Contents

Experimental Section	2
General methods	2
Synthesis of imidazolinone 1a	2
Synthesis of imidazolinones 1e-g ⁴	3
Synthesis of compound 2a	4
Dimerization of imidazolin-2-ones in the presence of TsOH	4
Synthesis of 2-hydroxyimidazolium salts 3a,b	4
Synthesis of 2-hydroxyimidazolium salt 3c	5
X-ray data for the compound 3c	5
Tautomers of imidazolin-2-ones	7
Energies of orbitals	7
Comparison of quantum chemistry calculations at different levels of theory	7
Energy profiles for the reactions of imidazolinones	8
NMR studies of imidazolinone 1e	9
Reaction conditions optimization	9
References 1	0
Copies of NMR spectra 1	1
Coordinates of stationary points for studied compounds 2	25

Experimental Section

General methods

¹H spectra were recorded on a Bruker MSL 400 (400 MHz) spectrometer. ¹³C NMR spectra were recorded on a Bruker MSL 400 (100 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference (proton, $CDCI_3 \delta 7.28$, $CD_3OD \delta 3.32$, $(CD_3)_2CO \delta 2.12$, $(CD_3)_2SO \delta 2.50$; carbon, $CDCI_3 \delta 77.7$, $(CD_3)_2SO \delta 40.0$). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), td (triplet of doublet), bs (broad singlet). Coupling constants were reported in Hertz (Hz). The IR spectra were recorded on a Vector 22 Fourier spectrometer by Bruker in the range of 400-4000 cm⁻¹. Crystalline samples were studied as a suspension in vaseline oil. The melting points were determined in glass capillaries on a Stuart SMP 10 instrument. Elemental analysis of the compounds was carried out on a high-temperature 2-reactor C, H, Nanalyzer of EuroVector brand EA 3000. The halogen content was determined by the Schöniger method. MALDI-TOF mass spectra were recorded on a Bruker ULTRAFLEX III TOF/TOF instrument (with 2,5-dihydroxybenzoic acid matrix). All commercially available reagents were used as received for the reactions without any purification. All solvents were purified and dried according to standard procedures. 4,4'-bi(imidazole-2-one) **2b** and diimidazoquinoline **4** have been described earlier⁴ and were not isolated in pure form.

Synthesis of imidazolinone 1a

The synthesis of imidazolin-2-one **1a** via the acid-catalyzed cyclization of 1-(2,2-diethoxyethyl)urea was first claimed by Marckwald in 1892.¹ Later, Duschinsky and Dolan re-investigated this reaction and stated the formation of imidazolin-2-one **1a** in *ca* 40% yield upon heating of 1-(2,2-diethoxyethyl)urea in the presence of sulfuric acid.² Alongside with desired imidazolinone, the unidentified product was obtained, which was believed to be a dimer or a polymer arising from intermolecular condensation of starting acetal. The same procedure was used by Han and Zard, and the yield of 44% of compound **1a** was reported.³ Duschinsky and Dolan also described the synthesis of compound **1a** in 80% yield by carrying out the reaction in diluted solution of sulfuric acid at room temperature for 72 hours. However, we were unable to reproduce this result, and the yield didn't exceed 30-35%.

We speculated that the low yield of imidazolinone **1a** may be due to the formation of bis(imidazolinone) **2a** in acidic media. According to our observations reported in present paper, this undesired side reaction can be suppressed by the formation of 2-hydroxyimidazolium salt. Indeed, when excess of TFA was employed instead of sulfuric acid and the reaction time was limited to 6 hours, the target imidazolin-2-one **1a** was isolated in 60% overall yield. Still, the formation of the compound **2a** was also observed (*ca* 10-15% according to NMR data). The modified procedure for the synthesis of compound **2a** is given below.

To a solution of trimethylsilylisocyanate (0.54 g, 4.7 mmol, 1.0 equiv.) in benzene (10 mL) 2,2-diethoxyethane-1-amine (0.50 g, 4.7 mmol, 1.0 equiv.) was added. The reaction mixture was stirred at room

temperature for 6 h, and the solvent was evaporated in vacuum. The residue was re-dissolved in ethanol (10 mL) and stirred at room temperature overnight. The volatiles were removed in vacuum; the residue was dissolved in chloroform (5 mL). To this solution, trifluoroacetic acid (0.81 g, 0.54 mL, 7.1 mmol, 1.5 equiv.) was added. The reaction mixture was stirred at room temperature for 6 h and washed with saturated solution of NaHCO₃ (3x10 mL). The organic layer was evaporated in vacuum and the residue was recrystallized from small amount of distilled water to give compound **1a** as white crystalline solid. Yield 240 mg (60%). Mp = 248-253°C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.67 (br s, 2H, NH), 6.24 (t, *J*=2.0 Hz, 2H, CH). ¹³C NMR (126 MHz, DMSO-*d*₆)^{*} δ 155.9, 109.0.

Synthesis of imidazolinones 1e-g⁴

1-methyl-3-phenylimidazolin-2-one (1e)

To a 25 mL flask a 1-(2,2-dimethoxyethyl)-1-methyl-3-phenylurea⁴ (0.50 g, 2.1 mmol, 1.0 equiv.), chloroform (10 mL) and TFA (0.28 mL, 0.353 g, 3.1 mmol, 1.5 equiv.) were added. The reaction mixture was allowed to stir at room temperature for 6 h and concentrated under reduced pressure. To the resulting yellow oily residue distilled water (15 mL) and Na₂CO₃ (0.45 g, 4.2 mmol, 2 equiv.) were added. The precipitate was filtered off, washed with distilled water (3x20 mL) and dried under reduced pressure to give the compound **1e** as yellowish solid (329 mg, yield 90%), which was used without further purification. Mp 105-107 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.56 (m, 2H, ArH), 7.43-7.35 (m, 2H, ArH), 7.24-7.18 (m, 1H, ArH), 6.55 (d, 1H, *J* = 3.0 Hz, CH), 6.30 (d, 1H, *J* = 3.1 Hz, CH), 3.29 (s, 3H, CH₃). ¹³C NMR (126 MHz, CDCl₃) δ 152.6, 138.0, 129.7, 126.2, 122.0, 113.3, 109.7, 31.0.

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.74-7.68 (m, 2H, ArH), 7.45-7.39 (m, 2H, ArH), 7.24-7.18 (m, 1H, ArH), 7.00 (d, 1H, *J* = 3.1 Hz, CH), 6.71 (d, 1H, *J* = 3.1 Hz, CH), 3.28 (s, 3H, CH₃). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 152.4, 138.5, 130.0, 126.0, 121.4, 114.6, 109.7, 31.0.

¹H NMR (400 MHz, (CD₃)₂CO) δ 7.84-7.77 (m, 2H, ArH), 7.50-7.46 (m, 2H, ArH), 7.30-7.25 (m, 1H, ArH), 6.95 (d, 1H, *J* = 3.2 Hz, CH), 6.68 (d, 1H, *J* = 3.1 Hz, CH), 3.31 (s, 3H, CH₃).

¹H NMR (400 MHz, CD₃OD) δ 7.62-7.57 (m, 2H, ArH), 7.49-7.42 (m, 2H, ArH), 7.33-7.28 (m, 1H, ArH), 6.84 (d, 1H, *J* = 3.0 Hz, CH), 6.63 (d, 1H, *J* = 3.0 Hz, CH), 3.32 (s, 3H, CH₃).

Anal. Calcd for $C_{10}H_{10}N_2O$: C, 68.95; H, 5.79; N, 16.08. Found: C, 68.80; H, 5.63; N, 16.13. MS (ESI) *m/z* calcd for $C_{10}H_{10}N_2O$: 174.2; found 175.1 [M+H]⁺, 197.5 [M+Na]⁺.

1-(4-chlorophenyl)-3-methylimidazolin-2-one (1f)

The compound **1f** was obtained using the same procedure as described above from 0.500 g (1.83 mmol) of 1-(2,2-dimethoxyethyl)-1-methyl-3-(4-chlorophenyl)urea⁴ and used without additional purification. Yellowish solid, yield 325 mg (85%), mp 70-74°C. ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.46 (m, 2H, ArH), 7.37-7.28 (m, 2H, ArH), 6.51 (d, 1H, *J* = 3.0 Hz, CH), 6.31 (d, 1H, *J* = 3.1 Hz, CH), 3.26 (s, 3H, CH₃). ¹³C NMR (126 MHz, DMSO-d₆) δ 151.27, 140.58, 132.76, 120.06, 118.02, 113.70, 107.17, 30.02. Anal. Calcd for C₁₀H₉ClN₂O: C, 57.57; H, 4.35; Cl, 16.99; N, 13.43. Found: C, 57.45; H, 4.40; Cl, 17.05; N, 13.39. MS (ESI) *m/z* calcd for C₁₀H₉ClN₂O: 208.0; found 209.0 [M+H]⁺.

^{*} The signal of carbon atom of carbonyl group at 155.9 ppm was not observed in proton-decoupled ¹³C NMR spectrum, thus ¹H-¹³C HMBC spectrum was recorded. The presence of the cross-peak between protons of methyne groups and carbon atom of C=O group confirms the assigned structure (see copies of spectra below).

1-(4-methoxyphenyl)-3-methylimidazolin-2-one (1g)

The compound **1g** was obtained using the same procedure as described above from 0.50 g (1.86 mmol) of 1-(2,2-dimethoxyethyl)-1-methyl-3-(4-methoxyphenyl)urea⁴ and used without additional purification.. Yellowish solid, yield 342 mg (90%), mp 84-88°C. ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.41 (m, 2H, ArH), 6.98-6.89 (m, 2H, ArH), 6.50 (d, 1H, *J* = 3.0 Hz, CH), 6.30 (d, 1H, *J* = 3.1 Hz, CH), 3.83 (s, 3H, CH₃), 3.32 (s, 3H, CH₃). ¹³C NMR (126 MHz, DMSO-d₆) δ 151.98, 146.60, 125.02, 117.82, 108.72, 106.64, 104.11, 49.88, 24.85. Anal. Calcd for C₁₁H₁₂N₂O₂: C, 64.69; H, 5.92; N, 13.72. Found: C, 64.72; H, 5.88; N, 13.78. MS (ESI) *m/z* calcd for C₁₁H₁₂N₂O₂: 204.2; found 205.1 [M+H]⁺, 227.2 [M+Na]⁺.

Synthesis of compound 2a

To a 25 mL flask an imidazolin-2-one **1a** (0.40 g, 4.7 mmol), distilled water (5 mL) and 2N HCl (3.56 mL, 7.1 mmol, 1.5 equiv.) were added. The reaction mixture was stirred at room temperature for 1 h. The solvent was removed under reduced pressure and the solid residue was recrystallized from ethanol to give 418 mg (53%) of the title compound **2a** as beige solid. Mp 50-54 °C. ¹H NMR (400 MHz, D₂O) δ 3.42 (dd, *J* = 9.6, 7.1 Hz, 1H, CH), 3.79-3.70 (m, 1H, CH), 4.79 (dd, *J* = 9.4, 7.1 Hz, 1H, CH), 6.44 (s, 1H, CH). ¹³C NMR (126 MHz, D₂O) δ 165.9, 155.9, 123.4, 110.7, 107.9, 48.9, 46.5. Anal. Calcd for C₆H₈N₄O₂: C, 42.86; H, 4.80; N, 33.32. Found: C, 42.98; H, 4.88; N, 33.29. MS (ESI) *m/z* calcd for C₆H₈N₄O₂: 168.1, found: 192.2 [M+Na]⁺.

Dimerization of imidazolin-2-ones in the presence of TsOH

Ar = Ph (1e, 2b); 4-Cl-C₆H₄ (1f, 2c); 4-MeO-C₆H₄ (1g, 2d)

To a 25 mL flask an imidazolin-2-one **1** (2.1 mmol, 1.0 equiv.), chloroform (5 mL) and TsOH (0.072 g, 0.42 mmol, 0.2 equiv.) were added. The reaction mixture was stirred at room temperature for 7 days. The solvent was removed under reduced pressure and the solid residue was analyzed by ¹H NMR.

Synthesis of 2-hydroxyimidazolium salts 3a,b

To a 25 mL flask an imidazolinone **1e** (0.5 g, 2.1 mmol, 1.0 equiv.) chloroform (5 mL) and appropriate acid (3.1 mmol, 1.5 equiv.) were added. The reaction mixture was stirred at room temperature for 6 h and concentrated under reduced pressure. The residue was washed thoroughly with dry diethyl ether (3x25 mL) and dried under reduced pressure to give the compound **3**.

2-hydroxy-1-methyl-3-phenylimidazolium triflate (**3a**). Yellow gum, 0.67 g (98% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.47 (m, 3H, ArH), 7.45-7.41 (m, 2H, ArH), 6.92 (d, 1H, J = 2.5 Hz, CH), 6.88 (d, 1H, J = 2.6 Hz,

CH), 3.70 (s, 3H, CH₃). ¹³C NMR (126 MHz, CDCl₃) δ 148.4, 134.2, 130.4, 130.0, 124.9, 117.5, 115.9, 33.4. Anal. Calcd for C₁₁H₁₁N₂O₄SF₃: C, 40.74; H, 3.42; F, 17.58; N, 8.64; S, 9.89. Found: C, 40.68; H, 3.51; F, 17.40; N, 8.60; S, 9.81. MS (ESI) *m/z* calcd for C₁₁H₁₁N₂O₄SF₃: 324.3; found 175.0 [M-CF₃SO₃]⁺.

2-hydroxy-1-methyl-3-phenylimidazolium trifluoroacetate (**3b**). Brown hygroscopic gum, 0.60 g (*ca* 100% yield). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.74-7.67 (m, 2H, ArH), 7.45-7.38 (m, 2H, ArH), 7.24-7.17 (m, 1H, ArH), 6.97 (d, 1H, *J* = 3.1 Hz, CH), 6.69 (d, 1H, *J* = 3.1 Hz, CH), 3.20 (s, 3H, CH₃). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 158.8 (q, *J* = 38.7 Hz), 151.8, 137.9, 129.4, 125.5, 121.0, 114.0, 109.1, 30.3.

¹H NMR (400 MHz, CDCl₃) δ 7.59-7.53 (m, 2H, ArH), 7.47-7.39 (m, 2H, ArH), 7.31-7.23 (m, 1H, ArH), 6.60 (d, 1H, *J* = 3.0 Hz, CH), 6.38 (d, 1H, *J* = 3.0 Hz, CH), 3.36 (s, 3H, CH₃). ¹³C NMR (126 MHz, CDCl₃) δ 159.2 (q, *J* = 40.5 Hz), 152.6, 137.4, 129.8, 127.0, 122.8, 113.6, 110.7, 31.3.

¹H NMR (400 MHz, (CD₃)₂CO) δ 9.04-8.94 (m, 2H, ArH), 8.73-8.64 (m, 2H, ArH), 8.54-8.43 (m, 1H, ArH), 8.16 (d, 1H, *J* = 3.1 Hz, CH), 7.90 (d, 1H, *J* = 3.1 Hz, CH), 4.53 (s, 3H, CH₃).

¹H NMR (400 MHz, CD₃OD) δ 7.61-7.56 (m, 2H, ArH), 7.48-7.40 (m, 2H, ArH), 7.32-7.24 (m, 1H, ArH), 6.82 (d, 1H, *J* = 3.0 Hz, CH), 6.61 (d, 1H, *J* = 3.0 Hz, CH), 3.31 (s, 3H, CH₃).

Anal. Calcd for C₁₂H₁₁N₂O₃F₃: C, 50.01; H, 3.85; F, 19.77; N, 9.72. Found: C, 49.89; H, 3.89; F, 19.82; N, 9.69. MS (ESI) *m/z* calcd for C₁₂H₁₁N₂O₃F₃: 288.23, found: 175.0 [M-CF₃COO]⁺.

Synthesis of 2-hydroxyimidazolium salt 3c

To a 25 mL flask an imidazolinone **1a** (0.5 g, 2.1 mmol, 1.0 equiv.) and trifluoroacetic acid (3 mL) were added. The reaction mixture was stirred at room temperature for 10 min and concentrated under reduced pressure to give the compound **3c** as a yellowish gum, which solidifies upon keeping in freezer. NMR spectra of this compound in individual form could not be obtained due to its quick conversion to the bis(imidazolinone) **2a** in a solution.

X-ray data for the compound 3c

X-ray diffraction (XRD) data for the single crystal of **3c** were obtained on a Bruker D8 QUEST automated threecircle diffractometer with a PHOTON III area detector and an IµS DIAMOND microfocus X-ray tube: λ (Mo K α) = 0.71073 Å, ω/ϕ scanning mode with a step of 0.5°. Data collection and indexing, determination and refinement of unit cell parameters were carried out using the *APEX3* software package. Numerical absorption correction based on the crystal shape, additional spherical absorption correction, and systematic error correction were performed using the *SADABS*-2016/2 software.⁵ Using *OLEX2*,⁶ structures were solved by direct methods using the *SHELXT*-2018/3 program⁷ and refined by full-matrix least-squares on F^2 using the *SHELXL*-2018/3 program.⁸ Nonhydrogen atoms were refined anisotropically. Positions of H(O/N) hydrogen atom were determined from difference electron density maps and refined isotropically. The remaining hydrogen atoms were refined using a riding model. Most calculations were performed using the *WinGX*-2021.3 software package.⁹ The crystallographic data for structure are listed in Table S1.

Compound **3c** crystallizes in the ionic form with the flat imidazolium cation and the anion of trifluoroacetic acid as a counterion. The structure was solved in the triclinic space group PT with two independent cationanion pairs A and B (Z' = 2), whose geometry is similar. In the cationic part, the lengths of the N1A-C1A and N2A-C1A bonds are equal and constitute an intermediate value between a single and a double bond (1.331(5)), hydrogen atoms on both nitrogen atoms are identified and refined with integer occupancy. This situation corresponds to the delocalization of the positive charge in the triatomic fragment N1A-C1A-N2A. Numerous hydrogen bonds between cations and anions are realized in the crystal.

Figure S1 Molecular geometry of 3c in the crystal (molecule A). Thermal ellipsoids for non-H atoms are set at the 50% probability level

Table S1	Crystallographic	data for the	compound 3c
----------	------------------	--------------	--------------------

Compound	3c				
Empirical formula	$C_{3}H_{5}N_{2}O^{+}, C_{2}F_{3}O_{2}^{-}$				
Formula weight	198.11				
Radiation, wavelength	Mo <i>K</i> α, 0.71073 Å				
Temperature	100(2)				
Crystal system	Triclinic				
Space group	<i>P</i> 1̄ (No. 2)				
	a = 8.243(2) Å,				
	D = 0.400(3) A,				
Unit cell dimensions	c = 11.555(5) A, $\alpha = 90.219(9)^{\circ}$				
	a = 30.210(0), $a = 72.422(0)^{\circ}$				
	p = 75.452(6), $y = 78.408(8)^{\circ}$				
Volume	γ - 78.498(8) 740 9(4) Å ³				
7 and 7	1 and 2				
Calculated density	1 776 g cm ⁻³				
Absorption coefficient	0 190 mm ⁻¹				
	400				
Crystal size	400				
θ range for data collection	1 885° to 25 998°				
	$-10 \le h \le 10.$				
Index ranges	$-10 \le k \le 10$.				
	$-14 \le l \le 14$				
Reflections collected	20109				
Independent reflections	2895				
R _{int}	0.1088				
Ro	0.0700				
Observed Data $[l > 2\sigma(l)]$	1973				
Completeness to θ = 25.242°	100.0				
Max. and min. transmission	0.7460 and 0.5961				
Data / restraints / parameters	2895 / 0 / 259				
Goodness-of-fit on F ²	1.022				
Final R indices $[l > 2\sigma(l)]$	<i>R</i> 1 = 0.0553, <i>wR</i> 2 = 0.1299				
R indices (all data)	<i>R</i> 1 = 0.0935, <i>wR</i> 2 = 0.1512				
Largest diff. peak and hole	0.400 and –0.389 e Å ⁻³				
CCDC number	2253122				

Tautomers of imidazolin-2-ones

Figure S2 Relative energies of imidazolin-2-ones and their 2-hydroxyimidazole tautomers as obtained from quantum chemistry calculations (B3PW91/def2-TZVPD // PBE/def2-TZVPD, Orca 5.0.3)

Energies of orbitals

Table S2 Energies of oxygen's lone pair and bonding π -orbital of C=C bond for the compounds **1a-d**^a

	HN O H 1a	HN N 1b Me	Me N N N N Ic Me	$\frac{HN}{N}$	Me N N N N N Ie Ph
E _{LP(O)} , eV	-0.213	-0.208	-0.203	-0.212	-0.208
Ε _{π(C=C)} , eV	-0.342	-0.338	-0.334	-0.356	-0.354

^a As obtained from NBO analysis (B3PW91/def2-TZVPD // PBE/def2-TZVPD, Orca 5.0.3, Janpa 2.02)

Comparison of quantum chemistry calculations at different levels of theory

The functional for the quantum chemistry calculations was chosen based on the reproducibility of the experimental data for proton affinities of model compounds. As seen from the Table S3, both (B3PW91/def2-TZVPD // PBE/def2-TZVPD) methods combination and higher-level (ω B97X-V/def2-TZVPD) method give essentially the same results (the maximum difference between calculated values is 1.5 kcal/mol, the average difference is *ca* 0.5 kcal/mol). Notably, for both urea and pyridine, the predicted proton affinity fitted the experimental values perfectly (within the experimental error). Moreover, PBE/B3PW91 combination succeeded in correct prediction of proton affinity of ethylene (within 0.4 kcal/mol), whereas ω B97X-V performed considerably worse (the geometry optimization resulted in three-centre two-electron cation instead of ethyl cation in this case). Based on this, (B3PW91/def2-TZVPD // PBE/def2-TZVPD) was the method of choice due to much less computational cost.

Table S3 Comparison of proton affinities and gas-phase basicities calculated at different levels of theory.^a

	HN O 1	N H a	Me N N N N Ie Ph		Urea	Pyridine	Ethylene	
Protonation site	0	С	0	C-NMe	C-NPh	0	Ν	С
PA (kcal/mol)	-211.6 (-211.5)	-198.6 (-199.3)	-222.3 (-222.6)	-211.7 (-211.7)	-209.7 (-210.9)	-209.1 (-208.3) -208.6 ^b	-222.9 (-222.2) -222.1 ^b	156.3 (-164.2) -155.9 ^b
GB (kcal/mol)	-206.9 (-206.9)	-194.0 (-194.7)	-217.7 (-218.3)	-207.2 (-207.2)	-205.1 (-206.6)	-204.7 (-204.1) -201.0 ^b	-217.8 (-217.6) -214.5 ^b	159.0 (-160.1) 162.8 ^b

^{*a*} values for (B3PW91/def2-TZVPD // PBE/def2-TZVPD), values for (ωB97X-V/def2-TZVPD) are given in parentheses; ^{*b*} experimental values (taken from paper by Abboud¹⁰ (GB, urea), Cooks¹¹ (PA, urea), Lias¹² (GB and PA, pyridine; GB and PA, ethylene); Poutsma¹³ gives value of 223.8±2.0 kcal/mol for PA of pyridine)

The results of NBO analysis on the lower- and higher-level geometries are provided on the Figure S3. Despite the changes in the absolute values, the trends remain the same. E.g., the low-level calculation suggests that the LP(N³)-> π^* (C=C) interaction energies in compounds **1e** and **1e** differ by 1.2 kcal/mol (34.5-33.3 = 1.2 kcal/mol). The higher-level method gives 1.5 kcal/mol difference (48.2-46.7 = 1.5 kcal/mol). The same is true for the LP(N¹)-> π^* (C=C) interaction (2.0 kcal/mol *vs* 2.3 kcal/mol), LP(N³)-> π^* (C=O) interaction (1.4 kcal/mol *vs* 1.5 kcal/mol). The difference for the LP(N³)-> π^* (C=O) interaction is somewhat higher (4.7 kcal/mol *vs* 7.6 kcal/mol). Nonetheless, this also doesn't change the observed trend. Again, this suggests that (B3PW91/def2-TZVPD // PBE/def2-TZVPD) combination is suitable for the performed analysis.

Figure S3 Comparison of NBO data at different levels of theory

Energy profiles for the reactions of imidazolinones

Figure S4 Energy profiles (kcal/mol) for the reactions of imidazolinones 1a,e with benzhydrilium cation (ωB97X-V/def2-TZVPD, PCM (chloroform) solvation, Orca 5.0.3)

Table S4 Chemical shifts of signals in NMR spectra of imidazolinone 1ein the presence of acids (CDCl₃, 400 MHz, 303 K)

_ 4

89

$ \begin{array}{c} & & & \\ & & & \\ & & & \\ Me & 1 & \\ & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right) \left(\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right) \left(\begin{array}{c} & & & \\$						
A 1 a a a		1e + HA (1 equi	v), δ (Δδ),ª ppm			
Atom	1e, o, ppm	TFA	TfOH			
	¹ H I	NMR				
C⁵H	6.31	6.38 (+0.07)	6.88 (+0.57)			
C⁴H	6.56	6.60 (+0.04)	6.92 (+0.36)			
C⁵H	3.30	3.37 (+0.07)	3.70 (+0.40)			
C ⁸ H	7.60	7.57 (-0.03)	7.43 (-0.17)			
С ⁹ Н	7.40	7.46 (+0.04)	7.52 (+0.12)			
C ¹⁰ H	7.23	7.29 (+0.06)	7.51 (+0.28)			
	¹³ C	NMR				
C ²	152.6	152.6 (+0.0)	148.4 (-4.2)			
C ⁴	109.7	110.7 (+1.0)	117.5 (+7.8)			
C⁵	113.3	113.6 (+0.3)	115.9 (+2.6)			
C ⁶	31.0	31.3 (+0.3)	33.4 (+2.4)			
C ⁷	138.0	137.4 (-0.6)	134.2 (-3.8)			
C ⁸	122.0	122.8 (+0.8)	124.9 (+2.9)			
C٩	129.7	129.8 (+0.1)	130.4 (+0.7)			
C ¹⁰	126.2	127.0 (+0.8)	130.0 (+3.8)			

^a Δδ is calculated as $\delta_{H}(\mathbf{1e} + HA) - \delta_{H}(\mathbf{1e})$

 Table S5 Chemical shifts of signals in ¹H NMR spectra of imidazolinone 1e

 in the presence of TFA in various solvents (400 MHz, 303 K)

Atom		1	e, δ, ppm		1e + TFA (1 equiv), δ (Δδ),ª ppm					
Atom	CDCl₃	CD₃OD	(CD ₃) ₂ CO	(CD ₃) ₂ SO	CDCl₃	CD₃OD	(CD₃)₂CO	(CD₃)₂SO		
C⁵H	6.31	6.63	6.68	6.72	6.38 (+0.07)	6.61 (-0.02)	6.70 (+0.03)	6.68 (-0.04)		
C⁴H	6.56	6.84	6.95	7.01	6.60 (+0.04)	6.82 (-0.02)	6.96 (+0.01)	6.96 (-0.03)		
C⁰H	3.30	3.32	3.31	3.19	3.37 (+0.07)	3.31 (-0.01)	3.33 (+0.02)	3.19 (0)		
C ⁸ H	7.60	7.59	7.82	7.71	7.57 (-0.03)	7.58 (-0.01)	7.80 (-0.02)	7.69 (-0.02)		
С°Н	7.40	7.46	7.48	7.43	7.44 (+0.04)	7.45 (-0.01)	7.49 (+0.01)	7.41 (-0.02)		
C ¹⁰ H	7.23	7.30	7.28	7.23	7.29 (+0.06)	7.29 (-0.01)	7.30 (+0.02)	7.21 (-0.02)		

^{*a*} Δδ is calculated as $\delta_{H}(\mathbf{1e} + HA) - \delta_{H}(\mathbf{1e})$

Reaction conditions optimization

Table S6 Optimization of catalyst and solvent for the self-condensation of imidazolinone 1e^a

		I		
Entry	Solvent	Catalyst	Yield of 2b, % ^b	Yield of 4, % ^b
1	CDCl ₃	TFA (0.1 eqiv.)	0	0
2	CD ₃ OD	TFA (0.1 eqiv.)	0	0
3	(CD ₃) ₂ CO	TFA (0.1 eqiv.)	0	0
4	(CD ₃) ₂ SO	TFA (0.1 eqiv.)	0	0
5	CDCl ₃	TfOH (0.1 eqiv.)	0	0
6	(CD ₃) ₂ SO	TfOH (0.1 eqiv.)	0	0
7	(CD ₃) ₂ SO	TsOH (0.1 eqiv.)	5	0
8	CDCl ₃	TsOH (1.0 eqiv.)	0	92
9	CDCl ₃	TsOH (0.2 eqiv.)	21	5
10 ^c	CDCl₃	TsOH (0.2 eqiv.)	64	16

^a Reaction conditions: imidazolinone **1e** (1 equiv), catalyst, solvent, rt, 2 days; ^b according to NMR data; ^c after 7 days

References

- 1 W. Marckwald, Berichte der Dtsch. Chem. Gesellschaft, 1892, 25, 2354–2373.
- 2 R. Duschinsky and L. A. Dolan, J. Am. Chem. Soc., 1946, 68, 2350–2355.
- 3 S. Han and S. Z. Zard, Org. Lett., 2014, 16, 5386–5389.
- E. A. Kuznetsova, A. V. Smolobochkin, T. S. Rizbayeva, A. S. Gazizov, J. K. Voronina, O. A. Lodochnikova,
 D. P. Gerasimova, A. B. Dobrynin, V. V. Syakaev, D. N. Shurpik, I. I. Stoikov, A. R. Burilov, M. A. Pudovik
 and O. G. Sinyashin, *Org. Biomol. Chem.*, 2022, 20, 5515–5519.
- 5 L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, J. Appl. Crystallogr., 2015, 48, 3–10.
- 6 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- 7 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv., 2015, 71, 3–8.
- 8 G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3–8.
- 9 L. J. Farrugia, J. Appl. Crystallogr., 2012, 45, 849–854.
- 10 R. Notario, O. Castaño, M. Herreros and J.-L. M. Abboud, *J. Mol. Struct. THEOCHEM*, 1996, **371**, 21–29.
- 11 F. Wang, S. Ma, D. Zhang and R. G. Cooks, J. Phys. Chem. A, 1998, 102, 2988–2994.
- 12 E. P. L. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data, 1998, 27, 413–656.
- 13 J. J. Wind, L. Papp, M. Happel, K. Hahn, E. J. Andriole and J. C. Poutsma, *J. Am. Soc. Mass Spectrom.*, 2005, **16**, 1151–1161.

Copies of NMR spectra

Figure S6. 13 C NMR spectrum ((CD₃)₂SO, 126MHz) of the compound 1a

Figure S7. ¹H-¹³C HMBC spectrum ((CD₃)₂SO) of the compound 1a

Figure S8. ¹H NMR spectrum (CDCl₃, 400MHz) of the compound 1e

Figure S9. ¹³C NMR spectrum (CDCl₃, 126MHz) of the compound 1e

Figure S10. ¹H NMR spectrum (CDCl₃, 400MHz) of the compound 1f

Figure S11. $^{\rm 13}{\rm C}$ NMR spectrum (CDCl_3, 126MHz) of the compound 1f

Figure S12. ¹H NMR spectrum (CDCl₃, 400MHz) of the compound **1g**

Figure S13. ¹³C NMR spectrum (CDCl₃, 126MHz) of the compound 1g

Figure S14. ¹H NMR spectrum (D₂O, 400MHz) of the compound 2a

Figure S15. ¹³C NMR spectrum (D₂O, 126MHz) of the compound 2a

Figure S17. ¹³C NMR spectrum (CDCl₃, 126MHz) of the compound 3a

Figure S18. ¹H NMR spectrum (CDCl₃, 400MHz) of the compound **3b** (1e•TFA)

Figure S19. ¹³C NMR spectrum (CDCl₃, 126MHz) of the compound **3b** (1e•TFA)

Figure S20. Comparison of ¹H NMR spectra (CDCl₃, 400MHz) of the compounds **1e**, **3a** and **3b** (**1e**•**TFA**)

Figure S21. Comparison of ¹³C NMR spectra (CDCl₃, 400MHz) of the compounds **1a**, **3a** and **3b** (**1e•TFA**)

Figure S22. ¹H NMR spectra of the compound **1e** (upper) and of the compound **1e** in the presence of 1 equivalent of TFA (lower), ((CD₃)₂CO, 400MHz)

Figure S23. ¹H NMR spectra of the compound **1e** (upper) and of the compound **1e** in the presence of 1 equivalent of TFA (lower), (CD₃OD, 400MHz)

Figure S24. ¹H NMR spectra of the compound **1e** (upper) and of the compound **1e** in the presence of 1 equivalent of TFA (lower), ((CD₃)₂SO, 400MHz)

IMIDAZOLES 1a-e and 2-HYDROXYIMIDAZOLES 1a',b'd', B3PW91/def2-TZVPD // PBE/def2-TZVPD						
	10					
Molecule: 1a	С	-0.29819	1.71476	-0.02459		
	0	0.86742	2.09506	-0.00362		
	Ν	-1.46487	2.47773	-0.10316		
	Ν	-0.79237	0.40982	0.02405		
	С	-2.60230	1.67555	-0.10190		
	С	-2.18316	0.38687	-0.02267		
	н	-3.60482	2.08075	-0.15662		
Energy = -301.408770 Hartree	Н	-2.75503	-0.53209	0.00389		
	Н	-1.43576	3.48772	-0.15280		
	Н	-0.17492	-0.38917	0.08543		
	10					
Molecule: 1a'	С	-0.38909	1.65513	-0.04273		
	0	0.86575	2.15709	-0.03593		
	Ν	-1.45907	2.49304	-0.10756		
Q 1	Ν	-0.73322	0.38875	0.00816		
	С	-2.59625	1.68640	-0.09648		
7 ~	С	-2.12169	0.40134	-0.02542		
○ —●	н	-3.59550	2.10351	-0.13920		
Energy = -301.160571 Hartree	н	-2.69281	-0.52122	0.00427		
	н	-1.42525	3.50465	-0.15515		
	Н	1.46012	1.38430	0.01203		
	13					
	С	-0.31864	1.72287	0.11168		
Molecule: 1h	0	0.83527	2.11651	0.26816		
	Ν	-1.46845	2.48844	-0.11032		
	Ν	-0.79889	0.41499	0.11070		
	С	-2.58527	1.66722	-0.23795		
	С	-2.17273	0.38033	-0.10176		
	н	-3.57704	2.06619	-0.41397		
d d 🗸	Н	-2.73693	-0.54294	-0.13801		
Energy = -340.695728 Hartree	Н	-0.18526	-0.37766	0.24585		
	С	-1.43377	3.93064	-0.18480		
	Н	-0.38871	4.23576	-0.04971		
	Н	-1.79039	4.28513	-1.16317		
	Н	-2.04719	4.38352	0.60830		

Coordinates of stationary points for studied compounds

	13			
	С	-0.39760	1.66693	0.03998
	0	0.85001	2.17679	0.17306
Molecule: 1b'	N	-1.45997	2.50304	-0.13241
	N	-0 72731	0 39402	0.05742
	C	-2 57877	1 67491	-0 23326
	c	-2 10353	0 39336	-0 11465
	н	-3 57298	2 08336	-0 37632
	н	-2 66634	-0 53456	-0 14321
	C	-1 /13396	2 95180	-0.14321
Energy = -340.400740 Hartree	ц	-1.43330	1 28633	-0.18995
		1 00747	4.28055	1 12500
		-1.88/4/	4.30098	-1.12598
	н	-1.97904	4.38640	0.00003
	Н	1.43779	1.40464	0.27583
	16			
				0.00050
	C	-0.31447	1./1118	-0.00658
	0	0.85499	2.09511	0.04226
	N	-1.46917	2.48703	-0.12890
Molecule: 1c	N	-0.79132	0.39975	0.04724
	С	-2.59745	1.67474	-0.14742
	С	-2.17889	0.38605	-0.03896
	Н	-3.59807	2.08022	-0.23664
	н	-2.74866	-0.53505	-0.01581
	С	-1.42974	3.92833	-0.21730
	Н	-0.37446	4.22540	-0.17382
Energy = -379.982620 Hartree	Н	-1.86539	4.27883	-1.16486
	н	-1.97065	4.39151	0.62145
	С	0.08632	-0.74046	0.17420
	Н	1.11281	-0.35530	0.21658
	н	-0.12662	-1.30361	1.09516
	Н	-0.01123	-1.41372	-0.69060
	20			
	С	-0.87659	1.25066	-1.11717
	0	-0.27791	1.27253	-2.18652
	Ν	-1.79100	2.18165	-0.63729
	Ν	-0.80118	0.29810	-0.07186
Molecule: 1d	С	-2.26133	1.83561	0.62229
	С	-1.65012	0.67890	0.97421
	н	-3.00374	2.41998	1.15112
	н	-1.78059	0.06809	1.85735
	С	0.05711	-0.82608	-0.05673
	С	0.49140	-1.35037	1.17005
	С	0.47007	-1.42670	-1.25548
	С	1.31456	-2.47524	1.19625
	н	0.20464	-0.86732	2.10442
Energy = -532.391294 Hartree	С	1.30252	-2.54436	-1.21263
	н	0.14753	-1.00382	-2.20415
	С	1.72551	-3.07889	0.00638
	н	1.64598	-2.87240	2.15704
	н	1.61923	-3.00446	-2.15007
	н	2.37442	-3.95526	0.02925
	н	-2.04551	2.99640	-1.18044

	20					
	20					
	C	-0 92270	1 19546	-1 01725		
	0	-0 37641	1 12534	-2 25114		
	N	-0.30635	0 939/2	0 11100		
	N	-0.30035	1 52560	0.11133		
		-2.24//2	1.52500	-0.05514 1.0900E		
Molecule: 1d'			1.11190	1.08995		
		-2.4/3/4	1.40354	0.53003		
	н	-1.04282	0.98370	2.14233		
	Н	-3.43744	1.72036	0.95248		
	С	-3.22260	1.80549	-1.84618		
	С	-4.53639	1.35520	-1.66157		
	С	-2.88834	2.53876	-2.99143		
	С	-5.51083	1.64664	-2.61526		
	Н	-4.78439	0.76369	-0.77982		
Energy = -531.924818 Hartree	С	-3.86833	2.81093	-3.94532		
	Н	-1.86788	2.89222	-3.12895		
	С	-5.18156	2.37222	-3.76199		
	Н	-6.53159	1.29209	-2.46459		
	н	-3.60175	3.38175	-4.83609		
	н	-5.94409	2.59344	-4.50979		
	н	0.54009	0.81927	-2.10827		
	23					
	С	-0.88022	1.24666	-1.11729		
	0	-0.28374	1.26450	-2.19115		
	Ν	-1.79543	2.18807	-0.64934		
	Ν	-0.79677	0.29892	-0.07208		
	С	-2.25435	1.83748	0.61333		
	С	-1.64206	0.68300	0.97366		
Molecule: 1e	н	-2.99639	2.42480	1.14089		
	н	-1.77110	0.07757	1.86054		
	С	-2.16789	3.35342	-1.41888		
	н	-1.90024	4.27820	-0.88680		
	н	-1.61376	3.30805	-2.36445		
	н	-3.24735	3.35683	-1.63068		
	с	0.06030	-0.82595	-0.05722		
	с	0.49001	-1.35350	1.16997		
Energy = -571.678472 Hartree	с	0.47657	-1.42544	-1.25558		
	с	1.31119	-2.47996	1.19687		
	н	0.20127	-0.87226	2.10464		
	с	1.30688	-2.54484	-1.21198		
	н	0.15830	-0.99997	-2.20454		
	С	1.72507	-3.08257	0.00738		
	н	1 63868	-2 87913	2 15822		
	н	1 67560	-3 00360	-7 14938		
	н	2 37232	-3 96010	0.03087		
	'' _\	2.3/232				
IMINIUM CATIONS (C-PROTONATED IMIDAZOLES 1a-e), B3PW91/def2-TZVPD // PBE/def2-TZVPD						

	11			
	C	-0 23819	1 66811	-0 02052
Molecule: 1a_C	0	0.25518	2 14145	-0.00686
		-1 51008	2.14145	-0.00080
		-1.31098	2.49377	-0.10373
		-0.74154		0.02012
Energy = -301.493367 Hartree		-2.50011	1.70085	-0.10496
		-2.1/81/	0.33301	-0.01981
	н	-3.58486	2.15002	-0.15946
	н	-2.63218	-0.13155	0.87760
	н	-1.47238	3.51912	-0.15589
	н	-0.12874	-0.40536	0.08762
	Н	-2.57123	-0.22067	-0.89509
	14			
	_			
	C	-0.27257	1.67765	0.12331
	0	0.80752	2.16792	0.26454
Molecule: 1b C1	Ν	-1.53115	2.51045	-0.12136
	Ν	-0.75105	0.40886	0.11996
	С	-2.55847	1.74327	-0.24008
	С	-2.17127	0.31901	-0.09923
	Н	-3.56987	2.11256	-0.42014
i i i i i i i i i i i i i i i i i i i	Н	-2.71812	-0.14849	0.74197
Energy = -340.748250 Hartree	Н	-0.13805	-0.38961	0.25958
	С	-1.43453	3.96664	-0.18732
	Н	-0.37641	4.22355	-0.05955
	Н	-1.79579	4.31571	-1.16235
	Н	-2.03198	4.41122	0.61820
	Н	-2.44125	-0.24674	-1.01150
	14			
	C	-0.29896	1.78142	0.11022
	0	0.85458	2.05290	0.27475
Molecule: 1h C2	Ν	-1.42558	2.51317	-0.10591
	Ν	-0.82725	0.36294	0.10745
	С	-2.60814	1.70284	-0.24331
	С	-2.09791	0.32187	-0.08711
	Н	-3.37949	1.91623	0.52380
6 🔨	н	-2.68402	-0.59806	-0.12672
Energy = -340.740161 Hartree	Н	-0.19861	-0.43412	0.24948
	С	-1.42024	3.97092	-0.18494
	Н	-0.38625	4.30818	-0.05250
	н	-1.78849	4.29938	-1.16607
	Н	-2.04755	4.39734	0.60941
	Н	-3.10908	1.81798	-1.22557

	1			
	17			
	С	-0.27524	1.67292	-0.00045
	0	0.82110	2.15761	0.03776
	N	-1 53766	2 51525	-0 13412
	N	-0 74467	0 40304	0.05106
Molecule: 1c C	C	-2.57886	1.75793	-0.15172
9	C	-2.18094	0.33514	-0.03592
	н	-3.59919	2.13493	-0.24052
	н	-2.64764	-0.12873	0.85487
	C	-1.43452	3.96979	-0.22093
	н	-0.36738	4.21690	-0.17523
Energy = -379.994646 Hartree	н	-1.86446	4.31264	-1.16994
	н	-1.96698	4.42690	0.62210
	с	0.12151	-0.76391	0.17768
	н	1.15730	-0.40975	0.22268
	н	-0.11539	-1.31580	1.09738
	н	-0.00069	-1.42422	-0.69156
	н	-2.53527	-0.24065	-0.91313
	21			
	С	-0.77583	1.35793	-1.09094
	0	-0.04214	1.34233	-2.03303
	Ν	-1.71797	2.23011	-0.65751
	Ν	-0.81481	0.25976	-0.01013
	С	-2.35623	1.85669	0.57787
	С	-1.70127	0.56466	0.88726
Molecule: 1d_C1	н	-3.45060	1.72604	0.48312
1	н	-1.92702	-0.07874	1.73700
	С	0.06445	-0.85755	-0.02057
	С	0.58293	-1.31844	1.19915
	С	0.37877	-1.47711	-1.23793
	С	1.41663	-2.43057	1.19668
Energy = -532.277952 Hartree	н	0.37355	-0.78596	2.12858
	С	1.21082	-2.59386	-1.21664
	н	-0.02987	-1.10511	-2.17483
	С	1.72762	-3.07010	-0.00889
	н	1.84100	-2.78844	2.13471
	Н	1.45590	-3.09440	-2.15331
	Н	2.38734	-3.93826	-0.00568
	Н	-1.90704	3.08858	-1.16688
	Н	-2.18724	2.58945	1.38998

	21			
	C	-1 08446	1 05220	-1 21/95
	0	-0 79066	1.03223	-2 37755
	N	-1 98810	2 10796	-0 66199
	N	-0 77434	0 30156	-0 10710
	C	-0.77434	1 98713	0.10710
	C	-2.17054	0.81516	1 08577
Molecule: 1d_C2	н	-2 80318	2 65148	1 20430
8	Ц	-2.00310	0 08202	1.20430
		0.07575	-0.00232	-0.08622
	C	0.07373	-0.04711	1 13135
		0.20149	1 20210	1.13133
		1 10916	-1.50210	-1.20070
× ×		0 1 2 0 7 0	-2.03107	2.05475
Energy = -532.266538 Hartree		-0.10575	-1.17434	1 10946
		0.52601	-2.42300	-1.19040
		1 72027	-0.79025	-2.20022
		1.72927	-2.09220	0.00808
		1.20030	-3.14480	2.11999
		1.99701	-2.///00	-2.11185
		2.37320	-3.97054	0.04470
		-2.38193	2.82301	-1.28081
	24	-0.09242	1.12220	1.80388
	24			
	С	-0.82790	1.31994	-1.10895
	0	-0.10822	1.29339	-2.06713
	Ν	-1.76678	2.20029	-0.68719
	Ν	-0.83262	0.24205	-0.01417
	С	-2.37629	1.82852	0.56414
	С	-1.70727	0.55024	0.89286
	н	-3.47182	1.69004	0.48575
Molecule: 1e_C1	н	-1.91152	-0.08135	1.75658
■ 2	С	-2.09053	3.41974	-1.41693
	н	-1.87803	4.30200	-0.79763
	н	-1.46675	3.44901	-2.31700
	н	-3.15015	3.41980	-1.70661
	С	0.05810	-0.86652	-0.02196
· · · · · · · · · · · · · · · · · · ·	С	0.60086	-1.30377	1.19564
Energy = -571.523822 Hartree	С	0.35941	-1.50143	-1.23439
	С	1.44545	-2.40788	1.19668
	н	0.40072	-0.75958	2.12028
	С	1.20295	-2.60959	-1.20985
	н	-0.06667	-1.14540	-2.16965
	С	1.74362	-3.06268	-0.00376
	н	1.88801	-2.74736	2.13315
	н	1.43844	-3.12147	-2.14286
	н	2.41182	-3.92432	0.00190
	н	-2.20786	2.58234	1.35811

	24			
	24			
	с	-0.97105	1.13541	-1.16461
	о	-0.64347	1.11504	-2.32116
	Ν	-1.87211	2.21995	-0.61706
	Ν	-0.71354	0.34190	-0.08316
	С	-2.08766	2.04190	0.64070
	С	-1.37504	0.83373	1.10800
Molecule: 1e C2	н	-2.70964	2.69917	1.24955
	н	-2.08791	0.10301	1.53202
	С	-2.36214	3.26990	-1.50694
	н	-2.01467	4.24637	-1.14836
	н	-1.95154	3.06141	-2.50158
	н	-3.45825	3.24504	-1.53466
	С	0.10308	-0.83248	-0.07622
	С	0.23929	-1.54964	1.12041
	С	0.75731	-1.25942	-1.24093
Energy = -571.520468 Hartree	С	1.03206	-2.69529	1.14894
	н	-0.26120	-1.23488	2.03608
	С	1.54579	-2.40837	-1.19077
	н	0.65386	-0.70658	-2.17069
	С	1.68802	-3.12928	-0.00468
	н	1.13430	-3.24944	2.08216
	Н	2.05363	-2.73824	-2.09735
	н	2.30710	-4.02600	0.02248
	Н	-0.66121	1.09182	1.91185
2-HYDROXYIMIDAZOLIUM CATIONS (O-PROTONATED IMID	AZOLE	ES 1a-e), B3P	W91/def2-T	ZVPD // PBE/def2-
TZVPD	1			
	11			
	C	-0 35704	1 67393	-0 03397
Molecule: 1a OH	0	0.86366	2.16701	-0.01207
Q	N	-1 44103	2 46070	-0 10490
	N	-0 78900	0 39987	0.01754
	c	-2.59138	1.67605	-0.09814
	С	-2.18537	0.38259	-0.02277
	Н	-3.58269	2.10943	-0.14827
Energy = -301.748381 Hartree	н	-2.74644	-0.54337	0.00552
,,,,	н	-1.39977	3.47677	-0.15658
	н	-0.19572	-0.42360	0.08392
	н	1.56278	1.48463	-0.02328

	14			
	17			
	с	-0.36638	1.68051	0.00523
	ο	0.86026	2.16822	0.06866
Malagular 1h OU	Ν	-1.44139	2.47549	-0.11246
	Ν	-0.78922	0.40007	0.02973
	С	-2.58095	1.67176	-0.16945
	С	-2.17882	0.37819	-0.07840
	н	-3.57091	2.10110	-0.26584
2 👗 🥇	н	-2.73976	-0.54817	-0.07686
	н	-0.19301	-0.41931	0.10978
Energy = -341.040669 Hartree	С	-1.41294	3.93830	-0.19275
	н	-0.42629	4.29423	0.11905
	н	-1.61111	4.25686	-1.22373
	н	-2.17765	4.34478	0.47846
	Н	1.54116	1.48396	0.21457
	17			
	С	-0.37424	1.68897	0.01439
	0	0.85413	2.17306	0.11532
	Ν	-1.44969	2.48567	-0.10373
	Ν	-0.77405	0.40085	0.00089
Molecule: 1c_OH	С	-2.57866	1.67563	-0.20173
	С	-2.16248	0.38365	-0.13350
	Н	-3.57111	2.09682	-0.30678
	н	-2.71739	-0.54614	-0.16370
	С	-1.42068	3.94859	-0.16121
· · · · · · · · · · · · · · · · · · ·	н	-0.49302	4.30678	0.29630
Energy = -380.332365 Hartree	н	-1.47094	4.28425	-1.20474
	н	-2.27745	4.33941	0.39815
	С	0.11008	-0.75726	0.11597
	н	0.86272	-0.74494	-0.68449
	н	0.59486	-0.77801	1.10187
	Н	-0.49334	-1.66351	0.00618
	Н	1.52027	1.47118	0.24779

	1			
	21			
	C	-0 75821	1 3/675	-0 92946
	0	0.73831	1.34073	-0.92940
	N	-1 73718	2 21421	-0 59969
	N	-0.82587	0 29917	-0.08645
	C	-2.44707	1.71212	0.49036
Molecule: 1d_OH	C	-1.87996	0.52017	0.80627
	н	-3.28584	2.24391	0.92187
	н	-2.12657	-0.21056	1.56632
	C	0.05711	-0.84211	-0.07599
	c	0.70991	-1.16505	1.11468
	C	0 21663	-1 60057	-1 23589
	c	1 54520	-2 28184	1 13833
	н	0.57789	-0.54619	2.00340
	C	1.06269	-2.70886	-1.19772
Energy = -532.737539 Hartree	н	-0.31864	-1.33987	-2.14918
	C	1.72325	-3.04960	-0.01495
	н	2.06336	-2.54597	2.06030
	н	1.19634	-3.31327	-2.09502
	н	2.37961	-3.91983	0.00872
	н	-1.93817	3.08791	-1.07850
	н	0.15955	2.30308	-2.32407
	24			
	С	-0.78914	1.31440	-0.91583
	0	0.11273	1.50012	-1.86188
	Ν	-1.76228	2.19706	-0.63871
	Ν	-0.88548	0.26987	-0.06228
	С	-2.50455	1.70160	0.43445
	С	-1.96231	0.50954	0.79587
Molecule: 1e_OH	н	-3.35568	2.24280	0.82948
٩	н	-2.24245	-0.20436	1.56035
	С	-1.99665	3.45800	-1.34347
	Н	-1.96024	4.28755	-0.62740
	н	-1.21582	3.59336	-2.09811
	Н	-2.97809	3.42927	-1.83235
	С	0.02086	-0.84527	-0.04919
	С	0.73472	-1.13287	1.11610
• ~	С	0.17711	-1.60618	-1.21327
Energy = -572.035220 Hartree	С	1.62096	-2.20987	1.11102
	Н	0.60400	-0.51746	2.00720
	С	1.08377	-2.66895	-1.20727
	Н	-0.43405	-1.40248	-2.09540
	С	1.80111	-2.97030	-0.04800
	Н	2.18114	-2.44829	2.01539
	Н	1.21060	-3.27320	-2.10574
	H	2.50073	-3.80643	-0.04481
	H	0.73303	0.73712	-1.88514
TRANSITION STATE CALCULATIONS, ωB97X-	-V/de	f2-TZVPD, PC	M(chlorofor	m)

Molecule: 1a	10			
A 1	С	-0.30608	1.35031	-0.32001
	С	0.67121	1.48323	-1.24115
	С	1.24414	-0.29437	0.09872
	Ν	0.03615	0.27325	0.49313
	н	-1.20718	1.92453	-0.17658
	N	1.61451	0.49064	-0.98911
	0	1.83271	-1.24585	0.58636
▲	н	0 77569	2 19485	-2 04425
	н	2.45600	0.31358	-1.50877
Energy = -301 620280 Hartree	н	-0 48313	-0.07718	1 27867
	40	0.10010	0.07710	1.2,00,
	40			
	C	0 69628	1 007/6	-0.26818
		1.00611	2.26215	-0.20818
		1.99011	2.20213	-0.07909
		0.66717	-0.02040	-0.30000
		0.00/1/	0.50055	-0.55175
		-0.17055	2.4/4/0	-0.50215
		2.72407	1.10100	-0.77097
		2.55710	-1.14/55	-0.45962
		2.39401	3.20149	-0.80409
			3.93089	1./018/
		0.//55/	2.4/8/9	1.00217
	C	1.61584	1.47340	2.30155
Malagular 1a TC1 (Cattack)	C	0.10775	4.78449	1.04571
Molecule: Ia_ISI (C-attack)	C	0.28480	6.15638	1.05208
2	C	1.35933	6.74127	1.73499
	C	2.23485	5.89570	2.42221
	C	2.07213	4.51/80	2.40898
	C	3.02412	1.49137	2.26921
	C	3.75945	0.4/488	2.85368
	C	3.13009	-0.61167	3.4/4/2
	C	1./3016	-0.63/53	3.50066
		0.98972	0.37471	2.91790
	н	-0.28643	2.24165	1.76320
· ·	н	-0.75585	4.37024	0.52918
5 000 000500 H I	н	2.74059	3.90297	3.00050
Energy = -882.303588 Hartree	н	3.54//3	2.30456	1.77530
Imag. Freq. = -467.6800 cm ⁻¹	н	-0.09670	0.33549	2.96056
	н	4.84519	0.51257	2.82194
	н	1.21995	-1.46615	3.98361
	н	3.05164	6.32655	2.99522
	н	-0.42778	6.79089	0.53167
	С 	1.52598	8.23026	1.//184
	Н	0.88915	8.66361	2.55309
	Н	2.55/55	8.51453	1.99272
	Н	1.23090	8.68/87	0.82349
		3.93362	-1./3084	4.06089
	Н	3.39018	-2.23909	4.86109
	Н	4.15605	-2.47799	3.28846
	Н	4.88896	-1.37414	4.45484
	H	-0.09263	-0.07542	-0.01484
	н	3.72151	1.10165	-0.93439

	1			
	40			
	С	-0.30512	1.35015	-0.31678
	C	0.67610	1.48301	-1.23902
	C	1 22457	-0 25916	0.09167
	N	0.03730	0.27548	0.49085
	н	-1.21099	1.91654	-0.17209
	N	1.61892	0.50183	-0.96837
	0	1.84002	-1.26492	0.56070
	н	0.77961	2.17642	-2.05822
	C	3.06798	-2.48107	2.49806
	C	2.45828	-1.17496	2.36778
	C	1.28024	-0.74926	3.10737
	C	4.17202	-2.79431	1.68212
Molecule: 1a TS3 (<i>O</i> -attack)	C	4.79453	-4.02131	1.78005
_ ` _ /	C	4.35978	-4.97720	2.71127
	C	3.28734	-4.65003	3.54841
<u> </u>	C	2.64353	-3.42878	3.44476
	C	0.13197	-1.55640	3.20073
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C	-1.00093	-1.08608	3.84336
	С	-1.02665	0.18942	4.43198
	С	0.11352	0.99188	4.32369
	С	1.24349	0.53958	3.65708
	н	3.15730	-0.37260	2.13401
• •	н	4.51874	-2.06584	0.95461
ن •	н	1.84513	-3.18779	4.13785
Energy = -882.307712 Hartree	н	0.12051	-2.52946	2.71772
Imag. Freq. = -256.3600 cm ⁻¹	н	2.11352	1.18553	3.56994
	н	-1.88678	-1.71408	3.89517
	Н	0.11066	1.98693	4.76011
	Н	2.96258	-5.36244	4.30163
	Н	5.63836	-4.25077	1.13506
	С	5.02576	-6.31543	2.79808
	н	4.57052	-7.00742	2.07787
	Н	6.08985	-6.24951	2.55590
	Н	4.91619	-6.75720	3.79141
	С	-2.23993	0.66471	5.17222
	Н	-2.20667	0.31113	6.21036
	н	-2.29412	1.75571	5.20021
	н	-3.16041	0.27565	4.72848
	Н	2.45481	0.30892	-1.49837
	Н	-0.48192	-0.07490	1.28464

	23			
	с	0.35714	1.76721	-0.55038
	С	1.59778	2.26731	-0.71847
	С	1.83580	0.03086	-0.33301
	Ν	0.47704	0.39619	-0.30566
Molecule: 1e	н	-0.59442	2.27174	-0.52416
	С	-0.60101	-0.50419	-0.15505
	С	-0.46727	-1.64437	0.64140
	С	-1.81209	-0.24001	-0.80001
	С	-1.54885	-2.50400	0.78773
	н	0.47855	-1.85199	1.12589
	С	-2.88876	-1.10211	-0.63057
	н	-1.90543	0.62294	-1.45189
	С	-2.76366	-2.23848	0.16201
	н	-1.43878	-3.38946	1.40701
· · · · · · · · · · · · · · · · · · ·	н	-3.82583	-0.88912	-1.13666
	н	-3.60410	-2.91431	0.28666
Energy = -572.095715 Hartree	Ν	2.50137	1.22076	-0.59140
	0	2.33029	-1.07713	-0.18119
	С	3.94166	1.29948	-0.71820
	н	4.34222	0.29944	-0.53624
	н	4.22996	1.62354	-1.72501
	н	4.36031	1.99500	0.01813
	Н	1.91707	3.28370	-0.88892

	۲
1 🔎	and the second

Energy = -1152.783373 Hartree Imag. Freq. = -338.6200 cm⁻¹

Molecule: 1e_TS1 (C⁴-attack)

С	0.77530	1.91262	-0.39773
С	2.10448	2.20650	-0.69947
С	1.92427	-0.05136	-0.51318
Ν	0.66131	0.51960	-0.39019
Н	-0.06280	2.54396	-0.64655
С	-0.54988	-0.19369	-0.14736
С	-0.52295	-1.44533	0.46962
С	-1.76269	0.38451	-0.52512
С	-1.72212	-2.10510	0.71095
Н	0.42089	-1.89613	0.74821
С	-2.95282	-0.28421	-0.26346
н	-1.79177	1.33327	-1.05175
С	-2.93780	-1.52964	0.35505
н	-1.70083	-3.08184	1.18435
Н	-3.89348	0.16648	-0.56357
н	-3.86822	-2.05347	0.54873
N	2.79525	1.06893	-0.72356
0	2.28850	-1.20135	-0.47385
C	4.22575	0.86980	-0.91194
н	4.60879	0.25161	-0.09534
н	4.40255	0.34767	-1.85667
н	4,72408	1.84066	-0.92171
н	2 55791	3 18194	-0.81662
c	1 01544	3 93807	1 73281
c	0 79130	2 50017	1 69481
c	1 62362	1 48235	2 29833
c	0.07568	4 78418	1 11148
c	0.23296	6 15712	1 11886
c	1 32217	6 75383	1 76879
c	2 23403	5 91808	2 42300
c	2.23403	4 54025	2.42300
c	3 03272	1 50452	2.40505
c	3 76240	0.47850	2.20312
c	3 12618	-0 61845	3 45581
c	1 72621	-0 65297	3 45415
c	0 99038	0.36548	2 87878
н	-0 26651	2 22977	1 68285
н	-0 79522	4 35379	0.62102
н	2 78434	3 93312	2 97975
н	3 55816	2 31963	1 79655
н	-0.09506	0 31268	2 88205
н	4 84853	0.51200	2.83784
н	1 21150	-1 49751	3 90457
н	3 06202	6 3601/	2 97098
ц	-0 50/202	6 78/89	0.62620
C II	1 /6020	0.70409 Q 24404	1 91199
н	0 80802	8 65617	2 65396
ц	2 51225	8.03017 8.5/1/2	2.03330
н	2.51225	0.04140 8 71061	1.04047
Ċ	2 010402	-1 71600	0.90095 A 00279
с ц	2 0772E	-1.11009	4.0 <i>3</i> 370 5 17701
п u	2.3//32	2 50000	2.1//01
n u	3.4409U	-2.09090 1 75445	2.70001
П	4.94054	-1./0440	5.70994

53

	53			
	C	0 30671	0 90910	0 66011
	C	0.24182	2.28756	0.44090
	c	1.69751	1.40611	-1.07651
	N	1.21089	0.37609	-0.16889
	н	-0.21156	0.32557	1.40850
	С	1.70599	-0.95835	-0.15019
	c	2.03416	-1.59421	-1.34749
	c	1.83875	-1.61054	1.07539
	C	2.49667	-2.90324	-1.30211
	Н	1.92690	-1.07738	-2.29283
	с	2.29376	-2.92171	1.10014
	Н	1.62566	-1.08654	2.00133
	с	2.62625	-3.56942	-0.08668
	н	2.75015	-3.40760	-2.22901
	н	2.39966	-3.43361	2.05163
	н	2.98709	-4.59286	-0.06427
	N	1.02889	2.54078	-0.67934
	0	2.50891	1.26464	-1.95764
Meloculo: 1. $\mathbf{TC2}$ (C^5 attack)	С	1.11448	3.79944	-1.41339
	н	1.70017	3.61312	-2.31581
8	н	0.11098	4.13474	-1.69302
9	н	1.75545	1.20797	4.14835
	н	-0.61975	2.90593	0.65167
	С	1.46660	4.38314	1.89715
	С	1.36082	2.96651	2.20223
	С	2.49009	2.05949	2.30390
	С	0.30254	5.17926	1.92802
	С	0.35398	6.53054	1.65458
v	С	1.57333	7.16000	1.35554
	С	2.73550	6.38123	1.36574
Energy = -1152 778906 Hartree	С	2.69181	5.02217	1.63126
Imag Freq = -392 0800 cm ⁻¹	С	3.51383	1.98028	1.34098
initig: 1104 352.0000 cm	С	4.52060	1.03435	1.45715
	C	4.56897	0.15544	2.54356
	C	3.56560	0.25365	3.51777
	C	2.53106	1.16216	3.38708
	н	0.54053	2.72782	2.87980
	н	-0.65402	4.72251	2.17431
	н	3.61846	4.46238	1.67799
		3.51070	2.03854	0.47872
		1.003/9	4.5/2/3	-0.81479
		2.28433	0.97578	0.08041
		3.59520	-0.40597	4.30291
		3.09521	0.80480	1.17712
		-0.33020 5 62010	-0 88810	1.00200
	н	6 57651	-0.00019	2.07203
	н	5 82720	-0.54457	2.13000
	н	5 22751	-1 7912/	2 09788
		1 62791	8 63289	1 09311
	н	1.02791 0 75580	8 969209	0 52532
	н	1.62724	9,18455	2.04193
	н	2.53332	8.91289	0.54976
	1			

	53			
	с	-0.23849	1.38711	-0.55375
	С	1.01157	1.78576	-0.88523
	с	1.17958	-0.25269	0.04823
	N	-0.13911	0.13197	0.03106
	н	-1.19150	1.86252	-0.72075
	C	-1.24726	-0.62480	0.52058
	C	-1.30670	-1.99926	0.30576
	C	-2 26961	0.04676	1 18489
	c	-2 40623	-2 70505	0 77870
	н	-0.50784	-2.50604	-0.22348
	C	-3 37237	-0.67038	1 63366
	н	-2 19623	1 11427	1 36930
	C	-3 44025	-2 04611	1 43865
	н	-2 46296	-3 77600	0 61022
	н	-4 17748	-0 14923	2 14236
	н	-4 30307	-2 60348	1 78986
	N	1 88131	0 77808	-0 51005
	0	1 66/32	-1 339/8	0.01000
	C	3 32064	0 76/05	-0 7/153
Molecule: 1e_TS3 (O-attack)	н	3 68680	-0 24765	-0.74133
۹.	Ц	3 52773	1 03968	-0.50102
	ц.	3.32773	1.05508	-0.07151
200	Ц	1 35063	2 68273	-1 37000
		2 00020	-2.00275	2 /1077
	C	2.33020	-2.52565	2.41977
		2.33771	-1.22201	2.20033
		2 02/21	-0.79223	1 46220
	C	3.52421	-2.90123	1 61070
		4.37921	4.10090	2 722/5
		2 45590	4.97813	2.73343
•		3.43380	2 22705	2 55100
Energy = -1152.790086 Hartree	C	0.17054	-1.67446	3 38403
Imag. Freq. = -267.3200 cm ⁻¹	C	-0.92520	-1.07440	1 02277
	C	-1.03691	0 1 2 7 9 2	4.00077
	C	-0.01671	1 01000	4.40420
	C	1 08702	0.56220	2 28722
	н	3 03940	-0 /1913	1 99013
	ц.	4 10598	-0.41515	0.5812/
	ц.	4.10598	-2.33423	1 21/00
		2.12100	2.30312	2 05046
		1 07500	1 26022	2 11576
		1.07.300	1.20032	1 22201
		-1.72910	-1.90605	4.33201
		-0.09049	2.059/1	4.37017
	н	3.29404	-5.12104	4.59836
		5.28498	-4.49241	0.85092
		2.00100	-0.29194	2.8/699
	н	4.58313	-7.05070	2.24488
	н	b.10480	-6.21812	2.55/52
	Н	5.03527	-0.05348	5.90/42
	L.	-2.22344	0.60187	5.24661
	H 	-2.06516	0.42641	6.31811
	Н	-2.39531	1.67290	5.11242

4.96204

Molecule: 1e_

-3.12906

0.05833

	1			
	30			
Holecule:BHDStructureStructureFunctionStructureEnergy = -580.677158 Hartree	с	1.11471	4.18858	2.07786
	С	0.74844	2.83258	2.19005
	С	1.52864	1.71133	2.53579
	С	0.24043	5.05254	1.36348
	С	0.56079	6.37605	1.16990
	С	1.73205	6.91907	1.72612
	С	2.57064	6.08289	2.49144
	С	2.28007	4.75180	2.66657
	С	2.94815	1.67489	2.46614
	С	3.63162	0.54236	2.83713
	С	2.95121	-0.60202	3.30141
	С	1.54587	-0.58537	3.33648
	С	0.84706	0.53031	2.93860
	н	-0.30042	2.61835	1.97833
	н	-0.67115	4.64576	0.93386
	н	2.90261	4.14799	3.31740
	н	3.48999	2.51329	2.04276
	н	-0.23938	0.52828	2.96215
	н	4.71393	0.51353	2.74809
	н	1.01022	-1.47059	3.66650
	н	3.44842	6.50982	2.96868
	н	-0.10175	7.01489	0.59344
	С	2.05469	8.36552	1.56790
	н	1.71986	8.91680	2.45780
	н	3.13303	8.52740	1.48218
	н	1.55174	8.80270	0.70277
	С	3.71258	-1.80778	3.73441
	н	4.03550	-1.68022	4.77739
	н	3.10379	-2.71336	3.68848
	Н	4.61765	-1.94738	3.13691