Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

# **Supporting Information**

### For

### Synthesis of Trifluoromethylated Thioethers via Ni-Catalyzed Reductive C-S Coupling

Wei Liu<sup>a</sup>, Yan He<sup>a</sup>, Zhi-Yuan Liu<sup>a</sup>, Yanlin Li<sup>a</sup>, Yan Li<sup>a</sup>, Bing-Bing Wu<sup>a</sup>, Ruo-Xing Jin<sup>a</sup> and Xi-Sheng Wang<sup>\*a b</sup>

<sup>*a*</sup>Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.

State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science & Technology, Mianyang 621010, P. R. China.

# Table of Contents

| General Information                                                                                        | 3   |
|------------------------------------------------------------------------------------------------------------|-----|
| Optimization of conditions                                                                                 | 4   |
| Table S1. Optimization of Ligands                                                                          | 4   |
| Table S2. Optimization of Solvents                                                                         | 5   |
| Table S3. Optimization of Ni-Catalysts                                                                     | 5   |
| Table S4. Optimization of Reductants                                                                       | 6   |
| Table S5. Optimization of Temperature                                                                      | 6   |
| Table S6. Adjustment of Solvent                                                                            | 7   |
| Table S7. Quant of 1a and 2a                                                                               | 7   |
| Table S8. Quant of Ni Source and Ligand                                                                    | 8   |
| Table S9. Quant of Additive                                                                                | 8   |
| Table S10. Control Experiments                                                                             | 9   |
| Table S11. Optimization of The Sulfuration reagents                                                        | 9   |
| General Procedures                                                                                         | .10 |
| Synthesis of the substrates                                                                                | .10 |
| General procedure A for preparation of trifluoromethylated alkyl bromides                                  | .10 |
| General procedure B for preparation of S8                                                                  | .11 |
| General procedure C for preparation of difluoromethyl alkyl bromide                                        | .12 |
| General procedure D for preparation of thiosulfonates                                                      | .13 |
| General procedure E for preparation of (3-bromobutyl)benzene S30                                           | .13 |
| General Procedure for Synthesis of Trifluoromethylated Thioethers via Ni-Catalyzed Reductive C-S Coupling. | 14  |
| General procedure for further transformations                                                              | .24 |
| General procedure for mechanium studies                                                                    | .24 |
| References                                                                                                 | .27 |
| NMR Spectra of New Compounds                                                                               | .28 |

## **General Information**

NMR spectra were recorded on Bruker-600 (600 MHz for <sup>1</sup>H; 151 MHz for <sup>13</sup>C and 565 MHz for <sup>19</sup>F). All <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>19</sup>F NMR spectra were recorded at room temperature. <sup>1</sup>H NMR spectra were referenced relative to CDCl<sub>3</sub> at  $\delta$  7.26 ppm. <sup>13</sup>C NMR spectra were referenced relative to CDCl<sub>3</sub> at  $\delta$  7.26 ppm. <sup>13</sup>C NMR spectra were referenced relative to CDCl<sub>3</sub> at  $\delta$  77.16 ppm. The <sup>13</sup>C NMR spectra were obtained with <sup>1</sup>H decoupling. Data for <sup>1</sup>H, <sup>13</sup>C, <sup>19</sup>F NMR are recorded as follows: chemical shift ( $\delta$ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet et al.), integration, and coupling constant (Hz). {note: some of the NMR spectra were recorded on Bruker-400 (400 MHz for <sup>1</sup>H; 101 MHz for <sup>13</sup>C and 376 MHz for <sup>19</sup>F) and Bruker-500 (500 MHz for <sup>1</sup>H; 126 MHz for <sup>13</sup>C and 471 MHz for <sup>19</sup>F)}. High resolution mass spectra were recorded on P-SIMS-Gly of Bruker Daltonics Inc. using ESI-TOF (electrospray ionization-time of flight). Ni(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O was obtained from Sigma-Aldrich. 4,7-diphenyl-1,10-phenanthroline was purchased from Strem Chemicals. Mn powder was purchased from Alfa. Anhydrous DMF was purchased from *J*&K Chemicals. TBAI was purchased from Sigma-Aldrich. Secondary alkyl bromides were synthesized *via* following method described in this supplementary information.

# **Optimization of conditions**

# **Table S1. Optimization of Ligands**



Unless otherwise noted, the reaction conditions were as follows: **1a** (0.10 mmol, 1.0 equiv), **2a** (0.15 mmol, 1.5 equiv), NiBr<sub>2</sub> (10 mol%), **Ligand** (12 mol%), Mn (0.20 mmol, 2.0 equiv), TBAI (0.15 mmol, 1.5 equiv), DMF (1.0 mL), 50 °C, 12 h. Yield was determined by <sup>19</sup>F NMR spectroscopy using PhCF<sub>3</sub> as an internal standard. <sup>a</sup>Isolated yield.

# Table S2. Optimization of Solvents

| CF <sub>3</sub><br>B | r + PhSO <sub>2</sub> SPh<br>2a NiBr <sub>2</sub> (10 mol%)<br>dtbpy (12 mol%)<br>TBAI (1.5 equiv)<br>Mn (2.0 equiv)<br>Solvent, 50 °C, 12 h | CF <sub>3</sub><br>SPh |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Entry                | Solvent                                                                                                                                      | Yield (%)              |
| 1                    | DMA                                                                                                                                          | ND                     |
| 2                    | DMF                                                                                                                                          | 56                     |
| 3                    | NMP                                                                                                                                          | 31                     |
| 4                    | DME                                                                                                                                          | ND                     |
| 5                    | THF                                                                                                                                          | ND                     |
| 6                    | 1,4-Dioxane                                                                                                                                  | ND                     |
| 7                    | DCM                                                                                                                                          | ND                     |
| 8                    | CH <sub>3</sub> CN                                                                                                                           | ND                     |
| 9                    | Toluene                                                                                                                                      | ND                     |
| 10                   | CH <sub>3</sub> OH                                                                                                                           | 6                      |

Unless otherwise noted, the reaction conditions were as follows: 1a (0.10 mmol, 1.0 equiv), 2a (0.15 mmol, 1.5 equiv), NiBr<sub>2</sub> (10 mol%), dtbpy (12 mol%), Mn (0.20 mmol, 2.0 equiv), TBAI (0.15 mmol, 1.5 equiv), **Solvent** (1.0 mL), 50 °C, 12 h. Yield was determined by <sup>19</sup>F NMR spectroscopy using PhCF<sub>3</sub> as an internal standard.

## Table S3. Optimization of Ni-Catalysts

| CF<br>L<br>1a | F3 Ni Source (10 mol%)<br>dtbpy (12 mol%)<br>TBAI (1.5 equiv)   Br +   PhSO <sub>2</sub> SPh Mn (2.0 equiv)<br>DMF, 50 °C, 12 h | SPh<br>3  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------|-----------|
| Entry         | Ni Source                                                                                                                       | Yield (%) |
| 1             | NiCl <sub>2</sub>                                                                                                               | 27        |
| 2             | NiBr <sub>2</sub>                                                                                                               | 56        |
| 3             | Nil <sub>2</sub>                                                                                                                | 51        |
| 4             | NiCl <sub>2</sub> •DME                                                                                                          | 51        |
| 5             | NiBr <sub>2</sub> •DME                                                                                                          | 47        |
| 6             | Ni(BF <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                                                            | 51        |
| 7             | Ni(NO <sub>3</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                                                            | ND        |
| 8             | Ni(ClO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                                                           | 59        |
| 9             | Ni(OTf) <sub>2</sub>                                                                                                            | 45        |
| 10            | Ni(OAc) <sub>2</sub>                                                                                                            | 36        |
| 11            | Ni(acac) <sub>2</sub>                                                                                                           | 39        |
| 12            | Ni(PPh <sub>3</sub> ) <sub>2</sub> Br <sub>2</sub>                                                                              | 46        |

Unless otherwise noted, the reaction conditions were as follows: 1a (0.10 mmol, 1.0 equiv), 2a (0.15 mmol, 1.5 equiv), **Ni Source** (10 mol%), dtbpy (12 mol%), Mn (0.20 mmol, 2.0 equiv), TBAI (0.15 mmol, 1.5 equiv), DMF (1.0 mL), 50 °C, 12 h. Yield was determined by <sup>19</sup>F NMR spectroscopy using PhCF<sub>3</sub> as an internal standard.

# **Table S4. Optimization of Reductants**



Unless otherwise noted, the reaction conditions were as follows: 1a (0.10 mmol, 1.0 equiv), 2a (0.15 mmol, 1.5 equiv), NiBr<sub>2</sub> (10 mol%), dtbpy (12 mol%), **Reductant** (0.20 mmol, 2.0 equiv), TBAI (0.15 mmol, 1.5 equiv), DMF (1.0 mL), 50 °C, 12 h. Yield was determined by <sup>19</sup>F NMR spectroscopy using PhCF<sub>3</sub> as an internal standard.

# **Table S5. Optimization of Temperature**

| CF <sub>3</sub><br>Br<br>1a | + PhSO <sub>2</sub> SPh<br>2a<br>NiBr <sub>2</sub> (10 mol%)<br>dtbpy (12 mol%)<br>TBAI (1.5 equiv)<br>Mn (2.0 equiv)<br>DMF, <b>T</b> , 12 h | CF <sub>3</sub><br>SPh |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Entry                       | T (°C)                                                                                                                                        | Yield (%)              |
| 1                           | 30                                                                                                                                            | ND                     |
| 2                           | 40                                                                                                                                            | 50                     |
| 3                           | 50                                                                                                                                            | 56                     |
| 4                           | 60                                                                                                                                            | 53                     |
| 5                           | 70                                                                                                                                            | 45                     |

Unless otherwise noted, the reaction conditions were as follows: 1a (0.10 mmol, 1.0 equiv), 2a (0.15 mmol, 1.5 equiv), NiBr<sub>2</sub> (10 mol%), dtbpy (12 mol%), Mn (0.20 mmol, 2.0 equiv), TBAI (0.15 mmol, 1.5 equiv), DMF (1.0 mL), **T**, 12 h. Yield was determined by <sup>19</sup>F NMR spectroscopy using PhCF<sub>3</sub> as an internal standard.

# Table S6. Adjustment of Solvent

| CF <sub>3</sub><br>Br | + PhSO <sub>2</sub> SPh<br>2a<br>NiBr <sub>2</sub> (10 mol%)<br>dtbpy (12 mol%)<br>TBAI (1.5 equiv)<br>Mn (2.0 equiv)<br>DMF, 50 °C, 12 h | CF <sub>3</sub><br>SPh |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Entry                 | DMF (x mL)                                                                                                                                | Yield (%)              |
| 1                     | 0.5                                                                                                                                       | 47                     |
| 2                     | 0.8                                                                                                                                       | 44                     |
| 3                     | 1.0                                                                                                                                       | 53                     |
| 4                     | 1.2                                                                                                                                       | 56                     |
| 5                     | 1.5                                                                                                                                       | 51                     |
| 6                     | 2.0                                                                                                                                       | 49                     |

Unless otherwise noted, the reaction conditions were as follows: 1a (0.10 mmol, 1.0 equiv), 2a (0.15 mmol, 1.5 equiv), NiBr<sub>2</sub> (10 mol%), dtbpy (12 mol%), Mn (0.20 mmol, 2.0 equiv), TBAI (0.15 mmol, 1.5 equiv), **DMF (x mL)**, 50 °C, 12 h. Yield was determined by <sup>19</sup>F NMR spectroscopy using PhCF<sub>3</sub> as an internal standard.

# Table S7. Quant of 1a and 2a

| CF <sub>3</sub><br>Br | + PhSO <sub>2</sub> SPh<br><b>2a</b> | Ni(ClO <sub>4</sub> )₂•6H <sub>2</sub> O (10 mol%)<br>L1 (12 mol%)<br>TBAI (1.5 equiv)<br>Mn (2.0 equiv)<br>DMF, 50 °C, 12 h | CF <sub>3</sub><br>SPh | $\overset{Ph}{\underset{N}{\underset{N}{\underset{N}{\overset{Ph}{\underset{N}{\underset{N}{\overset{Ph}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\atopN}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}}{\underset{N}{\underset{N}{\underset{N}}{\underset{N}}{\underset{N}}{\underset{N}}}}}}}}}}$ |
|-----------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entry                 |                                      | x : y                                                                                                                        |                        | Yield (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                     |                                      | 1.0 : 2.0                                                                                                                    |                        | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2                     |                                      | 1.0 : 1.5                                                                                                                    |                        | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3                     |                                      | 1.0 : 1.0                                                                                                                    |                        | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4                     |                                      | 1.5 : 1.0                                                                                                                    |                        | 78 (78 <sup>a</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5                     |                                      | 2.0 : 1.0                                                                                                                    |                        | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Unless otherwise noted, the reaction conditions were as follows: **1a** (0.**x** mmol, **x** equiv), **2a** (0.**y** mmol, **y** equiv), Ni(ClO<sub>4</sub>)<sub>2</sub>•6H<sub>2</sub>O (10 mol%), **L**<sub>1</sub> (12 mol%), Mn (0.20 mmol, 2.0 equiv), TBAI (0.15 mmol, 1.5 equiv), DMF (1.0 mL), 50 °C, 12 h. Yield was determined by <sup>19</sup>F NMR spectroscopy using PhCF<sub>3</sub> as an internal standard.<sup>a</sup>Isolated yield.

# Table S8. Quant of Ni Source and Ligand

| CF <sub>3</sub><br>Br<br>1a | + PhSO <sub>2</sub> SPh<br><b>2a</b> | Ni(ClO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O ( <b>x</b> mol%)<br>L1 ( <b>y</b> mol%)<br>TBAI (1.5 equiv)<br>Mn (2.0 equiv)<br>DMF, 50 °C, 12 h | CF <sub>3</sub><br>SPh | $\overset{Ph}{\swarrow}_{N}\overset{Ph}{\underset{L1}{\checkmark}}$ |
|-----------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------|
| Entry                       |                                      | х:у                                                                                                                                                     |                        | Yield (%)                                                           |
| 1                           |                                      | 5:6                                                                                                                                                     |                        | 24                                                                  |
| 2                           |                                      | 7.5 : 9                                                                                                                                                 |                        | 78                                                                  |
| 3                           |                                      | 10 : 10                                                                                                                                                 |                        | 92 (91 <sup>a</sup> )                                               |
| 4                           |                                      | 10 :12                                                                                                                                                  |                        | 81                                                                  |
| 5                           |                                      | 10 : 15                                                                                                                                                 |                        | 73                                                                  |
| 6                           |                                      | 15 : 18                                                                                                                                                 |                        | 76                                                                  |

Unless otherwise noted, the reaction conditions were as follows: **1a** (0.15 mmol, 1.5 equiv), **2a** (0.10 mmol, 1.0 equiv), Ni(ClO<sub>4</sub>)<sub>2</sub>•6H<sub>2</sub>O (**x** mol%), L**1** (**y** mol%), Mn (0.20 mmol, 2.0 equiv), TBAI (0.15 mmol, 1.5 equiv), DMF (1.0 mL), 50 °C, 12 h. Yield was determined by <sup>19</sup>F NMR spectroscopy using PhCF<sub>3</sub> as an internal standard.<sup>*a*</sup>Isolated yield.

# Table S9. Quant of Additive



Unless otherwise noted, the reaction conditions were as follows: **1a** (0.15 mmol, 1.5 equiv), **2a** (0.10 mmol, 1.0 equiv), Ni(ClO<sub>4</sub>)<sub>2</sub>•6H<sub>2</sub>O (10 mol%), **L1** (10 mol%), Mn (0.20 mmol, 2.0 equiv), TBAI (0.x mmol, x equiv), DMF (1.0 mL), 50 °C, 12 h. Yield was determined by <sup>19</sup>F NMR spectroscopy using PhCF<sub>3</sub> as an internal standard.<sup>a</sup>Isolated yield.

# **Table S10. Control Experiments**



Unless otherwise noted, the reaction conditions were as follows: **1a** (0.15 mmol, 1.5 equiv), **2a** (0.10 mmol, 1.0 equiv), Ni(ClO<sub>4</sub>)<sub>2</sub>•6H<sub>2</sub>O (10 mol%), **L1** (10 mol%), Mn (0.20 mmol, 2.0 equiv), TBAI (0.1 mmol, 1.0 equiv), DMF (1.0 mL), 50 °C, 12 h. Yield was determined by <sup>19</sup>F NMR spectroscopy using PhCF<sub>3</sub> as an internal standard.

# **Table S11. Optimization of The Sulfuration Reagents**



## **General Procedures**

## Synthesis of the substrates



## General procedure A for preparation of trifluoromethylated alkyl bromides

All of trifluoromethylated alkyl bromides S1-S7, S9-S15 were prepared through the reported procedures.<sup>1-2</sup>

$$\mathbb{R} \longrightarrow \mathbb{O} \mathbb{H} \xrightarrow{\text{DMSO} (2.0 \text{ equiv})}_{\begin{array}{c} (\text{COCI})_2 (1.2 \text{ equiv}) \\ (1.2 \text{ equiv}) \\ \hline \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\mathbb{O} \mathbb{H}} \mathbb{H} \xrightarrow{\begin{array}{c} 1) \text{TMSCF}_3 (1.2 \text{ equiv}) \\ \hline \text{TBAF} (0.013 \text{ equiv}) \\ \hline \text{THF, 0 \ ^\circ \text{C} to r.t.} \\ \hline \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\mathbb{O} \mathbb{H}} \mathbb{H} \xrightarrow{\begin{array}{c} 1) \text{TMSCF}_3 (1.2 \text{ equiv}) \\ \hline \text{THF, 0 \ ^\circ \text{C} to r.t.} \\ \hline \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}} \xrightarrow{\begin{array}{c} \text{Br} \\ \text{CH}_2 \text{Cl}_2, -78 \ ^\circ \text{C} \end{array}$$

Swern oxidation of the alcohol. DMSO (2.84 mL, 40 mmol, 2.0 equiv) was added slowly to a solution of oxalyl chloride (2.03 mL, 24 mmol, 1.2 equiv) in  $CH_2Cl_2$  (150 mL) at -78 °C. The resulting mixture was allowed to stir for 30 min. Next, a solution of the alcohol (20 mmol) in  $CH_2Cl_2$  (30 mL) was added over 5 min to the mixture. The resulting mixture was stirred at -78 °C for 45 min, and then  $Et_3N$  (11.1 mL, 80 mmol, 4.0 equiv) was added in one portion. The mixture was allowed to warm to r.t., and then it was stirred for 2 h. Next, an aqueous saturated solution of  $NH_4Cl$  (30 mL) was added to quench the reaction. The resulting mixture was extracted with  $CH_2Cl_2$  (3 × 70 mL), and the combined

organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated. The crude product was purified by flash chromatography on silica gel.

**Trifluoromethylation of the aldehyde.** A solution of TBAF (1.0 M in THF, 0.20 mL, 0.20 mmol, 0.013 equiv) was added over 3 min to a solution of the aldehyde (15 mmol) and trifluoromethyltrimethylsilane (2.66 mL, 18 mmol, 1.2 equiv) in THF (20 mL) at 0 °C (CAUTION: very exothermic). The reaction mixture was allowed to warm to r.t., and it was stirred for 1 h. Next, an aqueous solution of 1 N HCl (30 mL) was added, and the mixture was allowed to stir at r.t. for another 2 h. Then, the mixture was extracted with  $CH_2Cl_2$  (3 × 50 mL), and the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated. The crude product was purified by flash chromatography on silica gel.

**Bromination of the alcohol.** Triphenylphosphite (4.03 g, 3.41 mL, 1.3 equiv) was added over 5 min to a solution of N-bromosuccinimide (2.31 g, 13 mmol, 1.3 equiv) in  $CH_2Cl_2$  (10 mL) at 0 °C (CAUTION: exothermic). Next, a solution of the alcohol (10 mmol) in  $CH_2Cl_2$  (12 mL) was added to the mixture at 0 °C. The reaction mixture was heated to 40 °C and then stirred for 12 h. Next, the solvent was evaporated, and the product was purified by flash chromatography on silica gel.

### General procedure B for preparation of S8

The trifluoromethyl alkyl chloride S8 was synthesized by the following methods.<sup>3</sup>



Synthesis of the trifluoromethyl alcohol. Following a slightly modified procedure, a 10 mL pressure tube was charged with pyrrolidin-2-one (703 mg, 6 mmol), 2,2,2-trifluoro-1-methoxyethanol (0.77 mL, 6.6 mmol, 1.1 equiv), 4Å MS (1 g) and dioxane (8 mL). The tube was sealed under Argon atmosphere. The resulting mixture was heated at 100  $^{\circ}$ C for 5 d and then cooled down to r.t., The mixture was filtered over Celite and the cake was washed with ether (3 × 20 mL). The volatiles were removed under reduced pressure and the resulting solid was recrystallized in chloroform to afford white crystals.

**Chlorination of the alcohol.**  $SOCl_2$  (357 mg, 7.5 mmol, 2.5 equiv) was added over 10 min to a solution of alcohol (540 mg, 3 mmol, 1.0 equiv) in  $CH_2Cl_2$  (10 mL) at 0 °C. The reaction mixture stirred at r.t. for 12 h. Next, the solvent was evaporated, and the product was purified by flash chromatography on silica gel.



#### 1-(2,2,2-trifluoro-1-hydroxyethyl)pyrrolidin-2-one

<u><sup>1</sup>H NMR (400 MHz, Chloroform-*d*)</u> δ 5.78 (q, *J* = 5.8 Hz, 1H), 3.76 – 3.65 (m, 1H), 3.53 – 3.40 (m, 1H), 2.54 – 2.30 (m, 2H), 2.19 – 1.98 (m, 2H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 177.98, 122.76 (q, *J* = 283.3 Hz), 72.36 (q, *J* = 36.0 Hz), 42.84, 31.13, 18.33.

#### <sup>19</sup>F NMR (376 MHz, Chloroform-d) δ -78.55 (d, J = 6.3 Hz).

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_6H_9F_3NO_2^+$  [M + H<sup>+</sup>]: 184.0580, found: 184.0585.



#### 1-(1-chloro-2,2,2-trifluoroethyl)pyrrolidin-2-one

<sup>1</sup><u>H NMR (400 MHz, Chloroform-*d*)</u>  $\delta$  6.49 (q, *J* = 6.1 Hz, 1H), 3.70 – 3.59 (m, 1H), 3.55 – 3.45 (m, 1H), 2.55 – 2.35 (m, 2H), 2.20 – 2.10 (m, 2H). <sup>13</sup><u>C NMR (101 MHz, Chloroform-*d*)</u>  $\delta$  175.64, 121.42 (q, *J* = 280.7 Hz), 63.00 (q, *J* = 39.2 Hz), 42.25, 29.40, 17.41. <sup>19</sup><u>F NMR (376 MHz, Chloroform-*d*)</u>  $\delta$  -74.96 (d, *J* = 6.1 Hz). HRMS (ESI): m/z calcd. for C<sub>6</sub>H<sub>7</sub>ClF<sub>3</sub>NNaO<sup>+</sup> [M + Na<sup>+</sup>]: 224.0060, found: 224.0057.

### General procedure C for preparation of difluoromethyl alkyl bromide

The difluoromethyl alkyl bromide S16 was synthesized by the following methods.



**Difluoromethylation of the aldehyde.** An oven-dried 100 mL flask, equipped with a stirring bar, was charged with CsF (213 mg, 1.4 mmol, 14 mol%), and it was evacuated and backfilled with Argon for three times. A solution of the aldehyde (1.34 g, 10 mmol, 1.0 equiv) and difluoromethyltrimethylsilane (2.48 g, 20 mmol, 2.0 equiv) in DMF (50 mL) was added to the flask and the reaction mixture was stirred at r.t. for 9 h. Next, an aqueous solution of TBAF (1.0 M in THF, 20 mL, 20 mmol, 2.0 equiv) was added, and the mixture was allowed to stir at r.t. for another 1 h. Then, the mixture was extracted with  $Et_2O$  (3 × 30 mL), and the combined organic layers were dried over  $Na_2SO_4$  and concentrated. The crude product was purified by flash chromatography on silica gel.

**Bromination of the alcohol.** Triphenylphosphite (1.5 g, 4.8 mmol, 1.6 equiv) was added over 5 min to a solution of N-bromosuccinimide (854 mg, 4.8 mmol, 1.6 equiv) in  $CH_2Cl_2$  (10 mL) at 0 °C (CAUTION: exothermic). Next, a solution of the alcohol (559 mg, 3 mmol, 1.0 equiv) in  $CH_2Cl_2$  (10 mL) was added to the mixture at 0 °C. The reaction mixture was heated to 55 °C and then stirred for 12 h. Next, the solvent was evaporated, and the product was purified by flash chromatography on silica gel.



#### (3-bromo-4,4-difluorobutyl)benzene

<u><sup>1</sup>H NMR (500 MHz, Chloroform-*d*</u>) δ 7.39 – 7.27 (m, 2H), 7.25 – 7.18 (m, 3H), 5.80 (td, *J* = 55.9, 3.6 Hz, 1H), 3.93 – 3.79 (m, 1H), 3.00 – 2.91 (m, 1H), 2.79 – 2.70 (m, 1H), 2.32 – 2.20 (m, 1H), 2.18 – 2.05 (m, 1H).

<sup>13</sup>C NMR (126 MHz, Chloroform-d) δ 139.87, 128.80, 128.67, 126.63, 114.87 (t, *J* = 245.6 Hz), 49.94 (t, *J* = 24.1 Hz),

32.74, 32.45 (t, *J* = 2.7 Hz).

<sup>19</sup>F NMR (471 MHz, Chloroform-d) δ -117.38 (ddd, J = 276.9, 55.8, 10.9 Hz), -122.24 (ddd, J = 277.1, 56.0, 13.0 Hz). HRMS (ESI): m/z calcd. for C<sub>10</sub>H<sub>11</sub>BrF<sub>2</sub>Na<sup>+</sup> [M + Na<sup>+</sup>]: 272.0880, found: 272.0868.

### General procedure D for preparation of thiosulfonates

All of thiosulfonates **S17-S26**, **S28**, **S29** were prepared through the reported procedures.<sup>4</sup> The substrate **S27** was synthesized according to the reported literature with modifications.

An oven-dried 100 mL flask, equipped with a stirring bar, was charged with benzenesulfonyl hydrazide (1.03 g, 6 mmol, 1.5 equiv), thiol (4 mmol, 1.0 equiv), NaI (300 mg, 2 mmol, 0.5 equiv) and CH<sub>3</sub>CN (25 mL). Then TBHP (901 mg, 10 mmol, 2.5 equiv) was added to the reaction mixture and it was stirred at r.t. for 12 h. After removal of the solvent, the crude product was purified by flash chromatography on silica gel.



#### S-(2,4-dimethylphenyl) benzenesulfonothioate

The product was isolated by column chromatography as white solid (98% yield).

<u>**'H NMR (600 MHz, Chloroform-***d*)</u>  $\delta$  7.61 – 7.55 (m, 3H), 7.47 – 7.41 (m, 2H), 7.19 (d, *J* = 7.8 Hz, 1H), 7.05 (s, 1H), 6.96 (d, *J* = 7.9 Hz, 1H), 2.34 (s, 3H), 2.08 (s, 3H).

<sup>13</sup>C NMR (151 MHz, Chloroform-d) δ 144.06, 143.59, 142.73, 138.32, 133.68, 131.96, 129.02, 127.93, 127.59, 123.79, 21.54, 20.60.

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{14}H_{14}NaO_2S_2^+$  [M + Na<sup>+</sup>]: 301.0327, found: 301.0335.

### General procedure E for preparation of (3-bromobutyl)benzene S30

The secondary alkyl bromide S30 was synthesized by the following methods.



**Bromination of the alcohol.** Triphenylphosphine (1.12 g, 3.6 mmol, 1.6 equiv) was added to a solution of Nbromosuccinimide (854 mg, 3.6 mmol, 1.2 equiv) in  $CH_2Cl_2$  (10 mL) at 0 °C (CAUTION: exothermic). Next, a solution of the alcohol (450 mg, 3 mmol, 1.0 equiv) in  $CH_2Cl_2$  (20 mL) was added to the mixture at 0 °C. The reaction mixture then stirred for 12 h. Next, the solvent was evaporated, and the product was purified by flash chromatography on silica gel.

# General Procedure for Synthesis of Trifluoromethylated Thioethers via Ni-

## Catalyzed Reductive C–S Coupling.



An oven-dried 10 mL glass schlenck, equipped with a stirring bar, was charged with *S*-phenyl benzenesulfonothioate **2a** (25 mg, 0.10 mmol, 1.0 equiv), Mn (11 mg, 0.20 mmol, 2.0 equiv), Ni(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O (3.7 mg, 0.01 mmol, 10 mol%), 4,7-diphenyl-1,10-phenanthroline (3.3 mg, 0.01 mmol, 10 mol%), TBAI (36.9 mg, 0.10 mmol, 1.0 equiv). The mixture was evacuated and backfilled with Argon for three times. Then alkyl bromide **1a** (40 mg, 0.15 mmol, 1.5 equiv) and dry DMF (1.0 mL) was added under Argon and the mixture was allowed to stir for 12 h at 50 °C. After cooling to room temperature, the reaction mixture was then diluted with EtOAc (~20 mL) and filtered through a pad of celite. The filtrate was added brine (20 mL) and extracted with EtOAc (3×15 mL), the combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtrated and concentrated under vacuum. The residue was then purified by flash column chromatography to give desired products.



#### phenyl(1,1,1-trifluoro-4-phenylbutan-2-yl)sulfane.

The product was isolated by column chromatography as colorless oil (94% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*)</u> δ 7.49 – 7.44 (m, 2H), 7.33 – 7.26 (m, 5H), 7.23 – 7.19 (m, 1H), 7.19 – 7.15 (m, 2H), 3.34 – 3.25 (m, 1H), 3.13 – 3.05 (m, 1H), 2.90 – 2.82 (m, 1H), 2.28 – 2.19 (m, 1H), 1.95 – 1.87 (m, 1H).

<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 140.20, 133.42, 133.16, 129.28, 128.77, 128.67, 128.44, 126.85 (q, *J* = 279.0 Hz), 126.56, 51.63 (q, *J* = 28.6 Hz), 32.43, 29.90.

<sup>19</sup>F NMR (565 MHz, Chloroform-*d*) δ -70.08 (d, J = 11.1 Hz).

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{16}H_{15}F_3NaS^+$  [M + Na<sup>+</sup>]: 319.0739, found: 319.0721.



#### phenyl(1,1,1-trifluoro-4-(4-methoxyphenyl)butan-2-yl)sulfane.

The product was isolated by column chromatography as colorless oil (74% yield).

<u><sup>1</sup>H NMR (400 MHz, Chloroform-*d*)</u> δ 7.53 – 7.43 (m, 2H), 7.37 – 7.29 (m, 3H), 7.09 (d, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 3.80 (s, 3H), 3.36 – 3.21 (m, 1H), 3.09 – 2.98 (m, 1H), 2.90 – 2.75 (m, 1H), 2.26 – 2.13 (m, 1H), 1.95 – 1.81 (m, 1H).

<u>1<sup>3</sup>C NMR (151 MHz, Chloroform-*d*)</u> δ 158.30, 133.36, 133.23, 132.16, 129.62, 129.27, 128.39, 126.88 (q, *J* = 278.9 Hz), 114.15, 55.40, 51.46 (q, *J* = 28.5 Hz), 31.49, 30.11.

### <u><sup>19</sup>F NMR (565 MHz, Chloroform-*d*)</u> δ -70.11 (d, *J* = 9.9 Hz).

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{17}H_{18}F_3OS^+$  [M + H<sup>+</sup>]: 327.1025, found: 327.1003.



### (4-(4-chlorophenyl)-1,1,1-trifluorobutan-2-yl)(phenyl)sulfane.

The product was isolated by column chromatography as colorless oil (48% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-d)</u> δ 7.51 – 7.44 (m, 2H), 7.37 – 7.28 (m, 3H), 7.26 – 7.23 (m, 2H), 7.12 – 7.04 (m,

 $2H), \ 3.30-3.22 \ (m, 1H), \ 3.09-3.03 \ (m, 1H), \ 2.88-2.80 \ (m, 1H), \ 2.24-2.16 \ (m, 1H), \ 1.92-1.87 \ (m, 1H).$ 

<u><sup>13</sup>C NMR (151 MHz, Chloroform-*d*)</u> δ 138.62, 133.39, 132.99, 132.33, 130.00, 129.35, 128.87, 128.54, 126.73 (q, *J* = 279.0 Hz), 51.55 (q, *J* = 28.7 Hz), 31.77, 29.89.

<u><sup>19</sup>F NMR (565 <u>MHz</u>, Chloroform-*d*)</u> δ -70.09 (d, *J* = 12.1 Hz).

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{16}H_{15}ClF_3S^+$  [M + H<sup>+</sup>]: 331.0530, found: 331.0518.



### phenyl(2,2,2-trifluoro-1-(naphthalen-2-yl)ethyl)sulfane.

The product was isolated by column chromatography as white solid (94% yield).

<u><sup>1</sup>H NMR (500 MHz, Chloroform-*d*)</u> δ 7.95 (s, 1H), 7.92 – 7.85 (m, 3H), 7.64 (d, *J* = 8.7 Hz, 1H), 7.58 – 7.54 (m, 2H), 7.53 – 7.50 (m, 2H), 7.36 – 7.28 (m, 2H), 7.26 – 7.22 (m, 1H), 5.36 – 5.28 (m, 1H).

<sup>13</sup>C NMR (126 MHz, Chloroform-*d*) δ137.15, 133.87, 132.86, 130.13, 129.23, 129.21, 129.16, 128.41, 127.90, 127.62, 127.58, 127.29, 127.05, 125.75, 123.64 (q, *J* = 278.3 Hz), 47.64 (q, *J* = 34.2 Hz).

<sup>19</sup>F NMR (471 MHz, Chloroform-*d*) δ -70.02 (d, *J* = 9.0 Hz).

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{18}H_{14}F_3S^+$  [M + H<sup>+</sup>]: 319.0763, found: 319.0779.



(7-chloro-1,1,1-trifluoroheptan-2-yl)(phenyl)sulfane.

The product was isolated by column chromatography as colorless oil (71% yield).

<u><sup>1</sup>H NMR (500 MHz, Chloroform-d)</u> δ 7.51 (d, J = 7.5 Hz, 2H), 7.35 – 7.31 (m, 3H), 3.55 (t, J = 6.6 Hz, 2H), 3.33 –

3.27 (m, 1H), 1.95 - 1.88 (m, 1H), 1.87 - 1.76 (m, 3H), 1.68 - 1.41 (m, 4H).

<sup>13</sup>C NMR (126 MHz, Chloroform-*d*)  $\delta$  133.62, 133.36, 129.31, 128.53, 126.82 (q, *J* = 279.0 Hz), 52.83 (q, *J* = 28.4 Hz),

44.98, 32.33, 28.39, 26.42, 25.99.

<u><sup>19</sup>F NMR (471 MHz, Chloroform-*d*)</u> δ -70.25 (d, *J* = 11.9 Hz).

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{13}H_{17}ClF_3S^+$  [M + H<sup>+</sup>]: 297.0686, found: 297.0696.



### 5,5,5-trifluoro-4-(phenylthio)pentan-1-ol.

The product was isolated by column chromatography as colorless oil (70% yield).

<u><sup>1</sup>H NMR (500 MHz, Chloroform-*d*)</u> δ 7.55 – 7.49 (m, 2H), 7.38 – 7.29 (m, 3H), 3.77 – 3.66 (m, 2H), 3.44 – 3.33 (m, 1H), 2.12 – 2.00 (m, 2H), 1.87 – 1.74 (m, 1H), 1.74 – 1.65 (m, 1H), 1.46 (s, 1H).

<u>1<sup>3</sup>C NMR (126 MHz, Chloroform-*d*)</u> δ 133.56, 133.37, 129.32, 128.53, 126.84 (q, *J* = 279.0 Hz), 62.33, 53.17, 52.83

(q, J = 28.6 Hz), 29.72, 25.36.

### **<u>19</u>F NMR (471 MHz, Chloroform-***d***)</u> δ -70.38 (d,** *J* **= 8.6 Hz).**

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{11}H_{13}F_3NaOS^+$  [M + Na<sup>+</sup>]: 273.0531, found: 273.0549.



#### phenyl(1,1,1-trifluorododecan-2-yl)sulfane.

The product was isolated by column chromatography as colorless oil (72% yield).

<u><sup>1</sup>H NMR (500 MHz, Chloroform-*d*</u>) δ 7.55 – 7.50 (m, 2H), 7.36 – 7.28 (m, 3H), 3.36 – 3.25 (m, 1H), 1.95 – 1.85 (m, 1H), 1.81 – 1.76 (m, 1H), 1.67 – 1.49 (m, 2H), 1.39 – 1.23 (m, 14H), 0.90 (t, *J* = 6.8 Hz, 3H).

<u><sup>13</sup>C NMR (126 MHz, Chloroform-*d*)</u> δ 133.67, 133.58, 129.24, 128.40, 126.96 (q, *J* = 279.1 Hz), 52.97 (q, *J* = 28.2 Hz), 32.07, 29.76, 29.68, 29.50, 29.47, 29.20, 28.55, 26.73, 22.85, 14.26.

### **<u>19</u>F NMR (471 MHz, Chloroform-***d***)</u> δ -70.36 (d,** *J* **= 9.1 Hz).**

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{18}H_{28}F_3S^+$  [M + H<sup>+</sup>]: 333.1858, found: 333.1874.



### (3-cyclohexyl-1,1,1-trifluoropropan-2-yl)(phenyl)sulfane.

The product was isolated by column chromatography as colorless oil (40% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*)</u> δ 7.51 (d, *J* = 6.2 Hz, 2H), 7.34 – 7.31 (m, 3H), 3.47 – 3.39 (m, 1H), 1.84 – 1.77 (m, 1H), 1.75 – 1.68 (m, 5H), 1.67 – 1.62 (m, 1H), 1.58 – 1.48 (m, 1H), 1.37 – 1.30 (m, 1H), 1.28 – 1.23 (m, 1H), 1.20 – 1.13 (m, 1H), 1.07 – 0.98 (m, 1H), 0.92 – 0.83 (m, 1H).

<u><sup>13</sup>C NMR (151 MHz, Chloroform-*d*)</u> δ 133.64, 133.48, 129.24, 128.44, 127.12 (q, *J* = 278.9 Hz), 50.12 (q, *J* = 28.3 Hz), 35.64, 34.14, 34.04, 31.87, 26.53, 26.33, 26.01.

**<u>19</u>F NMR (565 MHz, Chloroform-***d***) δ -70.46 (d,** *J* **= 11.4 Hz).** 

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{15}H_{20}F_3S^+$  [M + H<sup>+</sup>]: 289.1232, found: 289.1239.



#### 1-(2,2,2-trifluoro-1-(phenylthio)ethyl)pyrrolidin-2-one.

The product was isolated by column chromatography as colorless oil (88% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*)</u> δ 7.48 – 7.45 (m, 2H), 7.34 – 7.31 (m, 3H), 6.07 – 6.01 (m, 1H), 3.75 – 3.68 (m, 1H), 3.47 – 3.42 (m, 1H), 2.43 – 2.35 (m, 1H), 2.27 – 2.19 (m, 1H), 2.07 – 2.03 (m, 1H), 1.96 – 1.91 (m, 1H).

<u><sup>13</sup>C NMR (151 MHz, Chloroform-*d*)</u> δ 175.65, 133.33, 130.32, 129.56, 129.06, 123.54 (q, *J* = 282.5 Hz), 61.09 (q, *J* = 33.4 Hz), 43.48, 30.32, 18.24.

**<u>19</u>F NMR (565 MHz, Chloroform-***d***) δ -70.40 (d,** *J* **= 11.7 Hz).** 

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{12}H_{13}F_3NOS^+$  [M + H<sup>+</sup>]: 276.0664, found: 276.0678.



tert-butyl 4-(3,3,3-trifluoro-2-((4-methoxyphenyl)thio)propyl)piperidine-1-carboxylate

The product was isolated by column chromatography as colorless oil (68% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*)</u> δ 7.45 (d, *J* = 6.9 Hz, 2H), 6.85 (d, *J* = 7.6 Hz, 2H), 4.23 – 3.99 (m, 2H), 3.80 (s, 3H), 3.26 – 3.16 (m, 1H), 2.81 – 2.65 (m, 2H), 2.03 – 1.93 (m, 1H), 1.69 – 1.59 (m, 3H), 1.59 – 1.51 (m, 1H), 1.45 (s, 9H), 1.27 – 1.16 (m, 1H), 1.12 – 1.01 (m, 1H).

<u><sup>13</sup>C NMR (151 MHz, Chloroform-*d*)</u> δ 160.48, 154.89, 136.78, 126.95 (q, *J* = 279.1 Hz), 122.84, 114.78, 79.55, 55.46, 50.52 (q, *J* = 28.1 Hz), 44.12, 34.68, 32.69, 30.86, 28.55.

**<u>19</u>F NMR (565 MHz, Chloroform-***d***) δ -70.15 (d,** *J* **= 10.4 Hz).** 

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{20}H_{29}F_3NO_3S^+$  [M + H<sup>+</sup>]: 420.1815, found: 420.1808.



#### tert-butyldiphenyl(4,4,4-trifluoro-3-((4-methoxyphenyl)thio)butoxy)silane.

The product was isolated by column chromatography as colorless oil (68% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*)</u> δ 7.72 (d, *J* = 8.1 Hz, 2H), 7.68 (d, *J* = 7.6 Hz, 2H), 7.50 – 7.39 (m, 8H), 6.87 – 6.81 (m, 2H), 4.21 – 4.15 (m, 1H), 3.92 – 3.87 (m, 1H), 3.82 (s, 3H), 3.75 – 3.67 (m, 1H), 2.21 – 2.14 (m, 1H), 1.68 – 1.60 (m, 1H), 1.08 (s, 9H).

<sup>13</sup>C NMR (151 MHz, Chloroform-d) δ 160.25, 136.40, 135.67, 133.57, 133.42, 129.96, 129.92, 127.91, 127.28 (q, J = 278.7 Hz), 123.55, 114.72, 59.66, 55.43, 49.80 (q, J = 28.4 Hz), 31.17, 26.92, 19.32.

**<u>19</u>F NMR (565 MHz, Chloroform-***d***) δ -70.16 (d,** *J* **= 9.4 Hz).** 

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{27}H_{32}F_3O_2SSi^+$  [M + H<sup>+</sup>]: 505.1839, found: 505.1863.



### 2-methyl-5-(4,4,4-trifluoro-3-((4-methoxyphenyl)thio)butyl)furan.

The product was isolated by column chromatography as yellow oil (75% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*</u>) δ 7.49 (d, *J* = 8.3 Hz, 2H), 6.85 (d, *J* = 8.2 Hz, 2H), 5.96 – 5.81 (m, 2H), 3.81 (s, 3H), 3.23 – 3.15 (m, 1H), 3.06 – 2.99 (m, 1H), 2.98 – 2.90 (m, 1H), 2.25 (s, 3H), 2.24 – 2.17 (m, 1H), 1.86 – 1.77 (m,

1H).

<u>1<sup>3</sup>C NMR (151 MHz, Chloroform-*d*)</u> δ 160.41, 152.13, 151.07, 136.77, 126.94 (q, *J* = 279.0 Hz), 123.05, 114.71, 106.72, 106.05, 55.45, 52.51 (q, *J* = 28.1 Hz), 26.86, 25.01, 13.63.

<u><sup>19</sup>F NMR (565 MHz, Chloroform-*d*)</u> δ -70.02 (d, *J* = 12.4 Hz).

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{16}H_{18}F_3O_2S^+$  [M + H<sup>+</sup>]: 331.0974, found: 331.0978.



### 5,5,5-trifluoro-4-((4-methoxyphenyl)thio)pentyl 4-methyloxazole-2-carboxylate.

The product was isolated by column chromatography as colorless oil (76% yield).

<sup>1</sup>H NMR (600 MHz, Chloroform-d) δ 8.77 (s, 1H), 7.46 (d, J = 8.4 Hz, 2H), 6.82 (d, J = 8.4 Hz, 2H), 4.33 (t, J = 6.2 Hz, 2H), 3.78 (s, 3H), 3.23 – 3.14 (m, 1H), 2.76 (s, 3H), 2.29 – 2.20 (m, 1H), 2.03 – 1.93 (m, 2H), 1.70 – 1.63 (m, 1H).
<sup>13</sup>C NMR (151 MHz, Chloroform-d) δ 162.06, 160.92, 160.49, 155.56, 136.80, 126.70 (q, J = 279.1 Hz), 122.55, 122.04, 114.77, 64.47, 55.41, 53.00 (q, J = 28.1 Hz), 25.95, 25.04, 17.44.

<u><sup>19</sup>F NMR (565 MHz, Chloroform-*d*)</u> δ -69.91 (d, *J* = 12.2 Hz).

<u>**HRMS (ESI)**</u>: m/z calcd. for  $C_{17}H_{19}F_3NO_4S^+$  [M + H<sup>+</sup>]: 390.0987, found: 390.0969.



### 4-(phenylthio)-5,5,5-trifluoropentyl ferrocene-1-carboxylate

The product was isolated by column chromatography as brown oil (78% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*)</u> δ 7.50 (d, *J* = 8.6 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 4.82 – 4.76 (m, 2H), 4.44 – 4.39 (m, 2H), 4.30 – 4.25 (m, 2H), 4.23 – 4.17 (m, 5H), 3.80 (s, 3H), 3.27 – 3.18 (m, 1H), 2.29 – 2.22 (m, 1H), 2.07 – 1.93 (m, 2H), 1.74 – 1.66 (m, 1H).

<u>1<sup>3</sup>C NMR (151 MHz, Chloroform-*d*)</u> δ 171.60, 160.28, 136.64, 126.61 (q, *J* = 279.1 Hz), 122.50, 114.61, 71.33, 70.89, 70.06, 70.02, 69.68, 63.13, 55.23, 52.95 (q, *J* = 28.1 Hz), 26.00, 24.95.

<u><sup>19</sup>F NMR (565 MHz, Chloroform-*d*)</u>δ -69.87 (d, *J* = 9.5 Hz).

<u>**HRMS (ESI)**</u>: m/z calcd. for  $C_{23}H_{23}F_3FeNaO_3S^+$  [M + Na<sup>+</sup>]: 5150562, found: 5150565.



### 5,5,5-trifluoro-4-((4-methoxyphenyl)thio)pentyl 2-(5-methoxy-2-methyl-1H-indol-3-yl)acetate

The product was isolated by column chromatography as colorless oil (73% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*</u>) δ 7.83 (s, 1H), 7.43 (d, *J* = 8.8 Hz, 2H), 7.12 (d, *J* = 8.7 Hz, 1H), 6.99 (s, 1H), 6.83 (d, *J* = 8.8 Hz, 2H), 6.77 (d, *J* = 8.7 Hz, 1H), 4.17 – 4.06 (m, 2H), 3.84 (s, 3H), 3.80 (s, 3H), 3.66 (s, 2H), 3.12 – 3.04 (m, 1H), 2.36 (s, 3H), 2.16 – 2.08 (m, 1H), 1.90 – 1.79 (m, 2H), 1.58 – 1.47 (m, 1H).

<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 172.15, 160.44, 154.23, 136.76, 133.61, 130.23, 128.94, 126.74 (q, J = 279.3 Hz), 122.82, 114.78, 111.12, 111.06, 104.35, 100.35, 63.85, 55.95, 55.45, δ53.11 (q, J = 28.4 Hz), 30.57, 25.97, 24.93, 11.86. <sup>19</sup>F NMR (565 MHz, Chloroform-*d*) δ -70.03 (d, J = 12.8 Hz). HRMS (ESI): m/z calcd. for C<sub>24</sub>H<sub>27</sub>F<sub>3</sub>NO<sub>4</sub>S<sup>+</sup> [M + H<sup>+</sup>]: 482.1607, found: 482.1606.



**5,5,5-trifluoro-4-((4-methoxyphenyl)thio)pentyl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate** The product was isolated by column chromatography as white solid (73% yield).

<sup>1</sup>H NMR (500 MHz, Chloroform-*d*) δ 8.15 (d, J = 2.3 Hz, 1H), 8.07 (dd, J = 8.9, 2.3 Hz, 1H), 7.47 (d, J = 8.8 Hz, 2H), 7.00 (d, J = 8.9 Hz, 1H), 6.82 (d, J = 8.8 Hz, 2H), 4.34 (t, J = 6.1 Hz, 2H), 3.89 (d, J = 6.6 Hz, 2H), 3.76 (s, 3H), 3.26 - 3.15 (m, 1H), 2.75 (s, 3H), 2.31 - 2.23 (m, 1H), 2.22 - 2.16 (m, 1H), 2.05 - 1.96 (m, 2H), 1.72 - 1.63 (m, 1H), 1.08 (d, J = 6.7 Hz, 6H).
<sup>13</sup>C NMR (126 MHz, Chloroform-*d*) δ 167.45, 162.63, 161.94, 161.47, 160.49, 136.81, 132.70, 132.15, 126.72 (q, J = 279.1 Hz), 125.90, 122.56, 121.50, 115.47, 114.77, 112.70, 103.02, 75.76, 64.50, 55.41, 53.03 (q, J = 28.1 Hz), 28.23, 25.99, 25.10, 19.13, 17.58.

### <sup>19</sup>F NMR (471 MHz, Chloroform-*d*) δ -69.98 (d, *J* = 9.1 Hz).

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{28}H_{30}F_3N_2O_4S_2^+$  [M + H<sup>+</sup>]: 579.1594, found: 579.1596.



### (1,1-difluoro-4-phenylbutan-2-yl)(phenyl)sulfane.

The product was isolated by column chromatography as colorless oil (61% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*</u>) δ 7.47 – 7.43 (m, 2H), 7.33 – 7.28 (m, 5H), 7.24 – 7.19 (m, 3H), 5.80 (t, *J* = 56.3 Hz, 1H), 3.20 – 3.11 (m, 1H), 3.09 – 3.02 (m, 1H), 2.89 – 2.81 (m, 1H), 2.23 – 2.14 (m, 1H), 1.90 – 1.80 (m, 1H).

<u>1<sup>3</sup>C NMR (151 MHz, Chloroform-*d*</u>) δ 140.75, 133.17, 133.14, 129.32, 128.69, 128.13, 126.41, 116.69 (t, *J* = 245.8 Hz), 50.77 (t, *J* = 21.3 Hz), 32.60, 28.80.

<sup>19</sup>F NMR (565 MHz, Chloroform-*d*) δ -117.21 (ddd, J = 276.7, 56.1, 11.9 Hz), -123.70 (ddd, J = 275.8, 57.3, 18.7 Hz). HRMS (ESI): m/z calcd. for C<sub>16</sub>H<sub>16</sub>F<sub>2</sub>NaS<sup>+</sup> [M + Na<sup>+</sup>]: 301.0833, found: 301.0814.



### p-tolyl(1,1,1-trifluoro-4-phenylbutan-2-yl)sulfane.

The product was isolated by column chromatography as colorless oil (77% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*</u>) δ 7.38 (d, *J* = 7.8 Hz, 2H), 7.28 (t, *J* = 7.5 Hz, 2H), 7.23 – 7.16 (m, 3H), 7.11 (d, *J* = 7.8 Hz, 2H), 3.24 – 3.18 (m, 1H), 3.11 – 3.05 (m, 1H), 2.89 – 2.81 (m, 1H), 2.33 (s, 3H), 2.24 – 2.16 (m, 1H), 1.92 – 1.85 (m, 1H).

<u><sup>13</sup>C NMR (151 MHz, Chloroform-*d*)</u> δ 140.30, 138.84, 134.07, 130.04, 129.28, 128.74, 128.66, 126.90 (q, *J* = 279.0 Hz), 126.52, 51.93 (q, *J* = 28.3 Hz), 32.45, 29.78, 21.27.

<sup>19</sup>F NMR (565 MHz, Chloroform-*d*) δ -69.99 (d, *J* = 10.6 Hz).

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{17}H_{18}F_3S^+$  [M + H<sup>+</sup>]: 311.1076, found: 311.1082.



### (4-methoxyphenyl)(1,1,1-trifluoro-4-phenylbutan-2-yl)sulfane.

The product was isolated by column chromatography as colorless oil (55% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*</u>) δ 7.49 (d, *J* = 8.8 Hz, 2H), 7.36 – 7.30 (m, 2H), 7.25 – 7.21 (m, 3H), 6.87 (d, *J* = 8.8 Hz, 2H), 3.82 (s, 3H), 3.20 – 3.11 (m, 2H), 2.93 – 2.85 (m, 1H), 2.25 – 2.17 (m, 1H), 1.93 – 1.84 (m, 1H).

<u>1<sup>3</sup>C NMR (151 MHz, Chloroform-*d*)</u> δ 160.40, 140.34, 136.68, 128.74, 128.64, 126.92 (q, *J* = 278.9 Hz), 126.51, 122.87, 114.74, 55.45, 52.29 (q, *J* = 28.0 Hz), 32.47, 29.58.

<sup>19</sup>F NMR (565 MHz, Chloroform-*d*)  $\delta$  -69.83 (d, J = 11.6 Hz).

**HRMS (ESI)**: m/z calcd. for  $C_{17}H_{17}F_3NaOS^+$  [M + Na<sup>+</sup>]: 349.0844, found: 349.0822.



### (4-fluorophenyl)(1,1,1-trifluoro-4-phenylbutan-2-yl)sulfane.

The product was isolated by column chromatography as colorless oil (84% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*</u>) δ 7.51 – 7.46 (m, 2H), 7.34 – 7.28 (m, 2H), 7.26 – 7.22 (m, 1H), 7.20 (d, *J* = 7.5 Hz, 2H), 7.05 – 6.97 (m, 2H), 3.24 – 3.15 (m, 1H), 3.14 – 3.06 (m, 1H), 2.91 – 2.83 (m, 1H), 2.27 – 2.19 (m, 1H), 1.93 – 1.84 (m, 1H).

<u><sup>13</sup>C NMR (151 MHz, Chloroform-*d*)</u> δ 163.19 (d, *J* = 249.3 Hz), 140.06, 136.44 (d, *J* = 8.2 Hz), 128.82, 128.64, 127.89 (d, *J* = 3.5 Hz), 126.79 (q, *J* = 279.0 Hz), 126.64, 116.43 (d, *J* = 21.9 Hz), 52.14 (q, *J* = 28.2 Hz), 32.40, 29.59.

<u><sup>19</sup>F NMR (565 MHz, Chloroform-*d*)</u> δ -69.99 (d, *J* = 12.4 Hz), -111.94 - -112.14 (m).

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{16}H_{14}F_4NaS^+$  [M + Na<sup>+</sup>]: 337.0645, found: 337.0651.



### (4-chlorophenyl)(1,1,1-trifluoro-4-phenylbutan-2-yl)sulfane.

The product was isolated by column chromatography as colorless oil (75% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*)</u> δ 7.36 (d, *J* = 8.1 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 2H), 7.25 (d, *J* = 7.9 Hz, 2H), 7.22 (t, *J* = 7.7 Hz, 1H), 7.17 (d, *J* = 7.6 Hz, 2H), 3.25 – 3.19 (m, 1H), 3.09 – 3.04 (m, 1H), 2.88 – 2.80 (m, 1H), 2.27 – 2.19 (m, 1H), 1.93 – 1.86 (m, 1H).

<u><sup>13</sup>C NMR (151 MHz, Chloroform-*d*</u>) δ 139.93, 134.83, 131.49, 129.64, 129.45, 128.82, 128.63, 126.73 (q, *J* = 278.9

Hz), 126.66, 51.70 (q, *J* = 28.7 Hz), 32.34, 29.59.

**<u>19</u>F NMR (565 MHz, Chloroform-***d***)</u> δ -70.01 (d,** *J* **= 8.9 Hz).** 

<u>**HRMS (ESI)**</u>: m/z calcd. for  $C_{16}H_{15}ClF_3S^+$  [M + H<sup>+</sup>]: 331.0530, found: 331.0508.



### (4-bromophenyl)(1,1,1-trifluoro-4-phenylbutan-2-yl)sulfane.

The product was isolated by column chromatography as colorless oil (44% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*)</u> δ 7.55 – 7.50 (m, 4H), 7.33 – 7.28 (m, 2H), 7.25 – 7.18 (m, 3H), 3.37 – 3.29 (m, 1H), 3.15 – 3.09 (m, 1H), 2.94 – 2.87 (m, 1H), 2.31 – 2.23 (m, 1H), 1.99 – 1.90 (m, 1H).

<u><sup>13</sup>C NMR (151 MHz, Chloroform-*d*)</u> δ 140.14, 140.11, 133.72, 132.70, 128.81, 128.69, 127.79, 126.82 (q, *J* = 279.1

Hz), 126.62, 51.55 (q, *J* = 28.5 Hz), 32.42, 29.80.

<sup>19</sup>F NMR (565 MHz, Chloroform-d) δ -70.08 (d, J = 11.4 Hz).

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{16}H_{15}BrF_3S^+$  [M + H<sup>+</sup>]: 375.0024, found: 375.0022.



### (1,1,1-trifluoro-4-phenylbutan-2-yl)(4-(trifluoromethyl)phenyl)sulfane.

The product was isolated by column chromatography as colorless oil (87% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*</u>) δ 7.55 (d, *J* = 8.9 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.33 – 7.28 (m, 2H), 7.26 – 7.23 (m, 1H), 7.20 – 7.16 (m, 2H), 3.43 – 3.35 (m, 1H), 3.12 – 3.05 (m, 1H), 2.92 – 2.84 (m, 1H), 2.35 – 2.27 (m, 1H), 2.00 – 1.91 (m, 1H).

<u><sup>13</sup>C NMR (151 MHz, Chloroform-*d*)</u> δ 139.71, 138.62, 131.82, 129.97 (q, *J* = 33.1 Hz), 128.88, 128.66, 126.78, 126.62 (q, *J* = 279.0 Hz), 126.10 (q, *J* = 3.8 Hz), 123.98 (q, *J* = 272.0 Hz), 50.69 (q, *J* = 29.1 Hz), 32.27, 29.64.

<u><sup>19</sup>F NMR (565 MHz, Chloroform-*d*)</u> δ -62.61 (s), -70.31 (d, *J* = 12.0 Hz).

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{17}H_{14}F_6NaS^+$  [M + Na<sup>+</sup>]: 387.0613, found: 387.0606.



### m-tolyl(1,1,1-trifluoro-4-phenylbutan-2-yl)sulfane.

The product was isolated by column chromatography as colorless oil (68% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*)</u> δ 7.32 – 7.27 (m, 4H), 7.25 – 7.22 (m, 1H), 7.22 – 7.18 (m, 3H), 7.12 (d, *J* = 7.6 Hz, 1H), 3.34 – 3.26 (m, 1H), 3.15 – 3.07 (m, 1H), 2.92 – 2.84 (m, 1H), 2.33 (s, 3H), 2.29 – 2.21 (m, 1H), 1.96 – 1.88 (m, 1H).

<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 140.25, 139.14, 133.87, 132.94, 130.29, 129.23, 129.08, 128.75, 128.71, 126.88
(q, J = 279.1 Hz), 126.56, 51.60 (q, J = 28.4 Hz), 32.41, 29.87, 21.37.

**<sup>19</sup>F NMR (565 MHz, Chloroform-***d***)** δ -70.17 (d, *J* = 10.1 Hz).

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{17}H_{17}F_3NaS^+$  [M + Na<sup>+</sup>]: 333.0895, found: 333.0882.



### (3-methoxyphenyl)(1,1,1-trifluoro-4-phenylbutan-2-yl)sulfane.

The product was isolated by column chromatography as colorless oil (71% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*</u>) δ 7.30 (d, *J* = 7.6 Hz, 2H), 7.25 – 7.18 (m, 4H), 7.05 (d, *J* = 7.8 Hz, 1H), 7.00 (s, 1H), 6.85 (d, *J* = 8.4 Hz, 1H), 3.78 (s, 3H), 3.37 – 3.28 (m, 1H), 3.13 – 3.06 (m, 1H), 2.91 – 2.83 (m, 1H), 2.30 – 2.21 (m, 1H), 1.97 – 1.88 (m, 1H).

<u><sup>13</sup>C NMR (151 MHz, Chloroform-*d*)</u> δ 159.88, 140.14, 134.36, 130.03, 128.75, 128.64, 126.78 (q, *J* = 279.0 Hz), 126.54, 125.22, 118.20, 114.27, 55.44, 51.46 (q, *J* = 28.6 Hz), 32.36, 29.82.

**<u>19</u>F NMR (565 MHz, Chloroform-***d***) δ -70.18 (d,** *J* **= 11.7 Hz).** 

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{17}H_{18}F_3OS^+$  [M + H<sup>+</sup>]: 327.1025, found: 327.1010.



#### (3-chlorophenyl)(1,1,1-trifluoro-4-phenylbutan-2-yl)sulfane.

The product was isolated by column chromatography as colorless oil (70% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*</u>) δ 7.43 (s, 1H), 7.35 – 7.30 (m, 3H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.26 – 7.22 (m, 2H), 7.20 (d, *J* = 7.4 Hz, 2H), 3.35 – 3.27 (m, 1H), 3.13 – 3.06 (m, 1H), 2.91 – 2.83 (m, 1H), 2.32 – 2.24 (m, 1H), 1.97 – 1.88 (m, 1H).

<u>1<sup>3</sup>C NMR (151 MHz, Chloroform-*d*)</u> δ 139.87, 135.23, 134.84, 132.61, 131.00, 130.30, 128.86, 128.66, 128.56, 126.72, 126.68 (q, *J* = 279.1 Hz), 51.47 (q, *J* = 28.7 Hz), 32.34, 29.68.

**<u>19</u>F NMR (565 MHz, Chloroform-***d***)</u> δ -70.21 (d,** *J* **= 10.0 Hz).** 

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{16}H_{14}ClF_3NaS^+$  [M + Na<sup>+</sup>]: 353.0349, found: 353.0329.



### (2-fluorophenyl)(1,1,1-trifluoro-4-phenylbutan-2-yl)sulfane.

The product was isolated by column chromatography as colorless oil (85% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*</u>) δ 7.52 (t, *J* = 7.5 Hz, 1H), 7.38 – 7.29 (m, 3H), 7.26 – 7.20 (m, 3H), 7.14 – 7.08 (m, 2H), 3.49 – 3.37 (m, 1H), 3.19 – 3.11 (m, 1H), 2.94 – 2.85 (m, 1H), 2.29 – 2.21 (m, 1H), 1.96 – 1.87 (m, 1H).

<u>1<sup>3</sup>C NMR (151 MHz, Chloroform-d)</u> δ 162.74 (d, J = 247.3 Hz), 140.36, 136.35, 131.14 (d, J = 8.1 Hz), 128.73, 128.64, 126.71 (q, J = 279.3 Hz), 126.52, 124.81 (d, J = 3.8 Hz), 119.89 (d, J = 17.7 Hz), 116.22 (d, J = 23.0 Hz), 50.51 (q, J = 29.5, 28.8 Hz), 32.53, 30.11.

<u><sup>19</sup>F NMR (565 MHz, Chloroform-*d*)</u> δ -70.38 (d, *J* = 9.1 Hz), -106.53 (s).

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{16}H_{15}F_4S^+$  [M + Na<sup>+</sup>]: 315.0825, found: 315.0804.



### (2,4-dimethylphenyl)(1,1,1-trifluoro-4-phenylbutan-2-yl)sulfane.

The product was isolated by column chromatography as colorless oil (60% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*</u>) δ 7.32 – 7.28 (m, 3H), 7.23 (d, *J* = 7.3 Hz, 1H), 7.20 (d, *J* = 7.6 Hz, 2H), 7.04 (s, 1H), 6.95 (d, *J* = 7.9 Hz, 1H), 3.31 – 3.23 (m, 1H), 3.13 – 3.06 (m, 1H), 2.91 – 2.83 (m, 1H), 2.44 (s, 3H), 2.30 (s, 3H), 2.29 – 2.21 (m, 1H), 2.01 – 1.91 (m, 1H).

<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 140.94, 140.35, 138.67, 134.31, 131.51, 129.11, 128.71, 128.60, 127.59, 126.92
(q, J = 279.3 Hz), 126.49, 51.37 (q, J = 28.2 Hz), 32.64, 30.26, 21.13, 20.86.

<u><sup>19</sup>F NMR (565 MHz, Chloroform-*d*)</u> δ -70.12 (d, *J* = 11.7 Hz).

<u>**HRMS (ESI)**</u>: m/z calcd. for  $C_{18}H_{19}F_3NaS^+$  [M + Na<sup>+</sup>]: 347.1052, found: 347.1060.



### 2-((1,1,1-trifluoro-4-phenylbutan-2-yl)thio)pyridine.

The product was isolated by column chromatography as colorless oil (60% yield).

<u><sup>1</sup>H NMR (500 MHz, Chloroform-*d*)</u> δ 8.40 (d, *J* = 4.9 Hz, 1H), 7.53 (td, *J* = 7.7, 1.9 Hz, 1H), 7.29 – 7.20 (m, 4H), 7.19 – 7.16 (m, 2H), 7.05 (ddd, *J* = 7.4, 4.9, 1.1 Hz, 1H), 4.96 – 4.84 (m, 1H), 3.04 – 2.94 (m, 1H), 2.85 – 2.75 (m, 1H), 2.41 – 2.28 (m, 1H), 2.09 – 1.97 (m, 1H).

<u><sup>13</sup>C NMR (126 MHz, Chloroform-*d*)</u> δ 155.73, 149.45, 140.78, 136.57, 128.68, 128.60, 126.83 (q, *J* = 278.5 Hz), 126.36, 122.65, 120.55, 44.87 (q, *J* = 29.2 Hz), 32.55, 30.40.

**<u>19</u>F NMR (471 MHz, Chloroform-***d***) δ -70.45 (d,** *J* **= 8.8 Hz).** 

<u>**HRMS (ESI)**</u>: m/z calcd. for  $C_{15}H_{15}F_3NS^+$  [M + H<sup>+</sup>]: 298.0880, found: 298.0880.



### 2-((1,1,1-trifluoro-4-phenylbutan-2-yl)thio)thiophene.

The product was isolated by column chromatography as colorless oil (66% yield).

<u><sup>1</sup>H NMR (600 MHz, Chloroform-*d*)</u> δ 7.40 (d, *J* = 5.4 Hz, 1H), 7.32 – 7.28 (m, 2H), 7.27 – 7.24 (m, 1H), 7.22 (m, 3H), 7.00 – 6.97 (m, 1H), 3.12 – 3.06 (m, 2H), 2.90 – 2.82 (m, 1H), 2.20 – 2.11 (m, 1H), 1.91 – 1.82 (m, 1H).

<u>1<sup>3</sup>C NMR (151 MHz, Chloroform-*d*)</u> δ 140.12, 137.40, 131.61, 129.58, 128.78, 128.68, 127.90, 126.58, 126.53 (q, *J* = 279.2 Hz), 53.16 (q, *J* = 28.1 Hz), 32.37, 29.08.

<u><sup>19</sup>F NMR (565 MHz, Chloroform-*d*)</u> δ -69.74 (d, *J* = 9.9 Hz).

**<u>HRMS (ESI)</u>**: m/z calcd. for  $C_{14}H_{14}F_3S_2^+$  [M + H<sup>+</sup>]: 303.0484, found: 303.0486.



phenyl(4-phenylbutan-2-yl)sulfane.

The product was isolated by column chromatography as colorless oil (66% yield).

<u><sup>1</sup>H NMR (500 MHz, Chloroform-*d*</u>) δ 7.41 – 7.35 (m, 2H), 7.33 – 7.27 (m, 4H), 7.25 – 7.17 (m, 4H), 3.27 – 3.17 (m, 1H), 2.88 – 2.75 (m, 2H), 2.00 – 1.89 (m, 1H), 1.89 – 1.78 (m, 1H), 1.33 (d, *J* = 6.7 Hz, 3H).

<u><sup>13</sup>C NMR (126 MHz, Chloroform-*d*)</u> δ 141.79, 135.17, 132.13, 128.93, 128.59, 128.52, 126.86, 126.03, 42.63, 38.30, 33.28, 21.32.

HRMS (EI): m/z calcd. for C<sub>16</sub>H<sub>18</sub>S [M]: 242.1129, found: 242.1124.

## General procedure for further transformations

Synthesis of (4,4,4-trifluoro-3-(phenylsulfonyl)butyl)benzene (34):



In a round-bottomed flask (5.0 mL) equipped with a stir bar, a solution of **3** (59.3 mg, 0.20 mmol, 1.0 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (2.0 mL) was prepared. The solution was cooled to 0 °C. And then a solution of *m*-CPBA (purity: 85%, 191.0 mg, 2.0 mmol, 4.0 equiv) in CH<sub>2</sub>Cl<sub>2</sub> (3.0 mL) was added dropwise and the mixture was stirred at 25 °C. After disappearance of the sulfide, the reaction mixture was quenched by adding H<sub>2</sub>O (10.0 mL), extracted with EtOAc (3 × 5.0 mL). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. The product was purified by column chromatography on silica gel (10–20% ethyl acetate/Petroleum ether).



#### (4,4,4-trifluoro-3-(phenylsulfonyl)butyl)benzene.

The product was isolated by column chromatography as white solid (98% yield).

<u><sup>1</sup>H NMR (500 MHz, Chloroform-*d*)</u> δ 7.95 – 7.85 (m, 2H), 7.75 – 7.67 (m, 1H), 7.63 – 7.51 (m, 2H), 7.35 – 7.28 (m, 2H), 7.26 – 7.22 (m, 1H), 7.21 – 7.13 (m, 2H), 3.68 – 3.57 (m, 1H), 3.04 – 2.95 (m, 1H), 2.93 – 2.84 (m, 1H), 2.61 – 2.52 (m, 1H), 2.32 – 2.22 (m, 1H).

<sup>13</sup>C NMR (126 MHz, Chloroform-*d*) δ 139.19, 138.13, 134.67, 129.44, 129.17, 128.92, 128.69, 126.86, 123.40 (q, *J* = 281.3 Hz), 65.87 (q, *J* = 27.2 Hz), 33.13, 25.87.

<sup>19</sup>F NMR (471 MHz, Chloroform-*d*) δ -63.99 (d, *J* = 7.9 Hz).

<u>**HRMS (ESI)**</u>: m/z calcd. for  $C_{16}H_{16}F_3O_2S^+$  [M + H<sup>+</sup>]: 329.0818, found: 329.0811.

### General procedure for mechanium studies

**Radical trapping experiments:** 



An oven-dried 10 mL glass schlenck, equipped with a stirring bar, was charged with *S*-phenyl benzenesulfonothioate **2a** (25 mg, 0.10 mmol, 1.0 equiv), Mn (11 mg, 0.20 mmol, 2.0 equiv), Ni(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O (3.7 mg, 0.01 mmol, 10 mol%), 4,7-diphenyl-1,10-phenanthroline (3.3 mg, 0.01 mmol, 10 mol%), TBAI (36.9 mg, 0.10 mmol, 1.0 equiv) and TEMPO (32 mg, 0.20 mmol, 2.0 equiv) or BHT (44 mg, 0.20 mmol, 2.0 equiv). The mixture was evacuated and backfilled with Argon for three times. Then alkyl bromide **1a** (40 mg, 0.15 mmol, 1.5 equiv) and dry DMF (1.0 mL) was added under Argon and the mixture was allowed to stir for 12 h at 50 °C. After cooling to room temperature, the reaction mixture was then diluted with EtOAc (~20 mL) and filtered through a pad of celite. The filtrate was added brine (20 mL) and extracted with EtOAc (3×15 mL). And the combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtrated and concentrated under vacuum. The residue was then purified by flash column chromatography to give desired product **3**.

#### **Control experiments:**

**Eq.1:** An oven-dried 10 mL glass schlenck, equipped with a stirring bar, was charged with *S*-phenyl benzenesulfonothioate **2a** (25 mg, 0.10 mmol, 1.0 equiv), Mn (11 mg, 0.20 mmol, 2.0 equiv), Ni(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O (3.7 mg, 0.01 mmol, 10 mol%), 4,7-diphenyl-1,10-phenanthroline (3.3 mg, 0.01 mmol, 10 mol%), TBAI (36.9 mg, 0.10 mmol, 1.0 equiv). The mixture was evacuated and backfilled with Argon for three times. Then dry DMF (1.0 mL) was added under Argon and the mixture was allowed to stir for 12 h at 50 °C. After cooling to room temperature, the reaction mixture was then diluted with EtOAc (~20 mL) and filtered through a pad of celite. The filtrate was added brine (20 mL) and extracted with EtOAc (3×15 mL), the combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtrated and concentrated under vacuum. The residue was then purified by flash column chromatography to give desired product **35**.

$$Ph \underbrace{\overset{CF_3}{\underset{Br}{\longrightarrow}}}_{1a} + PhSSPh \underbrace{\underline{standard conditions}}_{Ph} \underbrace{\overset{CF_3}{\underset{Ph}{\longrightarrow}}}_{Ph} \underbrace{(eq.2)}_{3, 60\% \text{ yield}}$$

Eq.2: An oven-dried 10 mL glass schlenck, equipped with a stirring bar, was charged with diphenyl disulfide **35** (21.8 mg, 0.10 mmol, 1.0 equiv), Mn (11 mg, 0.20 mmol, 2.0 equiv), Ni(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O (3.7 mg, 0.01 mmol, 10 mol%), 4,7-diphenyl-1,10-phenanthroline (3.3 mg, 0.01 mmol, 10 mol%), TBAI (36.9 mg, 0.10 mmol, 1.0 equiv). The mixture was evacuated and backfilled with Argon for three times. Then alkyl bromide **1a** (40 mg, 0.15 mmol, 1.5 equiv) and dry DMF (1.0 mL) was added under Argon and the mixture was allowed to stir for 12 h at 50 °C. After cooling to room temperature, the reaction mixture was then diluted with EtOAc (~20 mL) and filtered through a pad of celite. The filtrate was added brine (20 mL) and extracted with EtOAc (3×15 mL), the combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtrated and concentrated under vacuum. The residue was then purified by flash column chromatography to give desired

#### product **3**.

#### **Competitive experiments:**



**Eq.3:** An oven-dried 10 mL glass schlenck, equipped with a stirring bar, was charged with *S*-(p-tolyl) benzenesulfonothioate **2b** (26.4 mg, 0.10 mmol, 1.0 equiv), diphenyl disulfide **35** (21.8 mg, 0.10 mmol, 1.0 equiv), Mn (11 mg, 0.20 mmol, 2.0 equiv), Ni(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O (3.7 mg, 0.01 mmol, 10 mol%), 4,7-diphenyl-1,10-phenanthroline (3.3 mg, 0.01 mmol, 10 mol%), TBAI (36.9 mg, 0.10 mmol, 1.0 equiv). The mixture was evacuated and backfilled with Argon for three times. Then alkyl bromide **1a** (26.7 mg, 0.10 mmol, 1.0 equiv) and dry DMF (1.0 mL) was added under Argon and the mixture was allowed to stir for 12 h at 50 °C. After cooling to room temperature, the reaction mixture was then diluted with EtOAc (~20 mL) and filtered through a pad of celite. The filtrate was added brine (20 mL) and extracted with EtOAc (3×15 mL), the combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtrated and concentrated under vacuum. The residue was then purified by flash column chromatography to give desired products **3** and **20**.

**Eq.4:** An oven-dried 10 mL glass schlenck, equipped with a stirring bar, was charged with *S*-phenyl benzenesulfonothioate **2a** (25 mg, 0.10 mmol, 1.0 equiv), 1,2-di-p-tolyldisulfane **36** (24.6 mg, 0.10 mmol, 1.0 equiv) Mn (11 mg, 0.20 mmol, 2.0 equiv), Ni(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O (3.7 mg, 0.01 mmol, 10 mol%), 4,7-diphenyl-1,10-phenanthroline (3.3 mg, 0.01 mmol, 10 mol%), TBAI (36.9 mg, 0.10 mmol, 1.0 equiv). The mixture was evacuated and backfilled with Argon for three times. Then alkyl bromide **1a** (26.7 mg, 0.10 mmol, 1.0 equiv) and dry DMF (1.0 mL) was added under Argon and the mixture was allowed to stir for 12 h at 50 °C. After cooling to room temperature, the reaction mixture was then diluted with EtOAc (~20 mL) and filtered through a pad of celite. The filtrate was added brine (20 mL) and extracted with EtOAc (3×15 mL), the combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtrated and concentrated under vacuum. The residue was then purified by flash column chromatography to give desired products **3** and **20**.

## References

- [1] Wu, B.-B.; Xu, J.; Bian, K.-J.; Gao, Q.; Wang, X.-S. Enantioselective Synthesis of Secondary β-Trifluoromethyl Alcohols via Catalytic Asymmetric Reductive Trifluoroalkylation and Diastereoselective Reduction. J. Am. Chem. Soc. 2022, 144, 6543.
- [2] Jin, R.-X.; Wu, B.-B.; Bian, K.-J.; Yu, J.-L.; Dai, J.-C.; Zuo, Y.-W.; Zhang, Y.-F.; Wang, X.-S. Asymmetric construction of allylicstereogenic carbon center featuring atrifluoromethyl group via enantioselective reductive fluoroalkylation. *Nat. Commun.* **2022**, *13*, 7035.
- [3] Orcel, U.; Waser, J. One-Pot Three-Component Synthesis of Vicinal Diamines via In Situ Aminal Formation and Carboamination. *Angew. Chem. In. Ed.* **2016**, *55*, 12881.
- [4] Chen, Q; Huang, Y.; Wang, X.; Wu, J.; Yu, G. Metal-free NaI/TBHP-mediated sulfonylation of thiols with sulfonyl hydrazides. Org. Biomol. Chem. 2018, 16, 1713.

# NMR Spectra of New Compounds







<sup>19</sup>F NMR Spectrum of Compound M1



<sup>1</sup>H NMR Spectrum of Compound S8



<sup>19</sup>F NMR Spectrum of Compound S8



<sup>13</sup>C NMR Spectrum of Compound **S16** 



<sup>19</sup>F NMR Spectrum of Compound **S16** 



<sup>1</sup>H NMR Spectrum of Compound S27



<sup>13</sup>C NMR Spectrum of Compound S27



<sup>1</sup>H NMR Spectrum of Compound 3



 $^{19}\mathrm{F}$  NMR Spectrum of Compound **3** 



<sup>13</sup>C NMR Spectrum of Compound 4



<sup>19</sup>F NMR Spectrum of Compound 4



<sup>1</sup>H NMR Spectrum of Compound 5




<sup>19</sup>F NMR Spectrum of Compound 5



<sup>13</sup>C NMR Spectrum of Compound 6







<sup>1</sup>H NMR Spectrum of Compound 7



 $^{19}\mathrm{F}$  NMR Spectrum of Compound 7



<sup>1</sup>H NMR Spectrum of Compound 8



<sup>13</sup>C NMR Spectrum of Compound 8



<sup>19</sup>F NMR Spectrum of Compound 8



<sup>1</sup>H NMR Spectrum of Compound 9





<sup>19</sup>F NMR Spectrum of Compound 9



<sup>13</sup>C NMR Spectrum of Compound 10



<sup>19</sup>F NMR Spectrum of Compound **10** 



<sup>1</sup>H NMR Spectrum of Compound 11



<sup>19</sup>F NMR Spectrum of Compound 11



<sup>1</sup>H NMR Spectrum of Compound 12







<sup>19</sup>F NMR Spectrum of Compound 12



<sup>1</sup>H NMR Spectrum of Compound 13



<sup>19</sup>F NMR Spectrum of Compound 13



<sup>13</sup>C NMR Spectrum of Compound 14



<sup>19</sup>F NMR Spectrum of Compound 14



<sup>1</sup>H NMR Spectrum of Compound 15



<sup>19</sup>F NMR Spectrum of Compound 15



<sup>13</sup>C NMR Spectrum of Compound 16



<sup>19</sup>F NMR Spectrum of Compound **16** 



<sup>1</sup>H NMR Spectrum of Compound 17





<sup>19</sup>F NMR Spectrum of Compound 17

- 10 - 9 - 8 - 7

> .5 .4 .3 .2



<sup>13</sup>C NMR Spectrum of Compound 18



<sup>19</sup>F NMR Spectrum of Compound **18** 



<sup>1</sup>H NMR Spectrum of Compound 19



<sup>19</sup>F NMR Spectrum of Compound 19



<sup>13</sup>C NMR Spectrum of Compound 20



<sup>19</sup>F NMR Spectrum of Compound **20** 



<sup>1</sup>H NMR Spectrum of Compound 21



<sup>19</sup>F NMR Spectrum of Compound 21



<sup>13</sup>C NMR Spectrum of Compound 22



<sup>19</sup>F NMR Spectrum of Compound 22



<sup>1</sup>H NMR Spectrum of Compound 23



<sup>19</sup>F NMR Spectrum of Compound 23



<sup>13</sup>C NMR Spectrum of Compound 24



<sup>19</sup>F NMR Spectrum of Compound **24** 



<sup>1</sup>H NMR Spectrum of Compound 25



<sup>19</sup>F NMR Spectrum of Compound 25



<sup>13</sup>C NMR Spectrum of Compound 26



<sup>19</sup>F NMR Spectrum of Compound **26** 



<sup>1</sup>H NMR Spectrum of Compound 27



<sup>19</sup>F NMR Spectrum of Compound 27



<sup>13</sup>C NMR Spectrum of Compound 28



<sup>19</sup>F NMR Spectrum of Compound 28



<sup>1</sup>H NMR Spectrum of Compound 29


<sup>19</sup>F NMR Spectrum of Compound 29



<sup>13</sup>C NMR Spectrum of Compound **30** 



<sup>19</sup>F NMR Spectrum of Compound **30** 



<sup>1</sup>H NMR Spectrum of Compound **31** 



<sup>19</sup>F NMR Spectrum of Compound **31** 



<sup>13</sup>C NMR Spectrum of Compound **32** 



<sup>19</sup>F NMR Spectrum of Compound **32** 



<sup>1</sup>H NMR Spectrum of Compound **33** 







<sup>1</sup>H NMR Spectrum of Compound 34



<sup>19</sup>F NMR Spectrum of Compound **34**