 398.1786;

cyclohexyl(1-(mesitylsulfonyl)-1*H*-indol-3-yl)methanone (**1D**)

white powder, **M. p.** = 156–158 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.38 (dt, J = 8.0, 1.1 Hz, 1H), 8.35 (s, 1H), 7.30 (ddd, J = 8.1, 7.0, 1.3 Hz, 1H), 7.23–7.12 (m, 2H), 6.98 (s, 2H), 3.07 (tt, J = 11.7, 3.3 Hz, 1H), 2.54 (s, 6H), 2.30 (s, 3H), 1.99–1.83 (m, 4H), 1.81–1.71 (m, 1H), 1.67–1.55 (m, 2H), 1.49–1.37 (m, 2H), 1.31 (tt, J = 12.3, 3.2 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ 200.1, 144.9, 140.3, 134.7, 132.7, 131.9, 131.8, 127.8, 125.3, 124.4, 123.4, 118.0, 111.7, 48.0, 29.7, 25.9, 25.8, 22.6, 21.1; **HRMS** (ESI) *m/z*: calcd for C₂₄H₂₈NO₃S⁺ [M+H]⁺, 410.1784; found, 410.1785

2,2,2-trifluoro-1-(1-(mesitylsulfonyl)-1*H*-indol-3-yl)ethan-1-one (**1E**) colorless crystal, **M. p.** = 116–118 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.54 (q, *J* = 1.7 Hz, 1H), 8.36 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.38 (ddd, *J* = 8.1, 7.0, 1.4 Hz, 1H), 7.30 (td, *J* = 8.4, 1.4 Hz, 1H), 7.28–7.23 (m, 1H), 7.01 (s, 2H), 2.56 (s, 6H), 2.31 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 176.0 (q, *J* = 36.3 Hz), 145.5, 140.5, 135.7 (q, *J* = 5.1 Hz), 134.3, 132.9, 131.1, 127.2, 126.3, 125.3, 122.8, 116.4 (q, *J* = 290.9 Hz), 112.2, 111.8, 22.6, 21.1; ¹⁹**F NMR** (376 MHz, CDCl₃): δ -72.8 (s, 3F); **HRMS** (ESI) *m/z*: calcd for C₁₉H₁₇F₃NO₃S⁺ [M+H]⁺, 396.0876; found, 396.0869;

Photochemical set-up

All the photoreactions were carried out using ROGER OHSP-350UV parallel photoreactor (provided by Beijing Nuozhi Technology Co., Ltd) equipped with 10 W blue LED for each reaction site, with a circling ethanol-cooled jacket. Light type of light reactor is 3A3A4100–455 nm from Nuozhi Technology.

Figure S1 The photochemical set-up

The emission spectrum (see below) of the blue LED reactor shows a maximum intensity at a wavelength of λ (emission)_{max} = 453.0 nm. The photophysical data of LEDs (Figure S2) was provided by Beijing Nuozhi Technology Co., Ltd.

Figure S2 Photophysical property of LEDs used during our exploration

Optimization of reaction conditions^a

entry	PC	solvent	base	additive	yield of 3aa $(\%)^b$
1	4CzIPN (PC1)	MeCN	K ₂ CO ₃	none	29
2	<i>fac</i> -Ir(ppy) ₃ (PC2)	MeCN	K ₂ CO ₃	none	N.D.
3	[Ir(dF(CF ₃)ppy) ₂ (5,5'-di-CF ₃ bpy)]PF ₆ (PC3)	MeCN	K ₂ CO ₃	none	29
4	[Ir(dFppy)2(dtbbpy)]PF6 (PC4)	MeCN	K ₂ CO ₃	none	22
5	[Ir(Me(Me)ppy) ₂ (dtbbpy)]PF ₆ (PC5)	MeCN	K_2CO_3	none	22
6	[Ir(ppy)2(dtbbpy)]PF6 (PC6)	MeCN	K ₂ CO ₃	none	18
7	$[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (PC7)	MeCN	K_2CO_3	none	32
8	[Ir(dF(CF ₃)ppy) ₂ (bpy)]PF ₆ (PC8)	MeCN	K ₂ CO ₃	none	37 (37) ^c
9	<i>fac-</i> (<i>p</i> -CF ₃ -ppy) ₃ (PC9)	MeCN	K ₂ CO ₃	none	N.D.
10	4DPAIPN (PC10)	MeCN	K ₂ CO ₃	none	9.7
11	3DPA2FBN (PC11)	MeCN	K ₂ CO ₃	none	N.D.
12	DPZ (PC12)	MeCN	K_2CO_3	none	9.8
13	CsPbBr ₃ (PC13)	MeCN	K ₂ CO ₃	none	N.D.
14	PC8	DCE	K_2CO_3	none	18
15	PC8	THF	K ₂ CO ₃	none	12

16	PC8	Dioxane	K ₂ CO ₃	none	trace
17	PC8	DMF	K ₂ CO ₃	none	62
18	PC8	DMSO	K ₂ CO ₃	none	47
19	PC8	MeOH	K ₂ CO ₃	none	27
20	PC8	DCM	K ₂ CO ₃	none	15
21	PC8	EtOAc	K ₂ CO ₃	none	17
22	PC8	PhMe	K ₂ CO ₃	none	13
23	PC8	DMC	K ₂ CO ₃	none	N.D.
24	PC8	DME	K ₂ CO ₃	none	19
25	PC8	Benzene	K ₂ CO ₃	none	18
26	PC8	DMF	K ₂ CO ₃	Na ₂ SO ₄	62
27	PC8	DMF	K ₂ CO ₃	4 Å MS	76 (67) ^d
28	PC8	DMF	none	4 Å MS	N.D.
29	PC8	DMF	Li ₂ CO ₃	4 Å MS	61
30	PC8	DMF	Na ₂ CO ₃	4 Å MS	74
31	PC8	DMF	Cs ₂ CO ₃	4 Å MS	58
32	PC8	DMF	NaOAc	4 Å MS	67
33	PC8	DMF	NaHCO ₃	4 Å MS	38
34	PC8	DMF	K ₃ PO ₄	4 Å MS	66
35	PC8	DMF	K ₂ HPO ₄	4 Å MS	69
36	PC8	DMF	KH ₂ PO ₄	4 Å MS	12
37	PC8	DMF	Na ₂ HPO ₄	4 Å MS	15
38	PC8	DMF	NaOH	4 Å MS	13
39	PC8	DMF	Et ₃ N	4 Å MS	27
40	PC8	DMF	DIPEA	4 Å MS	22
41	PC8	DMF	DBU	4 Å MS	22
42	none	DMF	K ₂ CO ₃	4 Å MS	24
43 ^e	PC8	DMF	K ₂ CO ₃	4 Å MS	N.D.
44 ^f	PC8	DMF	K ₂ CO ₃	4 Å MS	N.D.

^{*a*}Unless otherwise specified, the reaction was conducted as follows: **1a** (0.1 mmol, 1equiv), **2a** (1.1 equiv), **PC** (1 mol %), base (1.5 equiv), additive (5 equiv of Na₂SO₄ or 50 mg of 4 Å MS, if used), solvent (1 mL), N₂, blue LEDs irradiation (10 W), rt, 24 h. ^{*b*}NMR yield was determined using 1,3,5-trimethoxybenzene as the internal standard. ^{*c*}Isolated yield. ^{*d*}Isolated yield on a 0.2 mmol scale of indole **1a**. ^{*e*}The reaction was carried out in the dark. ^{*f*}The reaction was conducted in the open air.

fac-lr(ppy)₃: R = H fac-lr(p-CF₃ppy)₃: R = CF₃

4CzIPN: $R^1 = CN$, $R^2 = R^3 = 1$ -carbazolyl 4DPAIPN: $R^1 = CN$, $R^2 = R^3 =$ diphenylamino 3DPA2FBN: $R^1 = R^2 = F$, $R^3 =$ diphenylamino

^tBu

Иe

$$\begin{split} & [Ir(dF(CF_3)ppy)_2(5.5'-CF_3bpy)]PF_6: R^1 = F, \ R^2 = R^3 = CF_3, \ R^4 = H \\ & [Ir(dFppy)_2(dtbbpy)]PF_6: R^1 = F, \ R^2 = R^3 = H, \ R^4 = {}^tBu \\ & [Ir(ppy)_2(dtbbpy)]PF_6: R^1 = R^2 = R^3 = H, \ R_4 = {}^tBu \\ & [Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6: R^1 = F, \ R^2 = CF_3, \ R^3 = H, \ R^4 = {}^tBu \\ & [Ir(dF(CF_3)ppy)_2(bpy)]PF_6: R^1 = F, \ R^2 = CF_3, \ R^3 = R^4 = H \end{split}$$

[Ir(Me(Me)ppy)2(dtbbpy)]PF6

General procedure for the synthesis of 3-(o-aminophenyl)pyrroles

To a 15-mL transparent glass vial with magnetic stir bar were successively added N-sulfonyl-3-acyl indole 1 (0.20 mmol), N-phenylglycine 2 (0.22 mmol), K_2CO_3 (41.4 mg, 0.30

mmol), 4 Å molecular sieve (100 mg), $[Ir(dF(CF_3)ppy)(bpy)]PF_6$ (**PC8**, 2.0 mg, 2 µmol) and anhydrous DMF (2 mL). The vial was then sealed up with the open-topped cap equipped with silicone septa and placed under N₂ atmosphere in the photoreactor under the irradiation of blue LED (455 nm, 10 W). The reaction was stirred for 24 h cooled with a circling chiller (ethanol as the refrigerant at 25 °C). Then the mixture was filtered *in vacuo* and washed with dichloromethane (2 mL×3). Then the filtrate was concentrated *in vacuo* to give a residue, which was purified through column chromatography with petroleum/ether ethyl acetate as the eluent to give 3-(2-aminophenyl)pyrrole **3**.

Mechanistic investigation

Radical trapping experiment with TEMPO

Two parallel reactions were performed. To a 15-mL transparent glass vial with magnetic stir bar were successively added *N*-sulfonyl-3-acyl indole **1a** (62.6 mg, 0.20 mmol), *N*-phenylglycine **2a** (33.3 mg, 0.22 mmol), K_2CO_3 (41.4 mg, 0.30 mmol), 4 Å molecular sieve (100 mg), [Ir(dF(CF₃)ppy)(bpy)]PF₆ (**PC8**, 2.0 mg, 2 µmol), TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy, 31.3 mg for 1.0 eq. and 62.5 mg for 2.0 eq.) and anhydrous DMF (2 mL) under N₂ atmosphere. The vial was then sealed up with the open-topped cap equipped with silicone septa and placed under N₂ in the photoreactor under the irradiation of blue LED (455 nm, 10 W). The reaction was stirred for 24 h cooled with a circling chiller (ethanol as the refrigerant at 25 °C). After that, internal standard 1,3,5-trimethoxybenzene (10.0 mg) was added to the reaction system and the resulting mixture was vigorously stirred for 20 min before being kept still for 20 min. A fraction of the reaction liquid (*ca*. 50 µL) was extracted and diluted with CDCl₃ (0.5 mL) for NMR analysis. The NMR yields of biaryl **3aa** were identified as 13% and 0% by the erosion of 1.0 and 2.0 equiv. of TEMPO, respectively.

Light on/off experiment

Six standard reactions were set up parallel on a 0.10 mmol scale with 1,3,5-trimethoxybenzene

(5.0 mg) as an internal standard. One of the reaction vials was unsealed for NMR analysis before the irradiation of the remained ones with blue LEDs for 2 h. Then the second parallel reaction was NMR analyzed and the remained four vials were kept in the dark for another 2 h. All the six parallel reactions were analyzed after alternant treatment with irradiation and darkness in a period of 2 h. The NMR yield of each reaction is listed as follows.

Time (h)	0	2	4	6	8	10
On/Off	Off	On	Off	On	Off	On
Yield (%)	0	19	23	39	42	53

Figure S4 The results of the light on/off experiment

Emission Quenching Experiments (Stern–Volmer Studies)

Emission intensities were recorded using an FLS1000 Transient/Steady-state Fluorescence Spectrometer. The emission intensity was collected with the excitation wavelength at 480 nm. The fluorescence was measured from 470 nm to 800 nm. The fluorescence intensity for exploration of the relationship between I_0/I and the concentration of 1a/2a was collected at maximum emission wavelength of 499 nm.

a: The emission spectra of 5×10^{-5} M solutions of $[Ir(dF(CF_3)ppy)_2(bpy)]PF_6$ in DMF with (or without) different reaction components (blank, **1a**, **2a**, K₂CO₃, 4 Å molecular sieve);

b: The emission spectra of 5×10^{-5} M solutions of $[Ir(dF(CF_3)ppy)_2(bpy)]PF_6$ in DMF with various concentration of **1a**;

c: The emission spectra of 5 \times 10⁻⁵ M solutions of [Ir(dF(CF₃)ppy)₂(bpy)]PF₆ in DMF with various concentration of **2a**;

d: The relationship between fluorescence quenching ratio (I_0/I) and the increasing concentration of 1a/2a.

Characterization data of products

3aa

4-methyl-*N*-(2-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)benzenesulfonamide (**3aa**) 54 mg (67%), yellowish powder, **M. p.** = 51–53 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.67 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.61 (d, *J* = 8.3 Hz, 2H), 7.53–7.46 (m, 2H), 7.43–7.37 (m, 1H), 7.36–7.31 (m, 2H), 7.27–7.22 (m, 1H), 7.20–7.16 (m, 2H), 7.15–7.10 (m, 2H), 7.07 (td, *J* = 7.4, 1.2 Hz, 1H), 6.82 (d, J = 2.9 Hz, 1H), 5.87 (d, J = 2.9 Hz, 1H), 2.33 (s, 3H), 1.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.6, 139.9, 136.5, 135.2, 131.2, 129.5, 129.2, 127.8, 127.6, 127.4, 127.2, 127.1, 125.7, 124.0, 121.9, 119.2, 117.2, 108.8, 21.5, 11.0; **HRMS** (ESI) *m*/*z*: calcd for C₂₄H₂₃N₂O₂S⁺ [M+H]⁺, 403.1475; found, 403.1492;

N-(2-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)benzenesulfonamide (1ab)

53 mg (68%), yellowish oil, ¹H NMR (400 MHz, CDCl₃): δ 7.75–7.67 (m, 3H), 7.53–7.45 (m, 3H), 7.42–7.35 (m, 3H), 7.35–7.30 (m, 2H), 7.25 (td, J = 8.5, 1.9 Hz, 1H), 7.16 (br s, 1H), 7.13 (dd, J = 7.7, 1.9 Hz, 1H), 7.08 (td, J = 7.4, 1.2 Hz, 1H), 6.81 (d, J = 2.9 Hz, 1H), 5.84 (d, J = 2.9, Hz, 1H), 1.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.8, 139.4, 135.0, 132.8, 131.2, 129.2, 128.8, 127.8, 127.7, 127.3, 127.1, 125.7, 124.2, 121.9, 119.4, 117.1, 108.7, 11.0 (1C is merged with other peaks); HRMS (ESI) m/z: calcd for C₂₃H₂₁N₂O₂S⁺ [M+H]⁺, 389.1318; found, 389.1332;

2,4,6-trimethyl-*N*-(2-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)benzenesulfonamide (**3ac**) 61 mg (71%), offwhite powder, **M. p.** = 113–114 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.54–7.46 (m, 3H), 7.43–7.38 (m, 1H), 7.36–7.32 (m, 2H), 7.31 (br s, 1H), 7.23–7.13 (m, 2H), 7.06 (td, *J* = 7.5, 1.3 Hz, 1H), 6.86 (d, *J* = 2.9 Hz, 1H), 6.80 (s, 2H), 6.13 (d, *J* = 2.9 Hz, 1H), 2.42 (s, 6H), 2.19 (s, 3H), 1.84 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 142.2, 139.9, 139.3, 135.2, 133.9, 131.8, 131.2, 129.3, 127.8, 127.6, 127.3, 127.0, 125.6, 124.0, 121.8, 119.6, 117.6, 109.0, 22.8, 20.8, 11.0; **HRMS** (ESI) *m/z*: calcd for C₂₆H₂₇N₂O₂S⁺ [M+H]⁺, 431.1778; found, 431.1793

2,4,6-triisopropyl-*N*-(2-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)benzenesulfonamide (**3ad**) 63 mg (61%), white powder, **M. p.** = 122–123 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.50–7.44 (m, 2H), 7.40–7.35 (m, 1H), 7.35–7.30 (m, 2H), 7.24 (dd, *J* = 8.4, 1.3 Hz, 1H), 7.19 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.18–7.13 (m, 3H), 7.07 (br s, 1H), 7.05 (td, J = 7.4, 1.3 Hz, 1H), 6.84 (d, J = 2.9 Hz, 1H), 6.17 (d, J = 2.9 Hz, 1H), 4.12 (sept, J = 6.8 Hz, 2H), 2.89 (sept, J = 6.8 Hz, 1H), 2.01 (s, 3H), 1.24 (d, J = 6.8 Hz, 6H), 1.17 (d, J = 6.8 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃): δ 152.9, 150.3, 139.9, 135.8, 133.5, 131.4, 129.2, 127.42, 127.40, 127.2, 127.0, 125.7, 123.9, 123.5, 121.7, 118.9, 117.6, 109.2, 34.1, 29.8, 24.7, 23.5, 11.3; **HRMS** (ESI) *m*/*z*: calcd for C₃₂H₃₉N₂O₂S⁺ [M+H]⁺, 515.2727; found, 515.2744;

4-methoxy-*N*-(2-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)benzenesulfonamide (**3ae**) 52 mg (62%), brown oil, ¹**H NMR** (400 MHz, CDCl₃): δ 7.71–7.61 (m, 3H), 7.52–7.45 (m, 2H), 7.42–7.36 (m, 1H), 7.36–7.32 (m, 2H), 7.24 (td, *J* = 7.2, 1.8 Hz, 1H), 7.17–7.11 (m, 2H), 7.07 (td, *J* = 7.4, 1.2 Hz, 1H), 6.86–6.80 (m, 3H), 5.89 (d, *J* = 2.9 Hz, 1H), 3.75 (s, 3H), 1.86 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 162.9, 139.8, 135.2, 131.2, 131.0, 129.24, 129.21, 127.7, 127.6, 127.3, 127.1, 125.7, 124.0, 121.8, 119.3, 117.2, 114.0, 108.7, 55.4, 11.0; **HRMS** (ESI) *m/z*: calcd for C₂₄H₂₃N₂O₃S⁺ [M+H]⁺, 419.1424; found, 419.1458;

2-fluoro-*N*-(2-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)benzenesulfonamide (**3af**) 44 mg (54%), yellowish powder, **M. p.** = 130–131 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.88 (td, *J* = 7.5, 1.8 Hz, 1H), 7.56 (d, *J* = 8.2 Hz, 1H), 7.53–7.44 (m, 4H), 7.43–7.35 (m, 3H), 7.23–7.14 (m, 3H), 7.09–6.98 (m, 2H), 6.87 (d, *J* = 2.9 Hz, 1H), 6.11 (d, *J* = 2.9 Hz, 1H), 1.91 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 158.9 (d, *J* = 256.4 Hz), 140.0, 135.2 (d, *J* = 8.4 Hz), 134.7, 131.3, 130.9, 129.2, 127.7, 127.5, 127.4, 127.2 (d, *J* = 13.4 Hz), 127.0, 125.8, 124.2 (d, *J* = 3.8 Hz), 124.0, 122.0, 118.5, 117.0 (d, *J* = 2.2 Hz), 116.8, 108.8, 11.0; ¹⁹**F NMR** (376 MHz, CDCl₃): δ -109.4 (m, 1F); **HRMS** (ESI) *m/z*: calcd for C₂₃H₂₀FN₂O₂S⁺ [M+H]⁺, 407.1224; found, 407.1224;

N-(2-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)methanesulfonamide (**3aj**)

39 mg (59%), yellow oil, ¹**H NMR** (400 MHz, CDCl₃): δ 7.65 (dd, J = 8.2, 1.2 Hz, 1H), 7.53–7.46 (m, 2H), 7.43–7.39 (m, 1H), 7.39–7.32 (m, 3H), 7.31–7.28 (m, 1H), 7.16 (td, J = 7.5, 1.2 Hz, 1H), 6.93 (br s, 1H), 6.89 (d, J = 2.9 Hz, 1H), 6.20 (d, J = 2.9 Hz, 1H), 2.96 (s, 3H), 2.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.8, 135.5, 131.7, 129.2, 128.2, 127.4, 127.2, 127.0, 125.8, 124.0, 122.2, 118.0, 117.3, 108.9, 39.3, 11.3; **HRMS** (ESI) m/z: calcd for C₁₈H₁₉N₂O₂S⁺ [M+H]⁺, 327.1162; found, 327.1159;

N-(2-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)propane-1-sulfonamide (**3ak**) 34 mg (48%), brown oil, ¹**H NMR** (400 MHz, CDCl₃): δ 7.65 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.53–7.45 (m, 2H), 7.43–7.34 (m, 3H), 7.34–7.24 (m, 2H), 7.15 (td, *J* = 7.5, 1.2 Hz, 1H), 6.90 (br s, 1H), 6.89 (d, *J* = 2.9 Hz, 1H), 6.21 (d, *J* = 2.9 Hz, 1H), 3.08–2.99 (m, 2H), 2.08 (s, 3H), 1.79–1.68 (m, 2H), 0.97 (t, *J* = 7.5 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 139.8, 135.6, 131.6, 129.2, 128.1, 127.4, 127.0, 126.8, 125.8, 123.7, 122.2, 117.8, 117.3, 108.8, 53.2, 17.0, 12.8, 11.2; **HRMS** (ESI) *m/z*: calcd for C₂₀H₂₃N₂O₂S⁺ [M+H]⁺, 355.1475; found, 355.1484;

N-(2-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)-1-phenylmethanesulfonamide (**3al**) 43 mg (54%), yellowish powder, **M. p.** = 50–52 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.65 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.49–7.43 (m, 2H), 7.40–7.35 (m, 1H), 7.34–7.25 (m, 7H), 7.22–7.18 (m, 2H), 7.14 (td, *J* = 7.4, 1.2 Hz, 1H), 6.84 (br s, 1H), 6.77 (d, *J* = 2.9 Hz, 1H), 5.93 (d, *J* = 2.9 Hz, 1H), 4.39 (s, 2H), 2.04 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 139.8, 135.6, 131.7, 130.6, 129.2, 128.8, 128.5, 128.0, 127.3, 127.0, 126.0, 125.8, 123.3, 122.0, 117.0, 116.3, 108.6, 57.2, 11.3 (1C is merged with other peaks); **HRMS** (ESI) *m*/*z*: calcd for C₂₄H₂₃N₂O₂S⁺ [M+H]⁺, 403.1475; found, 403.1494;

1,1,1-trifluoro-*N*-(2-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)methanesulfonamide (**3am**) 36 mg (47%), yellowish oil, ¹**H NMR** (400 MHz, CDCl₃): δ 7.65 (dd, J = 8.2, 1.2 Hz, 1H), 7.53–7.46 (m, 2H), 7.44–7.38 (m, 1H), 7.38–7.29 (m, 4H), 7.28–7.21 (m, 2H), 6.90 (d, J = 2.9 Hz, 1H), 6.22 (d, J = 2.9 Hz, 1H), 2.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.8, 133.2, 131.6, 129.3, 128.3, 128.1, 127.6, 127.5, 125.9, 125.5, 122.4, 119.7 (q, J = 323.0 Hz), 119.1, 116.5, 108.6, 11.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.9 (s, 3F); HRMS (ESI) m/z: calcd for C₁₈H₁₆F₃N₂O₂S⁺ [M+H]⁺, 381.0879; found, 381.0880;

2,4,6-trimethyl-*N*-(3-methyl-2-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)benzenesulfonamide (**3ap**)

33 mg (37%), yellow powder, **M. p.** = 129–131 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.53–7.47 (m, 2H), 7.43–7.37 (m, 1H), 7.36–7.31 (m, 3H), 7.14–7.06 (m, 2H), 6.96 (dt, *J* = 7.6, 1.1 Hz, 1H), 6.89 (d, *J* = 2.8 Hz, 1H), 6.82 (s, 2H), 5.97 (d, *J* = 2.9 Hz, 1H), 2.45 (s, 6H), 2.21 (s, 3H), 2.07 (s, 3H), 1.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.1, 140.0, 139.3, 138.9, 135.9, 134.2, 131.9, 129.2, 127.4, 127.2, 127.1, 126.7, 125.5, 125.3, 122.0, 116.1, 115.7, 109.2, 22.9, 20.8, 20.5, 10.9; **HRMS** (ESI) *m/z*: calcd for C₂₇H₂₉N₂O₂S⁺ [M+H]⁺, 445.1944; found, 445.1952;

2,4,6-trimethyl-*N*-(4-methyl-2-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)benzenesulfonamide (**3aq**)

53 mg (59%), brown foam, ¹H NMR (400 MHz, CDCl₃): δ 7.54–7.46 (m, 2H), 7.43–7.37 (m, 2H), 7.35–7.30 (m, 2H), 7.19 (br s, 1H), 7.01 (dd, *J* = 8.3, 2.2 Hz, 1H), 6.96 (d, *J* = 2.1 Hz, 1H), 6.84 (d, *J* = 2.9 Hz, 1H), 6.79 (s, 2H), 6.08 (d, *J* = 2.9 Hz, 1H), 2.39 (s, 6H), 2.27 (s, 3H), 2.18 (s, 3H), 1.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.0, 139.9, 139.3, 134.0, 133.7, 132.5, 131.8, 131.7, 129.2, 128.2, 128.1, 127.3, 126.9, 125.6, 121.7, 120.2, 117.8, 109.0, 22.8, 20.8, 20.7, 10.9; HRMS (ESI) *m*/*z*: calcd for C₂₇H₂₉N₂O₂S⁺ [M+H]⁺, 445.1944; found, 445.1962;

2,4,6-trimethyl-N-(5-methyl-2-(2-methyl-1-phenyl-1H-pyrrol-3-yl)phenyl)benzenesulfonamide

(3ar)

66 mg (74%), brown powder, **M. p.** = 148–149 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.54–7.45 (m, 2H), 7.44–7.37 (m, 1H), 7.36–7.30 (m, 3H), 7.27 (br s, 1H), 7.03 (d, *J* = 7.7 Hz, 1H), 6.88 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.85 (d, *J* = 2.9 Hz, 1H), 6.80 (s, 2H), 6.11 (d, *J* = 2.9 Hz, 1H), 2.42 (s, 6H), 2.30 (s, 3H), 2.19 (s, 3H), 1.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.1, 139.9, 139.3, 137.4, 134.9, 133.9, 131.8, 130.9, 129.2, 127.3, 127.0, 125.6, 124.78, 124.75, 121.7, 120.1, 117.5, 109.1, 22.7, 21.3, 20.8, 10.9; **HRMS** (ESI) *m/z*: calcd for C₂₇H₂₉N₂O₂S⁺ [M+H]⁺, 445.1944; found, 445.1964;

N-(4-fluoro-2-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)-2,4,6-trimethylbenzenesulfonamide (**3as**)

64 mg (71%), yellowish foam, ¹**H NMR** (400 MHz, CDCl₃): δ 7.55–7.47 (m, 3H), 7.45–7.39 (m, 1H), 7.35–7.29 (m, 2H), 7.21 (br s, 1H), 6.92 (ddd, J = 9.0, 8.0, 3.0 Hz, 1H), 6.88–6.83 (m, 2H), 6.78 (s, 2H), 6.08 (d, J = 2.9 Hz, 1H), 2.36 (s, 6H), 2.18 (s, 3H), 1.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.4 (d, J = 244.2 Hz), 142.2, 139.7, 139.3, 133.7, 131.8, 131.0 (d, J = 2.8 Hz), 130.7 (d, J = 8.5 Hz), 129.3, 127.5, 127.1, 125.6, 122.6 (d, J = 8.6 Hz), 122.0, 117.6 (d, J = 22.1 Hz), 116.9, 114.1 (d, J = 22.3 Hz), 108.6, 22.8, 20.8, 10.8; ¹⁹F NMR (376 MHz, CDCl₃): δ -118.2 (m, 1F); **HRMS** (ESI) *m/z*: calcd for C₂₆H₂₆FN₂O₂S⁺ [M+H]⁺, 449.1694; found, 449.1714;

N-(4-chloro-2-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)-2,4,6-trimethylbenzenesulfonamide (**3at**)

57 mg (61%), yellow powder, **M. p.** = 136–137 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.54–7.48 (m, 2H), 7.47–7.39 (m, 2H), 7.35–7.30 (m, 2H), 7.27 (br s, 1H), 7.19–7.12 (m, 2H), 6.86 (d, *J* = 2.9 Hz, 1H), 6.81 (s, 2H), 6.10 (d, *J* = 2.9 Hz, 1H), 2.40 (s, 6H), 2.20 (s, 3H), 1.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.4, 139.7, 139.2, 133.8, 133.6, 131.9, 130.9, 129.7, 129.3, 129.2, 127.5, 127.4, 127.2, 125.7, 122.1, 120.9, 116.5, 108.8, 22.8, 20.8, 10.9; **HRMS** (ESI) *m/z*: calcd for C₂₆H₂₆ClN₂O₂S⁺ [M+H]⁺, 465.1398; found, 465.1400;

N-(4-bromo-2-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)-2,4,6-trimethylbenzenesulfonamide (**3au**)

54 mg (53%), brown powder, **M. p.** = 157–158 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.54–7.47 (m, 2H), 7.45–7.39 (m, 1H), 7.39–7.35 (m, 1H), 7.34–7.29 (m, 3H), 7.29 (s, 1H), 7.26 (br s, 1H), 6.86 (d, *J* = 2.9 Hz, 1H), 6.82 (s, 2H), 6.10 (d, *J* = 2.9 Hz, 1H), 2.41 (s, 6H), 2.20 (s, 3H), 1.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.5, 139.7, 139.2, 134.4, 133.8, 133.6, 132.0, 130.4, 129.9, 129.3, 127.5, 127.3, 125.7, 122.1, 121.0, 116.8, 116.4, 108.8, 22.8, 20.8, 11.0; **HRMS** (ESI) *m/z*: calcd for C₂₆H₂₆BrN₂O₂S⁺ [M+H]⁺, 509.0893; found, 509.0921;

N-(4-cyano-2-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)-2,4,6-trimethylbenzenesulfonamide (**3av**)

69 mg (76%), brown powder, **M. p.** = 177–178 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.55 (br s, 1H), 7.54–7.49 (m, 2H), 7.48–7.40 (m, 4H), 7.37–7.31 (m, 2H), 6.91 (d, *J* = 2.9 Hz, 1H), 6.89 (s, 2H), 6.17 (d, *J* = 2.9 Hz, 1H), 2.50 (s, 6H), 2.24 (s, 3H), 1.94 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 143.1, 139.7, 139.5, 139.2, 134.9, 133.2, 132.2, 131.6, 129.4, 127.7, 127.60, 127.55, 125.8, 122.6, 118.8, 117.6, 115.1, 108.6, 106.6, 22.7, 20.9, 11.0; **HRMS** (ESI) *m*/*z*: calcd for C₂₇H₂₆N₃O₂S⁺ [M+H]⁺, 456.1740; found, 456.1747;

methyl 3-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)-4-((2,4,6-trimethylphenyl)sulfonamido)benzoate (**3aw**)

67 mg (68%), brown powder, **M. p.** = 144–145 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.89–7.82 (m, 2H), 7.55–7.48 (m, 3H), 7.46–7.39 (m, 2H), 7.37–7.33 (m, 2H), 6.90 (d, *J* = 2.9 Hz, 1H), 6.85 (s, 2H), 6.17 (d, *J* = 2.9 Hz, 1H), 3.85 (s, 3H), 2.49 (s, 6H), 2.22 (3H), 1.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 142.7, 139.7, 139.6, 139.2, 133.4, 132.7, 132.1, 129.3, 129.2, 127.5, 127.4,

126.6, 125.7, 125.0, 122.2, 117.1, 116.4, 108.9, 51.9, 22.7, 20.9, 11.0; **HRMS** (ESI) *m/z*: calcd for C₂₈H₂₉N₂O₄S⁺ [M+H]⁺, 489.1843; found, 489.1861;

N-(4-methoxy-2-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)-2,4,6-trimethylbenzenesulfonamide (**3ax**)

70 mg (76%), yellowish crystal, **M. p.** = 127–128 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.55–7.47 (m, 3H), 7.43–7.37 (m, 1H), 7.34–7.29 (m, 2H), 7.11 (br s, 1H), 6.83 (d, *J* = 2.9 Hz, 1H), 6.78 (dd, *J* = 8.9, 3.0 Hz, 1H), 6.74 (s, 2H), 6.68 (d, *J* = 3.0 Hz, 1H), 6.05 (d, *J* = 2.9 Hz, 1H), 3.75 (s, 3H), 2.32 (s, 6H), 2.15 (s, 3H), 1.74 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 156.5, 141.9, 139.8, 139.3, 133.9, 131.7, 130.6, 129.3, 127.9, 127.3, 126.9, 125.5, 123.3, 121.7, 118.0, 116.2, 112.7, 108.8, 55.4, 22.9, 20.8, 10.9; **HRMS** (ESI) *m*/*z*: calcd for C₂₇H₂₉N₂O₃S⁺ [M+H]⁺, 461.1893; found, 461.1905;

2,4,6-trimethyl-*N*-(3-(2-methyl-1-phenyl-1*H*-pyrrol-3-yl)pyridin-2-yl)benzenesulfonamide (**3ay**) 75 mg (87%), brown oil, ¹**H NMR** (400 MHz, CDCl₃): δ 8.02 (br s, 1H), 7.64 (br s, 1H), 7.53–7.46 (m, 2H), 7.45–7.39 (m, 2H), 7.39–7.35 (m, 2H), 6.93 (s, 2H), 6.88 (d, *J* = 3.0 Hz, 1H), 6.87–6.83 (m, 1H), 6.26 (d, *J* = 2.9 Hz, 1H), 2.75 (s, 6H), 2.72 (s, 3H), 2.09 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 150.1, 146.1, 142.2, 140.0, 139.7, 139.0, 134.3, 131.6, 129.2, 127.5, 127.4, 125.8, 122.2, 119.2, 117.7, 115.9, 108.6, 22.8, 20.9, 11.3; **HRMS** (ESI) *m*/*z*: calcd for C₂₅H₂₆N₃O₂S⁺ [M+H]⁺, 432.1740; found, 432.1747;

N-(2-(2,4-dimethyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)-2,4,6-trimethylbenzenesulfonamide (**3az**) 16 mg (18%), light red powder, **M. p.** = 61–63 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.55 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.51–7.45 (m, 2H), 7.40–7.35 (m, 1H), 7.34–7.29 (m, 2H), 7.22 (ddd, *J* = 8.2, 7.1, 1.9 Hz, 1H), 7.14–7.03 (m, 3H), 6.80 (s, 2H), 6.68 (d, *J* = 1.1 Hz, 1H), 2.41 (s, 6H), 2.19 (s, 3H), 1.82 (s, 3H), 1.76 (d, *J* = 1.1 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 142.2, 140.0, 139.2, 135.6, 134.0, 131.9, 131.8, 129.2, 127.8, 127.0, 126.7, 126.6, 125.5, 123.9, 119.8, 119.0, 118.2, 118.0, 22.7, 20.8, 11.2, 10.2; **HRMS** (ESI) *m/z*: calcd for C₂₇H₂₉N₂O₂S⁺ [M+H]⁺, 445.1944; found, 445.1969;

N-(2-(2-ethyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)-2,4,6-trimethylbenzenesulfonamide (**3aA**) 44 mg (49%), brown powder, **M. p.** = 141–143 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.53–7.47 (m, 2H), 7.45–7.35 (m, 4H), 7.28 (br s, 1H), 7.22–7.15 (m, 2H), 7.04 (td, *J* = 7.4, 1.3 Hz, 1H), 6.87 (s, 2H), 6.81 (d, *J* = 2.9 Hz, 1H), 6.06 (d, *J* = 2.9 Hz, 1H), 2.50 (s, 6H), 2.37 (q, *J* = 7.5 Hz, 2H), 2.25 (s, 3H), 0.70 (t, *J* = 7.5 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 142.3, 140.2, 139.3, 135.5, 134.1, 133.3, 132.0, 131.4, 129.3, 127.68, 127.65, 127.3, 126.2, 123.5, 122.4, 118.4, 116.8, 109.1, 22.9, 20.9, 17.9, 14.5; **HRMS** (ESI) *m/z*: calcd for C₂₇H₂₉N₂O₂S⁺ [M+H]⁺, 445.1944; found, 445.1949;

2,4,6-trimethyl-*N*-(2-(1-phenyl-2-propyl-1*H*-pyrrol-3-yl)phenyl)benzenesulfonamide (**3aB**) 20 mg (22%), brown foam, ¹**H NMR** (400 MHz, CDCl₃): δ 7.53–7.47 (m, 2H), 7.45–7.33 (m, 4H), 7.26 (br s, 1H), 7.21–7.15 (m, 2H), 7.04 (td, *J* = 8.0, 1.2 Hz, 1H), 6.87 (s, 2H), 6.81 (d, *J* = 2.9 Hz, 1H), 6.05 (d, *J* = 2.9 Hz, 1H), 2.50 (s, 6H), 2.32 (t, *J* = 8.0 Hz, 2H), 2.25 (s, 3H), 1.12–1.00 (m, 2H), 0.55 (t, *J* = 7.3 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 142.3, 140.2, 139.3, 135.4, 134.1, 132.0, 131.8, 131.4, 129.3, 127.63, 127.59, 127.3, 126.1, 123.5, 122.5, 118.3, 117.3, 109.1, 26.6, 22.9, 20.9, 13.7 (1C is merged with other peaks); **HRMS** (ESI) *m/z*: calcd for C₂₈H₃₁N₂O₂S⁺ [M+H]⁺, 459.2101; found, 459.2100;

2,4,6-trimethyl-*N*-(2-(2-pentyl-1-phenyl-1*H*-pyrrol-3-yl)phenyl)benzenesulfonamide (**3aC**)

28 mg (29%), yellowish oil, ¹**H NMR** (400 MHz, CDCl₃): δ 7.53–7.46 (m, 2H), 7.45–7.39 (m, 2H), 7.38–7.33 (m, 2H), 7.27 (br s, 1H), 7.21–7.15 (m, 2H), 7.03 (td, *J* = 7.4, 1.2 Hz, 1H), 6.87 (s, 2H), 6.80 (d, *J* = 2.9 Hz, 1H), 6.05 (d, *J* = 2.9 Hz, 1H), 2.49 (s, 6H), 2.31 (t, *J* = 8.0 Hz, 2H), 2.24 (s, 3H), 1.09–1.00 (m, 2H), 1.00–0.86 (m, 4H), 0.64 (t, *J* = 7.0 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 142.2, 140.2, 139.3, 135.4, 134.2, 132.0, 131.3, 129.2, 127.6, 127.4, 126.1, 123.5, 122.4, 118.4, 117.2, 109.1, 31.2, 29.1, 24.4, 22.9, 21.8, 20.9, 13.7 (2C are merged with other peaks); **HRMS** (ESI) *m/z*: calcd for C₃₀H₃₅N₂O₂S⁺ [M+H]⁺, 487.2414; found, 487.2404;

2,4,6-trimethyl-*N*-(2-(2-methyl-1-(*o*-tolyl)-1*H*-pyrrol-3-yl)phenyl)benzenesulfonamide (**3bc**) 59 mg (66%), yellowish foam, ¹**H NMR** (400 MHz, CDCl₃): δ 7.42–7.29 (m, 5H), 7.27–7.23 (m, 1H), 7.19–7.12 (m, 2H), 7.02 (td, *J* = 7.4, 1.2 Hz, 1H), 6.85 (s, 2H), 6.71 (d, *J* = 2.8 Hz, 1H), 6.16 (d, *J* = 2.8 Hz, 1H), 2.50 (s, 6H), 2.22 (s, 3H), 2.08 (s, 3H), 1.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.3, 139.3, 138.9, 135.9, 135.3, 133.8, 131.9, 131.3, 130.9, 128.6, 127.9, 127.6, 127.5, 127.1, 126.6, 123.4, 121.7, 117.9, 116.3, 108.6, 22.8, 20.9, 17.2, 10.3; **HRMS** (ESI) *m/z*: calcd for C₂₇H₂₉N₂O₂S⁺ [M+H]⁺, 445.1944; found, 445.1969

2,4,6-trimethyl-*N*-(2-(2-methyl-1-(*m*-tolyl)-1*H*-pyrrol-3-yl)phenyl)benzenesulfonamide (**3cc**) 55 mg (62%), yellowish powder, **M. p.** = 144–145 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.48 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.31 (br s, 1H), 7.24–7.11 (m, 5H), 7.06 (td, *J* = 7.4, 1.3 Hz, 1H), 6.85 (d, *J* = 2.9 Hz, 1H), 6.81 (s, 2H), 6.11 (d, *J* = 2.9 Hz, 1H), 2.45 (s, 3H), 2.42 (s, 6H), 2.20 (s, 3H), 1.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.1, 139.9, 139.3, 135.2, 134.0, 131.8, 131.2, 129.0, 128.1, 127.9, 127.5, 127.0, 126.3, 124.0, 122.7, 121.8, 119.6, 117.4, 108.8, 22.8, 21.4, 20.8, 10.9 (1C is merged with other peaks); **HRMS** (ESI) *m/z*: calcd for C₂₇H₂₉N₂O₂S⁺ [M+H]⁺, 445.1944; found, 445.1966

2,4,6-trimethyl-*N*-(2-(2-methyl-1-(*p*-tolyl)-1*H*-pyrrol-3-yl)phenyl)benzenesulfonamide (**3dc**)

50 mg (56%), yellowish oil, ¹H NMR (400 MHz, CDCl₃): δ 7.48 (dd, J = 8.1, 1.2 Hz, 1H), 7.34–7.27 (m, 3H), 7.23–7.13 (m, 4H), 7.05 (td, J = 7.5, 1.3 Hz, 1H), 6.83 (d, J = 2.9 Hz, 1H), 6.80 (s, 2H) 6.11 (d, J = 2.9 Hz, 1H), 2.44 (s, 3H), 2.42 (s, 6H), 2.19 (s, 3H), 1.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.1, 139.3, 137.4, 137.3, 135.2, 133.9, 131.8, 131.2, 129.8, 127.9, 127.5, 127.1, 125.5, 124.0, 121.9, 119.6, 117.3, 108.7, 22.8, 21.0, 20.8, 10.9; HRMS (ESI) m/z: calcd for C₂₇H₂₉N₂O₂S⁺ [M+H]⁺, 445.1944; found, 445.1964;

N-(2-(1-(4-fluorophenyl)-2-methyl-1*H*-pyrrol-3-yl)phenyl)-2,4,6-trimethylbenzenesulfonamide (**3ec**)

45 mg (50%), yellowish crystal, **M. p.** = 137–139 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.44 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.34–7.28 (m, 2H), 7.25 (br s, 1H), 7.22–7.16 (m, 3H), 7.14 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.06 (td, *J* = 7.4, 1.2 Hz, 1H), 6.84–6.79 (m, 3H), 6.13 (d, *J* = 2.9 Hz, 1H), 2.44 (s, 6H), 2.21 (s, 3H), 1.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.7 (d, *J* = 247.5 Hz), 142.2, 139.3, 136.0 (d, *J* = 3.2 Hz), 135.2, 134.0, 131.9, 131.2, 127.64, 127.60, 127.4 (d, *J* = 8.6 Hz), 127.2, 123.9, 121.9, 119.4, 117.6, 116.2 (d, *J* = 22.7 Hz), 109.1, 22.8, 20.8, 10.8; ¹⁹F NMR (376 MHz, CDCl₃): δ -114.0 (s, 1F); **HRMS** (ESI) *m*/*z*: calcd for C₂₆H₂₆FN₂O₂S⁺ [M+H]⁺, 449.1694; found, 449.1719;

N-(2-(1-(4-chlorophenyl)-2-methyl-1*H*-pyrrol-3-yl)phenyl)-2,4,6-trimethylbenzenesulfonamide (**3fc**)

68 mg (73%), white powder, **M. p.** = 129–130 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.50–7.45 (m, 2H), 7.44 (dd, J = 8.1, 1.2 Hz, 1H), 7.31–7.26 (m, 2H), 7.23 (br s, 1H), 7.19 (td, J = 7.8, 1.8 Hz, 1H), 7.13 (dd, J = 7.6, 1.7 Hz, 1H), 7.06 (td, J = 7.4, 1.2 Hz, 1H), 6.83 (d, J = 2.9 Hz, 1H), 6.81 (s, 2H), 6.14 (d, J = 2.9 Hz, 1H), 2.43 (s, 6H), 2.20 (s, 3H), 1.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.2, 139.2, 138.4, 135.2, 133.9, 133.1, 131.9, 131.2, 129.4, 127.7, 127.5, 127.0, 126.8, 124.0, 121.7, 119.5, 118.0, 109.4, 22.8, 20.8, 10.9; **HRMS** (ESI) *m/z*: calcd for C₂₆H₂₆ClN₂O₂S⁺ [M+H]⁺, 465.1398; found, 465.1405;

N-(2-(1-(4-bromophenyl)-2-methyl-1*H*-pyrrol-3-yl)phenyl)-2,4,6-trimethylbenzenesulfonamide (**3gc**)

58 mg (57%), offwhite powder, **M. p.** = 147–148 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.65–7.60 (m, 2H), 7.44 (dd, J = 8.1, 1.2 Hz, 1H), 7.25–7.16 (m, 4H), 7.13 (dd, J = 7.6, 1.7 Hz, 1H), 7.06 (td, J = 7.4, 1.3 Hz, 1H), 6.83 (d, J = 2.9 Hz, 1H), 6.81 (s, 2H), 6.14 (d, J = 2.9 Hz, 1H), 2.43 (s, 6H), 2.20 (s, 3H), 1.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.2, 139.2, 138.9, 135.2, 133.9, 132.4, 131.9, 131.2, 127.7, 127.5, 127.1, 126.9, 124.0, 121.6, 121.0, 119.5, 118.0, 109.5, 22.7, 20.8, 10.9; **HRMS** (ESI) *m/z*: calcd for C₂₆H₂₆BrN₂O₂S⁺ [M+H]⁺, 509.0893; found, 509.0897;

2,4,6-trimethyl-*N*-(2-(2-methyl-1-(4-(trifluoromethyl)phenyl)-1*H*-pyrrol-3-yl)phenyl)benzenesulfo namide (**3hc**)

21 mg (21%), yellowish powder, **M. p.** = 175–176 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.82–7.73 (m, 2H), 7.51–7.45 (m, 2H), 7.42 (dd, J = 8.2, 1.2 Hz, 1H), 7.23–7.17 (m, 2H), 7.15 (dd, 7.5, 1.7 Hz, 1H), 7.07 (td, J = 7.4, 1.2 Hz, 1H), 6.89 (d, J = 3.0 Hz, 1H), 6.82 (s, 2H), 6.19 (d, J = 2.9 Hz, 1H), 2.44 (s, 6H), 2.21 (s, 3H), 1.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.8, 142.3, 139.3, 135.2, 134.0, 131.9, 131.2, 129.3 (q, J = 32.7 Hz), 127.8, 127.3, 127.0, 126.6 (q, J = 3.6 Hz), 125.6, 124.0, 123.8 (q, J = 272.2 Hz), 121.6, 119.5, 118.7, 110.1, 22.8, 20.8, 11.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.2 (s, 3F); **HRMS** (ESI) *m*/*z*: calcd for C₂₇H₂₆F₃N₂O₂S⁺ [M+H]⁺, 499.1662; found, 499.1667

2,4,6-trimethyl-*N*-(2-(2-methyl-1-(4-(trifluoromethoxy)phenyl)-1*H*-pyrrol-3-yl)phenyl)benzenesul fonamide (**3ic**)

58 mg (56%), yellow foam, ¹H NMR (400 MHz, CDCl₃): δ 7.43 (dd, J = 8.1, 1.2 Hz, 1H),

7.41–7.33 (m, 4H), 7.23–7.17 (m, 2H), 7.14 (dd, J = 7.6, 1.7 Hz, 1H), 7.06 (td, J = 7.4, 1.2 Hz, 1H), 6.85 (d, J = 2.9 Hz, 1H), 6.82 (s, 2H), 6.15 (d, J = 2.9 Hz, 1H), 2.44 (s, 6H), 2.21 (s, 3H), 1.86 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 148.0, 142.3, 139.3, 138.4, 135.2, 134.0, 131.9, 131.2, 127.7, 127.4, 127.1, 127.0, 124.0, 121.83, 121.8, 120.4 (q, J = 257.8 Hz), 119.5, 118.1, 109.6, 22.8, 20.8, 11.0; ¹⁹**F NMR** (376 MHz, CDCl₃): δ -57.8 (s, 3F); **HRMS** (ESI) *m/z*: calcd for C₂₇H₂₆F₃N₂O₃S⁺ [M+H]⁺, 515.1611; found, 515.1630;

N-(2-(1-(4-methoxyphenyl)-2-methyl-1*H*-pyrrol-3-yl)phenyl)-2,4,6-trimethylbenzenesulfonamide (**3jc**)

60 mg (65%), yellowish foam, ¹H NMR (400 MHz, CDCl₃): δ 7.47 (dd, J = 8.2, 1.2 Hz, 1H), 7.33 (br s, 1H), 7.27–7.23 (m, 2H), 7.21–7.16 (m, 1H), 7.14 (dd, J = 7.6, 1.7 Hz, 1H), 7.05 (td, J = 7.4, 1.3 Hz, 1H), 7.03–6.98 (m, 2H), 6.81 (d, J = 2.9 Hz, 1H), 6.80 (s, 2H), 6.10 (d, J = 2.9 Hz, 1H), 3.88 (s, 3H), 2.42 (s, 6H), 2.20 (s, 3H), 1.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.8, 142.1, 139.3, 135.1, 133.9, 132.9, 131.8, 131.2, 127.9, 127.5, 127.3, 127.0, 123.9, 122.0, 119.5, 117.0, 114.3, 108.5, 55.5, 22.8, 20.8, 10.8; **HRMS** (ESI) *m*/*z*: calcd for C₂₇H₂₉N₂O₃S⁺ [M+H]⁺, 461.1893; found, 461.1906;

Copies of NMR spectra of unknown substrates and products

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

80 60 40 20 0 -20 -40 -60 -80 -120 -140 -160 -180 -200 -220 -240 -260 -280 -2 fl (ppm)

f1 (ppm) 170 160 150 140 130 120

3af ¹⁹F NMR (376 MHz, in CDCl₃)

80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3 f1 (ppm)

-109.391 -109.407 -109.419 -109.434

80 60 40 20 0 -20 -40 -60 -80 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3 f1 (ppm)

Me

80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3 f1 (ppm)

80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -2 f1 (ppm)

