Supporting Information

Direct Acylcyanation of Aryl Alkenes by Dual Photoredox and Copper Catalysis

Chun-Lin Dong,^a Zhi Guan,^{*a} and Yan-Hong He^{*a}

^a Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China

[Emails: guanzhi@swu.edu.cn (for Z. Guan); heyh@swu.edu.cn (for Y.-H. He)]

Contents

-	
1. General methods	S1
2. General procedure for the synthesis of products d	S1
3. Optimization of reaction conditions	S2
4. Mechanistic investigation	S5
4.1 Radical trapping experiments	S5
4.2 Emission spectrum of the LED light	S10
4.3 The UV-Vis absorption spectrum	S10
4.4 Fluorescence quenching experiments	S11
4.5 Cyclic voltammetry experiments	S15
5. The enantioselective acylcyanation of 4-methylstyrene 1a	S17
6. Characterization data of the products	S19
7. References	S35
8. NMR of products	S36
9. HRMS of products	S82

1. General methods

Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification. All solvents were pre-dried with active molecular sieves. Reactions were monitored by thin-layer chromatography (TLC) with Haiyang GF 254 silica gel plates (Qingdao Haiyang chemical industry Co Ltd, Qingdao, China) using UV light and phosphomolybdic acid as visualizing agents. Flash column chromatography was performed using 200-300 mesh silica gel at increased pressure. ¹H NMR spectra, ¹³C NMR spectra and ¹⁹F spectra were respectively recorded on 600/400 MHz NMR Bruker spectrometers. Chemical shifts (δ) were expressed in ppm with TMS as the internal standard, and coupling constants (*J*) were reported in Hz. High-resolution mass spectra were obtained by using ESI ionization sources (quadrupole time-of-flight mass spectrometer, Bruker Impact II, Bremen, Germany).

2. General procedure for the synthesis of products d

A 10 mL flame-dried Schlenk tube equipped with a stirring bar was charged with alkene **a** (0.2 mmol, 1.0 equiv) (if soild), aroyl chloride or sulfonyl chloride **b** (0.6 mmol, 3.0 equiv) (if soild), *fac*-Ir(ppy)₃ (0.006 mmol, 3 mol%), CuOAc (0.01 mmol, 5 mol%), L4 (0.02 mmol, 10 mol%), KHCO₃ (0.4 mmol, 2.0 equiv) and 4 Å MS powder (30 mg). The resulting mixture was evacuated and backfilled with Ar three times, followed by the addition of toluene (2 mL). Then, the mixture was stirred at room temperature for 30 min. Subsequently, alkene **a** (0.2 mmol, 1.0 equiv) (if liquid), aroyl chloride or sulfonyl chloride **b** (0.6 mmol, 3.0 equiv) (if liquid) and TMSCN **c** (0.6 mmol, 3.0 equiv) were added into the mixture by microliter syringes. The mixture was stirred under irradiation of 40 W 456 nm Kessil Tuna blue lamp (the distance between lamp and the tube is about 3 cm). After completion of the reaction (detected by TLC), the reaction mixture was diluted with dichloromethane, filtered through a short pad of celite. The filtratewas evaporated in vacuo to remove the solvent and purified by flash chromatography on silica gel with petroleum ether/ethyl acetate as the eluent to give

desired product d.

3. Optimization of reaction conditions

Me 1a + C	<i>fac</i> -lr(ppy) ₃ (3 m CuOAc (5 mo + TMSCN <u>Ligand (10 mo</u> KHCO ₃ (2 equiv c 4 Å MS (30 mg THF (2 mL), 456 nr	nol%) Dl%) /), Ar), r.t. m (40 W)
Entry	Ligand	Yield (%) ^b
1		35
2	L1	54
3	L2	66
4	L3	42
5	L4 ^c	72
6	L5	37
7	L6	50
8	L7	Trace
9	L8	20
10	L9	42
11	L10	46
12	L11	$N.D.^d$
13	L12	$N.D.^d$
14	L13	59
15	L14	45

Table S1. Ligand screening^a

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv), **1b** (0.6 mmol, 3.0 equiv), **c** (0.6 mmol, 3.0 equiv), *fac*-Ir(ppy)₃ (0.006 mmol, 3 mol%), CuOAc (0.01 mmol, 5 mol%), ligand (0.02 mmol, 10 mol%), KHCO₃ (0.4 mmol, 2.0 equiv) and 4 Å MS powder (30 mg) in THF (2 mL)

irradiated with 40 W 456 nm Kessil Tuna blue lamp under Ar atmosphere (Ar balloon) at room temperature for 27 h. ^bYield of the isolated product after chromatography on silica gel. ^cL4 is a racemic mixture. ^dN.D. = Not Detected.

Me 1a 1	O fac-lr(ppy) ₃ (3 mol%) Cl Cu salt (5 mol%) + TMSCN L4 (10 mol%) KHCO ₃ (2 equiv), A b c 4 Å MS (30 mg), r.t. THF (2 mL), 456 nm (40)	b) CN O Me 1d DW)
Entry	Cu salts	Yield (%) ^b
1	CuOAc	72
2	Cu(MeCN) ₄ BF ₄	43
3	Cu(MeCN) ₄ PF ₆	30
4	$Cu(OAc)_2$	60
5	CuCl	61
6	CuBr	70
7	CuI	48

Table S2. Copper salt screening ^a

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv), **1b** (0.6 mmol, 3.0 equiv), **c** (0.6 mmol, 3.0 equiv), *fac*-Ir(ppy)₃ (0.006 mmol, 3 mol%), Cu salt (0.01 mmol, 5 mol%), **L4** (0.02 mmol, 10 mol%), KHCO₃ (0.4 mmol, 2.0 equiv) and 4 Å MS powder (30 mg) in THF (2 mL) irradiated with 40 W 456 nm Kessil Tuna blue lamp under Ar atmosphere (Ar balloon) at room temperature for 27 h. ^bYield of the isolated product after chromatography on silica gel.

Me 1a 1b	fac-lr(ppy) ₃ (3 mol% CuOAc (5 mol%) `CI + TMSCN L4 (10 mol%) KHCO ₃ (2 equiv), Ar c 4 Å MS (30 mg), r.t. solvent (2 mL), 456 nm (4)	5) CN O Me 1d 40 W)
Entry	Solvent	Yield (%) ^b
1	MeCN	N.D.
2	1,4-Dioxane	Trace
3	DCM	Trace
4	DMF	N.D.
5	THF	72
6	DCE	45
7	MTBE	43
8	Toluene	76

Table S3. Effect of solvent on the reaction ^a

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv), **1b** (0.6 mmol, 3.0 equiv), **c** (0.6 mmol, 3.0 equiv), *fac*-Ir(ppy)₃ (0.006 mmol, 3 mol%), CuOAc (0.01 mmol, 5 mol%), **L4** (0.02 mmol, 10 mol%), KHCO₃ (0.4 mmol, 2.0 equiv) and 4 Å MS powder (30 mg) in solvent (2 mL)

irradiated with 40 W 456 nm Kessil Tuna blue lamp under Ar atmosphere (Ar balloon) at room temperature for 27 h. ^bYield of the isolated product after chromatography on silica gel.

Table S4. Photocatalyst screening ^a

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv), **1b** (0.6 mmol, 3.0 equiv), **c** (0.6 mmol, 3.0 equiv), PC (0.006 mmol, 3 mol%), CuOAc (0.01 mmol, 5 mol%), **L4** (0.02 mmol, 10 mol%), KHCO₃ (0.4 mmol, 2.0 equiv) and 4 Å MS powder (30 mg) in toluene (2 mL) irradiated with 40 W 456 nm Kessil Tuna blue lamp under Ar atmosphere (Ar balloon) at room temperature for 27 h. ^bYield of the isolated product after chromatography on silica gel.

Table S5. Influence of base on the reaction ^a

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv), **1b** (0.6 mmol, 3.0 equiv), **c** (0.6 mmol, 3.0 equiv), *fac*-Ir(ppy)₃ (0.006 mmol, 3 mol%), CuOAc (0.01 mmol, 5 mol%), **L4** (0.02 mmol, 10 mol%), base (0.4 mmol, 2.0 equiv) and 4 Å MS powder (30 mg) in toluene (2 mL) irradiated with 40 W 456 nm Kessil Tuna blue lamp under Ar atmosphere (Ar balloon) at room temperature for 27 h. ^bYield of the isolated product after chromatography on silica gel.

Table S6. Effect of KHCO₃ loading on the reaction ^a

Me 1a 1b	Cl + TMSCN c + MSCN c +	%)) Ar .t. (40 W)
Entry	KHCO ₃ (x equiv)	Yield (%) ^b
1	0.0	61
2	1.0	74
3	2.0	76
4	3.0	61
5	4.0	65

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv), **1b** (0.6 mmol, 3.0 equiv), **c** (0.6 mmol, 3.0 equiv), *fac*-Ir(ppy)₃ (0.006 mmol, 3 mol%), CuOAc (0.01 mmol, 5 mol%), **L4** (0.02 mmol, 10 mol%), KHCO₃ (x equiv) and 4 Å MS powder (30 mg) in toluene (2 mL) irradiated with 40 W 456 nm Kessil Tuna blue lamp under Ar atmosphere (Ar balloon) at room temperature for 27 h. ^bYield of the isolated product after chromatography on silica gel.

Table S7. Control experiments ^a

Me 1a +	O fac-l Cl Cl Tb C C C Cl Tb Cl C C C Cl C C C Cl C C C Cl C C C C	Ir(ppy) ₃ (3 mol%) uOAc (5 mol%) <u>L4 (10 mol%)</u> ≿O ₃ (2 equiv), Ar M MS (30 mg), r.t. 2 mL), 456 nm (40 W)	CN O le 1d
Entry	Variation from standard	conditions	Yield (%) ^b
1	None		76
2	Dark		N.D.
3	No fac-Ir(ppy)	3	N.D.
4	No CuOAc		N.D.
5	No L4		31
6	No 4 Å MS		61

^aStandard conditions: **1a** (0.2 mmol, 1.0 equiv), **1b** (0.6 mmol, 3.0 equiv), **c** (0.6 mmol, 3.0 equiv), *fac*-Ir(ppy)₃ (0.006 mmol, 3 mol%), CuOAc (0.01 mmol, 5 mol%), **L4** (0.02 mmol, 10 mol%), KHCO₃ (0.4 mmol, 2.0 equiv) and 4 Å MS powder (30 mg) in toluene (2 mL) irradiated with 40 W 456 nm Kessil Tuna blue lamp under Ar atmosphere (Ar balloon) at room temperature for 27 h. ^bYield of the isolated product after chromatography on silica gel.

4. Mechanistic investigation

4.1 Radical trapping experiments

In order to confirm if the reaction undergoes a radical mechanism, common radical scavengers, 2,2,6,6-tetramethylpiperidinooxy (TEMPO), 2,6-di-*tert*-butyl-4-methylphenol (BHT) and 1,1-diphenylethylene (DE) were employed for the radical trapping and inhibition experiments (Scheme S1). When TEMPO (3.0 equiv to **1a**) and BHT (3.0 equiv to **1a**) were added separately into the model reaction system at the beginning of the reaction under the standard conditions, no product was detected even after 27 h. Only a trace amount of product was observed when DE (3.0 equiv to **1a**) was added at the beginning of the reaction. These results suggested that the reaction may involve a radical process. After 27 hours, a small amount of reaction mixture was taken out for high-resolution mass spectrometry (HRMS) measurement (Figures S5 and S6).

Scheme S1. Radical trapping experiments.

2,2,6,6-Tetramethylpiperidin-1-yl benzoate $(1g)^{1}$: R_f = 0.25 (Petroleum ether/EtOAc, 100:1). 44.6 mg, 28% yield. White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 – 8.07 (m, 2H), 7.59 – 7.55 (m, 1H), 7.48 – 7.44 (m, 2H), 1.83 – 1.64 (m, 3H), 1.61 – 1.57 (m, 2H), 1.48 – 1.43 (m, 1H), 1.28 (s, 6H), 1.12 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.4, 132.8, 129.8, 129.6, 128.4, 60.4, 39.1, 32.0, 20.9, 17.0.

Figure S1. ¹H-NMR Spectrum (400 MHz, CDCl₃) of 1g

Figure S2. ¹³C-NMR Spectrum (101 MHz, CDCl₃) of 1g

1,3,3-Triphenylprop-2-en-1-one (**1h**)²: $R_f = 0.25$ (Petroleum ether/EtOAc, 50:1). 17.9 mg, 11% yield. Yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 – 7.70 (m, 2H), 7.30 – 7.25 (m, 1H), 7.21 – 7.15 (m, 7H), 7.08 – 7.05 (m, 3H), 7.00 – 6.97 (m, 2H), 6.92 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 192.7, 154.7, 141.4, 139.0, 138.3, 132.6, 132.5, 129.8, 129.3, 128.8, 128.6, 128.5, 128.4, 128.1, 124.1.

Figure S3. ¹H-NMR Spectrum (400 MHz, CDCl₃) of 1h

Figure S4. ¹³C-NMR Spectrum (101 MHz, CDCl₃) of 1h

Figure S5. Mass spectrometry (HRMS) data of the radical trapping experiments (with TEMPO)

Figure S6. Mass spectrometry (HRMS) data of the radical trapping experiments (with BHT)

4.2 Emission spectrum of the LED light

Figure S7. Spectrum distribution of light source. Table S8. The detail information of light source.

Chromaticity Coordinates	x=0	.1459 y=0.0367 u=0.1854 v=	0.1050
Correlated Color	>25000 K	Peak wavelength	457 nm
Temperature			
SDCM	0	Main wavelength	460 nm
Color Shift	0.000000 duv	Half-width of spectrum	0 nm
Red Ratio	0	Color purity	98.00%
Luminous	2.680e ² lux	Radiant flux	5.7560e ³ W/m ²
Flux			
Color	Ra=50.0 R1=14.0	R2=49.0 R3=99.0 R4=89.	0 R5=0.0 R6=61.0
Rendering	R7=54.0 R8=40.0	R9=99.0 R10=99.0 R11=99.0	R12=99.0 R13=35.0
Index	R14=34.0		

4.3 The UV-Vis absorption spectrum

UV-Vis absorption spectra were collected on UV-2600 (SHIMADZU). All samples were dissolved in toluene. The UV-Vis absorption of fac-Ir(ppy)₃ (0.003 M), **1a** (0.1 M), **1b** (0.3

M), c (0.3 M), CuOAc (0.005 M) were showed in the figure below.

Figure S8. The UV-Vis absorption spectrum.

4.4 Fluorescence quenching experiments

The quenching of fac-Ir(ppy)₃^{*} by 4-methylstyrene **1a**, benzoyl chloride **1b**, TMSCN **c** were carried out in THF separately (Figures S9-S14). The results revealed that **1b** could significantly quench fac-Ir(ppy)₃^{*}, and other components did not display obvious quenching ability to fac-Ir(ppy)₃^{*} (excitation wavelength 452 nm; emission wavelength 513 nm).

Figure S9. Fluorescence quenching of 0.05 mM fac-Ir(ppy)₃ (in THF) by increasing concentration of 1a.

Figure S10. Stern–Volmer plots of fluorescence quenching of 0.05 mM *fac*-Ir(ppy)₃ (in THF) by **1a**.

Figure S11. Fluorescence quenching of 0.05 mM fac-Ir(ppy)₃ (in THF) by increasing concentration of 1b.

Figure S12. Stern–Volmer plots of fluorescence quenching of 0.05 mM *fac*-Ir(ppy)₃ (in THF) by **1b**.

Figure S13. Fluorescence quenching of 0.05 mM fac-Ir(ppy)₃ (in THF) by increasing concentration of **c**.

Figure S14. Stern–Volmer plots of fluorescence quenching of 0.05 mM *fac*-Ir(ppy)₃ (in THF) by c.

4.5 Cyclic voltammetry experiments

The cyclic voltammetry experiments were performed separately. The reduction potential of 1a, 1b, c and CuOAc/L4 were determined as: 1a ($E_{red} = -2.42$ V vs SCE in MeCN), 1b ($E_{red} =$ -1.15 V vs SCE in MeCN), c (E_{red} = -2.07 V vs SCE in MeCN) (Figure S15), L4 (E_{red} = -1.91 V vs SCE in MeCN), CuOAc/L4 ($E_{red} = -1.91$ V vs SCE in MeCN) (Figure S16), while the reduction peak of CuOAc were not detected obviously. The data indicated that 1b can be reduced by the excited fac-Ir(ppy)₃^{*} ($E_{ox}^* = -1.73$ V vs SCE in MeCN).³ The electrochemical measurements were carried out by a computer-controlled electrochemical analyzer. Cyclic voltammetry was performed in a three-electrode cell (volume 10 mL; MeCN as solvent, $nBu_4N^+ClO_4^- 0.05$ M as the supporting electrolyte, 10 mM concentration of 1a, 1b and c, 1.0 mM concentration of CuOAc and 2.0 mM concentration of L4) with glassy carbon (diameter 3 mm) as the working electrode, Pt wire as the auxiliary electrode, and saturated calomel electrode (SCE) (3 M KCl) as the reference electrode. The scan speed was 100 mV·s⁻¹. The potential ranges investigated for reductions of reaction components and blank were 0.0 to -3.0 V vs SCE (3 M KCl). As shown below, E_{red} of 1b was determined to be -1.15 V vs SCE (in MeCN), which suggest that single electron reduction of 1b by the excited fac-Ir(ppy)₃^{*} is feasible ($E^*_{ox} = -1.73$ V vs SCE in MeCN).³

Figure S15. Cyclic voltammetry (CV) of 4-methylstyrene 1a, benzoyl chloride 1b, TMSCN c and MeCN.

Figure S16. Cyclic voltammetry (CV) of CuOAc, L4, CuOAc/L4 and MeCN.

Figure S17. Cyclic voltammetry (CV) of 2-phenylacetyl chloride.

Figure S18. Cyclic voltammetry (CV) of cyclohexanecarbonyl chloride.

5. The enantioselective acylcyanation of 4-methylstyrene 1a^a

Me $1a$ t A (chiral L4 lig	O 1b + TMSCN c 	fac-Ir(ppy) ₃ (3 mol%), Cu Ligand (10 mol%), KH0 4 A MS (30 mg), r.1 THF (2 mL), 456 nm	salt (5 mol%) CO ₃ (2 eq) t., Ar (40 W) Me C	
Entry	Cu salts	Ligand	Yield (%) ^b	Ee (%) ^c
1	CuOAc	Α	80	4
2	Cu(MeCN) ₄ BF ₄	Α	55	3
3 ^d	CuOAc	Α	79	1
4	CuOAc	В	16	86
5	Cu(MeCN) ₄ BF ₄	В	27	83
6	CuCl	В	11	87
7 ^d	CuCl	В	18	81
8	CuOAc	С	13	83
9	Cu(MeCN) ₄ BF ₄	С	15	80
10	Cu(MeCN) ₄ BF ₄	D	5	-45

^aUnless otherwise noted, conditions: **1a** (0.2 mmol, 1.0 equiv), **1b** (0.6 mmol, 3 equiv), **c** (0.6 mmol, 3.0 equiv), *fac*-Ir(ppy)₃ (0.006 mmol, 3 mol%), Cu salt (0.01 mmol, 5 mol%), ligand (0.02 mmol, 10 mol%), KHCO₃ (0.4 mmol, 2 equiv) and 4Å MS powder (30 mg) in THF (2 mL) irradiated with 40 W 456 nm Kessil Tuna blue lamp under Ar atmosphere (Ar balloon) at room temperature. ^bIsolated yield. ^cDetermined by HPLC analysis with a chiral column (Daicel Chiralpak OD-H, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, $\lambda = 254$ nm) and the absolute configuration of products **1d** was assigned by comparison with reported chiral HPLC analysis. ^dToluene instead of THF.

检测器A 254r	ហា	n 0.5000 00		10. 17.0 17.0 17.0 17.0 17.0 17.0 17.0 1
No.	Retention Time	Area	Height	Concentration
1	8.995	12737850	773837	48.601
2	10.543	13471384	698104	51.399
总计		26209234	1471941	
5.6				

Figure S19. HPLC of 1d (racemate)

檢测器A 2541	ហា			
No.	Retention Time	Area	Height	Concentration
1	9.178	4898346	313899	93.251
2	10.801	354538	19550	6.749
总计		5252884	333448	

Figure S20. HPLC of 1d (chiral)

6. Characterization data of the products

4-Oxo-4-phenyl-2-(p-tolyl)butanenitrile (1d)⁴: R_f = 0.25 (Petroleum ether/EtOAc, 15:1). 37.4 mg, 76% yield. White solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 7.4 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.31 (d, *J* = 7.7 Hz, 2H), 7.18 (d, *J* = 7.8 Hz, 2H), 4.53 (t, *J* = 6.9 Hz, 1H), 3.69 (dd, *J* = 17.8, 7.8 Hz, 1H), 3.48 (dd, *J* = 17.8, 6.1 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 194.7, 138.2, 135.9, 133.8, 132.3, 129.9, 128.8, 128.1, 127.3, 120.7, 44.5, 31.6, 21.0.

(*E*)-1-Phenyl-3-(p-tolyl)prop-2-en-1-one (1e)⁵: R_f = 0.25 (Petroleum ether/EtOAc, 75:1). Light yellow solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.01 – 8.00 (m, 2H), 7.79 (d, *J* = 15.7 Hz, 1H), 7.59 – 7.53 (m, 3H), 7.51 – 7.47 (m, 3H), 7.22 (d, *J* = 7.8 Hz, 2H), 2.39 (s, 3H).
¹³C NMR (151 MHz, Chloroform-*d*) δ 190.7, 144.9, 141.0, 138.5, 132.6, 132.3, 129.7, 128.6, 128.5, 121.3, 21.5.

1,6-Diphenyl-3,4-di-p-tolylhexane-1,6-dione (1f): $R_f = 0.25$ (Petroleum ether/EtOAc, 16:1). White solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.65 – 7.63 (m, 4H), 7.46 – 7.43 (m, 2H), 7.32 (t, J = 7.8 Hz, 4H), 7.24 (d, J = 7.8 Hz, 4H), 7.07 (d, J = 7.7 Hz, 4H), 3.64 – 3.63 (m, 2H), 3.26 – 3.22 (m, 2H), 2.92 (dd, J = 16.6, 2.3 Hz, 2H), 2.26 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 199.0, 139.8, 137.2, 136.3, 132.6, 129.4, 128.3, 128.2, 127.9, 46.7, 44.1, 21.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₂H₃₁O₂ 447.2319; Found 447.2322.

4-Oxo-2,4-diphenylbutanenitrile (**2d**)⁴: R_f = 0.25 (Petroleum ether/EtOAc, 15:1). 37.0 mg, 79% yield. Yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.91 (m, 2H), 7.61 – 7.57 (m, 1H), 7.48 – 7.42 (m, 4H), 7.41 – 7.37 (m, 2H), 7.35 – 7.31 (m, 1H), 4.56 (dd, *J* = 8.0, 5.9 Hz, 1H), 3.73 (dd, *J* = 18.0, 8.0 Hz, 1H), 3.51 (dd, *J* = 17.9, 6.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.6, 135.7, 135.3, 133.9, 129.3, 128.8, 128.4, 128.1, 127.5, 120.6, 44.5, 31.9.

2-(4-Methoxyphenyl)-4-oxo-4-phenylbutanenitrile (**3d**)⁴: $R_f = 0.25$ (Petroleum ether/EtOAc, 9:1). 26.5 mg, 50% yield. Yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.91 (m, 2H), 7.61 – 7.59 (m, 1H), 7.48 – 7.45 (m, 2H), 7.36 – 7.33 (m, 2H), 6.92 – 6.88 (m, 2H), 4.52 (dd, J = 7.7, 6.3 Hz, 1H), 3.80 (s, 3H), 3.69 (dd, J = 17.9, 7.7 Hz, 1H), 3.49 (dd, J = 17.9, 6.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194. 8, 159.6, 135.8, 133.9, 128.8, 128.7, 128.1, 127.2, 120.9, 114.6, 55.4, 44.6, 31.2.

2-([1,1'-Biphenyl]-4-yl)-4-oxo-4-phenylbutanenitrile (**4d**)⁶: $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). 39.2 mg, 63% yield. Light yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.92 (m, 2H), 7.61 – 7.55 (m, 5H), 7.52 – 7.42 (m, 6H), 7.38 – 7.33 (m, 1H), 4.61 (dd, J = 7.8, 6.1 Hz, 1H), 3.75 (dd, J = 17.9, 7.8 Hz, 1H), 3.55 (dd, J = 17.9, 6.1

Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.6, 141.4, 140.2, 135.7, 134.2, 133.9, 128.9, 128.9, 128.1, 128.0, 127.7, 127.1, 120.6, 44.5, 31.6.

2-(4-Fluorophenyl)-4-oxo-4-phenylbutanenitrile (**5d**)⁴: R_f = 0.25 (Petroleum ether/EtOAc, 13:1). 37.5 mg, 74% yield. White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (d, *J* = 7.7 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.44 – 7.40 (m, 2H), 7.07 (t, *J* = 8.5 Hz, 2H), 4.57 (t, *J* = 6.9 Hz, 1H), 3.71 (dd, *J* = 17.9, 7.4 Hz, 1H), 3.51 (dd, *J* = 17.9, 6.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.4, 162.5 (d, *J* = 247.9 Hz), 135.6, 133.9, 131.1 (d, *J* = 3.4 Hz), 129.3 (d, *J* = 8.3 Hz), 128.8, 128.1, 120.5, 116.2 (d, *J* = 21.9 Hz), 44.4, 31.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.22.

2-(4-Chlorophenyl)-4-oxo-4-phenylbutanenitrile (6d)⁴: $R_f = 0.25$ (Petroleum ether/EtOAc, 13:1). 36.8 mg, 68% yield. Light yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, J = 7.8 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.40 – 7.35 (m, 4H), 4.56 (t, J = 6.9 Hz, 1H), 3.71 (dd, J = 18.0, 7.4 Hz, 1H), 3.51 (dd, J = 17.9, 6.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.6, 135.8, 134.7, 134.3, 134.1, 129.7, 129.2, 129.1, 128.3, 120.5, 44.5, 31.6.

2-(4-Bromophenyl)-4-oxo-4-phenylbutanenitrile $(7d)^4$: R_f = 0.25 (Petroleum ether/EtOAc, 11:1). 38.4 mg, 61% yield. Light yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, J = 7.7 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.52 – 7.45 (m, 4H), 7.32 (d, J = 8.1 Hz, 2H), 4.54 (t, J = 6.9 Hz, 1H), 3.71 (dd, J = 18.0, 7.4 Hz, 1H), 3.50 (dd, J = 18.0, 6.4 Hz, 1H). ¹³C NMR

(101 MHz, Chloroform-*d*) δ 194.3, 135.5, 134.3, 134.0, 132.4, 129.3, 128.9, 128.1, 122.5, 120.2, 44.2, 31.4.

4-Oxo-4-phenyl-2-(4-(trifluoromethyl)phenyl)butanenitrile (**8d**)⁷: $R_f = 0.25$ (Petroleum ether/EtOAc, 10:1). 46.8 mg, 77% yield. Light yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.91 (m, 2H), 7.66 (d, J = 8.2 Hz, 2H), 7.63 – 7.58 (m, 3H), 7.48 (t, J = 7.8 Hz, 2H), 4.66 (t, J = 6.8 Hz, 1H), 3.76 (dd, J = 18.0, 7.3 Hz, 1H), 3.55 (dd, J = 18.0, 6.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.1, 139.3, 135.5, 134.1, 130.8 (q, J = 32.7 Hz), 128.9, 128.1, 128.1, 126.3 (q, J = 3.8 Hz), 123.7 (q, J = 272.2 Hz), 119.9, 44.2, 31.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.77.

4-(1-Cyano-3-oxo-3-phenylpropyl)phenyl acetate (**9d**)⁶: R_f = 0.25 (Petroleum ether/EtOAc, 2:1). 46.9 mg, 80% yield. Light yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 7.7 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.49 – 7.44 (m, 4H), 7.12 (d, *J* = 8.3 Hz, 2H), 4.59 – 4.56 (m, 1H), 3.72 (dd, *J* = 18.0, 7.8 Hz, 1H), 3.50 (dd, *J* = 18.0, 6.0 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.5, 169.2, 150.6, 135.6, 134.0, 132.8, 128.9, 128.7, 128.1, 122.5, 120.4, 44.5, 31.4, 21.1.

4-(1-Cyano-3-oxo-3-phenylpropyl)benzonitrile (10d): $R_f = 0.25$ (Petroleum ether/EtOAc, 5:1). 25.4 mg, 49% yield. White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.90 (m, 2H), 7.71 – 7.68 (m, 2H), 7.64 – 7.58 (m, 3H), 7.51 – 7.46 (m, 2H), 4.68 – 4.64 (m, 1H), 3.80 – 3.73 (m, 1H), 3.59 – 3.52 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 193.9, 140.4,

135.3, 134.2, 133.0, 129.0, 128.6, 128.1, 119.5, 118.0, 112.6, 43.9, 31.9. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₂N₂ONa 283.0842; Found 283.0847.

4-Oxo-4-phenyl-2-(m-tolyl)butanenitrile (**11d**)⁶: R_f = 0.25 (Petroleum ether/EtOAc, 16:1). 31.4 mg, 63% yield. Light yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.91 (m, 2H), 7.61 – 7.57 (m, 1H), 7.48 – 7.44 (m, 2H), 7.29 – 7.20 (m, 3H), 7.14 (d, *J* = 7.4 Hz, 1H), 4.52 (dd, *J* = 8.1, 5.8 Hz, 1H), 3.71 (dd, *J* = 17.9, 8.2 Hz, 1H), 3.48 (dd, *J* = 17.9, 5.8 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.7, 139.2, 135.8, 135.2, 133.9, 129.2, 129.1, 128.8, 128.1, 128.1, 124.5, 120.7, 44.6, 31.8, 21.4.

2-(3-Chlorophenyl)-4-oxo-4-phenylbutanenitrile (12d)⁸: R_f = 0.25 (Petroleum ether/EtOAc, 15:1). 36.4 mg, 68% yield. Light yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.91 (m, 2H), 7.62 – 7.58 (m, 1H), 7.50 – 7.44 (m, 3H), 7.35 – 7.31 (m, 3H), 4.56 (dd, *J* = 7.6, 6.1 Hz, 1H), 3.73 (dd, *J* = 18.0, 7.6 Hz, 1H), 3.51 (dd, *J* = 18.0, 6.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.2, 137.2, 135.5, 135.1, 134.0, 130.5, 128.9, 128.7, 128.1, 127.8, 125.8, 120.1, 44.3, 31.5.

4-Oxo-4-phenyl-2-(o-tolyl)butanenitrile (13d)⁶: $R_f = 0.25$ (Petroleum ether/EtOAc, 16:1). 18.4 mg, 37% yield. Light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 – 7.93 (m, 2H), 7.63 – 7.58 (m, 1H), 7.51 – 7.46 (m, 3H), 7.27 – 7.25 (m, 2H), 7.23 – 7.20 (m, 1H), 4.71 (dd, *J* = 9.0, 5.0 Hz, 1H), 3.74 (dd, *J* = 18.0, 9.1 Hz, 1H), 3.42 (dd, *J* = 18.0, 5.0 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.8, 135.7, 135.3, 133.9, 133.4, 131.3, 128.9, 128.5, 128.1, 127.5, 127.0, 120.7, 43.1, 28.8, 19.3.

2-(Naphthalen-2-yl)-4-oxo-4-phenylbutanenitrile (14d)⁴: R_f = 0.25 (Petroleum ether/EtOAc, 12:1). 35.2 mg, 62% yield. Light yellow solid. m. p. 122-123 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.91 (m, 3H), 7.88 – 7.82 (m, 3H), 7.60 – 7.56 (m, 1H), 7.52 – 7.43 (m, 5H), 4.74 (dd, *J* = 7.9, 5.9 Hz, 1H), 3.80 (dd, *J* = 17.9, 7.9 Hz, 1H), 3.59 (dd, *J* = 17.9, 6.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.6, 135.7, 133.9, 133.3, 132.9, 132.6, 129.3, 128.9, 128.1, 127.9, 127.7, 126.8, 126.8, 126.7, 124.8, 120.7, 44.5, 32.1.

4-Oxo-2,4-di-p-tolylbutanenitrile (**15d**)⁹: $R_f = 0.25$ (Petroleum ether/EtOAc, 20:1). 39.7 mg, 75% yield. Yellow solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.82 – 7.81 (m, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.26 – 7.25 (m, 3H), 7.18 (d, *J* = 7.7 Hz, 2H), 4.52 (dd, *J* = 7.9, 6.1 Hz, 1H), 3.67 (dd, *J* = 17.8, 7.9 Hz, 1H), 3.45 (dd, *J* = 17.8, 6.1 Hz, 1H), 2.41 (s, 3H), 2.34 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.3, 144.8, 138.2, 133.3, 132.4, 129.9, 129.5, 128.2, 127.4, 120.9, 44.4, 31.6, 21.7, 21.1.

4-(4-Heptylphenyl)-2-(4-methoxyphenyl)-4-oxobutanenitrile (16d): $R_f = 0.25$ (Petroleum ether/EtOAc, 33:1). 45.8 mg, 69% yield. Yellow liquid. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.86 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 7.6 Hz, 2H), 7.29 – 7.28 (m, 2H), 7.21 (d, J = 7.7 Hz, 2H), 4.56 (t, J = 7.0 Hz, 1H), 3.70 (dd, J = 17.8, 7.8 Hz, 1H), 3.49 (dd, J = 17.8, 6.1 Hz, 1H), 2.68 (t, J = 7.7 Hz, 2H), 2.37 (s, 3H), 1.66 – 1.63 (m, 2H), 1.35 – 1.28 (m, 8H), 0.91 (t, J = 7.2

6.9 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.3, 149.8, 138.2, 133.5, 132.4, 129.9, 128.8, 128.2, 127.4, 120.9, 44.4, 36.0, 31.7, 31.6, 31.0, 29.2, 29.1, 22.6, 21.0, 14.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₃₀NO 348.2322; Found 348.2322.

4-(4-(Tert-butyl)phenyl)-2-(4-methoxyphenyl)-4-oxobutanenitrile (17d): $R_f = 0.25$ (Petroleum ether/EtOAc, 25:1). 36.6 mg, 60% yield. Yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 – 7.84 (m, 2H), 7.49 – 7.46 (m, 2H), 7.32 – 7.30 (m, 2H), 7.18 (d, J = 7.9 Hz, 2H), 4.54 (dd, J = 7.7, 6.2 Hz, 1H), 3.67 (dd, J = 17.8, 7.7 Hz, 1H), 3.47 (dd, J = 17.8, 6.2 Hz, 1H), 2.34 (s, 3H), 1.33 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.3, 157.8, 138.2, 133.3, 132.4, 129.9, 128.1, 127.4, 125.8, 120.9, 44.4, 35.2, 31.5, 31.0, 21.0. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₃NONa 328.1672; Found 328.1670.

4-([1,1'-Biphenyl]-4-yl)-2-(4-methoxyphenyl)-4-oxobutanenitrile (18d): $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). 33.8 mg, 52% yield. Yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 – 7.98 (m, 2H), 7.70 – 7.67 (m, 2H), 7.62 – 7.60 (m, 2H), 7.49 – 7.44 (m, 2H), 7.43 – 7.38 (m, 1H), 7.36 – 7.32 (m, 2H), 7.20 (d, *J* = 7.9 Hz, 2H), 4.55 (dd, *J* = 7.9, 6.1 Hz, 1H), 3.73 (dd, *J* = 17.8, 7.9 Hz, 1H), 3.51 (dd, *J* = 17.8, 6.1 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.3, 146.6, 139.6, 138.3, 134.5, 132.3, 129.9, 129.0, 128.7, 128.5, 127.4, 127.4, 127.3, 120.8, 44.6, 31.6, 21.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₀NO 326.1539; Found 326.1538.

2-(4-Methoxyphenyl)-4-oxo-4-(4-(trifluoromethyl)phenyl)butanenitrile (19d): $R_f = 0.25$ (Petroleum ether/EtOAc, 22:1). 37.1 mg, 59% yield. Light yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (d, J = 8.1 Hz, 2H), 7.73 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 7.8 Hz, 2H), 7.20 (d, J = 7.8 Hz, 2H), 4.51 (dd, J = 8.0, 5.9 Hz, 1H), 3.72 (dd, J = 17.9, 7.8 Hz, 1H), 3.50 (dd, J = 18.0, 5.8 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 193.9, 138.5, 138.4, 135.1 (q, J = 32.9 Hz), 131.9, 130.0, 128.5, 127.3, 125.91 (q, J = 3.7 Hz), 123.4 (q, J = 272.8 Hz), 120.5, 44.8, 31.5, 21.0. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.26. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₄F₃NONa 340.0920; Found 340.0920.

4-(4-Fluorophenyl)-2-(4-methoxyphenyl)-4-oxobutanenitrile (**20d**): $R_f = 0.25$ (Petroleum ether/EtOAc, 20:1). 33.1 mg, 62% yield. White liquid. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.96 - 7.94 (m, 2H), 7.30 (d, J = 7.7 Hz, 2H), 7.19 (d, J = 7.8 Hz, 2H), 7.13 (t, J = 8.5 Hz, 2H), 4.51 (t, J = 6.9 Hz, 1H), 3.67 (dd, J = 17.8, 8.0 Hz, 1H), 3.45 (dd, J = 17.8, 5.9 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 193.2, 166.2 (d, J = 256.3 Hz), 138.3, 132.2 (d, J = 3.0 Hz), 132.1, 130.8 (d, J = 9.5 Hz), 129.9, 127.3, 120.7, 116.0 (d, J = 22.1 Hz), 44.5, 31.6, 21.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.54. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₄FNONa 290.0952; Found 290.0951.

4-(4-Chlorophenyl)-2-(4-methoxyphenyl)-4-oxobutanenitrile (**21d**)⁹: R_f = 0.25 (Petroleum ether/EtOAc, 30:1). 39.8 mg, 70% yield. White solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 8.3 Hz, 2H), 7.43 (d, *J* = 8.8 Hz, 2H), 7.30 (d, *J* = 7.6 Hz, 2H), 7.19 (d, *J* = 7.8 Hz, 2H), 4.50 (dd, *J* = 8.0, 5.9 Hz, 1H), 3.66 (dd, *J* = 17.9, 7.9 Hz, 1H), 3.44 (dd, *J* = 17.9, 5.9 Hz,

1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 193.6, 140.4, 138.4, 134.1, 132.1, 130.0, 129.5, 129.2, 127.3, 120.6, 44.5, 31.5, 21.1.

4-(4-Bromophenyl)-2-(4-methoxyphenyl)-4-oxobutanenitrile (**22d**): $R_f = 0.25$ (Petroleum ether/EtOAc, 20:1). 40.7 mg, 62% yield. Light yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (d, J = 8.6 Hz, 2H), 7.60 (d, J = 8.6 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 7.9 Hz, 2H), 4.49 (dd, J = 8.0, 6.0 Hz, 1H), 3.66 (dd, J = 17.9, 8.0 Hz, 1H), 3.44 (dd, J = 17.9, 6.0 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 193.8, 138.4, 134.5, 132.2, 132.1, 130.0, 129.6, 129.2, 127.3, 120.6, 44.5, 31.5, 21.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₄BrNONa 350.0151; Found 350.0149.

2-(4-Methoxyphenyl)-4-oxo-4-(m-tolyl)butanenitrile (**23d**): $R_f = 0.25$ (Petroleum ether/EtOAc, 13:1). 38.2 mg, 73% yield. Yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 – 7.69 (m, 2H), 7.39 (d, J = 7.5 Hz, 1H), 7.35 (d, J = 7.5 Hz, 1H), 7.31 (d, J = 8.1 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 4.52 (dd, J = 7.9, 6.1 Hz, 1H), 3.68 (dd, J = 17.9, 7.9 Hz, 1H), 3.47 (dd, J = 17.9, 6.1 Hz, 1H), 2.39 (s, 3H), 2.34 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.9, 138.7, 138.2, 135.8, 134.6, 132.4, 129.9, 128.7, 128.6, 127.4, 125.3, 120.8, 44.6, 31.6, 21.3, 21.0. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₇NONa 286.1202; Found 286.1199.

4-(3-Methoxyphenyl)-2-(4-methoxyphenyl)-4-oxobutanenitrile (24d): $R_f = 0.25$

(Petroleum ether/EtOAc, 10:1). 42.5 mg, 76% yield. Light yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.44 (m, 2H), 7.37 – 7.30 (m, 3H), 7.20 – 7.18 (m, 2H), 7.14 – 7.11 (m, 1H), 4.51 (dd, *J* = 7.9, 6.0 Hz, 1H), 3.84 (s, 3H), 3.68 (dd, *J* = 17.9, 7.9 Hz, 1H), 3.47 (dd, *J* = 17.9, 6.1 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.6, 160.0, 138.3, 137.1, 132.3, 129.9, 129.8, 127.4, 120.8, 120.6, 120.4, 112.3, 55.5, 44.6, 31.6, 21.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₇NO₂Na 302.1151; Found 302.1148.

4-(3-Fluorophenyl)-2-(4-methoxyphenyl)-4-oxobutanenitrile (**25d**): $R_f = 0.25$ (Petroleum ether/EtOAc, 15:1). 37.7 mg, 71% yield. Yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 – 7.67 (m, 1H), 7.62 – 7.58 (m, 1H), 7.49 – 7.42 (m, 1H), 7.32 – 7.26 (m, 3H), 7.20 – 7.18 (m, 2H), 4.50 (dd, J = 8.0, 6.0 Hz, 1H), 3.67 (dd, J = 18.0, 8.0 Hz, 1H), 3.46 (dd, J = 18.0, 6.0 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 193.6 (d, J = 2.3 Hz), 162.9 (d, J = 248.8 Hz), 138.4, 137.8 (d, J = 6.2 Hz), 132.0, 130.6 (d, J = 7.7 Hz), 130.0, 127.3, 123.8 (d, J = 3.1 Hz), 120.9 (d, J = 21.5 Hz), 120.6, 114.9 (d, J = 22.5 Hz), 44.7, 31.5, 21.0. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.10. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₄FNONa 290.0952; Found 290.0951.

2-(4-Methoxyphenyl)-4-oxo-4-(o-tolyl)butanenitrile (26d): $R_f = 0.25$ (Petroleum ether/EtOAc, 20:1). 33.8 mg, 64% yield. Yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 – 7.55 (m, 1H), 7.42 – 7.36 (m, 1H), 7.30 – 7.26 (m, 3H), 7.24 – 7.22 (m, 1H), 7.19 – 7.17 (d, J = 7.9 Hz, 2H), 4.50 (dd, J = 7.9, 6.3 Hz, 1H), 3.61 (dd, J = 17.6, 7.9 Hz, 1H), 3.42 (dd, J = 17.6, 6.3 Hz, 1H), 2.49 (s, 3H), 2.34 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.1, 139.1, 138.2, 136.2, 132.3, 132.2, 132.2, 129.9, 128.6, 127.4, 125.9, 120.8, 46.9, 31.8, 21.4, 21.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₇NONa 286.1202; Found 286.1199.

4-(2-Methoxyphenyl)-2-(4-methoxyphenyl)-4-oxobutanenitrile (**27d**): $R_f = 0.25$ (Petroleum ether/EtOAc, 10:1). 21.6 mg, 39% yield. Yellow solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.80 - 7.78 (m, 1H), 7.51 - 7.48 (m, 1H), 7.29 (d, *J* = 7.9 Hz, 2H), 7.18 (d, *J* = 7.9 Hz, 2H), 7.01 (t, *J* = 7.7 Hz, 1H), 6.96 (d, *J* = 8.4 Hz, 1H), 4.52 (dd, *J* = 7.8, 6.3 Hz, 1H), 3.89 (s, 3H), 3.73 (dd, *J* = 18.3, 7.8 Hz, 1H), 3.52 (dd, *J* = 18.3, 6.3 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.3, 159.1, 137.9, 134.5, 132.7, 130.9, 129.8, 127.4, 126.5, 120.9, 111.6, 55.6, 49.4, 31.8, 21.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₈NO₂ 280.1332; Found 280.1332.

4-(2-Fluorophenyl)-2-(4-methoxyphenyl)-4-oxobutanenitrile (**28d**): $R_f = 0.25$ (Petroleum ether/EtOAc, 18:1). 36.3 mg, 68% yield. Light yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.90 (m, 1H), 7.58 – 7.53 (m, 1H), 7.32 – 7.30 (m, 2H), 7.27 – 7.23 (m, 1H), 7.19 (d, *J* = 7.9 Hz, 2H), 7.16 – 7.11 (m, 1H), 4.50 (dd, *J* = 8.3, 5.8 Hz, 1H), 3.74 – 3.67 (m, 1H), 3.53 – 3.46 (m, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 192.9 (d, *J* = 4.1 Hz), 162.3 (d, *J* = 254.9 Hz), 138.2, 135.5 (d, *J* = 9.2 Hz), 132.2, 130.9 (d, *J* = 2.3 Hz), 129.9, 127.4, 124.8 (d, *J* = 3.3 Hz), 124.2 (d, *J* = 12.5 Hz), 120.7, 116.8 (d, *J* = 23.8 Hz), 49.1 (d, *J* = 9.0 Hz), 31.5 (d, *J* = 2.8 Hz), 21.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -108.53. HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₇H₁₄FNONa 290.0952; Found 290.0948.

4-(3,5-Dimethylphenyl)-2-(4-methoxyphenyl)-4-oxobutanenitrile (29d): $R_f = 0.25$

(Petroleum ether/EtOAc, 23:1). 38.2 mg, 69% yield. Yellow liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 – 7.52 (m, 2H), 7.32 – 7.30 (m, 2H), 7.21 – 7.17 (m, 3H), 4.51 (dd, *J* = 7.9, 6.1 Hz, 1H), 3.67 (dd, *J* = 17.9, 7.9 Hz, 1H), 3.45 (dd, *J* = 17.9, 6.1 Hz, 1H), 2.35 (s, 6H), 2.34 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.0, 138.5, 138.2, 135.9, 135.5, 132.4, 129.9, 127.4, 125.9, 120.9, 44.7, 31.6, 21.2, 21.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₉H₁₉NONa 300.1359; Found 300.1363.

4-(3,4-Dichlorophenyl)-2-(4-methoxyphenyl)-4-oxobutanenitrile (**30d**): $R_f = 0.25$ (Petroleum ether/EtOAc, 19:1). 35.2 mg, 56% yield. Yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, J = 2.0 Hz, 1H), 7.74 – 7.72 (m, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.31 – 7.28 (m, 2H), 7.19 (d, J = 7.9 Hz, 2H), 4.48 (dd, J = 8.0, 5.9 Hz, 1H), 3.65 (dd, J = 18.0, 8.0 Hz, 1H), 3.43 (dd, J = 18.0, 5.9 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 192.7, 138.6, 138.5, 135.3, 133.7, 131.8, 131.0, 130.1, 130.0, 127.3, 127.0, 120.4, 44.6, 31.5, 21.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₃Cl₂NONa 340.0266; Found 340.0266.

2-(4-Methoxyphenyl)-4-(naphthalen-2-yl)-4-oxobutanenitrile (**31d**): $R_f = 0.25$ (Petroleum ether/EtOAc, 12:1). 36.4 mg, 61% yield. Yellow solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.40 (s, 1H), 8.00 – 7.97 (m, 1H), 7.93 – 7.85 (m, 3H), 7.63 – 7.53 (m, 2H), 7.36 – 7.34 (m, 2H), 7.20 (d, J = 7.9 Hz, 2H), 4.58 (dd, J = 7.9, 6.1 Hz, 1H), 3.83 (dd, J = 17.8, 7.9 Hz, 1H), 3.62 (dd, J = 17.8, 6.1 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.7, 138.3, 135.9, 133.1, 132.4, 132.4, 130.0, 129.9, 129.6, 128.9, 128.8, 127.9, 127.4, 127.1, 123.5, 120.8, 44.6, 31.7, 21.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₁₈NO 300.1383; Found 300.1385.

2-(4-Methoxyphenyl)-4-oxo-4-(thiophen-2-yl)butanenitrile (**32d**): $R_f = 0.25$ (Petroleum ether/EtOAc, 10:1). 22.4 mg, 44% yield. White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 – 7.67 (m, 2H), 7.30 (d, J = 7.8 Hz, 2H), 7.18 (d, J = 7.8 Hz, 2H), 7.12 (t, J = 4.4 Hz, 1H), 4.51 (t, J = 7.0 Hz, 1H), 3.62 (dd, J = 17.2, 7.7 Hz, 1H), 3.41 (dd, J = 17.3, 6.4 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 187.5, 142.8, 138.3, 134.7, 132.5, 132.0, 129.9, 128.3, 127.3, 120.5, 44.9, 31.6, 21.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₃NOSNa 278.0610; Found 278.0612.

3-(Phenylsulfonyl)-2-(p-tolyl)propanenitrile (**33d**): R_f = 0.25 (Petroleum ether/EtOAc, 6:1). 35.3 mg, 62% yield. Colorless liquid. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.93 – 7.91 (m, 2H), 7.71 – 7.68 (m, 1H), 7.59 – 7.57 (m, 2H), 7.19 – 7.15 (m, 4H), 4.36 (dd, *J* = 9.4, 4.6 Hz, 1H), 3.74 (dd, *J* = 14.6, 9.3 Hz, 1H), 3.45 (dd, *J* = 14.6, 4.7 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 139.2, 138.3, 134.5, 130.2, 129.9, 129.6, 128.3, 127.2, 118.1, 60.1, 31.7, 21.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₁₅NO₂SNa 308.0716; Found 308.0714.

3-((4-Methoxyphenyl)sulfonyl)-2-(p-tolyl)propanenitrile (**34d**)¹⁰: $R_f = 0.25$ (Petroleum ether/EtOAc, 5:1). 46.0 mg, 73% yield. White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (d, J = 8.9 Hz, 2H), 7.19 - 7.14 (m, 4H), 7.03 - 7.01 (m, 2H), 4.33 (dd, J = 9.4, 4.5 Hz, 1H), 3.89 (s, 3H), 3.71 (dd, J = 14.5, 9.4 Hz, 1H), 3.41 (dd, J = 14.5, 4.6 Hz, 1H), 2.33 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 164.4, 139.1, 130.6, 130.2, 130.1, 129.7, 127.2, 118.2, 114.8, 60.3, 55.8, 31.9, 21.1.

3-((4-(Tert-butyl)phenyl)sulfonyl)-2-(p-tolyl)propanenitrile (**35d**): $R_f = 0.25$ (Petroleum ether/EtOAc, 12:1). 51.8 mg, 76% yield. White solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.80 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 7.9 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 4.36 (dd, J = 8.9, 5.1 Hz, 1H), 3.72 (dd, J = 14.5, 8.9 Hz, 1H), 3.45 (dd, J = 14.5, 5.1 Hz, 1H), 2.32 (s, 3H), 1.34 (s, 9H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 158.6, 139.0, 135.3, 130.1, 130.0, 128.1, 127.3, 126.5, 118.2, 60.0, 35.4, 31.7, 31.0, 21.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₂₃NO₂SNa 364.1342; Found 364.1341.

3-((4-Fluorophenyl)sulfonyl)-2-(p-tolyl)propanenitrile (**36d**): $R_f = 0.25$ (Petroleum ether/EtOAc, 8:1). 43.6 mg, 72% yield. White solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.90 (m, 2H), 7.26 – 7.21 (m, 2H), 7.19 – 7.15 (m, 4H), 4.36 (dd, J = 9.3, 4.8 Hz, 1H), 3.73 (dd, J = 14.5, 9.3 Hz, 1H), 3.46 (dd, J = 14.6, 4.8 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.3 (d, J = 258.0 Hz), 139.3, 134.4 (d, J = 3.2 Hz), 131.3 (d, J = 9.8 Hz), 130.3, 129.7, 127.2, 118.0, 116.9 (d, J = 22.8 Hz), 60.2, 31.8, 21.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -101.74. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₁₄FNO₂SNa 326.0621; Found 326.0621.

3-(Cyclopropylsulfonyl)-2-(p-tolyl)propanenitrile (37d): $R_f = 0.25$ (Petroleum ether/EtOAc, 5:1). 35.7 mg, 72% yield. White solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.30 (d, J = 7.9 Hz, 2H), 7.23 (d, J = 7.8 Hz, 2H), 4.44 (dd, J = 9.3, 5.0 Hz, 1H), 3.69 (dd, J = 14.6, 9.3 Hz, 1H), 3.36 (dd, J = 14.6, 5.0 Hz, 1H), 2.41 – 2.38 (m, 1H), 2.37 (s, 3H), 1.39 – 1.35 (m, 1H), 1.27 – 1.23 (m, 1H), 1.12 – 1.06 (m, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 139.3, 130.3, 130.0, 127.3, 118.9, 58.3, 32.0, 30.6, 21.1, 5.9, 5.5. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₅NO₂SNa 272.0716; Found 272.0713.

3-(Cyclohexylsulfonyl)-2-(p-tolyl)propanenitrile (**38d**): R_f = 0.25 (Petroleum ether/EtOAc, 8:1). 42.0 mg, 72% yield. White solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.30 (d, *J* = 7.8 Hz, 2H), 7.23 (d, *J* = 7.9 Hz, 2H), 4.43 (dd, *J* = 8.8, 5.3 Hz, 1H), 3.61 (dd, *J* = 14.5, 8.7 Hz, 1H), 3.23 (dd, *J* = 14.5, 5.3 Hz, 1H), 2.79 – 2.74 (m, 1H), 2.37 (s, 3H), 2.14 – 2.09 (m, 2H), 1.93 – 1.89 (m, 2H), 1.72 – 1.70 (m, 1H), 1.57 – 1.49 (m, 2H), 1.28 – 1.18 (m, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 139.3, 130.3, 130.1, 127.4, 118.8, 62.0, 53.7, 31.3, 25.2, 24.9, 24.9, 24.4, 21.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₂₁NO₂SNa 314.1185; Found 314.1185.

3-(Isobutylsulfonyl)-2-(p-tolyl)propanenitrile (**39d**): $R_f = 0.25$ (Petroleum ether/EtOAc, 8:1). 38.1 mg, 72% yield. White solid. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.29 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 7.9 Hz, 2H), 4.43 (dd, J = 8.8, 5.5 Hz, 1H), 3.60 (dd, J = 14.7, 8.7 Hz, 1H), 3.30 (dd, J = 14.7, 5.6 Hz, 1H), 2.87 (dd, J = 13.9, 6.8 Hz, 1H), 2.78 (dd, J = 13.9, 6.3 Hz, 1H), 2.37 (s, 3H), 2.35 – 2.32 (m, 1H), 1.09 – 1.08 (m, 6H). ¹³C NMR (151 MHz,

Chloroform-*d*) δ 139.4, 130.4, 129.8, 127.4, 118.8, 61.8, 58.3, 31.9, 23.7, 22.7, 22.6, 21.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₁₉NO₂SNa 288.1029; Found 288.1033.

3-(Octylsulfonyl)-2-(p-tolyl)propanenitrile (40d): $R_f = 0.25$ (Petroleum ether/EtOAc, 10:1). 43.3 mg, 67% yield. Colorless liquid. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.29 (d, J = 7.9 Hz, 2H), 7.24 (d, J = 7.9 Hz, 2H), 4.42 (dd, J = 8.7, 5.6 Hz, 1H), 3.60 (dd, J = 14.7, 8.6 Hz, 1H), 3.30 (dd, J = 14.8, 5.6 Hz, 1H), 2.94 – 2.86 (m, 2H), 2.37 (s, 3H), 1.84 – 1.73 (m, 2H), 1.39 – 1.34 (m, 2H), 1.31 – 1.23 (m, 8H), 0.88 (t, J = 7.0 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 139.5, 130.4, 129.7, 127.4, 118.7, 56.9, 54.3, 31.9, 31.7, 28.9, 28.9, 28.3, 22.6, 21.9, 21.1, 14.0. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₂₇NO₂SNa 344.1655; Found 344.1657.

7. References

[1] Yang, D.-Y.; Liu, L.; Gu, J.-Y.; He, Y.-H.; Guan, Z. J. Org. Chem. 2021, 86, 18042-18055.

[2] Cao, Y.; Liu, L.; Huang, T.; Chen, T. New J. Chem. 2020, 44, 8697-8701.

[3] Koike, T.; Akita, M. Inorg. Chem. Front. 2014, 1, 562-576.

[4] Li, Z.-F.; Li, Q.; Ren, L.-Q.; Li, Q.-H.; Peng, Y.-G.; Liu, T.-L. Chem. Sci. 2019, 10, 5787-5792.

[5] Zhang, L.; Wang, A.; Wang, W.; Huang, Y.; Liu, X.; Miao, S.; Liu, J.; Zhang, T. ACS Catal. 2015, 5, 6563-6572.

[6] Jiao, Y.; Chiou, M.-F.; Li, Y.; Bao, H. ACS Catal. 2019, 9, 5191-5197.

[7] Kong, X.; Chen, X.; Chen, Y.; Cao, Z.-Y. J. Org. Chem. 2022, 87, 7013-7021.

[8] Dong, H.-R.; Dong, W.-J.; Li, R.-S.; Hu, Y.-M.; Dong, H.-S.; Xie, Z.-X. Green Chem.
2014, 16, 3454-3457.
[9] Li, Z.; Yin, J. Chin. J. Chem. 2017, 35, 1179-1184.

[10] Liu, L.; Si, M.; Han, S.; Zhang, Y.; Li, J. Org. Chem. Front. 2020, 7, 2029-2034.

8. NMR of products

¹H-NMR Spectrum (600 MHz, CDCl₃) of 1d

¹H-NMR Spectrum (600 MHz, CDCl₃) of **1e**

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 1e

¹H-NMR Spectrum (600 MHz, CDCl₃) of 1f

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 1f

¹³C-NMR Spectrum (101 MHz, CDCl₃) of 2d

¹³C-NMR Spectrum (101 MHz, CDCl₃) of **3d**

¹³C-NMR Spectrum (101 MHz, CDCl₃) of 4d

S42

¹³C-NMR Spectrum (101 MHz, CDCl₃) of 7d

¹³C-NMR Spectrum (101 MHz, CDCl₃) of 8d

¹H-NMR Spectrum (400 MHz, CDCl₃) of **9d**

¹H-NMR Spectrum (400 MHz, CDCl₃) of **10d**

¹³C-NMR Spectrum (101 MHz, CDCl₃) of **10d**

¹H-NMR Spectrum (400 MHz, CDCl₃) of **11d**

¹H-NMR Spectrum (400 MHz, CDCl₃) of **12d**

 $^{13}\text{C-NMR}$ Spectrum (101 MHz, CDCl₃) of 12d

¹H-NMR Spectrum (400 MHz, CDCl₃) of **13d**

¹H-NMR Spectrum (400 MHz, CDCl₃) of 14d

¹³C-NMR Spectrum (101 MHz, CDCl₃) of **14d**

¹H-NMR Spectrum (600 MHz, CDCl₃) of **15d**

¹H-NMR Spectrum (600 MHz, CDCl₃) of **16d**

¹³C-NMR Spectrum (101 MHz, CDCl₃) of **16d**

¹H-NMR Spectrum (400 MHz, CDCl₃) of 17d

¹³C-NMR Spectrum (101 MHz, CDCl₃) of **17d**

¹H-NMR Spectrum (400 MHz, CDCl₃) of **18d**

¹H-NMR Spectrum (400 MHz, CDCl₃) of **19d**

¹⁹F-NMR Spectrum (376 MHz, CDCl₃) of 19d

¹³C-NMR Spectrum (101 MHz, CDCl₃) of **20d**

¹H-NMR Spectrum (600 MHz, CDCl₃) of **21d**

¹H-NMR Spectrum (400 MHz, CDCl₃) of 22d

¹H-NMR Spectrum (400 MHz, CDCl₃) of 23d

¹H-NMR Spectrum (400 MHz, CDCl₃) of **24d**

¹H-NMR Spectrum (400 MHz, CDCl₃) of **25d**

¹⁹F-NMR Spectrum (376 MHz, CDCl₃) of 25d

¹H-NMR Spectrum (400 MHz, CDCl₃) of **26d**

¹³C-NMR Spectrum (101 MHz, CDCl₃) of 26d

¹³C-NMR Spectrum (101 MHz, CDCl₃) of **27d**

¹³C-NMR Spectrum (101 MHz, CDCl₃) of **28d**

¹H-NMR Spectrum (400 MHz, CDCl₃) of **29d**

¹H-NMR Spectrum (400 MHz, CDCl₃) of **30d**

¹H-NMR Spectrum (400 MHz, CDCl₃) of **31d**

¹H-NMR Spectrum (400 MHz, CDCl₃) of **32d**

¹H-NMR Spectrum (600 MHz, CDCl₃) of **33d**

¹H-NMR Spectrum (400 MHz, CDCl₃) of **34d**

¹H-NMR Spectrum (600 MHz, CDCl₃) of **35d**

¹H-NMR Spectrum (400 MHz, CDCl₃) of **36d**

¹⁹F-NMR Spectrum (376 MHz, CDCl₃) of 36d

¹H-NMR Spectrum (600 MHz, CDCl₃) of **37d**

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **37d**

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **38d**

¹³C-NMR Spectrum (151 MHz, CDCl₃) of **39d**

¹³C-NMR Spectrum (151 MHz, CDCl₃) of 40d

9. HRMS of products

HRMS of 18d

HRMS of 20d

HRMS of 27d

HRMS of **29d**

HRMS of 31d

HRMS of 36d

