Supporting Information

Photoinduced carbene transfer for copper-catalyzed asymmetric [4+1]
cycloadditions: an entry to chiral indolines bearing quaternary stereocenters
Bao-Le Qu, ${ }^{\text {a }}$ Bin Shi, ${ }^{\text {a }}$ Lin He, ${ }^{\text {a }}$ Jun-Wei Shi, ${ }^{\text {a }}$ Wen-Jing Xiao ${ }^{\text {a,b }}$ and Liang-Qiu Lu ${ }^{*, a, c}$${ }^{\text {a }}$ CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide \& Chemical Biology, Ministry of Education, College ofChemistry, Central China Normal University, Wuhan, Hubei 430079, China${ }^{\mathrm{b}}$ School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China${ }^{\text {c S State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of }}$Sciences, Lanzhou, Gansu 730000, China*Email: luliangqiu@mail.ccnu.edu.cn
Table of Contents

1. General Information S2
2. Details for Condition Optimizations S3
3. General Procedures and Characterization Data of Products S10
4. X-Ray Structures of Product 3u S19
5. Copies of NMR Spectra S20
6. Copies of HPLC Spectra S51

1. General Information

NMR spectra: ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a $400 / 600 \mathrm{MHz}$ spectrometer. Chemical shifts are reported in parts per million (ppm) and the spectra are calibrated to the resonance resulting from incomplete deuteration of the solvent $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}\right) .{ }^{13} \mathrm{C}$ NMR spectra were recorded on the same spectrometer with complete proton decoupling. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (${ }^{13} \mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}$,). Data are reported as follows: chemical shift δ / ppm, integration (${ }^{1} \mathrm{H}$ only), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet of doublets, $\mathrm{m}=$ multiplet or combinations thereof; ${ }^{13} \mathrm{C}$ signals are singlets unless otherwise stated), coupling constants J in Hz , assignment. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on the same Spectrometer.

High Resolution Mass Spectrometry (HRMS): All were recorded on Bruker micrOTOF II ESI-TOF by ESI or APCI. Measured values are reported to 4 decimal places of the calculated value. The calculated values are based on the most abundant isotope.

Chromatography: Analytical thin layer chromatography was performed using Qingdao Puke Parting Materials Co. silica gel plates (Silicagel 60 F254). Visualisation was by ultraviolet fluorescence ($\lambda=254 \mathrm{~nm}$) and/or staining with Phosphomolybdic acid or potassium permanganate (KMnO_{4}). Flash column chromatography was performed using 200-300 mesh silica gel. Optical rotations were measured with a polarimeter. [α]. D values are reported at a given temperature $\left({ }^{\circ} \mathrm{C}\right)$ in degrees $\mathrm{cm}^{2} \mathrm{~g}^{-1}$ with concentration in $\mathrm{mg} \mathrm{mL}^{-1}$.

Chiral HPLC: Enantiomeric excesses (ee) values were determined by chiral HPLC with chiral AS-H, AD-H, AZ-H columns with hexane and $i-\mathrm{PrOH}$ as solvents.

UV/Vis: Measurements were made on a Shimadzu RF-6000 Spectro Fluorophotometer.
Materials: All the solvents were treated according to standard methods or through solvent purification systems before use. Substrates $\mathbf{1},{ }^{1} \mathbf{2 a}{ }^{2}$ and $\mathbf{4}^{3}$ were prepared according to previous methods and sulfides, copper salts and chiral ligands are commercially available.

Reference

[^0]
2. Details for Condition Optimizations

Table S1 The effect of ligand ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{5 a}(0.4 \mathrm{mmol}), \mathbf{4 a}^{\prime}(0.2 \mathrm{mmol})$ in 1 mL anhydrous toluene at r.t. under 6 W blue LEDs for 6 h ; then the resulting solution of $\mathbf{4 a}$ ' together with $\mathbf{1 a}(0.1 \mathrm{mmol})$ were added to the pre-prepared soultion of $\mathrm{Cu}(\mathrm{OTf})_{2}(10 \mathrm{~mol} \%)$, ligand ($15 \mathrm{~mol} \%$) and ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}(0.12 \mathrm{mmol})$ in 1 mL anhydrous THF at $0{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Yield of isolated product. ${ }^{c}$ The diastereomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{d}$ The er values were determined by HPLC.

Table S2 The effect of sulfur ether ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{5 a - 5 d}(0.4 \mathrm{mmol}), \mathbf{4 a}(0.2 \mathrm{mmol})$ in 1 mL anhydrous toluene at r.t. under 6 W blue LEDs for 6 h ; then the resulting solution of $\mathbf{5 a} \mathbf{- 5 d}$ together with $\mathbf{1 a}(0.1 \mathrm{mmol})$ were added to the pre-prepared soultion of $\mathrm{Cu}(\mathrm{OTf})_{2}(10 \mathrm{~mol} \%)$, ligand ($15 \mathrm{~mol} \%$) and ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}(0.12 \mathrm{mmol})$ in 1 mL anhydrous THF at $0{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Yield of isolated product. ${ }^{c}$ The diastereomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{d}$ The er values were determined by HPLC.

Table S3 The effect of ester group ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{5 a}(0.4 \mathrm{mmol}), \mathbf{4 a}, \mathbf{4 a}^{\prime}-\mathbf{4} \mathbf{h}^{\prime}(0.2 \mathrm{mmol})$ in 1 mL anhydrous toluene at r.t. under 6 W blue LEDs for 6 h ; then the resulting solution of $\mathbf{4 a}, \mathbf{4} \mathbf{a}^{\prime}-\mathbf{4} \mathbf{h}^{\prime}$ together with $\mathbf{1 a}(0.1 \mathrm{mmol})$ were added to the pre-prepared soultion of $\mathrm{Cu}(\mathrm{OTf})_{2}(10 \mathrm{~mol} \%)$, ligand $(15 \mathrm{~mol} \%)$ and ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}(0.12$ mmol) in 1 mL anhydrous THF at $0{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Yield of isolated product. ${ }^{c}$ The diastereomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{d}$ The er values were determined by HPLC.

Table S4 The effect of copper salts ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{5 a}(0.4 \mathrm{mmol}), \mathbf{4 a}(0.2 \mathrm{mmol})$ in 1 mL anhydrous toluene at r.t. under 6 W blue LEDs for 6 h ; then the resulting solution of $\mathbf{4 a}$ together with $\mathbf{1 a}(0.1 \mathrm{mmol})$ were added to the pre-prepared soultion of copper salts ($10 \mathrm{~mol} \%$), ligand ($15 \mathrm{~mol} \%$) and ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}(0.12 \mathrm{mmol})$ in 1 mL anhydrous THF at $0{ }^{\circ} \mathrm{C} .{ }^{b}$ Yield of isolated product. ${ }^{c}$ The diastereomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{d}$ The er values were determined by HPLC.

Table S5 The effect of solvent ${ }^{a}$

	4a	conditions	$\mathrm{CO}_{2} \mathrm{Bn}$	$\begin{gathered} \mathrm{Me}_{-\mathrm{S}} \mathrm{Me} \\ 5 \mathrm{Ma} \end{gathered}$
Entry	Solvent	Yield (\%) ${ }^{\text {b }}$	d.r. ${ }^{\text {c }}$	e.r. ${ }^{d}$
1	THF	59	10:1	91:9
2	$\mathrm{Et}_{2} \mathrm{O}$	57	4:1	87:13
3	DCM	62	10:1	90:10
4	1,4-Dioxane	78	9:1	88.5:11.5
5	Acetone	52	10:1	91.5:8.5
$6{ }^{e}$	4-methyl-2-pentanone	56	13:1	93:7

${ }^{a}$ Reaction conditions: $\mathbf{5 a}(0.4 \mathrm{mmol}), \mathbf{4 a}(0.2 \mathrm{mmol})$ in 1 mL anhydrous toluene at r.t. under 6 W blue LEDs for 6 h ; then the resulting solution of $\mathbf{4 a}$ together with $\mathbf{1 a}(0.1 \mathrm{mmol})$ were added to the pre-prepared soultion of $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(10 \mathrm{~mol} \%)$, ligand ($15 \mathrm{~mol} \%$) and ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}(0.12 \mathrm{mmol})$ in 1 mL anhydrous solvent at $0^{\circ} \mathrm{C}$. ${ }^{b}$ Yield of isolated product. ${ }^{c}$ The diastereomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{d}$ The ee values were determined by HPLC. ${ }^{e} \mathbf{5 a}$ (0.4 mmol), 4a $(0.2 \mathrm{mmol})$ in 1 mL anhydrous 4-methyl-2-pentanone at r.t. under 6 W blue LEDs for 6 h ; then the resulting solution of $\mathbf{4 a}$ together with $\mathbf{1 a}(0.1 \mathrm{mmol})$ were added to the pre-prepared soultion of $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(10 \mathrm{~mol} \%)$, ligand ($15 \mathrm{~mol} \%$) and ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}(0.12 \mathrm{mmol})$ in 1 mL anhydrous 4-methyl-2-pentanone at $0^{\circ} \mathrm{C}$.

Table S6 The effect of temperature ${ }^{a}$

			$\mathrm{Cu}) \rightarrow$ nditions	$\mathrm{O}_{2} \mathrm{Bn}$	
Entry	Temperature (${ }^{\circ} \mathrm{C}$)	Time	Yield (\%) ${ }^{\text {b }}$	d.r. ${ }^{\text {c }}$	e.r. ${ }^{\text {d }}$
1	0	12 h	56	13:1	93:7
2	-10	16 h	64	13:1	94:6
3	-20	60 h	83	16:1	94:6

${ }^{a}$ Reaction conditions: ${ }^{a} \mathbf{4 a}(0.4 \mathrm{mmol}), \mathbf{2 a}(0.2 \mathrm{mmol})$ in 1 mL anhydrous 4-methyl-2-pentanone at r.t. under 6 W blue LEDs for 6 h ; then the resulting solution of $\mathbf{4 a}$ together with $\mathbf{1 a}(0.1 \mathrm{mmol})$ were added to the pre-prepared soultion of $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(10 \mathrm{~mol} \%)$, ligand ($15 \mathrm{~mol} \%$) and ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}$ (0.12 mmol) in 1 mL anhydrous 4-methyl-2-pentanone at indicated temperature. ${ }^{b}$ Yield of isolated product. ${ }^{\text {C }}$ The diastereomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{d}$ The er values were determined by HPLC.

Table S7 The effect of concentration ${ }^{a}$

${ }^{a}$ Reaction conditions: ${ }^{a} \mathbf{4 a}(0.4 \mathrm{mmol}), \mathbf{2 a}(0.2 \mathrm{mmol})$ in 1 mL anhydrous 4-methyl-2-pentanone at r.t. under 6 W blue LEDs for 6 h ; then the resulting solution of $\mathbf{4 a}$ together with $\mathbf{1 a}(0.1 \mathrm{mmol})$ were added to the pre-prepared soultion of $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}(10 \mathrm{~mol} \%)$, ligand ($15 \mathrm{~mol} \%$) and ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}$ (0.12 mmol) in X mL anhydrous 4-methyl-2-pentanone at indicated temperature. ${ }^{b}$ Yield of isolated product. ${ }^{\text {C }}$ The diastereomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{d}$ The er values were determined by HPLC.

3. General Procedures and Characterization Data of Products

3.1 General Procedures

General procedure (one-pot procedure with product 3a as an example): Under argon atmosphere, a flame-dried 10 mL Schlenk tube was charged with dimethyl sulfide ($0.4 \mathrm{mmol}, 4.0$ equiv), α-diazoketesters ($0.2 \mathrm{mmol}, 2.0$ equiv) and anhydrous 4-Methyl-2-pentanone (1 mL). The resulting solution was stirred for 6 h at room temperature. To another flame-dried 10 mL Schlenk tube, $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6} \quad(0.01 \mathrm{mmol}, \quad 10 \mathrm{~mol} \%), \quad \mathrm{L}(0.015 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ and anhydrous 4-Methyl-2-pentanone (1 mL) were added and the resulting solution was stirred for 30 min at room temperature. Then, the reaction mixture was cooled to $-20^{\circ} \mathrm{C}$, after that, the reaction solution in the first Schlenk were moved to the second one and ethynyl benzoxazinanones (0.1 mmol), $\mathrm{i}-\mathrm{Pr}_{2} \mathrm{NEt}$ ($0.12 \mathrm{mmol}, 1.2$ eq.) and anhydrous 4 -Methyl-2-pentanone (1 mL) were added sequentially. The resulting solution was stirred until complete conversion of ethynyl benzoxazinanones (monitored by TLC). 4-Methyl-2-pentanone was removed under the reduced pressure and the residue was purified by flash column chromatography on silica gel (petrol ether/ethyl acetate $=20 / 1$ to $10 / 1$) to afford the product.

3.2 Characterization Data of Products

Benzyl (2S,3S)-3-ethynyl-2-phenyl-1-tosylindoline-2-carboxylate (3a)

82% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=3.60\left(\mathrm{c}=0.75\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 95: 5 \mathrm{er}, 19: 1$ d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}$, $80: 20 \mathrm{v} / \mathrm{v}$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), tR (major) $=48.32 \mathrm{~min}, \mathrm{tR}$ $($ minor $)=50.86 \mathrm{~min} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.75-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.51$ - $7.43(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 8 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 1 \mathrm{H})$, $6.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.75(\mathrm{~m}, 1 \mathrm{H})$, $2.29(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,143.6,141.5,139.6,137.0,135.1,129.2,129.1$, 128.2, 128.2, 128.2, 128.0, 128.0, 127.8, 127.2, 127.0, 124.7, 123.1, 113.0, 79.6, 79.4, 75.0, 67.5, 50.1, 21.4. HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 530.1397, found 530.1390.

Benzyl (2S,3S)-3-ethynyl-2-(p-tolyl)-1-tosylindoline-2-carboxylate (3b)

60% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=26.10\left(\mathrm{c}=0.99\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;$ 91.5:8.5 er, 7:1 d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}, 80: 20 \mathrm{v} / \mathrm{v}$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right)$, tR (major) $=23.40 \mathrm{~min}, \mathrm{tR}($ minor $)=44.10 \mathrm{~min} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.51-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.13(\mathrm{~m}$, $5 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 3 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.72 - $4.66(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.18(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9,143.5$, 141.6, 138.1, 137.1, 136.6, 135.1, 129.2, 129.0, 128.5, 128.1, 128.1, 128.0, 127.8, 127.2, 127.1,

Benzyl (2S,3S)-3-ethynyl-2-(4-fluorophenyl)-1-tosylindoline-2-carboxylate (3c)

 78% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=-3.33\left(\mathrm{c}=0.91\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 94.5: 5.5 \mathrm{er}$, 19:1 d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}, 80: 20 \mathrm{v} / \mathrm{v}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), tR (major) $=19.19 \mathrm{~min}, \mathrm{tR}($ minor $)=24.35 \mathrm{~min} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{dd}$, $J=8.7,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.22(\mathrm{~m}$, $4 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.10-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.18(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.27(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 168.0,162.3(\mathrm{~d}, J=248.5 \mathrm{~Hz}), 144.2,141.8,137.3,135.8$, (d, $\left.J=3.4 \mathrm{~Hz}\right) 135.2,130.5(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}), 129.6,129.5,128.5,128.3,128.2,127.4,127.1,125.1,123.6,115.0(\mathrm{~d}, J=21.4 \mathrm{~Hz})$, 113.4, 79.4, 75.5, 67.9, 50.6, 21.7; ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-113.64$. HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{FNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 548.1302, found 548.1309.

Benzyl (2S,3S)-2-(4-chlorophenyl)-3-ethynyl-1-tosylindoline-2-carboxylate (3d)

84% isolated yield, white semi-solid, $[\alpha]_{\mathrm{D}}{ }^{25}=32.93\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 95: 5 \mathrm{er}$, 17:1 d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}, 80: 20 \mathrm{v} / \mathrm{v}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), tR $($ major $)=18.02 \mathrm{~min}, \mathrm{tR}($ minor $)=33.51 \mathrm{~min} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.66-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.17(\mathrm{~m}$, $3 \mathrm{H}), 7.09-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.87(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=22.0,7.8 \mathrm{~Hz}, 3 \mathrm{H}), 6.97-6.86(\mathrm{~m}, 1 \mathrm{H})$, $5.28(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.65(\mathrm{~m}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 1 \mathrm{H})$, $2.29(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5,143.9,141.5,138.0,136.9,134.9,134.3,129.6$, $129.3,129.2,128.2,128.0,127.9,127.9,127.0,126.7,124.7,123.3,113.1,79.0,78.9,75.2,67.6$, 50.1, 21.5. HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{ClNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 564.1007, found 564.1011.

Benzyl (2S,3S)-2-(4-bromophenyl)-3-ethynyl-1-tosylindoline-2-carboxylate (3e)

77% isolated yield, white solid, $[\alpha]_{\mathrm{D}}{ }^{25}=22.43\left(\mathrm{c}=0.86\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;$ 94.5:5.5 er, $18: 1$ d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}, 80: 20 \mathrm{v} / \mathrm{v}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), tR $($ major $)=18.68 \mathrm{~min}, \operatorname{tR}($ minor $)=39.75 \mathrm{~min} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.62-7.49$ (m, 3H), $7.38-7.27$ (m, 6H), $7.26-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.14$ (m, $2 \mathrm{H}), 7.12-6.99(\mathrm{~m}, 3 \mathrm{H}), 5.29(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.64(\mathrm{~m}, 1 \mathrm{H})$, $2.31(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5,143.9,141.6,138.5$, 137.0, 134.9, 130.9, 129.9, 129.4, 129.2, 128.2, 127.9, 127.9, 127.0, 126.7, 124.7, 123.3, 122.5, 113.1, 79.0, 78.9, 75.2, 67.6, 50.1, 21.5. HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{BrNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 608.0502, found 608.0503.

Benzyl (2S,3S)-3-ethynyl-1-tosyl-2-(4-(trifluoromethyl)phenyl)indoline-2-carboxylate (3f) 63% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=2.97\left(\mathrm{c}=0.97\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 90: 10 \mathrm{er}, 19: 1$ d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}, 80: 20 \mathrm{v} / \mathrm{v}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210$
$\left.\mathrm{nm}, 25^{\circ} \mathrm{C}\right), \mathrm{tR}($ major $)=12.64 \mathrm{~min}, \mathrm{tR}($ minor $)=31.82 \mathrm{~min} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-$ $7.82(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 3 \mathrm{H})$, $7.20-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 2 \mathrm{H}), 5.29(\mathrm{~d}, J=$ $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.65(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,144.0,143.3$, $141.6,136.8,134.8,130.4,130.1,129.5,129.4,129.2,128.6,128.6,128.2$, $127.9,126.9,126.7,124.8(\mathrm{q}, ~ J=3.7 \mathrm{~Hz}), 123.5,113.2,78.9,78.7,75.3$,
$67.7,50.2,21.4 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-62.77$. HRMS (ESI) for $\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 598.1270, found 598.1259.

Benzyl (2S,3S)-2-([1,1'-biphenyl]-4-yl)-3-ethynyl-1-tosylindoline-2-carboxylate (3g)

59% isolated yield, white solid, $[\alpha]_{\mathrm{D}}{ }^{25}=6.60\left(\mathrm{c}=0.31\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 91: 9 \mathrm{er}$, 13:1 d.r., determined by HPLC analysis (Chiralpak IC-H column, hexane $/ i-\mathrm{PrOH}, 80: 20 \mathrm{v} / \mathrm{v}$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right)$, tR (major) $=75.95 \mathrm{~min}, \mathrm{tR}($ minor $)=32.13 \mathrm{~min} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.78-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.34(\mathrm{~m}$, $1 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 9 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 2 \mathrm{H}), 5.34(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25$ (d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.87-4.80(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,143.6,141.0,140.3,138.4,137.1,135.1,129.3,129.1,128.8,128.7,128.2$, $128.0,127.8,127.6,127.1,127.0,126.5,124.8,123.2,113.1,79.3,79.3,75.0,67.6,50.1,21.4$. HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 606.1710, found 606.1700.

Benzyl (2S,3S)-3-ethynyl-2-(m-tolyl)-1-tosylindoline-2-carboxylate (3h)

74% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=-5.90\left(\mathrm{c}=1.02\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 91.5: 8.5 \mathrm{er}$, 12:1 d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ \mathrm{i}-\mathrm{PrOH}, 80: 20 \mathrm{v} / \mathrm{v}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), tR (major) $=14.85 \mathrm{~min}, \mathrm{tR}($ minor $)=18.98 \mathrm{~min} ;{ }^{1} \mathbf{H}$ NMR $\delta 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.55-$ $7.50(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 7 \mathrm{H}), 7.19-7.12$ $(\mathrm{m}, 1 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.22(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.74(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.27(\mathrm{~m}, 4 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\delta 168.2$, $143.8,142.0,139.5,137.8,137.4,135.5,129.5,129.3,129.2,129.1,128.5,128.2,128.2,128.1$, 127.4, 127.4, 125.8, 125.0, 123.4, 113.3, 79.8, 79.6, 75.3, 67.7, 50.6, 21.7, 21.7. HRMS (ESI) for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 544.1553, found 544.1558.

Benzyl (2S,3S)-3-ethynyl-2-(3-fluorophenyl)-1-tosylindoline-2-carboxylate (3i)

83% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=1.18\left(\mathrm{c}=0.91\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 92: 8 \mathrm{er}, 12: 1$ d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}$, $80: 20 \mathrm{v} / \mathrm{v}$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), tR (major) $=39.77 \mathrm{~min}, \mathrm{tR}$ (minor) $=37.77 \mathrm{~min} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.39-$ $7.33(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 6 \mathrm{H}), 7.10-6.96(\mathrm{~m}, 4 \mathrm{H}), 5.29$ $(\mathrm{d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.65(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.27(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.4,162.21(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 143.9,142.0(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 141.6,136.9,134.9$, $129.4(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 129.2,128.2,127.9,127.8,127.1,126.8,124.7,123.7,123.7(\mathrm{~d}, J=2.9 \mathrm{~Hz})$,
$123.3,115.7(\mathrm{~d}, J=24.3 \mathrm{~Hz}), 115.1(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 113.1,79.0(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 78.8,75.22,67.6$, 50.3, 21.5; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-112.40$. HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{FNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 548.1302, found 548.1308.

Benzyl (2S,3S)-2-(3-chlorophenyl)-3-ethynyl-1-tosylindoline-2-carboxylate (3j)

62% isolated yield, white solid, $[\alpha]_{\mathrm{D}}{ }^{25}=-49.90\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 91.5: 8.5 \mathrm{er}$, 14:1 d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}, 80: 20 \mathrm{v} / \mathrm{v}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), tR (major) $=15.96 \mathrm{~min}, \mathrm{tR}($ minor $)=17.34 \mathrm{~min} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1 \mathrm{H} \mathrm{NMR}$ $(400 \mathrm{MHz}$, Chloroform-d) $\delta 7.72-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.28-$ $7.23(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 6 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 3 \mathrm{H}), 5.23(\mathrm{~d}, J=12.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.10(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.55(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}) . ;{ }^{\mathbf{1 3}} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 167.4,144.0,141.3,136.9,134.9,133.9,129.3,129.3,129.3,129.2$, $128.3,128.2,127.9,127.8,126.9,126.7,126.5,124.7,123.3,113.1,78.9,78.7,75.3,67.6,50.4,21.5$. HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{ClNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 564.1007, found 564.1011.

Benzyl (2S,3S)-2-(3,4-dichlorophenyl)-3-ethynyl-1-tosylindoline-2-carboxylate (3k)

72% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=-7.30\left(\mathrm{c}=0.92\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;$ 91.5:8.5 er, 19:1 d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}, 80: 20 \mathrm{v} / \mathrm{v}$, flow rate $\left.0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right)$, tR $($ major $)=25.68 \mathrm{~min}, \mathrm{tR}($ minor $)=41.50 \mathrm{~min} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.71(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.40$ $-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.01(\mathrm{~m}, 3 \mathrm{H}), 5.28(\mathrm{~d}, J=12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.14(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.59(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2,144.2,141.7,139.4,137.0,134.8,132.5,132.1,130.2,129.7,129.5$, $129.3,128.2$, 127.9, 127.9, 127.7, 126.7, 126.5, 124.8, 123.5, 113.2, 78.4, 75.5, 67.7, 50.3, 21.5. HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 598.0617, found 598.0624.

Benzyl (2S,3S)-3-ethynyl-2-(naphthalen-2-yl)-1-tosylindoline-2-carboxylate (31)

54% isolated yield, white solid, $[\alpha]_{\mathrm{D}}{ }^{25}=26.60\left(\mathrm{c}=0.94\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 90: 10 \mathrm{er}$, 9:1 d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}, 70: 30 \mathrm{v} / \mathrm{v}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), tR (major) $=25.77 \mathrm{~min}, \mathrm{tR}($ minor $)=45.25 \mathrm{~min} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.33(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.65-$ $7.56(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 5 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.87$ $(\mathrm{d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9$, $143.5,141.9,137.1,136.2,135.2,132.8,132.5,129.3,129.0,128.9,128.2,128.0,127.8,127.6$, $127.1,127.1,126.9,126.7,126.1,125.4,124.8,123.2,113.2,79.6,79.2,75.0,67.5,50.2,21.3$. HRMS (ESI) for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 580.1553, found 580.1551.

Benzyl (2S,3S)-3-ethynyl-4-fluoro-2-phenyl-1-tosylindoline-2-carboxylate (3m)

82% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=29.13\left(\mathrm{c}=0.98\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 95: 5 \mathrm{er}$, 10:1 d.r., determined by HPLC analysis (Chiralpak AZ-H column, hexane $/ i-\mathrm{PrOH}, 80: 20 \mathrm{v} / \mathrm{v}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), tR (major) $=24.16 \mathrm{~min}, \mathrm{tR}$ (minor) $=36.40 \mathrm{~min} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.63$ $(\mathrm{m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.02-$ $6.95(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.69(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.81$ $(\mathrm{m}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,158.8(\mathrm{~d}, J=$ $250.0 \mathrm{~Hz}), 143.8,143.7(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 139.4,136.6,135.0,131.3(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 129.2,128.5$, $128.4,128.3,128.1,128.0,128.0,127.4,113.4(\mathrm{~d}, J=19.9 \mathrm{~Hz}), 110.2$ (d, $J=19.5 \mathrm{~Hz}), 108.9$ (d, $J=$ 3.3 Hz), 80.6, 78.0, $75.1,67.9,46.5,21.5 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-117.26$. HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{FNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 548.1302, found 548.1302.

Benzyl (2S,3S)-3-ethynyl-5-methyl-2-phenyl-1-tosylindoline-2-carboxylate (3n)

61% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=0.57\left(\mathrm{c}=1.05\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 93.5:6.5 er, 9:1 d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}, 80: 20 \mathrm{v} / \mathrm{v}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), tR (major) $=75.26 \mathrm{~min}, \mathrm{tR}($ minor $)=80.24 \mathrm{~min} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.71-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.10-$ $7.04(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.31(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.71$ $(\mathrm{m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=167.9$, 143.5, 139.6, 139.3, 137.1, 135.1, 132.9, 129.7, 129.0, 128.3, 128.2, 128.1, 128.0, 127.9, 127.9, 127.2, 127.0, 125.2, 112.8, 79.8, 79.6, 74.9, 67.5, 50.1, 21.4, 20.7. HRMS (ESI) for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 544.1553, found 544.1553.

Benzyl (2S,3S)-5-chloro-3-ethynyl-2-phenyl-1-tosylindoline-2-carboxylate (30)

 63% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=-11.07$ (c $=0.89$ in CHCl_{3}); 91.5:8.5 er, 10:1 d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}, 80: 20 \mathrm{v} / \mathrm{v}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), $\mathrm{tR}($ major $)=14.48 \mathrm{~min}, \mathrm{tR}($ minor $)=20.85 \mathrm{~min} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.70-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.17$ (m, 6H), $7.04-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.71(\mathrm{~m}$, $1 \mathrm{H}), 2.33-2.27(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=167.5,143.9,140.3,139.0,136.6,134.9$, $129.2,128.8,128.4,128.2,128.1,128.1,128.0,127.1,124.9,113.9,80.0,78.4,75.6,67.7,49.7,21.5$. HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{ClNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 564.1007, found 564.1003.

Benzyl (2S,3S)-3-ethynyl-6-methyl-2-phenyl-1-tosylindoline-2-carboxylate (3p)

61% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=3.67$ (c $=0.88$ in CHCl_{3}); 92.5:7.5 er, 6:1 d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\operatorname{PrOH}, 80: 20 \mathrm{v} / \mathrm{v}$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25$ $\left.{ }^{\circ} \mathrm{C}\right), \mathrm{tR}($ major $)=31.58 \mathrm{~min}, \mathrm{tR}($ minor $)=45.35 \mathrm{~min} ;{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.71-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 4 \mathrm{H})$, $7.18-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=$
$12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-4.72(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9,143.5,141.6,139.7,139.5,137.1,135.1,129.1,128.2,128.2,128.1$, $127.9,127.8,127.2,124.4,124.2,124.0,113.7,79.9,79.7,74.8,67.6,49.8,21.9,21.4$. HRMS (ESI) for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 544.1553, found 544.1555 .

Benzyl (2S,3S)-3-ethynyl-6-fluoro-2-phenyl-1-tosylindoline-2-carboxylate (3q)

73% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=2.20\left(\mathrm{c}=0.74\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 94: 6 \mathrm{er}$, 11:1 d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}, 80: 20 \mathrm{v} / \mathrm{v}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), tR $($ major $)=14.89 \mathrm{~min}, \mathrm{tR}($ minor $)=21.56 \mathrm{~min} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.70-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.15(\mathrm{~m}, 12 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{td}, J$ $=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.72(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}$, $3 \mathrm{H}), 2.29(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.6,163.6(\mathrm{~d}, J=245.1 \mathrm{~Hz}), 143.9$, $142.9(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 139.0,136.6,135.0,129.2,128.4,128.3,128.2,128.1,128.0,127.9,127.2$, $125.5(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 122.5(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 109.7(\mathrm{~d}, J=23.1 \mathrm{~Hz}), 101.5(\mathrm{~d}, J=29.5 \mathrm{~Hz}), 80.4$, 79.0, 75.2, 67.7, 49.5, 21.5; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-111.36$. HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{FNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 548.1302, found 548.1304.

Benzyl (2S,3S)-6-chloro-3-ethynyl-2-phenyl-1-tosylindoline-2-carboxylate (3r)

70% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=12.33\left(\mathrm{c}=1.33\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 91: 9 \mathrm{er}$, $11: 1$ d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}, 80: 20 \mathrm{v} / \mathrm{v}$, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right)$, tR $($ major $)=14.20 \mathrm{~min}, \mathrm{tR}($ minor $)=20.74 \mathrm{~min} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.70-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.22(\mathrm{~m}$, $2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 3 \mathrm{H}), 5.32(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.76-7.71(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.5$, $144.0,142.7,139.0,136.6,135.1,135.0,129.3,128.4,128.3,128.2,128.1,128.1,127.9,127.2$, $125.7,125.5,123.2,113.4,80.1,78.7,75.4,67.7,49.6,21.5$. HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{ClNO}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 564.1007, found 564.1057.

Benzyl (2S,3S)-2-(4-bromophenyl)-3-ethynyl-4-fluoro-1-tosylindoline-2-carboxylate (3s)

78% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=170.43$ (c = 1.0 in CHCl_{3}); 96:4 er, 15:1 d.r., determined by HPLC analysis (Chiralpak AZ-H column, hexane $/ i$ - $\mathrm{PrOH}, 75: 25 \mathrm{v} / \mathrm{v}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), tR (major) $=25.79 \mathrm{~min}, \mathrm{tR}($ minor $)=56.75 \mathrm{~min} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad 1 \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.32-$ $7.28(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.78-6.72(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=12.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.25(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.32(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 167.3,158.8(\mathrm{~d}, J=250.2 \mathrm{~Hz}), 144.1,143.7(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 138.3,136.6,134.8,131.5(\mathrm{~d}$, $\mathrm{J}=8.5 \mathrm{~Hz}), 131.1,129.4,129.3,128.3,128.3,128.1,127.1,122.9,113.1(\mathrm{~d}, \mathrm{~J}=19.8 \mathrm{~Hz}), 110.4(\mathrm{~d}, \mathrm{~J}$ $=19.5 \mathrm{~Hz}), 108.9(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}), 79.9,77.6,75.3,68.0,46.5,21.5 ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ -117.01. HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{BrFNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 626.0407, found 626.0401.

Benzyl (2S,3S)-2-(4-chlorophenyl)-3-ethynyl-4-fluoro-1-tosylindoline-2-carboxylate (3t)

81% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=76.1\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 95.5: 4.5 \mathrm{er}$, 16:1 d.r., determined by HPLC analysis (Chiralpak AZ-H column, hexane $/ i-\mathrm{PrOH}, 80: 20 \mathrm{v} / \mathrm{v}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), tR (major) $=27.63 \mathrm{~min}, \mathrm{tR}($ minor $)=60.14 \mathrm{~min} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1 \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.63-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-$ $7.27(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.78-6.71(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.25(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.30(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 167.3,158.8(\mathrm{~d}, J=250.1 \mathrm{~Hz}), 144.1,143.7,137.8,136.7(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 131.5(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}), 129.4,129.3,128.4,128.3,128.1,128.1,127.1,126.6,122.9,113.2(\mathrm{~d}, \mathrm{~J}=19.6 \mathrm{~Hz}), 110.4$ $(\mathrm{d}, J=19.3 \mathrm{~Hz}), 108.9(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 79.9,77.6,75.3,68.1,46.5,21.5 ;{ }^{19} \mathbf{F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=-117.07 . \mathrm{HRMS}(\mathrm{ESI})$ for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{ClFNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 582.0913, found 582.0915.

Benzyl (2S,3S)-3-ethynyl-1-((4-methoxyphenyl)sulfonyl)-2-phenylindoline-2-carboxylate (3u)

 80% isolated yield, white solid, $[\alpha]_{\mathrm{D}}{ }^{25}=20.53$ ($\mathrm{c}=1.20$ in CHCl_{3}); 94.5:5.5 er, $15: 1$ d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}, 90: 10 \mathrm{v} / \mathrm{v}$, flow rate $\left.0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right)$, tR $($ major $)=69.58 \mathrm{~min}, \mathrm{tR}($ minor $)=66.05 \mathrm{~min} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.74-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 12 \mathrm{H}), 7.07-7.00$ $(\mathrm{m}, 1 \mathrm{H}), 6.67-6.61(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.76(\mathrm{~m}$, $1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,162.9,141.5,139.7,135.1,131.4,129.5$, $129.2,128.2,128.2,128.1,128.0,128.0,127.8,127.0,124.7,123.1,113.6,112.9,79.6,79.4,74.9$, 67.5, 55.5, 50.1. HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 546.1346, found 546.1340.

Benzyl (2S,3S)-1-((4-bromophenyl)sulfonyl)-3-ethynyl-2-phenylindoline-2-carboxylate (3v)

76% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=22.10\left(\mathrm{c}=1.20\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;$ 92.5:7.5 er, 15:1 d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}, 90: 10 \mathrm{v} / \mathrm{v}$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), tR (major) $=32.31 \mathrm{~min}, \mathrm{tR}$ (minor) $=27.64 \mathrm{~min} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1 \mathrm{H} \mathrm{NMR}$ (400 MHz, Chloroform-d) $\delta 7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.33-$ $7.28(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.24(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.7,141.1,139.2,138.8,134.9,131.7,129.4,128.5,128.4,128.2,128.1,128.1$, 128.0, 127.8, 127.0, 125.0, 123.6, 113.6, 112.9, 79.6, 79.3, 75.1, 67.7; HRMS (ESI) for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{BrNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 594.0345, found 594.0349.

Benzyl (2S,3S)-3-ethynyl-2-phenyl-1-(m-tolylsulfonyl)indoline-2-carboxylate (3w)

75% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=-2.90\left(\mathrm{c}=0.87\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 94: 6 \mathrm{er}$, 12:1 d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}, 80: 20 \mathrm{v} / \mathrm{v}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), tR (major) $=13.53 \mathrm{~min}, \mathrm{tR}($ minor $)=18.46 \mathrm{~min} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.64$ (m, 2H), $7.55-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 8 \mathrm{H}), 7.16-$ $7.03(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.85-4.80(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.8$, $141.6,139.8,139.3,138.7,135.1,133.5,129.3,128.5,128.3,128.2,128.2,128.0,127.8,127.8$, 127.4, 127.0, 124.7, 124.1, 123.1, 113.0, 79.3, 79.2, 75.0, 67.5, 50.2, 21.2. HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 530.1397, found 530.1403.
((2S,3S)-3-ethynyl-2-phenyl-1-tosylindolin-2-yl)methanol (6)

87% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=-1.80\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 94.5:5.5 er, 19:1 d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}$, $90: 10 \mathrm{v} / \mathrm{v}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), tR (major) $=41.52 \mathrm{~min}, \mathrm{tR}$ $($ minor $)=44.32 \mathrm{~min} ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.59-$ $7.53(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.19-$ $7.15(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=12.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.75$ (dd, $J=12.8,8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.47(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.9,142.1,141.7,137.4,129.4,128.9,128.5,128.5,128.3,127.9,127.3,126.2$, 124.4, 123.7, 114.0, 79.7, 79.3, 74.9, 65.1, 47.8, 21.5. HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 426.1134, found 426.1126 .
((2S,3S)-3-ethynyl-2-phenylindolin-2-yl)methanol (7)

85% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=-12.10\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 94.5: 5.5 \mathrm{er}$, 19:1 d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane $/ i-\mathrm{PrOH}$, $90: 10 \mathrm{v} / \mathrm{v}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$), tR (major) $=14.59 \mathrm{~min}, \mathrm{tR}$ (minor) $=18.12 \mathrm{~min} ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}$, $\mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.83-6.60(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.35(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H})$.; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.4,143.1,128.7,128.6,127.8$, 127.6, 126.0, 124.1, 119.5, 110.5, 80.3, 73.3, 72.2, 66.5, 44.1. HRMS (ESI) for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 272.10, found 272.11
(9S,9S)-9-ethynyl-9-phenyl-9,9-dihydro-1H,3H-oxazolo[3,4-a]indol-3-one (8)
90% isolated yield, colorless oil, $[\alpha]_{\mathrm{D}}{ }^{25}=6.77\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 94.5:5.5 er, 19:1
d.r., determined by HPLC analysis (Chiralpak AD-H column, hexane/i-PrOH, 95:5 v / v, flow rate $\left.1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right), \mathrm{tR}($ major $)=15.77 \mathrm{~min}, \mathrm{tR}($ minor $)=$ $19.9 \mathrm{~min} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.24(\mathrm{~m}$, $7 \mathrm{H}), 7.17$ (t, J = 7.5 Hz, 1H), $5.32(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ $(\mathrm{d}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}) . ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.5,144.2,139.9,131.8$, 129.5, 128.2, 125.9, 125.5, 124.2, 116.3, 79.5, 74.5, 73.3, 46.3, 22.5. HRMS (ESI) for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd 298.08, found 298.09.

Benzyl (R)-2-phenyl-1-tosyl-3-vinylideneindoline-2-carboxylate (9)

83% isolated yield, colorless oil, $[\alpha] \mathrm{D}^{25}=55.57(\mathrm{c}=0.85$ in CHCl 3$)$; $93: 7 \mathrm{er}$, determined by HPLC analysis (Chiralpak AZ-H column, hexane/i-PrOH, 80:20 v / v, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 25 \mathrm{oC}$), tR (major) $=13.53 \mathrm{~min}, \mathrm{tR}$ $($ minor $)=20.70 \mathrm{~min} ;{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.43-$
$7.34(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 4 \mathrm{H}), 5.37(\mathrm{~s}$, $2 \mathrm{H}), 5.20(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 202.5,168.4,143.4,138.0,137.2,135.5,130.3,129.6,129.1,128.3,128.3,128.1,127.7,126.9$, 123.2, 122.6, 112.9, 85.8, 67.9, 21.4. HRMS (ESI) for C31H25NO4S [M+Na]+: calcd 530.1397, found 530.1395.

3.3 Synthetic transformation

Procedure I: Under argon atmosphere, a flame-dried 10 mL Schlenk tube was charged with compound 3aa ($101.4 \mathrm{mg}, 0.20 \mathrm{mmol}$) and anhydrous $\mathrm{Ph}-\mathrm{Me}(2.0 \mathrm{~mL})$ and cooled to $-30{ }^{\circ} \mathrm{C}$. To this solution, DIBAL-H (5.0 equiv., 1.5 M in $\mathrm{Ph}-\mathrm{Me}$) was added dropwise, and the reaction mixture was maintained at $-30^{\circ} \mathrm{C}$ for 6 hours. The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution and extracted with ethyl acetate. The combined organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The residue was purified by column chromatography afford the desired product 5aa in 87\% yield and 94.5:5.5 er.

Procedure II: Under argon atmosphere, a flame-dried 10 mL Schlenk tube was charged with compound $6(80.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{Mg}(240 \mathrm{mg}, 10 \mathrm{mmol}, 200-300 \mathrm{mesh})$ and $\mathrm{NH}_{4} \mathrm{Cl}(642 \mathrm{mg}$ 12 mmol) and anhydrous $\mathrm{MeOH}(4.0 \mathrm{~mL}$. The resulting solution was in MW for 4 h . Then NH 4 Cl (3 mL) was added to the reaction mixture to quench excess magnesium powder. The aqueous phase was extracted with ethyl acetate ($4 \times 5 \mathrm{~mL}$). The combined organic layers were dried over Na 2 SO 4 , filtered and concentrated in vacuo. TThe residue was purified by column chromatography afford the desired product 7 in 85% yield and 94.5:5.5 er.

Procedure III: Under argon atmosphere, a flame-dried 10 mL Schlenk tube was charged with compound 7 ($50 \mathrm{mg}, 0.20 \mathrm{mmol}$) and anhydrous $\mathrm{DCM}\left(2.0 \mathrm{~mL}\right.$) and cooled to $0{ }^{\circ} \mathrm{C}$. To this solution, DMAP ($2.4 \mathrm{mg}, 0.02 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(61 \mu \mathrm{~L}, 4.4 \mathrm{mmol}$), and 1,1 -carbonyldiimidazole $\left(42.2 \mathrm{mg}, 0.26 \mathrm{mmol}\right.$). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . Remove the solvent under vacuum. The residue was purified by column chromatography afford the desired product $\mathbf{8}$ in 90% yield and 94.5:5.5 er.

Procedure IV: In a flame-dried 10 ml Schlenk tube $\mathbf{3 a}$ ($101.43 \mathrm{mg}, 0.20 \mathrm{mmol}$) were dissolved in THF (2.0 mL). To the resulting solution, $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{~mL})$ was added sequentially. After stirred for 3 h , the solvent was removed under vacuum. The reaction mixture was directly purified by flash column chromatography on silica gel to afford the desired product $\mathbf{9}$ in 83% yield and $93: 7$ ee.

4. X-Ray Structures of Product 3u

Figure S1. X-ray crystallography of 3u

5. Copies of NMR Spectra

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{a}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right.$)

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{~b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{~b}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 c}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

人 1
$\stackrel{0}{\stackrel{0}{\sim}}$
n
0
0
0
i

${ }^{19}$ F NMR spectrum of compound $3 \mathrm{c}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

\qquad
${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{~d}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{~d}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
qb1969a-直 5

$\underset{i}{7}$
$\stackrel{0}{i}$
1

1H NMR spectrum of compound 3 e ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l 3) ~}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{e}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


```
    |
```


${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{f}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 f\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR spectrum of compound $3 f\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
QBL966B. 3. fid

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 g}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR spectrum of compound $3 \mathrm{~g}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N	ก̣	\bigcirc
かo ¢	¢	i
$\checkmark 1$	\|	\|

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{~h}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{~h}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\sim}{\sim}$

$\stackrel{+}{\underset{N}{N}}$

| 80 | 170 | 160 | 150 | 1 |
| :--- |

S28
${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{i}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{i}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
QBL-1008. タ.f. Md

${ }^{19}$ F NMR spectrum of compound $3 i\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
QBL1008B. 1. fid

\qquad
${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

13C NMR spectrum of compound $\mathbf{3 j} \mathbf{(1 0 0 ~ M H z , ~ C D C l 3)}$

QBL953B. 2.fid

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\left.3 \mathrm{k} \mathbf{(4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{k}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $31\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $41\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 m}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 m}\left(\mathbf{1 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR spectrum of compound $\mathbf{3 m}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
QBL-960B. 2. fid

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 n}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 n}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
qb1960a．ঝ．fid

	$\bar{\square}$	\bigcirc	OO
ががさ	$\stackrel{0}{6}$	8	亡̇
$\checkmark 1$	｜	，	）

${ }^{1} \mathrm{H}$ NMR spectrum of compound $30\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $30\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{p}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 p}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{q}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 q}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$
qb1964b. 尼

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $\mathbf{3 q}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$
qb1964b. 9. fid

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 r}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{~s}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

S40
${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{~s}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $3 \mathrm{~s}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{t}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{t}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$
QBL-1130B. 2.fid

\bar{i}
$\dot{\circ}$
$\dot{1}$
$\stackrel{\infty}{\stackrel{\infty}{\sim}} \stackrel{+}{i}$

${ }^{19} \mathrm{~F}$ NMR spectrum of compound $3 \mathrm{t}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\stackrel{0}{+}}{\stackrel{\rightharpoonup}{\top}}$

-40	$\stackrel{+}{-50}$	-60	-70	-80	${ }_{-90}$	-100	-110	$\stackrel{1}{-120}$	-130	-140	-150	-160	-170	-180	-190

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\left.\mathbf{3 u} \mathbf{(4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{u}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{v}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{v}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
qb11131b-100.1.fic

${ }^{1} \mathrm{H}$ NMR spectrum of compound $3 \mathrm{w}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


```
สัֹ
```



```
ソ~
```


${ }^{13} \mathrm{C}$ NMR spectrum of compound $3 \mathrm{w}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $6\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $6\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $7\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

QBL1403. 1. fiđֻo

$\underbrace{\dot{-} \dot{J}}$
$\stackrel{\sim}{\aleph} \stackrel{\sim}{N}_{\sim}^{\sim}$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $7\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
QBL1403．3．fid

${ }^{1} \mathrm{H}$ NMR spectrum of compound $8\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of compound $8\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

QBL1403. 5. fid

$\stackrel{0}{4}$
$\stackrel{6}{6}$
$\stackrel{0}{1}$

$\stackrel{\circ}{\text { Mo }}$
우N

${ }^{1} \mathrm{H}$ NMR spectrum of compound $9\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

6. Copies of HPLC Spectra

HPLC spectrum of racemic 3a

HPLC spectrum of racemic 3c				
		(//	-3c	Area \% ----1 17.5412 32.3666 17.3218 32.7705
HPLC spectrum of 3c				
				Area \% $----। ~$ 94.4744 5.5256

HPLC spectrum of racemic 3f

HPLC spectrum of racemic 3 f	
HPLC spectrum of 3f	

HPLC spectrum of racemic $\mathbf{3 g}$

HPLC spectrum of $\mathbf{3 g}$

HPLC spectrum of 31

HPLC spectrum of racemic $3 q$

HPLC spectrum of $\mathbf{3 q}$

HPLC spectrum of racemic 3 s

rac-3s

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	Width [min]	$\mathrm{mAU}^{\text {Area }}{ }^{*_{\mathrm{s}}}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}} \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	19.285 BB	0. 6738	1910.61768	43.72711	8.3337
2	26.050 VB R	0. 8975	9620.02148	164.35527	41.9606
3	33.619 BB	1. 2492	2029. 53735	24.73686	8.8524
4	57.988 BB	1. 9618	9366. 14355	71.42918	40.8532

HPLC spectrum of 3s

Peak \#	$\frac{\mathrm{ketTime}}{[\mathrm{~min}]}$	Type	$\begin{aligned} & \text { Width } \\ & {[\mathrm{min}]} \end{aligned}$	$\operatorname{mAU}^{\text {Area }}{ }^{\star}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU} \quad \text {] }} \end{aligned}$	$\underset{\%}{\text { Area }}$
1	19.555 BB		0.6822	498.76178	10.97449	4. 7538
2	25.793 BB		0.8871	9095.28125	159. 05850	86. 6884
3	33.134 BB		0.9768	503. 76654	6. 24716	4. 8015
45	56.732 BB		1. 5017	394.11707	3. 10313	3. 7564

HPLC spectrum of racemic 3t

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime Type } \\ & {[\mathrm{min}]} \end{aligned}$	Width [min]	$\underset{\text { mAU }}{\text { Area }} \stackrel{\star_{\mathrm{s}}}{ }$	$\underset{\text { [mAU }}{\substack{\text { Height } \\ \hline}}$	$\underset{\text { \% }}{\text { Area }}$
16	66.249 BB	1. 2543	3046. 27612	36. 55230	49. 8834
27	70.018 BB	1. 3107	3060.51855	34. 64305	50.1166

HPLC spectrum of $3 u$

HPLC spectrum of racemic 3w				
			3w [maU Height 136. 96439 108. 46814 205. 33977 143. 50348	
HPLC spectrum of 3w				
		(II)	\mathbf{w} Height [mAU $424 .--15143$ 18.95827	Area 94. 2296 5. 7704

HPLC spectrum of 7

[^0]: 1 (a) Q. Wang, T.-R. Li, L.-Q. Lu, M.-M. Li, K. Zhang and W.-J. Xiao, J. Am. Chem. Soc., 2016, 138, 8360-8363; (b) T.-R. Li, B.-Y.
 Cheng, Y.-N. Wang, M.-M. Zhang, L.-Q. Lu and W.-J. Xiao, Angew. Chem. Int. Ed., 2016, 55, 12422-12426.
 2 M. Ma, L. Peng, C. Li, X. Zhang, J. Wang, J. Am. Chem. Soc., 2005, 127, 15016-15017.
 3. (a) R. Hommelsheim, Y. Guo, Z. Yang, C. Empel and R. M. Koenigs, Angew. Chem. Int. Ed., 2019, 58, 1203-1207; (b) S. Jana, Z. Yang, C. Pei, X. Xu and R. M. Koenigs, Chem. Sci., 2019, 10, 10129-10134; (c) X. Gao,; B. Wu, W.-X. Huang, M.-W. Chen, Y.-G. Zhou, Angew. Chem. Int. Ed., 2015, 54, 11956-11960.

