[Cp*RhCl2]2 Catalyzed Three-Component Coupling Cyclization of 2,3-Allenoic

Acids with 2,3-Allenols in the Presence of Cu(OAc)₂·H₂O

Junjie Fan, Xiaoyan Wu, Chunling Fu and Shengming Ma*

Laboratory of Molecular Recognition and Synthesis, Department of Chemistry,

Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China.

E-mail: masm@sioc.ac.cn

Supporting Information

Table of Contents

General Information		S2
1.	The Reaction of 1a with 3a in the Presence of [Cp*RhCl ₂] ₂ (5 mol%)	S3-S5
	and Cu(OAc) ₂ ·H ₂ O (2.0 equiv)	
2.	The Reaction of (<i>E</i>)-4aa in the Presence of [Cp*RhCl ₂] ₂ (5 mol%)	S6
	and $Cu(OAc)_2 \cdot H_2O$ (2.0 equiv)	
3.	Control Experiments and Isotopic Labeling Experiments	S7-S12
4.	Rh(III)-Catalyzed Oxidative Cross-coupling Cyclization of 2,3-	S13-S30
	Allenoic Acids and 2,3-Allenols	
5.	A Gram Scale Reaction	S32
6.	Synthetic Applications	S33-S38
7.	References	S39
8.	¹ H NMR, ¹³ C NMR, and ¹⁹ F NMR Spectra of the Compounds	S40

General Information

NMR spectra were taken with the 600 MHz, 400 MHz, or 300 MHz Bruker Advance spectrometer (600 MHz, 400 MHz, or 300 MHz for ¹H NMR, 100 MHz or 75 MHz for ¹³C NMR, and 282 MHz for ¹⁹F NMR) in CDCl₃. All ¹H NMR experiments were measured with tetramethylsilane (0 ppm) in CDCl₃ as the internal reference; ^{13}C NMR experiments were measured in relative to the signal of $CDCl_3$ (77.0 ppm). ¹⁹F NMR experiments were measured in relative to the signal of CFCl₃ (0 ppm) in CDCl₃ as the internal reference. IR spectra were recorded with a Perkin-Elmer 983G instrument. Elemental analyses were conducted with a Carlo-Erba EA1110 elementary analysis instrument. Mass spectrometry was performed with an HP 5989A system. High-resolution mass spectrometry was determined with a Finnigan MAT 8430 or Bruker APEXIII instrument. [Cp*RhCl₂]₂ was purchased from HWRK CHEM. The range of boiling point of petroleum ether used for chromatography was 60~90 °C unless noted otherwise. Flash column chromatography was performed on silica gel H unless noted otherwise. 2,3-Allenols, ¹ 2,3-allenoic acids, ² and (E)-4aa³ were prepared according to the literature procedures. Other commercially available reagents were purchased and used as received.

1. The Reaction of 1a with 3a in the Presence of $[Cp*RhCl_2]_2$ (5 mol%) and $Cu(OAc)_2 \cdot H_2O$ (2.0 equiv) (fjj-1-028) $n_{-C_6H_{13}} - OH$ 1a, 0.3 mmol $[Cp*RhCl_2]_2$ (7.5 mol%) O

(E)-2a, 12% NMR yield

n-C₃H₇

 $\frac{\text{Cu(OAc)}_2 \cdot \bar{\text{H}}_2 \text{O} (3 \text{ equiv})}{\text{CH}_3 \text{CN/MeOH}}$ O₂ balloon, 50 °C, 13 h

CO2H

Synthesis of **6aa**. (fjj-2-103)

To a dry Schlenk tube were added [Cp*RhCl₂]₂ (15.7 mg, 0.025 mmol), Cu(OAc)₂·H₂O (199.5 mg, 1.0 mmol), and **3a** (94.8 mg, 0.75 mmol) sequentially. The Schlenk tube was degassed under vacuum and backfilled with O₂ with a balloon of O₂ for three times. Then **1a** (76.5 mg, 0.5 mmol), CH₃CN (2 mL), and MeOH (100 μ L) were added under oxygen atmosphere sequentially. After being continuously stirred at 50 °C for 6 h, the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of silica gel eluted with ethyl acetate (20 mL × 3), the combined filtrate was concentrated in vacuo. The reaction afforded **5aa** in 53% NMR yield together with 13% NMR yield of **6aa**, which was analyzed by ¹H NMR using 23 μ L of mesitylene as the internal standard. The crude residual was purified by chromatography on silica gel [eluent: petroleum ether/ethyl acetate = 15/1 (1000 mL) to 10/1 (500 mL), then 5/1 (500 mL)] to afford **6aa** (21.0 mg, 11%) and **5aa** (89.4 mg, 53%).

6aa: Oil; ¹H NMR (300 MHz, CDCl₃) δ 5.15 (t, J = 3.0 Hz, 2 H, =CH₂), 5.07 (d, J

= 14.7 Hz, 1 H, one proton of OCH₂), 4.99 (d, J = 14.4 Hz, 1 H, one proton of OCH₂), 3.06 (d, J = 14.7 Hz, 1 H, one proton of CH₂), 2.75 (d, J = 14.7 Hz, 1 H, one proton of CH₂), 2.43 (t, J = 7.2 Hz, 2 H, CH₂), 2.34-2.14 (m, 4 H, CH₂ × 2), 1.62-1.41 (m, 9 H, CH₂ × 3 and CH₃), 1.34-1.16 (m, 6 H, CH₂ × 3), 0.98-0.82 (m, 9 H, CH₃ × 3); ¹³C NMR (75 MHz, CDCl₃) δ 214.4, 206.7, 171.8, 166.7, 158.2, 130.6, 99.5, 85.2, 79.3, 58.4, 48.7, 44.8, 31.5, 29.9, 28.6, 25.6, 25.2, 23.1, 22.4, 21.3, 21.1, 14.0, 13.7, 13.5; IR (neat) v (cm⁻¹) 2960, 2933, 2873, 1964, 1940, 1760, 1716, 1457, 1378, 1246, 1119, 1051; MS (EI): m/z (%) 404 (M⁺, 0.38), 279 (100); HRMS Calcd for C₂₄H₃₆O₅ (M⁺): 404.2563; Found: 404.2565.

5aa: Oil; ¹H NMR (300 MHz, CDCl₃) δ 4.95 (s, 2 H, CH₂), 3.07 (d, *J* = 14.7 Hz, 1 H, one proton from CH₂), 2.75 (d, *J* = 14.7 Hz, 1 H, one proton from CH₂), 2.44 (t, *J* = 7.2 Hz, 2 H, CH₂), 2.30 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.10 (s, 3 H, CH₃), 1.62-1.32 (m, 7 H, CH₂ × 2 and CH₃), 1.36-1.13 (m, 6 H, CH₂× 3), 0.94 (t, *J* = 7.4 Hz, 3 H, CH₃), 0.87 (t, *J* = 6.2 Hz, 3 H, CH₃);

2. The Reaction of (E)-4aa in the Presence of [Cp*RhCl2]2 (5 mol%) and Cu(OAc)2·H2O (2.0 equiv) (fjj-2-042)

To a dry Schlenk tube were added [Cp*RhCl₂]₂ (9.2 mg, 0.015 mmol) and Cu(OAc)₂·H₂O (119.0 mg, 0.6 mmol) sequentially. The Schlenk tube was degassed under vacuum and backfilled with nitrogen for three times. Then (*E*)-4aa (83.0 mg, 0.3 mmol), CH₃CN (0.8 mL), and MeOH (40 μ L) were added under nitrogen atmosphere sequentially. After being stirred for 12 h at 50 °C, the resulting mixture was filtered through a short column of silica gel eluted with ethyl acetate (20 mL × 3). After evaporation of the solvent, the crude product was analyzed by ¹H NMR spectrum with 13.8 μ L of mesitylene as the internal standard. No signal of the corresponding product was found with the recovery of (*E*)-4aa in 86%.

3. Control Experiments and Isotopic Labeling Experiments

3.1 The reaction of **1a** with **3a** without [Cp^{*}RhCl₂]₂. (fjj-2-026)

To a dry Schlenk tube were added Cu(OAc)₂·H₂O (39.9 mg, 0.2 mmol) and **3a** (19.4 mg, 0.15 mmol) sequentially. The Schlenk tube was degassed under vacuum and backfilled with nitrogen for three times. Then **1a** (15.0 mg, 0.1 mmol), CH₃CN (0.28 mL), and MeOH (13 μ L) were added under nitrogen atmosphere sequentially. After being stirred for 12 h at 50 °C, the resulting mixture was filtered through a short column of silica gel eluted with ethyl acetate (20 mL × 3). After evaporation of the solvent, the crude product was analyzed by ¹H NMR spectrum with 4.6 μ L of mesitylene as the internal standard. No signal of the corresponding product **5aa** was found with the recovery of **1a** at 71% and **3a** at 67%.

3.2 The reaction of 1a with 3a using O₂ as oxidant and NaOAc as the acetoxylation agent. (fjj-7-194)

To a dry Schlenk tube were added [Cp*RhCl₂]₂ (6.2 mg, 0.01 mmol), NaOAc (65.8

mg, 0.8 mmol), and **3a** (38.0 mg, 0.3 mmol) sequentially. The Schlenk tube was degassed under vacuum and backfilled with O₂ for three times. Then **1a** (30.9 mg, 0.2 mmol), CH₃CN (0.54 mL), and MeOH (26 μ L) were added under O₂ atmosphere sequentially. After being stirred for 5 h at 50 °C, the resulting mixture was filtered through a short column of silica gel eluted with ethyl acetate (10 mL × 3). After evaporation of the solvent, the crude product was analyzed by ¹H NMR spectrum with 9.2 μ L of mesitylene as the internal standard: 8% NMR yield of **5aa** and 5% NMR yield of **6aa** was detected.

3.3 The reaction of **1a** with **3a** using O₂ as oxidant and KOAc as the acetoxylation agent. (fjj-7-195)

To a dry Schlenk tube were added [Cp*RhCl₂]₂ (6.2 mg, 0.01 mmol), KOAc (78.5 mg, 0.8 mmol), and **3a** (37.8 mg, 0.3 mmol) sequentially. The Schlenk tube was degassed under vacuum and backfilled with O₂ for three times. Then **1a** (30.9 mg, 0.2 mmol), CH₃CN (0.54 mL), and MeOH (26 μ L) were added under O₂ atmosphere sequentially. After being stirred for 5 h at 50 °C, the resulting mixture was filtered through a short column of silica gel eluted with ethyl acetate (10 mL × 3). After

evaporation of the solvent, the crude product was analyzed by ¹H NMR spectrum with 9.2 μ L of mesitylene as the internal standard:No signal of **5aa** and 5% NMR yield of **6aa** was detected with the recovery of **1a** at 48%.

3.4 Synthesis of [D]-5aa. (fjj-1-085)

Typical Procedure I: To a dry Schlenk tube were added [Cp*RhCl₂]₂ (30.9 mg, 0.05 mmol), Cu(OAc)₂·H₂O (399.4 mg, 2.0 mmol), and **3a** (189.8 mg, 1.5 mmol). The reaction vessel was degassed under vacuum and backfilled with nitrogen for three times. Then [D]-**1a** (155.2 mg, 1.0 mmol), CH₃CN (2.7 mL), and MeOH (0.13 mL) were added under nitrogen atmosphere sequentially. After being continuously stirred at 50 °C for 12 h, the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of silica gel eluted with ethyl acetate (20 mL × 3), the combined filtrate was concentrated in vacuo and the crude residual was purified by chromatography on silica gel [eluent: petroleum ether/ethyl acetate = 15/1 (500 mL) to 10/1 (500 mL), then 5/1 (500 mL)] to afford [D]-**5aa** (187.0 mg, 55%) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 4.95 (dd, *J*₁= 14.6 Hz, *J*₂= 14.4 Hz, 2 H, OCH₂), 3.07 (d, *J* = 14.7 Hz, 1 H, one proton of CH₂), 2.74 (d, *J* = 14.7 Hz, 1 H, one proton of CH₂), 2.74 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.31 (t, *J* = 7.7 Hz, 2 H, CH₂), 2.11 (s, 3 H, OAc),

1.63-1.36 (m, 6 H, CH₂ × 2 and CH₂D), 1.36-1.12 (m, 6 H, CH₂ × 3), 0.94 (t, J = 7.4 Hz, 3 H, CH₃), 0.87 (t, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 206.5, 171.7, 169.9, 157.7, 131.1, 84.9, 57.4, 48.5, 44.6, 31.4, 28.5, 25.6, 24.9 (t, J = 19.3 Hz), 23.0, 22.3, 21.3, 20.5, 13.9, 13.6; IR (neat) v (cm⁻¹) 2959, 2932, 2873, 1762, 1747, 1710, 1682, 1452, 1368, 1218, 1160, 1128, 1023; MS (EI): m/z (%) 339 (M⁺, 2.83), 43 (100); HRMS Calcd for C₁₉H₂₉DO₅ (M)⁺: 339.2156; Found: 339.2159.

3.5 Synthesis of [D]'-5aa. (fjj-5-071)

To a dry Schlenk tube were added $[Cp*RhCl_2]_2$ (6.2 mg, 0.01 mmol), Cu(OAc)₂·H₂O (80.2 mg, 0.4 mmol), and **3a** (38.0 mg, 0.3 mmol) sequentially. The reaction vessel was degassed under vacuum and backfilled with nitrogen for three times. Then **1a** (30.9 mg, 0.2 mmol), CH₃CN (0.54 mL), MeOD (27 µL), and D₂O (80 mg, 4 mmol) were added under nitrogen atmosphere sequentially. After being continuously stirred at 50 °C for 5 h, the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of silica gel eluted with ethyl acetate (20 mL × 3), the combined filtrate was concentrated in vacuo and the crude residual was purified by chromatography on silica gel (300~400 mesh) [eluent: petroleum ether/ethyl acetate = 9/1 (600 mL)] to afford [D]'-**5aa** (26.0 mg, 38%, 82% D) and some unidentified products. [D]²-**5aa**: ¹H NMR (400 MHz, CDCl₃) δ 5.00-4.89 (m, 2 H, OCH₂), [3.09-3.00 (m, 0.62 H), 2.77-2.68 (m, 0.56 H), one proton of CHD], 2.44 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.30 (t, *J* = 7.6 Hz, 2 H, CH₂), 2.10 (s, 3 H, OAc), 1.63-1.42 (m, 7 H, CH₃, and CH₂ × 2), 1.37-1.13 (m, 6 H, CH₂ × 3), 0.94 (t, *J* = 7.4 Hz, 3 H, CH₃), 0.87 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 48.4 (t, *J* = 19.4 Hz); IR (neat) *v* (cm⁻¹) 2960, 2933, 2873, 1755, 1716, 1456, 1368, 1221, 1029; MS (EI): *m/z* (%) 339 (M⁺, 4.96), 43 (100); HRMS Calcd for C₁₉H₂₉DNaO₅ (M + Na)⁺: 362.2048; Found: 362.2046. The following signals are discernible for **5aa**: ¹³C NMR (100 MHz, CDCl₃) δ 48.7.

To a dry Schlenk tube were added [Cp*RhCl₂]₂ (6.2 mg, 0.01 mmol), Cu(OAc)₂·H₂O (79.8 mg, 0.4 mmol), and **3a** (37.8 mg, 0.3 mmol). The reaction vessel was degassed under vacuum and backfilled with nitrogen for three times. Then **1a** (30.9 mg, 0.2 mmol), CH₃CN (0.54 mL), and MeOH (28 μ L) were added under nitrogen atmosphere sequentially. After being continuously stirred at 50 °C for 5 h, the reaction was complete as monitored by thin layer chromatography (TLC). Then D₂O (80 mg, 4 mmol) was added. The resulting mixture was continuously stirred at 50 °C for 11 h. After filtration through a short column of silica gel eluted with ethyl ether (20 mL × 3), the combined filtrate was concentrated in vacuo and the crude residual was purified by chromatography on silica gel [eluent: petroleum ether/ethyl acetate = 9/1 (500 mL)] to afford **5aa** (30.6 mg, 45%) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 4.94 (s, 2 H, OCH₂), 3.05 (d, *J* = 14.7 Hz, 1 H, one proton of CH₂), 2.73 (d, *J* = 14.7 Hz, 1 H, one proton of CH₂), 2.44 (t, *J* = 7.2 Hz, 2 H, CH₂), 2.30 (t, *J* = 7.5 Hz, 2 H, CH₂), 2.10 (s, 3 H, OAc), 1.63-1.40 (m, 7 H, CH₂ × 2 and CH₃), 1.38-1.13 (m, 6 H, CH₂ × 3), 0.94 (t, *J* = 7.4 Hz, 3 H, CH₃), 0.87 (t, *J* = 6.6 Hz, 3 H, CH₃).

4. Rh(III)-Catalyzed Oxidative Cross-coupling Cyclization of 2,3- Allenoic Acids

and 2,3-Allenols

4.1 Synthesis of 4-(2-acetoxy-4-oxodecan-2-yl)-3-propyl-2(5H)-furanone 5aa (fjj-1-052)

Following **Typical Procedure I**, the reaction of **1a** (152.8 mg, 1.0 mmol), **3a** (189.2 mg, 1.5 mmol), [Cp*RhCl₂]₂ (31.0 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (399.9 mg, 2.0 mmol) in CH₃CN (2.7 mL)/MeOH (0.13 mL) afforded **5aa** (197.1 mg, 59%) as an oil [eluent: petroleum ether/ethyl acetate = 50/1 (300 mL) \rightarrow 15/1 (800 mL) \rightarrow 10/1 (500 mL) \rightarrow 5/1 (500 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 4.95 (dd, *J*₁ = 14.7 Hz, *J*₂ = 14.4 Hz, 2 H, OCH₂), 3.06 (d, *J* = 15.0 Hz, 1 H, one proton from CH₂), 2.74 (d, *J* = 14.7 Hz, 1 H, one proton from CH₂), 2.44 (t, *J* = 7.2 Hz, 2 H, CH₂), 2.31 (t, *J* = 7.5 Hz, 2 H, CH₂), 2.10 (s, 3 H, CH₃), 1.61-1.43 (m, 7 H, CH₂ × 2 and CH₃), 1.35-1.18 (m, 6 H, CH₂ × 3), 0.94 (t, *J* = 7.4 Hz, 3 H, CH₃), 0.87 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 206.5, 171.7, 169.9, 157.7, 131.2, 85.0, 57.4, 48.6, 44.6, 31.4, 28.6, 25.7, 25.2, 23.1, 22.3, 21.3, 20.6, 13.9, 13.7; IR (neat) v (cm⁻¹) 2960, 2933, 2873, 1748, 1712, 1678, 1456, 1406, 1368, 1221, 1135, 1030; MS (EI): *m/z* (%) 338 (M⁺, 1.86), 43 (100); HRMS Caled for C₁₉H₃₀O₅Na (M+Na)⁺: 361.1985; Found: 361.1985.

^{4.2} Synthesis of 4-(2-acetoxy-4-oxodecan-2-yl)-3-butyl-2(5H)-furanone **5ab** (fjj-1-104)

Following **Typical Procedure I**, the reaction of **1a** (154.2 mg, 1.0 mmol), **3b** (210.4 mg, 1.5 mmol), [Cp*RhCl₂]₂ (30.9 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (399.4 mg, 2.0 mmol) in CH₃CN (2.7 mL)/MeOH (0.13 mL) afforded **5ab** (201.2 mg, 57%) as an oil [eluent: petroleum ether/ethyl acetate = 10/1 (500 mL) to 5/1 (500 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 4.94 (dd, J_1 = 14.9 Hz, J_2 = 14.7 Hz, 2 H, OCH₂), 3.05 (d, J = 14.7 Hz, 1 H, one proton of CH₂), 2.73 (d, J = 14.7 Hz, 1 H, one proton of CH₂), 2.73 (d, J = 14.7 Hz, 1 H, one proton of CH₂), 2.32 (t, J = 7.7 Hz, 2 H, CH₂), 2.11 (s, 3 H, OAc), 1.57-1.41 (m, 7 H, CH₃ and CH₂ × 2), 1.41-1.16 (m, 8 H, CH₂ × 4), 0.92 (t, J = 7.2 Hz, 3 H, CH₃), 0.87 (t, J = 6.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 206.6, 171.8, 170.0, 157.4, 131.4, 85.0, 57.5, 48.7, 44.7, 31.5, 30.1, 28.6, 25.2, 23.6, 23.1, 22.5, 22.4, 20.6; 13.9, 13.8; IR (neat) ν (cm⁻¹) 2959, 2932, 2861, 1747, 1710, 1455, 1403, 1368, 1283, 1220, 1127, 1038; MS (EI): m/z (%) 352 (M⁺, 2.53), 43 (100); HRMS Calcd for C₂₀H₃₂O₅ (M⁺): 352.2250; Found: 352.2249.

4.3 Synthesis of 4-(2-acetoxy-4-oxopentadecan-2-yl)-3-propyl-2(5H)-furanone **5ba** (fjj-1-073)

Following **Typical Procedure I**, the reaction of **1b** (224.3 mg, 1.0 mmol), **3a** (189.4 mg, 1.5 mmol), [Cp*RhCl₂]₂ (31.2 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (400.1 mg, 2.0 mmol) in CH₃CN (2.7 mL)/MeOH (0.13 mL) afforded **5ba** (237.1 mg, 58%) as an oil [eluent: petroleum ether/ethyl acetate = 10/1 (1000 mL) to 5/1 (1000 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 4.95 (dd, J_1 = 14.6 Hz, J_2 = 14.1 Hz, 2 H, OCH₂), 3.06 (d, J = 14.7 Hz, 1 H, one proton of CH₂), 2.74 (d, J = 15.0 Hz, 1 H, one proton of CH₂), 2.44 (t, J = 7.4 Hz, 2 H, CH₂), 2.31 (t, J = 7.7 Hz, 2 H, CH₂), 2.10 (s, 3 H, OAc), 1.62-1.38 (m, 7 H, CH₂ × 2 and CH₃), 1.37-1.14 (m, 16 H, CH₂ × 8), 1.00-0.82 (m, 6 H, CH₃ × 2); ¹³C NMR (75 MHz, CDCl₃) δ 206.5, 171.7, 169.9, 157.7, 131.2, 85.0, 57.4, 48.6, 44.6, 31.8, 29.5, 29.32, 29.29, 29.2, 28.9, 25.7, 25.2, 23.1, 22.6, 21.3, 20.5, 14.0, 13.7; IR (neat) ν (cm⁻¹) 2959, 2925, 2854, 1767, 1747, 1715, 1682, 1465, 1455, 1401, 1367, 1200, 1135, 1029; MS (EI): m/z (%) 408 (M⁺, 1.79), 43 (100); HRMS Calcd for C₂₄H₄₀O₅ (M⁺): 408.2876; Found: 408.2875.

4.4 Synthesis of 4-(2-acetoxy-4-oxopentadecan-2-yl)-3-butyl-2(*5H*)-furanone **5bb** (fjj-1-075)

Following **Typical Procedure I**, the reaction of **1b** (226.5 mg, 1.0 mmol), **2b** (210.1 mg, 1.5 mmol), [Cp*RhCl₂]₂ (31.3 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (400.1 mg, 2.0 mmol) in CH₃CN (2.7 mL)/MeOH (0.13 mL) afforded **5bb** (286.2 mg, 67%)

as an oil [eluent: petroleum ether/ethyl acetate = 10/1 (500 mL) to 5/1 (500 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 4.94 (dd, J_1 = 14.9 Hz, J_2 = 14.7 Hz, 2 H, OCH₂), 3.05 (d, J = 14.7 Hz, 1 H, one proton of CH₂), 2.72 (d, J = 14.7 Hz, 1 H, one proton of CH₂), 2.43 (t, J = 7.2 Hz, 2 H, CH₂), 2.32 (t, J = 7.7 Hz, 2 H, CH₂), 2.10 (s, 3 H, OAc), 1.56-1.40 (m, 7 H, CH₂ × 2 and CH₃), 1.40-1.16 (m, 18 H, CH₂ × 9), 0.98-0.80 (m, 6 H, CH₃ × 2); ¹³C NMR (75 MHz, CDCl₃) δ 206.6, 171.7, 170.0, 157.4, 131.5, 85.0, 57.5, 48.7, 44.7, 31.8, 30.1, 29.5, 29.4, 29.3, 29.2, 29.0, 25.2, 23.6, 23.2, 22.6, 22.5, 20.6, 14.0, 13.7; IR (neat) ν (cm⁻¹) 2955, 2924, 2852, 1768, 1747, 1715, 1682, 1461, 1455, 1406, 1368, 1225, 1129, 1035; MS (EI): m/z (%) 422 (M⁺, 4.92), 43 (100); HRMS Calcd for C₂₅H₄₂O₅ (M⁺): 422.3032; Found: 422.3032.

4.5 Synthesis of 4-(2-acetoxy-4-oxo-5-phenylpentan-2-yl)-3-propyl-2(5H)-furanone5ca (fjj-1-076)

Following **Typical Procedure I**, the reaction of **1c** (160.2 mg, 1.0 mmol), **3a** (189.2 mg, 1.5 mmol), [Cp*RhCl₂]₂ (31.2 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (399.8 mg, 2.0 mmol) in CH₃CN (2.7 mL)/MeOH (0.13 mL) afforded **5ca** (173.0 mg, 50%) as an oil [eluent: petroleum ether/ethyl acetate = 10/1 (500 mL) to 5/1 (1000 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.21 (m, 3 H, ArH), 7.14 (d, *J* = 6.6 Hz, 2 H, ArH), 4.91 (d, *J* = 14.7 Hz, 1 H, one proton of OCH₂), 4.86 (d, *J* = 14.4 Hz, 1 H, one proton of OCH₂),

3.72 (s, 2 H, CH₂), 3.10 (d, J = 15.3 Hz, 1 H, one proton of CH₂), 2.77 (d, J = 15.3 Hz, 1 H, one proton of CH₂), 2.29 (t, J = 7.5 Hz, 2 H, CH₂), 2.04 (s, 3 H, OAc), 1.62-1.43 (m, 5 H, CH₂, CH₃), 0.91 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 203.6, 171.6, 169.9, 157.5, 133.2, 131.2, 129.4, 128.7, 127.1, 84.9, 57.3, 51.4, 47.6, 25.6, 25.1, 21.2, 20.5, 13.6; IR (neat) ν (cm⁻¹) 3089, 3063, 3030, 2962, 2935, 2873, 1748, 1715, 1681, 1603, 1497, 1455, 1367, 1309, 1222, 1131, 1048, 1026; MS (EI): m/z (%) 344 (M⁺, 7.29), 211 (100); HRMS Calcd for C₂₀H₂₄O₅ (M⁺): 344.1624; Found: 344.1625.

4.6 Synthesis of 4-(2-acetoxy-4-oxo-5-phenylpentan-2-yl)-3-butyl-2(*5H*)-furanone **5cb** (fjj-1-087)

Following **Typical Procedure I**, the reaction of **1c** (159.2 mg, 1.0 mmol), **3b** (210.6 mg, 1.5 mmol), [Cp*RhCl₂]₂ (31.0 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (399.7 mg, 2.0 mmol) in CH₃CN (2.7 mL)/MeOH (0.13 mL) afforded **5cb** (179.7 mg, 50%) as an oil [eluent: petroleum ether/ethyl acetate = 15/1 (500 mL) to 8/1 (500 mL), then 5/1 (1000 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.23 (m, 3 H, ArH), 7.17-7.10 (m, 2 H, ArH), 4.91 (d, *J* = 14.4 Hz, 1 H, one proton of OCH₂), 4.86 (d, *J* = 14.4 Hz, 1 H, one proton of OCH₂), 3.72 (s, 2 H, CH₂), 3.10 (d, *J* = 15.0 Hz, 1 H, one proton of CH₂), 2.76 (d, *J* = 15.3 Hz, 1 H, one proton of CH₂), 2.31 (t, *J* = 7.5 Hz, 2 H, CH₂), 2.05 (s, 3 H, OAc), 1.56-1.39 (m, 5 H, CH₂ and CH₃), 1.39-1.22 (m, 2 H, CH₂), 0.91 (t, *J* = 7.1

Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) & 203.7, 171.7, 169.9, 157.3, 133.2, 131.5, 129.5, 128.7, 127.2, 85.0, 57.4, 51.5, 47.7, 30.1, 25.1, 23.6, 22.4, 20.5, 13.7; IR (neat) *v* (cm⁻¹) 3092, 3062, 3030, 2958, 2929, 2865, 1748, 1714, 1603, 1497, 1455, 1362, 1308, 1220, 1124, 1034; MS (EI): *m/z* (%) 358 (M⁺, 5.66), 225 (100); HRMS Calcd for C₂₁H₂₆O₅ (M⁺): 358.1780; Found: 358.1779.

4.7 Synthesis of 4-(2-acetoxy-4-cyclohexyl-4-oxobutan-2-yl)-3-propyl-2(*5H*)furanone **5da** (fjj-1-066)

Following **Typical Procedure I**, the reaction of **1d** (151.6 mg, 1.0 mmol), **3a** (189.3 mg, 1.5 mmol), [Cp*RhCl₂]₂ (31.0 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (399.6 mg, 2.0 mmol) in CH₃CN (2.7 mL)/MeOH (0.13 mL) afforded **5da** (124.7 mg, 37%) as an oil [eluent: petroleum ether/ethyl acetate = 10/1 (500 mL) to 5/1 (500 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 4.98 (d, *J* = 14.4 Hz, 1 H, one proton of OCH₂), 4.92 (d, *J* = 14.4 Hz, 1 H, one proton of OCH₂), 4.92 (d, *J* = 14.4 Hz, 1 H, one proton of OCH₂), 3.16 (d, *J* = 15.3 Hz, 1 H, one proton of CH₂), 2.75 (d, *J* = 15.3 Hz, 1 H, one proton of CH₂), 2.42-2.25 (m, 3 H, CH and CH₂), 2.10 (s, 3 H, OAc), 1.89-1.60 (m, 5 H, CH₂ × 2 and one proton of CH₂), 1.60-1.42 (m, 5 H, CH₂ and CH₃), 1.36-1.10 (m, 5 H, CH₂ × 2 and one proton of CH₂), 0.94 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 209.3, 171.8, 170.0, 157.8, 131.1, 85.1, 57.6, 51.8, 46.6, 28.1, 27.6, 25.7, 25.6, 25.5, 25.3, 21.3, 20.6, 13.7; IR (neat) ν (cm⁻¹) 2959,

2930, 2855, 1748, 1706, 1451, 1372, 1291, 1221, 1136, 1028; MS (EI): *m/z* (%) 336 (M⁺, 4.52), 83 (100); HRMS Calcd for C₁₉H₂₈O₅ (M⁺): 336.1937; Found: 336.1934.

4.8 Synthesis of 4-(2-acetoxy-5,5-dimethyl-4-oxohexan-2-yl)-3-propyl-2(*5H*)furanone **5ea** (fjj-1-068)

Following **Typical Procedure I**, the reaction of **1e** (127.8 mg, 1.0 mmol), **3a** (189.3 mg, 1.5 mmol), [Cp*RhCl₂]₂ (31.3 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (398.3 mg, 2.0 mmol) in CH₃CN (2.7 mL)/MeOH (0.13 mL) afforded **5ea** (130.8 mg, 42%) as an oil [eluent: petroleum ether/ethyl acetate = 10/1 (500 mL) to 5/1 (600 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 5.00 (d, *J* = 14.1 Hz, 1 H, one proton of OCH₂), 4.94 (d, *J* = 14.4 Hz, 1 H, one proton of OCH₂), 3.31 (d, *J* = 16.5 Hz, 1 H, one proton of CH₂), 2.76 (d, *J* = 16.2 Hz, 1 H, one proton of CH₂), 2.32 (t, *J* = 7.5 Hz, 2 H, CH₂), 2.10 (s, 3 H, OAc), 1.64-1.48 (m, 5 H, CH₂ and CH₃), 1.11 (s, 9 H, CH₃ × 3), 0.95 (t, *J* = 7.5 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 210.6, 172.0, 170.0, 158.1, 130.7, 84.9, 57.7, 44.6, 42.4, 25.9, 25.72, 25.67, 21.3, 20.6, 13.7; IR (neat) ν (cm⁻¹) 2963, 2933, 2870, 1748, 1713, 1507, 1479, 1463, 1452, 1394, 1367, 1261, 1222, 1170, 1123, 1051, 1026; MS (EI): *m/z* (%) 310 (M⁺, 3.70), 43 (100); HRMS Calcd for C₁₇H₂₆O₅ (M⁺): 310.1780; Found: 310.1780.

4.9 Synthesis of 4-(2-acetoxy-9-chloro-4-oxononan-2-yl)-3-propyl-2(*5H*)-furanone **5fa** (fjj-1-072)

Following **Typical Procedure I**, the reaction of **1f** (173.4 mg, 1.0 mmol), **3a** (189.5 mg, 1.5 mmol), [Cp*RhCl₂]₂ (31.2 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (400.8 mg, 2.0 mmol) in CH₃CN (2.7 mL)/MeOH (0.13 mL) afforded **5fa** (161.2 mg, 45%) as an oil [eluent: petroleum ether/ethyl acetate = 10/1 (500 mL) to 5/1 (1500 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 4.95 (dd, J_1 = 14.4 Hz, J_2 = 14.1 Hz, 2 H, OCH₂), 3.52 (t, J = 6.8 Hz, 2 H, CH₂Cl), 3.07 (d, J = 15.0 Hz, 1 H, one proton of CH₂), 2.76 (d, J = 15.0 Hz, 1 H, one proton of CH₂), 2.76 (d, J = 15.0 Hz, 1 H, one proton of CH₂), 2.48 (t, J = 7.1 Hz, 2 H, CH₂), 2.31 (t, J = 7.5 Hz, 2 H, CH₂), 2.11 (s, 3 H, OAc), 1.81-1.68 (m, 2 H, CH₂), 1.62-1.45 (m, 7 H, CH₂ × 2 and CH₃), 1.45-1.30 (m, 2 H, CH₂), 0.94 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 205.9, 171.6, 169.8, 157.6, 130.9, 84.8, 57.3, 48.4, 44.6, 44.1, 32.1, 25.9, 25.5, 25.0, 22.1, 21.2, 20.4, 13.5; IR (neat) ν (cm⁻¹) 2955, 2928, 2873, 1747, 1712, 1682, 1455, 1406, 1373, 1257, 1219, 1134, 1100, 1066, 1026; MS (EI): m/z (%) 360 [M(³⁷Cl)⁺, 1.01], 358 [M(³⁵Cl)⁺, 2.08], 43 (100); HRMS Calcd for C₁₈H₂₇³⁵ClO₅ (M⁺): 358.1547; Found: 358.1548.

4.10 Synthesis of 4-(2-acetoxy-9-hydroxy-4-oxononan-2-yl)-3-butyl-2(5H)-furanone

5gb (fjj-1-111)

Following **Typical Procedure I**, the reaction of **1g** (77.5 mg, 0.5 mmol), **3b** (105.5 mg, 0.75 mmol), [Cp*RhCl₂]₂ (15.9 mg, 0.025 mmol), and Cu(OAc)₂·H₂O (199.8 mg, 2.0 mmol) in CH₃CN (1.35 mL)/MeOH (67.5 μ L) afforded **5gb** (65.9 mg, 36%, 95% purity) as an oil [eluent: petroleum ether/ethyl acetate = 5/1 (500 mL) to 1/1 (500 mL), then 1/2 (500 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 4.94 (dd, J_1 = 14.7 Hz, J_2 = 14.7 Hz, 2 H, OCH₂), 3.71 (s, 2 H, OCH₂), 3.07 (d, J = 14.4 Hz, 1 H, one proton of CH₂), 2.95-2.60 (m, 2 H, one proton of CH₂ and OH), 2.48 (t, J = 6.7 Hz, 2 H, CH₂), 2.32 (t, J = 8.1 Hz, 2 H, CH₂), 2.11 (s, 3 H, OAc), 1.64-1.42 (m, 9 H, CH₃ and CH₂ × 3), 1.42-1.22 (m, 4 H, CH₂ × 2), 0.93 (t, J = 7.1 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 206.5, 171.9, 170.0, 157.6, 131.3, 85.1, 62.4, 57.4, 48.6, 44.4, 32.3, 30.1, 25.1, 25.0, 23.5, 22.7, 22.4, 20.6, 13.7; IR (neat) ν (cm⁻¹) 3479, 2935, 2865, 1747, 1454, 1369, 1227, 1132, 1039; MS (EI): *m/z* (%) 354 (M⁺, 0.40), 43 (100); HRMS Calcd for C₁₉H₃₀O₆ (M⁺): 354.2042; Found: 354.2039.

4.11 Synthesis of 4-(2-acetoxy-4-oxo-4-phenylbutan-2-yl)-3-propyl-2(5H)-furanone5ha (fjj-1-064)

Following **Typical Procedure I**, the reaction of **1h** (146.3 mg, 1.0 mmol), **3a** (189.0 mg, 1.5 mmol), [Cp*RhCl₂]₂ (30.9 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (399.2 mg, 2.0 mmol) in CH₃CN (2.7 mL)/MeOH (0.13 mL) afforded **5ha** (163.3 mg, 50%) as an oil [eluent: petroleum ether/ethyl acetate = 10/1 (500 mL) to 5/1 (1500 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, *J* = 8.1 Hz, 2 H, ArH), 7.60-7.50 (m, 1 H, ArH), 7.44 (t, *J* = 7.1 Hz, 2 H, ArH), 5.03 (d, *J* = 14.1 Hz, 1 H, one proton of OCH₂), 4.96 (d, *J* = 14.4 Hz, 1 H, one proton of OCH₂), 3.72 (d, *J* = 15.6 Hz, 1 H, one proton of CH₂), 2.31 (t, *J* = 7.7 Hz, 2 H, CH₂), 1.97 (s, 3 H, OAc), 1.63 (s, 3 H, CH₃), 1.60-1.42 (m, 2 H, CH₂), 0.92 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 195.4, 171.6, 169.8, 157.1, 136.6, 133.3, 131.4, 128.4, 128.1, 84.9, 57.3, 44.1, 25.49, 25.46, 21.1, 20.3, 13.5; IR (neat) *v* (cm⁻¹) 3061, 2962, 2933, 2869, 1748, 1694, 1682, 1597, 1581, 1448, 1364, 1223, 1123, 1057, 1023; MS (EI): *m/z* (%) 330 (M⁺, 3.97), 105 (100); HRMS Calcd for C₁₉H₂₂O₅ (M⁺): 330.1467; Found: 330.1468.

4.12 Synthesis of 4-(2-acetoxy-4-oxo-4-(*p*-tolyl)butan-2-yl)-3-propyl-2(5H)-furanone5ia (fjj-2-022)

Typical Procedure II: To a dry Schlenk tube were added [Cp*RhCl₂]₂ (31.0 mg, 0.05 mmol), Cu(OAc)₂·H₂O (399.3 mg, 2.0 mmol), and **3a** (189.2 mg, 1.5 mmol). The reaction vessel was degassed under vacuum and backfilled with nitrogen for three times. Then 1i (160.3 mg, 1.0 mmol) and CH₃CN (2.7 mL) were added under nitrogen atmosphere sequentially. After being continuously stirred at 50 °C for 1.5 h, the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of silica gel eluted with ethyl acetate ($20 \text{ mL} \times 3$), the combined filtrate was concentrated in vacuo and the crude residual was purified by chromatography on silica gel [eluent: petroleum ether/ethyl ether = 3/1 (1000 mL) to petroleum ether/ethyl acetate = 2/1 (300 mL)] to afford **5ia** (160.2 mg, 46%) as an oil: ¹H NMR (300 MHz, CDCl₃): δ 7.79 (d, J = 8.4 Hz, 2 H, ArH), 7.24 (d, J = 8.1 Hz, 2 H, ArH), 5.03 (d, J = 14.1 Hz, 1 H, one proton of OCH₂), 4.97 (d, J = 14.1 Hz, 1 H, one proton of OCH₂), 3.70 (d, J = 15.3 Hz, 1 H, one proton of CH₂), 3.21 (d, J = 15.3 Hz, 1 H, one proton of CH₂), 2.40 (s, 3 H, CH₃), 2.30 (t, J = 7.5 Hz, 2 H, CH₂), 2.00 (s, 3 H, OAc), 1.63 (s, 3 H, CH₃), 1.60-1.42 (m, 2 H, CH₂), 0.92 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 195.1, 171.6, 169.9, 157.3, 144.3, 134.3, 131.4, 129.2, 128.4, 85.0, 57.4, 44.3, 25.6, 25.5, 21.5, 21.2, 20.4, 13.6; IR (neat) v (cm⁻¹) 3032, 2962, 2934, 2873, 1747, 1690, 1669, 1607, 1572, 1451, 1407, 1366, 1224, 1183, 1121, 1057, 1028; MS (EI): *m/z* (%) 344 (M⁺, 8.82), 119 (100); HRMS Calcd for C₂₀H₂₄O₅ (M⁺):

4.13 Synthesis of 4-(2-acetoxy-4-(3,4-(methylenedioxy)phenyl)-4-oxobutan-2-yl)-3propyl-2(5H)-furanone **5ja** (fjj-1-054)

Following **Typical Procedure I**, the reaction of **1j** (189.0 mg, 1.0 mmol), **3a** (189.1 mg, 1.5 mmol), [Cp*RhCl₂]₂ (30.8 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (399.2 mg, 2.0 mmol) in CH₃CN (2.7 mL)/MeOH (0.13 mL) afforded **5ja** (183.7 mg, 49%) as an oil [eluent: petroleum ether/ethyl acetate = 20/1 (1000 mL) to 5/1 (1000 mL), then 2/1 (200 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 7.52 (dd, J_1 = 8.1 Hz, J_2 = 1.5 Hz, 1 H, ArH), 7.34 (d, J = 1.5 Hz, 1 H, ArH), 6.84 (d, J = 8.1 Hz, 1 H, ArH), 6.04 (s, 2 H, O₂CH₂), 5.01 (dd, J_1 = 14.7 Hz, J_2 = 14.4 Hz, 2 H, OCH₂), 3.66 (d, J = 15.3 Hz, 1 H, one proton of CH₂), 3.14 (d, J = 15.3 Hz, 1 H, one proton of CH₂), 2.30 (t, J = 7.7 Hz, 2 H, CH₂), 2.04 (s, 3 H, OAc), 1.63 (s, 3 H, CH₃), 1.58-1.43 (m, 2 H, CH₂), 0.91 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 193.5, 171.7, 170.0, 157.5, 152.1, 148.2, 131.7, 131.4, 125.2, 107.9, 107.8, 101.9, 85.1, 57.6, 44.5, 25.64, 25.58, 21.3, 20.5, 13.6; IR (neat) ν (cm⁻¹) 3080, 2963, 2929, 2874, 1748, 1682, 1604, 1505, 1489, 1446, 1367, 1256, 1220, 1108, 1036; MS (EI): *m/z* (%) 374 (M⁺, 8.42), 149 (100); HRMS Calcd for C₂₀H₂₂O₇Na (M+Na)⁺: 397.1258; Found: 397.1257.

4.14 Synthesis of 4-(2-acetoxy-4-(3-chlorophenyl)-4-oxobutan-2-yl)-3-butyl-2(5H)furanone **5kb** (fjj-1-095)

Following Typical Procedure I, the reaction of 1k (180.2 mg, 1.0 mmol), 3b (210.3 mg, 1.5 mmol), [Cp*RhCl₂]₂ (31.1 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (399.2 mg, 2.0 mmol) in CH₃CN (2.7 mL)/MeOH (0.13 mL) afforded 5kb (170.3 mg, 45%) as an oil [eluent: petroleum ether/ethyl acetate = 10/1 (500 mL) to 5/1 (1000 mL), then 4/1 (500 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 7.87-7.83 (m, 1 H, ArH), 7.78 (d, J = 3.9Hz, 1 H, ArH), 7.54 (d, J = 7.8 Hz, 1 H, ArH), 7.41 (t, J = 8.0 Hz, 1 H, ArH), 5.02 (d, J = 14.1 Hz, 1 H, one proton of OCH₂), 4.96 (d, J = 14.1 Hz, 1 H, one proton of OCH₂), $3.70 (d, J = 15.9 Hz, 1 H, one proton of CH_2), 3.23 (d, J = 15.6 Hz, 1 H, one proton of CH_2)$ CH₂), 2.32 (t, J = 7.7 Hz, 2 H, CH₂), 2.02 (s, 3 H, OAc), 1.64 (s, 3 H, CH₃), 1.54-1.38 (m, 2 H, CH₂), 1.38-1.22 (m, 2 H, CH₂), 0.92 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 194.4, 171.6, 170.0, 156.7, 138.3, 135.0, 133.4, 132.1, 130.0, 128.3, 126.6, 84.9, 57.4, 44.6, 30.1, 25.6, 23.6, 22.4, 20.5; 13.8; IR (neat) v (cm⁻¹) 3062, 2958, 2929, 2872, 1755, 1748, 1698, 1682, 1570, 1424, 1366, 1224, 1123, 1031; MS (EI): m/z (%) 380 [M(³⁷Cl)⁺, 2.47], 378 [M(³⁵Cl)⁺, 7.20], 139 (100); HRMS Calcd for $C_{20}H_{23}O_5^{35}Cl (M^+)$: 378.1234; Found: 378.1234.

4.15 Synthesis of 4-(2-acetoxy-4-oxo-4-(thiophen-2-yl)butan-2-yl)-3-butyl-2(5H)-

furanone 5lb (fjj-1-090)

Following **Typical Procedure I**, the reaction of **11** (152.4 mg, 1.0 mmol), **3b** (210.3 mg, 1.5 mmol), [Cp*RhCl₂]₂ (31.1 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (399.2 mg, 2.0 mmol) in CH₃CN (2.7 mL)/MeOH (0.13 mL) afforded **5lb** (163.0 mg, 46%) as an oil [eluent: petroleum ether/ethyl acetate = 5/1 (1500 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 7.74 (d, *J* = 3.9 Hz, 1 H, ArH), 7.67 (d, *J* = 4.8 Hz, 1 H, ArH), 7.13 (t, *J* = 4.5 Hz, 1 H, ArH), 5.03 (d, *J* = 14.4 Hz, 1 H, one proton of OCH₂), 4.98 (d, *J* = 14.4 Hz, 1 H, one proton of OCH₂), 3.63 (d, *J* = 15.0 Hz, 1 H, one proton of CH₂), 3.19 (d, *J* = 15.0 Hz, 1 H, one proton of OCH₂), 3.19 (d, *J* = 15.0 Hz, 1 H, one proton of CH₂), 3.19 (d, *J* = 7.2 Hz, 3 H, CH₃), 1.52-1.37 (m, 2 H, CH₂), 1.37-1.22 (m, 2 H, CH₂), 0.90 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 188.1, 171.5, 169.9, 157.0, 144.1, 134.8, 133.4, 131.7, 128.3, 84.9, 57.4, 45.7, 30.0, 25.3, 23.4, 22.3, 20.4; 13.7; IR (neat) *v* (cm⁻¹) 3094, 2958, 2929, 2872, 1747, 1667, 1651, 1519, 1455, 1417, 1362, 1227, 1109, 1051; MS (EI): *m/z* (%) 350 (M⁺, 7.34), 111 (100); HRMS Calcd for C₁₈H₂₂O₅S (M⁺): 350.1188; Found: 350.1189.

4.16 Synthesis of 4-(2-acetoxy-4-oxodecan-2-yl)-3-allyl-2(5H)-furanone **5ad** (fjj-1-135, fjj-2-008)

Following **Typical Procedure I**, the reaction of **1a** (185.0 mg, 1.2 mmol), **3d** (124.2 mg, 1.0 mmol), [Cp*RhCl₂]₂ (31.1 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (599.1 mg, 3.0 mmol) in CH₃CN (2.7 mL)/MeOH (0.13 mL) afforded **5ad** (126.0 mg, 37%) as an oil [eluent: petroleum ether/ethyl acetate = 5/1 (1000 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 5.91-5.72 (m, 1 H, =CH), 5.17-5.03 (m, 2 H, =CH₂), 4.95 (s, 2 H, OCH₂), 3.13-3.01 (m, 3 H, CH₂ and one proton of CH₂), 2.77 (d, *J* = 15.0 Hz, 1 H, one proton of CH₂), 2.44 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.10 (s, 3 H, OAc), 1.60-14.1 (m, 5 H, CH₃ and CH₂), 1.37-1.15 (m, 6 H, CH₂ × 3), 0.87 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 206.4, 171.2, 169.8, 159.0, 132.7, 128.3, 116.6, 85.0, 57.4, 48.4, 44.5, 31.3, 28.4, 27.6, 25.1, 23.0, 22.2, 20.4, 13.8; IR (neat) *v* (cm⁻¹) 3077, 2955, 2925, 2858, 1755, 1716, 1640, 1368, 1218, 1122, 1047; MS (EI): *m/z* (%) 336 (M⁺, 1.10), 164 (100); HRMS Calcd for C₁₉H₂₈O₅ (M⁺): 336.1937; Found: 336.1934.

4.17 Synthesis of 4-(2-acetoxy-4-oxodecan-2-yl)-3-phenethyl-2(*5H*)-furanone **5ae** (fjj-2-018)

Following **Typical Procedure I**, the reaction of **1a** (154.0 mg, 1.0 mmol), **3e** (282.4 mg, 1.5 mmol), [Cp*RhCl₂]₂ (30.9 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (399.8 mg, 2.0 mmol) in CH₃CN (2.7 mL)/MeOH (0.13 mL) afforded **5ae** (210.2 mg, 51%, 97% purity) as an oil [eluent: petroleum ether/ethyl ether = 3/1 (1000 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.03 (m, 5 H, ArH), 4.57 (d, J = 14.4 Hz, 1 H, one proton of OCH₂), 4.46 (d, J = 14.1 Hz, 1 H, one proton of OCH₂), 2.93 (d, J = 15.0 Hz, 1 H, one proton of CH₂), 2.88-2.78 (m, 2 H, CH₂), 2.74-2.57 (m, 3 H, one proton of CH₂ and CH₂), 2.42 (td, $J_1 = 7.3$ Hz, $J_2 = 2.1$ Hz, 2 H, CH₂), 2.02 (s, 3 H, OAc), 1.57-1.37 (m, 5 H, CH₃ and CH₂), 1.36-1.16 (m, 6 H, CH₂ × 3), 0.87 (t, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 206.4, 171.5, 169.7, 158.6, 140.5, 129.9, 128.6, 128.3, 126.2, 85.0, 57.0, 48.6, 44.5, 33.6, 31.5, 28.6, 25.8, 24.7, 23.1, 22.3, 20.5, 13.9; IR (neat) ν (cm⁻¹) 3063, 3027, 2931, 2859, 1748, 1712, 1601, 1496, 1455, 1368, 1220, 1047; MS (EI): *m/z* (%) 400 (M⁺, 6.12), 91 (100); HRMS Caled for C₂₄H₃₂O₅ (M⁺): 400.2250; Found: 400.2248.

4.18 Synthesis of 4-(2-acetoxy-4-oxobutan-2-yl)-3-propyl-2(5H)-furanone 5ma (fjj-2-023)

Following **Typical Procedure II**, the reaction of **1m** (70.3 mg, 1.0 mmol), **3a** (189.4 mg, 1.5 mmol), $[Cp*RhCl_2]_2$ (31.0 mg, 0.05 mmol), and $Cu(OAc)_2 \cdot H_2O$ (399.5 mg, 2.0 mmol) in CH₃CN (2.7 mL) afforded **5ma** (129.8 mg, 51%) as an oil [eluent:

petroleum ether/ethyl ether = 2/1 (1000 mL) to 1/1 (500 mL)]: ¹H NMR (300 MHz, CDCl₃) 9.63 (t, J = 2.4 Hz, 1 H, CHO), 4.97 (d, J = 14.1 Hz, 1 H, one proton of OCH₂), 4.87 (d, J = 14.1 Hz, 1 H, one proton of OCH₂), 2.98 (dd, J_1 = 16.1 Hz, J_2 = 2.3 Hz, 1 H, one proton of CH₂), 2.74 (dd, J_1 = 15.9 Hz, J_2 = 2.4 Hz, 1 H, one proton of CH₂), 2.33 (t, 2 H, J = 7.5 Hz, CH₂), 2.11 (s, 3 H, OAc), 1.66-1.41 (m, 5 H, CH₂ and CH₃), 0.93 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 198.0, 171.1, 169.8, 156.9, 132.1, 84.4, 56.7, 49.2, 25.5, 24.7, 21.2, 20.3, 13.5; IR (neat) ν (cm⁻¹) 2964, 2929, 2875, 2744, 1747, 1676, 1455, 1368, 1222, 1136, 1064, 1030; MS (EI): m/z (%) 254 (M⁺, 2.49), 43 (100); HRMS Calcd for C₁₃H₁₈O₅ (M⁺): 254.1154; Found: 254.1156.

4.19 Synthesis of 4-(2-acetoxy-4-oxobutan-2-yl)-3-butyl-2(5H)-furanone 5mb (fjj-2-001)

Following **Typical Procedure I**, the reaction of **1m** (70.2 mg, 1.0 mmol), **3b** (210.3 mg, 1.5 mmol), [Cp*RhCl₂]₂ (30.9 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (399.1 mg, 2.0 mmol) in CH₃CN (2.7 mL)/MeOH (0.13 mL) afforded **5mb** (149.0 mg, 55%) as an oil [eluent: petroleum ether/ethyl ether = 4/1 (500 mL) to 2/1 (200 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 9.67-9.56 (m, 1 H, CHO), 5.02-4.80 (m, 2 H, OCH₂), 3.03-2.90 (m, 1 H, one proton of CH₂), 2.72 (dd, *J*₁ = 15.9 Hz, *J*₂ = 2.1 Hz, 1 H, one proton of CH₂), 2.14-2.03 (m, 3 H, OAc), 1.61-1.54 (m, 3 H, CH₃), 1.54-1.42

(m, 2 H, CH₂), 1.41-1.23 (m, 2 H, CH₂), 0.97-0.86 (m, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 198.1, 171.2, 169.9, 156.6, 132.5, 84.4, 56.8, 49.3, 30.1, 24.7, 23.5, 22.4, 20.4, 13.6; IR (neat) *v* (cm⁻¹) 3480, 2959, 2925, 2873, 2745, 1748, 1674, 1455, 1380, 1227, 1137, 1032; MS (EI): *m/z* (%) 268 (M⁺, 4.24), 43 (100); HRMS Calcd for C₁₄H₂₀O₅ (M⁺): 268.1311; Found: 268.1311.

4.20 Synthesis of 4-(2-acetoxy-4-oxobutan-2-yl)-3-(3-chloropropyl)-2(5H)-furanone.5mc (fjj-2-094)

Following **Typical Procedure II**, the reaction of **1m** (69.3 mg, 1.0 mmol), **3c** (240.4 mg, 1.5 mmol), [Cp*RhCl₂]₂ (31.0 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (399.3 mg, 2.0 mmol) in CH₃CN (2.7 mL) afforded **5mc** (115.0 mg, 38%, 95% purity) as an oil [200~300 mesh silica gel, eluent: petroleum ether/ethyl ether = 5/1 (1000 mL) to 3/1 (500 mL), then 1/1 (1000 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 9.64 (d, J = 1.2 Hz, 1 H, CHO), 4.99 (d, J = 14.4 Hz, 1 H, one proton of OCH₂), 4.89 (d, J = 14.1 Hz, 1 H, one proton of OCH₂), 3.57 (t, J = 6.0 Hz, 2 H, CH₂Cl), 3.02 (dd, $J_1 = 16.2$ Hz, $J_2 = 1.5$ Hz, 1 H, one proton of CH₂), 2.62-2.46 (m, 2 H, CH₂), 2.17-1.97 (m, 5 H, OAc and CH₂), 1.57 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 197.8, 171.0, 169.9, 158.0, 130.5, 84.6, 56.8, 49.0, 44.0,

29.9, 24.7, 21.1, 20.4; IR (neat) v (cm⁻¹) 2963, 2933, 2852, 2746, 1747, 1680, 1446, 1369, 1306, 1223, 1134, 1064; MS (EI): *m/z* (%) 290 [M(³⁷Cl)⁺, 0.2], 288 [M(³⁵Cl)⁺, 0.6], 43 (100); HRMS Calcd for C₁₃H₁₇O₅³⁵Cl (M⁺): 288.0765; Found: 288.0766.

4.21 Synthesis of 4-(2-acetoxy-4-oxobutan-2-yl)-3-phenethyl-2(5H)-furanone **5me** (fjj-2-020)

Following **Typical Procedure II**, the reaction of **1m** (69.7 mg, 1.0 mmol), **3e** (282.5 mg, 1.5 mmol), [Cp*RhCl₂]₂ (31.1 mg, 0.05 mmol), and Cu(OAc)₂·H₂O (399.3 mg, 2.0 mmol) in CH₃CN (2.7 mL) afforded **5me** (145.5 mg, 46%) as an oil [eluent: petroleum ether/ethyl ether = 2/1 (1000 mL) to petroleum ether/ethyl acetate = 1/1 (500 mL)]: ¹H NMR (300 MHz, CDCl₃) δ 9.53 (t, *J* = 2.4 Hz, 1 H, CHO), 7.33-7.06 (m, 5 H, ArH), 4.47 (d, *J* = 14.4 Hz, 1 H, one proton of OCH₂), 4.30 (d, *J* = 14.1 Hz, 1 H, one proton of OCH₂), 2.96-2.78 (m, 3 H, one proton of CH₂ and CH₂), 2.76-2.52 (m, 3 H, one proton of CH₂ and CH₂), 2.76-2.52 (m, 3 H, one proton of CH₂ and CH₂), 2.02 (s, 3 H, OAc), 1.46 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 198.1, 171.0, 169.7, 158.0, 140.1, 130.7, 128.7, 128.5, 126.4, 84.6, 56.4, 49.4, 33.4, 25.8, 24.6, 20.4; IR (neat) ν (cm⁻¹) 3062, 3027, 2934, 2864, 2747, 1747, 1721, 1603, 1496, 1455, 1368, 1223, 1047; MS (EI): *m/z* (%) 316 (M⁺, 3.58), 91 (100); HRMS Calcd for C₁₈H₂₀O₅ (M⁺): 316.1311; Found: 316.1312.

5. A Gram Scale Reaction

Following **Typical Procedure II**, the reaction of **1m** (559.7 mg, 8 mmol), **3a** (1514.2 mg, 12 mmol), $[Cp*RhCl_2]_2$ (0.2473 g, 0.4 mmol), and $Cu(OAc)_2 \cdot H_2O$ (3195.3 mg, 16 mmol) in CH₃CN (21.6 mL) afforded **5ma** (1.0113 g, 50%) as an oil [eluent: petroleum ether/ethyl acetate = 5/1 (2000 mL)]: ¹H NMR (300 MHz, CDCl₃) 9.63 (s, 1 H, CHO), 4.96 (d, *J* = 14.1 Hz, 1 H, one proton of OCH₂), 4.85 (d, *J* = 14.1 Hz, 1 H, one proton of OCH₂), 2.96 (d, *J* = 15.9 Hz, 1 H, one proton of CH₂), 2.71 (d, *J* = 15.9 Hz, 1 H, one proton of CH₂), 2.71 (d, *J* = 15.9 Hz, 1 H, one proton of CH₂), 2.11 (s, 3 H, OAc), 1.65-1.46 (m, 5 H, CH₂ and CH₃), 0.93 (t, *J* = 7.4 Hz, 3 H, CH₃).

6. Synthetic Applications

6.1 Preparation of 4-(2-acetoxy-6-ethoxy-6-oxohexan-2-yl)-3-propyl-2(5H)-furanone

To a Schlenk tube was added ethyl (triphenylphosphoranylidene)acetate (83.9 mg, 0.24 mmol). After degassed under vacuum and backfilled with nitrogen for three times at room temperature, THF (1 mL) and **5ma** (50.1 mg, 0.2 mmol)/THF (0.5 mL) were added under nitrogen atmosphere. After being continuously stirred at room temperature for 37 h, the reaction was complete as monitored by thin layer chromatography (TLC). The reaction mixture was concentrated in vacuo and the crude residual was purified by chromatography on silica gel [eluent: petroleum ether/ethyl acetate = 5/1 (1000 mL)] to afford the corresponding alkenoate **S7** (53.3 mg, *E/Z* = 84/16, 83%).

A Schlenk tube was degassed under vacuum and backfilled with nitrogen for three times at room temperature. Then Raney Ni (5 mg, *Note*: commercial product nickel from *Aladdin* is stabilized with water) was added and washed with MeOH for three times to remove water. Then the Schlenk tube was degassed under vacuum and backfilled with hydrogen for three times, which was followed by the addition of the above prepared alkenoate S7 /MeOH (2 mL) under hydrogen atmosphere. After being continuously stirred at room temperature for 14 h, the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of Celite® pad eluted with ethyl acetate (20 mL × 3), the combined filtrate was concentrated in vacuo and the crude residual was purified by chromatography on silica gel (200~300 mesh) [eluent: petroleum ether/ethyl acetate = 8/1 (600 mL)] to afford 7 (40.7 mg, 63% from two steps) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 4.91 (d, *J* = 14.1 Hz, 1 H, one proton of OCH₂), 4.85 (d, *J* = 14.4 Hz, 1 H, one proton of OCH₂), 4.12 (q, *J* = 7.2 Hz, 2 H, OCH₂), 2.41-2.20 (m, 4 H, CH₂ × 2), 2.13 (s, 3 H, CH₃), 1.98-1.70 (m, 2 H, CH₂), 1.65-1.35 (m, 7 H, CH₂ × 2 and CH₃), 1.25 (t, *J* = 7.1 Hz, 3 H, CH₃), 0.93 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 172.8, 172.1, 170.1, 157.4, 131.7, 87.0, 60.3, 57.1, 36.7, 33.6, 25.6, 24.4, 21.5, 20.5, 18.5, 14.1, 13.7; IR (neat) ν (cm⁻¹) 2963, 2935, 2874, 1748, 1456, 1372, 1222, 1028; MS (EI): *m/z* (%) 326 (M⁺, 23.9), 151 (100); HRMS Calcd for C₁₇H₂₆O₆ (M)⁺: 326.1729; Found: 326.1730.

6.2 Preparation of 4-(2-acetoxy-4-hydroxybutan-2-yl)-3-propyl-2(5H)-furanone 8⁴ (fjj-2-090)

To a dry Schlenk tube were added **5ma** (49.6 mg, 0.2 mmol) and ethyl acetate (2 mL). Sodium cyanoborohydride (57.4 mg, 4.5 mmol) was added in three portions (13.2

mg, 14.2 mg, and 30.0 mg) every hour. After being continuously stirred at room temperature for 4 h, the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of silica gel eluted with ethyl acetate (20 mL × 3), the combined filtrate was concentrated in vacuo and the crude residual was purified by chromatography on silica gel (200~300 mesh) [eluent: petroleum ether/ethyl acetate = 2/1 (1500 mL)] to afford **8** (39.5 mg, 79%) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 4.92 (s, 2 H, OCH₂), 3.73-3.48 (m, 2 H, OCH₂), 2.31 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.23-1.93 (m, 6 H, CH₃, CH₂, and OH), 1.64-1.42 (m, 5 H, CH₂ and CH₃), 0.93 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 172.3, 170.2, 158.6, 130.9, 86.3, 57.6, 57.5, 39.8, 25.6, 24.7, 21.4, 20.6, 13.7; IR (neat) ν (cm¹¹) 3478, 2963, 2934, 2875, 1747, 1674, 1455, 1379, 1367, 1122, 1138, 1053, 1031; MS (EI): *m/z* (%) 256 (M⁺, 4.51), 43 (100); HRMS Calcd for C₁₃H₂₀O₅ (M⁺): 256.1311; Found: 256.1312.

6.3 Preparation of 4-(4-hydroxy-2-methyloxetan-2-yl)-3-propyl-2(5H)-furanone 9. (fjj-2-098, fjj-2-162)

To a dry Schlenk tube were added **5ma** (51.1 mg, 0.2 mmol), MeOH (4 mL), and Et₃N (166 μ L, 1.2 mmol) sequentially. After being continuously stirred at 85 °C for 24

h, the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of silica gel eluted with ethyl acetate (20 mL \times 3), the combined filtrate was then concentrated in vacuo and the crude residual was purified by chromatography on silica gel (200~300 mesh) [eluent: petroleum ether/ethyl acetate = 5/1 (300 mL) to 3/1 (500 mL)] to afford 9 (35.7 mg, 84%, dr = 2.6:1) as an oil: ¹H NMR (600 MHz, CDCl₃) δ [5.43 (t, *J* = 4.2 Hz, 0.67 H), 5.12-5.05 (m, 0.27 H), OCHO], [4.73 (d, J = 13.8 Hz, 0.27 H), 4.64 (d, J = 12.6 Hz, 0.72 H), one proton of OCH₂],[4.44 (d, J = 12.0 Hz, 0.72 H), 4.28 (d, J = 14.4 Hz, 0.28 H), one proton of OCH₂], $[3.00 (d, J = 6.0 Hz, 0.22 H), 2.74-2.65 (m, 0.59 H), OH], [2.54 (dd, J_1 = 15.0 Hz, J_2 = 15.$ $3.0 \text{ Hz}, 0.28 \text{ H}), 2.46 \text{ (d}, J = 13.2 \text{ Hz}, 0.70 \text{ H}), \text{ one proton of CH}_2], 2.33-2.19 \text{ (m, 2 H, 2.46)}$ CH₂), [1.94-1.84 (m, 0.7 H, one proton of CH₂), 1.74-1.66 (m, 2.38 H, CH₃ and one proton of CH₂), 1.64-1.47 (m, 3.94 H, CH₃ and CH₂)], 0.91 (t, *J* = 7.5 Hz, 3 H, CH₃); IR (neat) v (cm⁻¹) 3419, 2962, 2929, 2873, 1751, 1732, 1457, 1337, 1212, 1188, 1062, 1004; MS (EI): *m/z* (%) 212 (M⁺, 3.1), 43 (100); HRMS Calcd for C₁₁H₁₆O₄ (M⁺): 212.1049; Found: 212.1050.

To a dry Schlenk tube were added 5ma (51.0 mg, 0.2 mmol), MeOH (4 mL), and
Et₃N (166 μL, 1.2 mmol) sequentially. After being continuously stirred at 80 °C for 24 h, the resulting mixture was cooled to room temperature and treated with NaBH₄ (19.0 mg, 0.5 mmol). After being continuously stirred at room temperature for 5.5 h, the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of silica gel eluted with ethyl acetate ($10 \text{ mL} \times 3$), the combined filtrate was then concentrated in vacuo and the crude residual was purified by chromatography on silica gel (200~300 mesh) [eluent: dichloromethane/ methanol = 50/1 (800 mL)] to afford 10 (24.2 mg, 56%) as an oil: ¹H NMR (300 MHz, CDCl₃) 4.62 (d, J = 14.1 Hz, 1 H, one proton of OCH₂), 4.29 (d, J = 14.1 Hz, 2 H, one proton of OCH₂ and OH), 3.76-3.58 (m, 1 H, one proton of CH₂), 3.47 (t, J = 10.5 Hz, 1 H, one proton of CH₂), 3.18 (bs, 1 H, OH), 2.39-2.08 (m, 4 H, CH₂ × 2), 1.70-1.36 (m, 5 H, CH₂ and CH₃), 0.91 (t, J = 7.5 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 173.4, 164.6, 128.2, 86.3, 56.8, 56.5, 39.7, 25.4, 25.0, 21.5, 13.7; IR (neat) v (cm⁻¹) 3428, 2962, 2929, 2874, 1729, 1668, 1456, 1379, 1315, 1181, 1136, 1051; MS (EI): m/z (%) 214 $(M^+, 5.1), 43 (100);$ HRMS Calcd for $C_{11}H_{18}O_4 (M^+)$: 214.1205; Found: 214.1207.

6.4 Preparation of 4-(β -methyl- β -lactonyl)-3-propyl-2(5H)-furanone 11⁵ (fjj-4-014)

A dry Schlenk tube containing Fe(NO₃)₃·9H₂O (3.9 mg, 0.01 mmol), TEMPO (1.5

mg, 0.01 mmol), and KCl (0.9 mg, 0.01 mmol) was degassed under vacuum and backfilled with oxygen for three times. Then 9 (22.1 mg, 0.1 mmol) and toluene (0.5 mL) were added under oxygen atmosphere sequentially. After being continuously stirred at room temperature for 10 h, the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of silica gel eluted with ethyl acetate (20 mL \times 3), the combined filtrate was concentrated in vacuo and the crude residual was purified by chromatography on silica gel (200~300 mesh) [eluent: petroleum ether/ethyl acetate = 5/1 (600 mL)] to afford 11 (14.1 mg, 64%) as an oil: ¹H NMR (300 MHz, CDCl₃) 5.31 (d, J = 15.6 Hz, 1 H, one proton of OCH₂), 5.18 (d, J =15.3 Hz, 1 H, one proton of OCH₂), 3.26 (d, J = 16.8 Hz, 1 H, one proton of CH₂), 2.65 $(d, J = 17.1 \text{ Hz}, 1 \text{ H}, \text{ one proton of CH}_2), 2.45-2.15 (m, 2 \text{ H}, \text{CH}_2), 1.73-1.47 (m, 5 \text{ H}, 1.13)$ CH₂ and CH₃), 0.93 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 171.0, 165.7, 153.6, 127.9, 79.6, 63.5, 44.2, 25.7, 23.4, 21.0, 13.6; IR (neat) v (cm⁻¹) 2963, 2934, 2874, 1747, 1457, 1384, 1310, 1238, 1182, 1115, 1061, 1035; MS (EI): m/z (%) 210 (M⁺, 15.0), 167 (100); HRMS Calcd for C₁₁H₁₄O₄ (M⁺): 210.0892; Found: 210.0893.

7. References

- 1. Luo, H.; Ma, S. Eur. J. Org. Chem. 2013, 3041.
- 2. (a) Miao, B.; Li, G.; Ma, S. Chem. Eur.J. 2015, 21, 17224; (b) Castellano, S.; Fiji, H.
- D. G.; Kinderman, S. S.; Watanabe, M.; de Leon, P.; Tamanoi, F.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 5843.
- 3. Fan, J.; Fu, C.; Wu, X.; Ma, S. Chem. Commun. 2021, 57, 10411.
- 4. Zeynizadeh, B.; Kouhkan, M. J. Chin. Chem. Soc. 2018, 65, 1521.
- 5. Liu, J.; Xie, X.; Ma, S. Synthesis 2012, 44, 1569.

8. ¹H NMR, ¹³C NMR, and ¹⁹F NMR Spectra of the Compounds

S43

- 0.000

S71

S72

S75

- 0.000

S97

* from petroleum ether

S111

S112