[$\left.\mathbf{C p} * \mathbf{R h C l}_{2}\right]_{2}$ Catalyzed Three-Component Coupling Cyclization of 2,3-Allenoic

Acids with 2,3-Allenols in the Presence of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Junjie Fan, Xiaoyan Wu, Chunling Fu and Shengming Ma*
Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China.

E-mail: masm@sioc.ac.cn
Supporting Information
Table of Contents

General Information	S2
1. The Reaction of 1a with 3a in the Presence of $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (2.0 equiv)	S3-S5
2. The Reaction of $(E)-\mathbf{4 a a}$ in the Presence of $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (2.0 equiv)	S6
3. Control Experiments and Isotopic Labeling Experiments	S7-S12
4. Rh (III)-Catalyzed Oxidative Cross-coupling Cyclization of 2,3Allenoic Acids and 2,3-Allenols	S13-S30
5. A Gram Scale Reaction	S32
6. Synthetic Applications	S33-S38
7. References	S39
8. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR Spectra of the Compounds	S40

General Information

NMR spectra were taken with the $600 \mathrm{MHz}, 400 \mathrm{MHz}$, or 300 MHz Bruker Advance spectrometer $\left(600 \mathrm{MHz}, 400 \mathrm{MHz}\right.$, or 300 MHz for ${ }^{1} \mathrm{H}$ NMR, 100 MHz or 75 MHz for ${ }^{13} \mathrm{C}$ NMR, and 282 MHz for ${ }^{19} \mathrm{~F}$ NMR) in CDCl_{3}. All ${ }^{1} \mathrm{H}$ NMR experiments were measured with tetramethylsilane (0 ppm) in CDCl_{3} as the internal reference; ${ }^{13} \mathrm{C}$ NMR experiments were measured in relative to the signal of $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm}) .{ }^{19} \mathrm{~F}$ NMR experiments were measured in relative to the signal of $\mathrm{CFCl}_{3}(0 \mathrm{ppm})$ in CDCl_{3} as the internal reference. IR spectra were recorded with a Perkin-Elmer 983G instrument. Elemental analyses were conducted with a Carlo-Erba EA1110 elementary analysis instrument. Mass spectrometry was performed with an HP 5989A system. High-resolution mass spectrometry was determined with a Finnigan MAT 8430 or Bruker APEXIII instrument. [Cp* $\left.\mathrm{RhCl}_{2}\right]_{2}$ was purchased from HWRK CHEM. The range of boiling point of petroleum ether used for chromatography was $60 \sim 90^{\circ} \mathrm{C}$ unless noted otherwise. Flash column chromatography was performed on silica gel H unless noted otherwise. 2,3-Allenols, ${ }^{1}$ 2,3-allenoic acids, ${ }^{2}$ and (E)-4aa ${ }^{3}$ were prepared according to the literature procedures. Other commercially available reagents were purchased and used as received.

1. The Reaction of 1 a with 3 a in the Presence of $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and

 $\mathbf{C u}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (2.0 equiv) (fjj-1-028)

To a dry Schlenk tube were added $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(9.5 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(120.4 \mathrm{mg}, 0.6 \mathrm{mmol})$, and 3a $(25.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ sequentially. The Schlenk tube was degassed under vacuum and backfilled with O_{2} with a balloon of O_{2} for three times. Then $\mathbf{1 a}(46.8 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(0.6 \mathrm{~mL})$, and $\mathrm{MeOH}(30 \mu \mathrm{~L})$ were added under oxygen atmosphere sequentially. After being stirred for 13 h at $50^{\circ} \mathrm{C}$, the resulting mixture was filtered through a short column of silica gel eluted with ethyl acetate $(20 \mathrm{~mL} \times 3)$. After evaporation of the solvent, the crude product was analyzed by ${ }^{1} \mathrm{H}$ NMR spectrum with $13.8 \mu \mathrm{~L}$ of mesitylene as the internal standard: The reaction afforded (E)-2a in 12\% NMR yield (based on 1a) together with 5aa in 30\% NMR yield and $\mathbf{6 a a}$ in 8% NMR yield.

Synthesis of 6aa. (fjj-2-103)

To a dry Schlenk tube were added $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(15.7 \mathrm{mg}, 0.025 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(199.5 \mathrm{mg}, 1.0 \mathrm{mmol})$, and $\mathbf{3 a}(94.8 \mathrm{mg}, 0.75 \mathrm{mmol})$ sequentially. The Schlenk tube was degassed under vacuum and backfilled with O_{2} with a balloon of O_{2} for three times. Then 1a ($76.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$, and $\mathrm{MeOH}(100 \mu \mathrm{~L})$ were added under oxygen atmosphere sequentially. After being continuously stirred at $50{ }^{\circ} \mathrm{C}$ for 6 h , the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of silica gel eluted with ethyl acetate (20 $\mathrm{mL} \times 3$), the combined filtrate was concentrated in vacuo. The reaction afforded 5aa in 53% NMR yield together with 13% NMR yield of $\mathbf{6 a}$, which was analyzed by ${ }^{1} \mathrm{H}$ NMR using $23 \mu \mathrm{~L}$ of mesitylene as the internal standard. The crude residual was purified by chromatography on silica gel [eluent: petroleum ether/ethyl acetate $=15 / 1$ $(1000 \mathrm{~mL})$ to $10 / 1(500 \mathrm{~mL})$, then $5 / 1(500 \mathrm{~mL})$] to afford $\mathbf{6 a a}(21.0 \mathrm{mg}, 11 \%)$ and $\mathbf{5 a a}$ ($89.4 \mathrm{mg}, 53 \%$).

6aa: Oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.15\left(\mathrm{t}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H},=\mathrm{CH}_{2}\right), 5.07(\mathrm{~d}, J$
$=14.7 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{OCH}_{2}\right), 4.99\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right)$, $3.06\left(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.75(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2}\right), 2.43\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.34-2.14\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \times 2\right), 1.62-1.41(\mathrm{~m}, 9 \mathrm{H}$, $\mathrm{CH}_{2} \times 3$ and $\left.\mathrm{CH}_{3}\right), 1.34-1.16\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right), 0.98-0.82\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3} \times 3\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 214.4,206.7,171.8,166.7,158.2,130.6,99.5,85.2,79.3,58.4$, 48.7, 44.8, 31.5, 29.9, 28.6, 25.6, 25.2, 23.1, 22.4, 21.3, 21.1, 14.0, 13.7, 13.5; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2960,2933,2873,1964,1940,1760,1716,1457,1378,1246,1119,1051 ; \mathrm{MS}$ (EI): $m / z(\%) 404\left(\mathrm{M}^{+}, 0.38\right), 279(100) ;$ HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$: 404.2563; Found: 404.2565.

5aa: Oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.07(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1$ H , one proton from $\left.\mathrm{CH}_{2}\right), 2.75\left(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton from $\left.\mathrm{CH}_{2}\right), 2.44(\mathrm{t}, J=$ $\left.7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.30\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.62-1.32(\mathrm{~m}, 7$ $\mathrm{H}, \mathrm{CH}_{2} \times 2$ and $\left.\mathrm{CH}_{3}\right), 1.36-1.13\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right), 0.94\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.87$ (t, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$);

2. The Reaction of (E)-4aa in the Presence of $\left[C p * \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ and

$\mathbf{C u}(\mathbf{O A c})_{2} \cdot \mathbf{H}_{2} \mathrm{O}$ (2.0 equiv) (fjj-2-042)

To a dry Schlenk tube were added $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(9.2 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(119.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ sequentially. The Schlenk tube was degassed under vacuum and backfilled with nitrogen for three times. Then $(E) \mathbf{- 4 a a}(83.0 \mathrm{mg}, 0.3$ $\mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(0.8 \mathrm{~mL})$, and $\mathrm{MeOH}(40 \mu \mathrm{~L})$ were added under nitrogen atmosphere sequentially. After being stirred for 12 h at $50^{\circ} \mathrm{C}$, the resulting mixture was filtered through a short column of silica gel eluted with ethyl acetate $(20 \mathrm{~mL} \times 3)$. After evaporation of the solvent, the crude product was analyzed by ${ }^{1} \mathrm{H}$ NMR spectrum with $13.8 \mu \mathrm{~L}$ of mesitylene as the internal standard. No signal of the corresponding product was found with the recovery of $(E)-\mathbf{4 a a}$ in 86%.

3. Control Experiments and Isotopic Labeling Experiments

3.1 The reaction of $\mathbf{1 a}$ with $\mathbf{3 a}$ without $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$. (fjj-2-026)

To a dry Schlenk tube were added $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(39.9 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 3a ($19.4 \mathrm{mg}, 0.15 \mathrm{mmol}$) sequentially. The Schlenk tube was degassed under vacuum and backfilled with nitrogen for three times. Then 1a ($15.0 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(0.28$ $\mathrm{mL})$, and $\mathrm{MeOH}(13 \mu \mathrm{~L})$ were added under nitrogen atmosphere sequentially. After being stirred for 12 h at $50^{\circ} \mathrm{C}$, the resulting mixture was filtered through a short column of silica gel eluted with ethyl acetate $(20 \mathrm{~mL} \times 3)$. After evaporation of the solvent, the crude product was analyzed by ${ }^{1} \mathrm{H}$ NMR spectrum with $4.6 \mu \mathrm{~L}$ of mesitylene as the internal standard. No signal of the corresponding product 5aa was found with the recovery of $\mathbf{1 a}$ at 71% and $\mathbf{3 a}$ at 67%.
3.2 The reaction of $\mathbf{1 a}$ with $\mathbf{3 a}$ using O_{2} as oxidant and NaOAc as the acetoxylation agent. (fjj-7-194)

1a, 0.2 mmol no recovery

3a, 1.5 equiv no recovery

5aa, 8% by NMR
5% by NMR

To a dry Schlenk tube were added $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(6.2 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{NaOAc}(65.8$
$\mathrm{mg}, 0.8 \mathrm{mmol}$), and 3a ($38.0 \mathrm{mg}, 0.3 \mathrm{mmol}$) sequentially. The Schlenk tube was degassed under vacuum and backfilled with O_{2} for three times. Then $\mathbf{1 a}(30.9 \mathrm{mg}, 0.2$ $\mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(0.54 \mathrm{~mL})$, and $\mathrm{MeOH}(26 \mu \mathrm{~L})$ were added under O_{2} atmosphere sequentially. After being stirred for 5 h at $50^{\circ} \mathrm{C}$, the resulting mixture was filtered through a short column of silica gel eluted with ethyl acetate $(10 \mathrm{~mL} \times 3)$. After evaporation of the solvent, the crude product was analyzed by ${ }^{1} \mathrm{H}$ NMR spectrum with $9.2 \mu \mathrm{~L}$ of mesitylene as the internal standard: 8\% NMR yield of 5aa and 5\% NMR yield of $\mathbf{6 a a}$ was detected.
3.3 The reaction of $\mathbf{1 a}$ with $\mathbf{3 a}$ using O_{2} as oxidant and KOAc as the acetoxylation agent. (fjj-7-195)

6aa, 5% by NMR 48% recovery no recovery

To a dry Schlenk tube were added $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(6.2 \mathrm{mg}, 0.01 \mathrm{mmol})$, KOAc (78.5 $\mathrm{mg}, 0.8 \mathrm{mmol})$, and 3a ($37.8 \mathrm{mg}, 0.3 \mathrm{mmol}$) sequentially. The Schlenk tube was degassed under vacuum and backfilled with O_{2} for three times. Then $\mathbf{1 a}$ ($30.9 \mathrm{mg}, 0.2$ $\mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(0.54 \mathrm{~mL})$, and $\mathrm{MeOH}(26 \mu \mathrm{~L})$ were added under O_{2} atmosphere sequentially. After being stirred for 5 h at $50^{\circ} \mathrm{C}$, the resulting mixture was filtered through a short column of silica gel eluted with ethyl acetate $(10 \mathrm{~mL} \times 3)$. After
evaporation of the solvent, the crude product was analyzed by ${ }^{1} \mathrm{H}$ NMR spectrum with $9.2 \mu \mathrm{~L}$ of mesitylene as the internal standard:No signal of 5aa and 5\% NMR yield of 6aa was detected with the recovery of $\mathbf{1 a}$ at 48%.
3.4 Synthesis of [D]-5aa. (fjj-1-085)

Typical Procedure I: To a dry Schlenk tube were added $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(30.9 \mathrm{mg}$, $0.05 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(399.4 \mathrm{mg}, 2.0 \mathrm{mmol})$, and $\mathbf{3 a}(189.8 \mathrm{mg}, 1.5 \mathrm{mmol})$. The reaction vessel was degassed under vacuum and backfilled with nitrogen for three times. Then [D]-1a ($155.2 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL})$, and $\mathrm{MeOH}(0.13 \mathrm{~mL})$ were added under nitrogen atmosphere sequentially. After being continuously stirred at 50 ${ }^{\circ} \mathrm{C}$ for 12 h , the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of silica gel eluted with ethyl acetate (20 $\mathrm{mL} \times 3$), the combined filtrate was concentrated in vacuo and the crude residual was purified by chromatography on silica gel [eluent: petroleum ether/ethyl acetate $=15 / 1$ $(500 \mathrm{~mL})$ to $10 / 1(500 \mathrm{~mL})$, then $5 / 1(500 \mathrm{~mL})$] to afford [D]-5aa $(187.0 \mathrm{mg}, 55 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.95\left(\mathrm{dd}, J_{1}=14.6 \mathrm{~Hz}, J_{2}=14.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right.$), $3.07\left(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.74(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2}\right), 2.44\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.31\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc})$,
3.5 Synthesis of [D]'-5aa. (fjj-5-071)

To a dry Schlenk tube were added $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(6.2 \mathrm{mg}, 0.01 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(80.2 \mathrm{mg}, 0.4 \mathrm{mmol})$, and 3a($38.0 \mathrm{mg}, 0.3 \mathrm{mmol}$) sequentially. The reaction vessel was degassed under vacuum and backfilled with nitrogen for three times. Then 1a ($30.9 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{CH}_{3} \mathrm{CN}(0.54 \mathrm{~mL})$, $\mathrm{MeOD}(27 \mu \mathrm{~L})$, and $\mathrm{D}_{2} \mathrm{O}(80 \mathrm{mg}, 4$ mmol) were added under nitrogen atmosphere sequentially. After being continuously stirred at $50{ }^{\circ} \mathrm{C}$ for 5 h , the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of silica gel eluted with ethyl acetate $(20 \mathrm{~mL} \times 3)$, the combined filtrate was concentrated in vacuo and the crude residual was purified by chromatography on silica gel (300~400 mesh) [eluent: petroleum ether/ethyl acetate $=9 / 1(600 \mathrm{~mL})$] to afford $[\mathrm{D}]^{\prime}-\mathbf{5 a a}(26.0 \mathrm{mg}, \mathbf{3 8 \%}, 82 \%$ D) and some unidentified products.
[D]'-5aa: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.00-4.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, [3.09-3.00 (m, $0.62 \mathrm{H}), 2.77-2.68(\mathrm{~m}, 0.56 \mathrm{H})$, one proton of CHD], $2.44\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.30\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.63-1.42\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{3}\right.$, and $\mathrm{CH}_{2} \times$ 2), $1.37-1.13\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right), 0.94\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 48.4\left(\mathrm{t}, J=19.4 \mathrm{~Hz}\right.$); IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2960$, 2933, 2873, 1755, 1716, 1456, 1368, 1221, 1029; MS (EI): m/z (\%) $339\left(\mathrm{M}^{+}, 4.96\right), 43$ (100); HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{DNaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}: 362.2048$; Found: 362.2046. The following signals are discernible for 5aa: ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 48.7$.
3.6 The reaction of $\mathbf{1 a}$ and $\mathbf{3 a}$ under standard conditions quenched with $\mathrm{D}_{2} \mathrm{O}$ (fjj-5-073)

1) $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$ (5 mol\%)
$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (2 equiv)

1a, 0.2 mmol
3a, 1.5 equiv

5aa, 45\% (0\% D)

To a dry Schlenk tube were added $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(6.2 \mathrm{mg}, 0.01 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(79.8 \mathrm{mg}, 0.4 \mathrm{mmol})$, and $\mathbf{3 a}(37.8 \mathrm{mg}, 0.3 \mathrm{mmol})$. The reaction vessel was degassed under vacuum and backfilled with nitrogen for three times. Then 1a (30.9 $\mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(0.54 \mathrm{~mL})$, and $\mathrm{MeOH}(28 \mu \mathrm{~L})$ were added under nitrogen atmosphere sequentially. After being continuously stirred at $50^{\circ} \mathrm{C}$ for 5 h , the reaction was complete as monitored by thin layer chromatography (TLC). Then $\mathrm{D}_{2} \mathrm{O}$ ($80 \mathrm{mg}, 4$ mmol) was added. The resulting mixture was continuously stirred at $50^{\circ} \mathrm{C}$ for 11 h .

After filtration through a short column of silica gel eluted with ethyl ether ($20 \mathrm{~mL} \times 3$), the combined filtrate was concentrated in vacuo and the crude residual was purified by chromatography on silica gel [eluent: petroleum ether/ethyl acetate $=9 / 1(500 \mathrm{~mL})$] to afford $\mathbf{5 a a}(30.6 \mathrm{mg}, 45 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.94\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $3.05\left(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.73(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2}\right), 2.44\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.30\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc})$, 1.63-1.40(m, $7 \mathrm{H}, \mathrm{CH}_{2} \times 2$ and $\left.\mathrm{CH}_{3}\right), 1.38-1.13\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.87\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

4. Rh(III)-Catalyzed Oxidative Cross-coupling Cyclization of 2,3- Allenoic Acids

 and 2,3-Allenols4.1 Synthesis of 4-(2-acetoxy-4-oxodecan-2-yl)-3-propyl-2(5H)-furanone 5aa (fjj-1052)

Following Typical Procedure I, the reaction of 1a ($152.8 \mathrm{mg}, 1.0 \mathrm{mmol}$), 3a ($189.2 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(31.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(399.9$ $\mathrm{mg}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL}) / \mathrm{MeOH}(0.13 \mathrm{~mL})$ afforded $\mathbf{5 a a}(197.1 \mathrm{mg}, 59 \%)$ as an oil [eluent: petroleum ether/ethyl acetate $=50 / 1(300 \mathrm{~mL}) \rightarrow 15 / 1(800 \mathrm{~mL}) \rightarrow$ $10 / 1(500 \mathrm{~mL}) \rightarrow 5 / 1(500 \mathrm{~mL})]:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.95\left(\mathrm{dd}, J_{1}=14.7 \mathrm{~Hz}\right.$, $\left.J_{2}=14.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.06\left(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton from $\left.\mathrm{CH}_{2}\right), 2.74(\mathrm{~d}, J$ $=14.7 \mathrm{~Hz}, 1 \mathrm{H}$, one proton from $\left.\mathrm{CH}_{2}\right), 2.44\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.31(\mathrm{t}, J=7.5$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.61-1.43\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2} \times 2\right.$ and $\left.\mathrm{CH}_{3}\right)$, 1.35-1.18(m, $\left.6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right), 0.94\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.87\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 206.5,171.7,169.9,157.7,131.2,85.0,57.4,48.6,44.6,31.4,28.6$, 25.7, 25.2, 23.1, 22.3, 21.3, 20.6, 13.9, 13.7; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2960,2933,2873,1748$, $1712,1678,1456,1406,1368,1221,1135,1030 ; \mathrm{MS}(\mathrm{EI}): m / z(\%) 338\left(\mathrm{M}^{+}, 1.86\right), 43$ (100); HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 361.1985; Found: 361.1985.
4.2 Synthesis of 4-(2-acetoxy-4-oxodecan-2-yl)-3-butyl-2(5H)-furanone 5ab (fij-1-104)

1a, 1 mmol
3b, 1.5 equiv

5ab, 57\%

Following Typical Procedure I, the reaction of $\mathbf{1 a}(154.2 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{3 b}$ ($210.4 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(30.9 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(399.4$ $\mathrm{mg}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL}) / \mathrm{MeOH}(0.13 \mathrm{~mL})$ afforded 5ab (201.2 mg, 57\%) as an oil [eluent: petroleum ether/ethyl acetate $=10 / 1(500 \mathrm{~mL})$ to $5 / 1(500 \mathrm{~mL})$]: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.94\left(\mathrm{dd}, J_{1}=14.9 \mathrm{~Hz}, J_{2}=14.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.05(\mathrm{~d}$, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2}\right), 2.73\left(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right)$, $2.44\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.32\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.57-$ $1.41\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{2} \times 2\right), 1.41-1.16\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \times 4\right), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.87\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.6,171.8,170.0$, $157.4,131.4,85.0,57.5,48.7,44.7,31.5,30.1,28.6,25.2,23.6,23.1,22.5,22.4,20.6 ;$ 13.9, 13.8; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2959,2932,2861,1747,1710,1455,1403,1368,1283$, 1220, 1127, 1038; MS (EI): $m / z(\%) 352\left(\mathrm{M}^{+}, 2.53\right), 43$ (100); HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$: 352.2250 ; Found: 352.2249 .
4.3 Synthesis of 4-(2-acetoxy-4-oxopentadecan-2-yl)-3-propyl-2(5H)-furanone 5ba (fij-1-073)

Following Typical Procedure I, the reaction of $\mathbf{1 b}(224.3 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{3 a}$ ($189.4 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(31.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(400.1$ $\mathrm{mg}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL}) / \mathrm{MeOH}(0.13 \mathrm{~mL})$ afforded 5ba (237.1 mg, 58\%) as an oil [eluent: petroleum ether/ethyl acetate $=10 / 1(1000 \mathrm{~mL})$ to $5 / 1(1000 \mathrm{~mL})$]: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.95\left(\mathrm{dd}, J_{1}=14.6 \mathrm{~Hz}, J_{2}=14.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.06(\mathrm{~d}$, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2}\right), 2.74\left(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right)$, $2.44\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.31\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.62-$ $1.38\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2} \times 2\right.$ and $\left.\mathrm{CH}_{3}\right), 1.37-1.14\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2} \times 8\right), 1.00-0.82\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ $\times 2) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.5,171.7,169.9,157.7,131.2,85.0,57.4,48.6$, $44.6,31.8,29.5,29.32,29.29,29.2,28.9,25.7,25.2,23.1,22.6,21.3,20.5,14.0,13.7$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2959,2925,2854,1767,1747,1715,1682,1465,1455,1401,1367$, 1200, 1135, 1029; MS (EI): m / z (\%) 408 ($\mathrm{M}^{+}, 1.79$), 43 (100); HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$: 408.2876; Found: 408.2875.
4.4 Synthesis of 4-(2-acetoxy-4-oxopentadecan-2-yl)-3-butyl-2(5H)-furanone $\mathbf{5 b b}$ (fjj-1-075)

Following Typical Procedure I, the reaction of $\mathbf{1 b}(226.5 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{2 b}$ (210.1 mg, 1.5 mmol), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(31.3 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(400.1$ $\mathrm{mg}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL}) / \mathrm{MeOH}(0.13 \mathrm{~mL})$ afforded $\mathbf{5 b b}(286.2 \mathrm{mg}, 67 \%)$
as an oil [eluent: petroleum ether/ethyl acetate $=10 / 1(500 \mathrm{~mL})$ to $5 / 1(500 \mathrm{~mL})$]: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.94\left(\mathrm{dd}, J_{1}=14.9 \mathrm{~Hz}, J_{2}=14.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.05(\mathrm{~d}$, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2}\right), 2.72\left(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right)$, $2.43\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.32\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.56-$ $1.40\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2} \times 2\right.$ and $\left.\mathrm{CH}_{3}\right), 1.40-1.16\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{2} \times 9\right), 0.98-0.80\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ $\times 2) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.6,171.7,170.0,157.4,131.5,85.0,57.5,48.7$, 44.7, 31.8, 30.1, 29.5, 29.4, 29.3, 29.2, 29.0, 25.2, 23.6, 23.2, 22.6, 22.5, 20.6, 14.0, 13.7; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2955,2924,2852,1768,1747,1715,1682,1461,1455,1406$, 1368, 1225, 1129, 1035; MS (EI): m/z (\%) 422 ($\mathrm{M}^{+}, 4.92$), 43 (100); HRMS Calcd for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right): 422.3032$; Found: 422.3032.
4.5 Synthesis of 4-(2-acetoxy-4-oxo-5-phenylpentan-2-yl)-3-propyl-2(5H)-furanone 5ca(fjj-1-076)

Following Typical Procedure I, the reaction of 1c ($160.2 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{3 a}(189.2$ $\mathrm{mg}, 1.5 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(31.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(399.8 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL}) / \mathrm{MeOH}(0.13 \mathrm{~mL})$ afforded $\mathbf{5 c a}(173.0 \mathrm{mg}, 50 \%)$ as an oil [eluent: petroleum ether/ethyl acetate $=10 / 1(500 \mathrm{~mL})$ to $5 / 1(1000 \mathrm{~mL})$]: ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.37-7.21(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.14(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.91(\mathrm{~d}$, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{OCH}_{2}\right), 4.86\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right)$,
$3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.10\left(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.77(\mathrm{~d}, J=15.3 \mathrm{~Hz}$, 1 H , one proton of $\left.\mathrm{CH}_{2}\right), 2.29\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.62-1.43$ $\left(\mathrm{m}, 5 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}_{3}\right), 0.91\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 203.6, 171.6, 169.9, 157.5, 133.2, 131.2, 129.4, 128.7, 127.1, 84.9, 57.3, 51.4, 47.6, 25.6, 25.1, 21.2, 20.5, 13.6; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3089,3063,3030,2962,2935,2873,1748,1715$, 1681, 1603, 1497, 1455, 1367, 1309, 1222, 1131, 1048, 1026; MS (EI): m/z (\%) 344 $\left(\mathrm{M}^{+}, 7.29\right), 211$ (100); HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right): 344.1624$; Found: 344.1625.
4.6 Synthesis of 4-(2-acetoxy-4-oxo-5-phenylpentan-2-yl)-3-butyl-2(5H)-furanone 5cb (fjj-1-087)

Following Typical Procedure I, the reaction of $\mathbf{1 c}(159.2 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{3 b}$ ($210.6 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(31.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(399.7$ $\mathrm{mg}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL}) / \mathrm{MeOH}(0.13 \mathrm{~mL})$ afforded $\mathbf{5 c b}(179.7 \mathrm{mg}, 50 \%)$ as an oil [eluent: petroleum ether/ethyl acetate $=15 / 1(500 \mathrm{~mL})$ to $8 / 1(500 \mathrm{~mL})$, then $5 / 1$ $(1000 \mathrm{~mL})]:{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.38-7.23 (m, $3 \mathrm{H}, \mathrm{ArH}$), 7.17-7.10 (m, 2 $\mathrm{H}, \mathrm{ArH}), 4.91\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right), 4.86(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of OCH_{2}), $3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.10\left(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right)$, $2.76\left(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.31\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.05(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{OAc}), 1.56-1.39\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{3}\right), 1.39-1.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.91(\mathrm{t}, J=7.1$
$\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.7$, 171.7, 169.9, 157.3, 133.2, 131.5, $129.5,128.7,127.2,85.0,57.4,51.5,47.7,30.1,25.1,23.6,22.4,20.5,13.7$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3092,3062,3030,2958,2929,2865,1748,1714,1603,1497,1455,1362$, 1308, 1220, 1124, 1034; MS (EI): $m / z(\%) 358\left(\mathrm{M}^{+}, 5.66\right), 225$ (100); HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$: 358.1780 ; Found: 358.1779 .
4.7 Synthesis of 4-(2-acetoxy-4-cyclohexyl-4-oxobutan-2-yl)-3-propyl-2(5H)furanone 5da (fjj-1-066)

Following Typical Procedure I, the reaction of $\mathbf{1 d}(151.6 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{3 a}$ ($189.3 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(31.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(399.6$ $\mathrm{mg}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL}) / \mathrm{MeOH}(0.13 \mathrm{~mL})$ afforded 5da (124.7 mg, 37\%) as an oil [eluent: petroleum ether/ethyl acetate $=10 / 1(500 \mathrm{~mL})$ to $5 / 1(500 \mathrm{~mL})$]: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.98\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right), 4.92(\mathrm{~d}, J$ $=14.4 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{OCH}_{2}\right), 3.16\left(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right)$, $2.75\left(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.42-2.25\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}\right), 2.10$ (s, $3 \mathrm{H}, \mathrm{OAc}), 1.89-1.60\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \times 2\right.$ and one proton of $\left.\mathrm{CH}_{2}\right), 1.60-1.42(\mathrm{~m}, 5 \mathrm{H}$, CH_{2} and $\left.\mathrm{CH}_{3}\right), 1.36-1.10\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \times 2\right.$ and one proton of $\left.\mathrm{CH}_{2}\right), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 209.3,171.8,170.0,157.8,131.1,85.1,57.6$, $51.8,46.6,28.1,27.6,25.7,25.6,25.5,25.3,21.3,20.6,13.7$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2959$,

2930, 2855, 1748, 1706, 1451, 1372, 1291, 1221, 1136, 1028; MS (EI): m/z (\%) 336 $\left(\mathrm{M}^{+}, 4.52\right), 83$ (100); HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$: 336.1937; Found: 336.1934.
4.8 Synthesis of 4-(2-acetoxy-5,5-dimethyl-4-oxohexan-2-yl)-3-propyl-2(5H)furanone 5ea (fjj-1-068)

Following Typical Procedure I, the reaction of $\mathbf{1 e}(127.8 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{3 a}(189.3$ $\mathrm{mg}, 1.5 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(31.3 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(398.3 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL}) / \mathrm{MeOH}(0.13 \mathrm{~mL})$ afforded 5ea $(130.8 \mathrm{mg}, 42 \%)$ as an oil [eluent: petroleum ether/ethyl acetate $=10 / 1(500 \mathrm{~mL})$ to $5 / 1(600 \mathrm{~mL})$]: ${ }^{1} \mathrm{H}$ NMR $(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.00\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right), 4.94(\mathrm{~d}, J=14.4 \mathrm{~Hz}$, 1 H , one proton of $\left.\mathrm{OCH}_{2}\right), 3.31\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.76(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2}\right), 2.32\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc})$, 1.64-1.48($\mathrm{m}, 5 \mathrm{H}, \mathrm{CH}_{2}$ and $\left.\mathrm{CH}_{3}\right), 1.11\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \times 3\right), 0.95\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.6,172.0,170.0,158.1,130.7,84.9,57.7,44.6,42.4$, 25.9, 25.72, 25.67, 21.3, 20.6, 13.7; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2963,2933,2870,1748,1713$, 1507, 1479, 1463, 1452, 1394, 1367, 1261, 1222, 1170, 1123, 1051, 1026; MS (EI): m/z (\%) $310\left(\mathrm{M}^{+}, 3.70\right), 43$ (100); HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$: 310.1780; Found: 310.1780.
4.9 Synthesis of 4-(2-acetoxy-9-chloro-4-oxononan-2-yl)-3-propyl-2(5H)-furanone 5fa (fjj-1-072)

Following Typical Procedure I, the reaction of $\mathbf{1 f}(173.4 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{3 a}(189.5$ $\mathrm{mg}, 1.5 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(31.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(400.8 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL}) / \mathrm{MeOH}(0.13 \mathrm{~mL})$ afforded $\mathbf{5 f a}(161.2 \mathrm{mg}, 45 \%)$ as an oil [eluent: petroleum ether/ethyl acetate $=10 / 1(500 \mathrm{~mL})$ to $5 / 1(1500 \mathrm{~mL})$]: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.95\left(\mathrm{dd}, J_{1}=14.4 \mathrm{~Hz}, J_{2}=14.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.52(\mathrm{t}, J=6.8$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.07\left(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.76(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1$ H , one proton of $\left.\mathrm{CH}_{2}\right), 2.48\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.31\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.81-1.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.62-1.45\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2} \times 2\right.$ and $\left.\mathrm{CH}_{3}\right)$, $1.45-1.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.94\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $205.9,171.6,169.8,157.6,130.9,84.8,57.3,48.4,44.6,44.1,32.1,25.9,25.5,25.0$, 22.1, 21.2, 20.4, 13.5; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2955,2928,2873,1747,1712,1682,1455$, 1406, 1373, 1257, 1219, 1134, 1100, 1066, 1026; MS (EI): $m / z(\%) 360\left[M\left({ }^{37} \mathrm{Cl}\right)^{+}, 1.01\right]$, $358\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)^{+}, 2.08\right], 43$ (100); HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{27}{ }^{35} \mathrm{ClO}_{5}\left(\mathrm{M}^{+}\right): 358.1547$; Found: 358.1548.
4.10 Synthesis of 4-(2-acetoxy-9-hydroxy-4-oxononan-2-yl)-3-butyl-2(5H)-furanone
$\mathbf{5 g b}(\mathrm{fjj}-1-111)$

Following Typical Procedure I, the reaction of $\mathbf{1 g}(77.5 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathbf{3 b}(105.5$ $\mathrm{mg}, 0.75 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(15.9 \mathrm{mg}, 0.025 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(199.8 \mathrm{mg}$, $2.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.35 \mathrm{~mL}) / \mathrm{MeOH}(67.5 \mu \mathrm{~L})$ afforded $\mathbf{5 g b}(65.9 \mathrm{mg}, 36 \%, 95 \%$ purity) as an oil [eluent: petroleum ether/ethyl acetate $=5 / 1(500 \mathrm{~mL})$ to $1 / 1(500 \mathrm{~mL})$, then $1 / 2(500 \mathrm{~mL})]:{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.94\left(\mathrm{dd}, J_{1}=14.7 \mathrm{~Hz}, J_{2}=14.7 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.07\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.95-$ $2.60\left(\mathrm{~m}, 2 \mathrm{H}\right.$, one proton of CH_{2} and OH$), 2.48\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.32(\mathrm{t}, J=$ $\left.8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.64-1.42\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{2} \times 3\right), 1.42-1.22$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \times 2$), $0.93\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.5$, $171.9,170.0,157.6,131.3,85.1,62.4,57.4,48.6,44.4,32.3,30.1,25.1,25.0,23.5,22.7$, 22.4, 20.6, 13.7; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3479,2935,2865,1747,1454,1369,1227,1132$, 1039; MS (EI): $m / z(\%) 354\left(\mathrm{M}^{+}, 0.40\right), 43$ (100); HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right)$: 354.2042; Found: 354.2039.
4.11 Synthesis of 4-(2-acetoxy-4-oxo-4-phenylbutan-2-yl)-3-propyl-2(5H)-furanone 5ha (fjj-1-064)

Following Typical Procedure I, the reaction of $\mathbf{1 h}(146.3 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{3 a}$ ($189.0 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(30.9 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(399.2$ $\mathrm{mg}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL}) / \mathrm{MeOH}(0.13 \mathrm{~mL})$ afforded 5ha(163.3 mg, 50\%) as an oil [eluent: petroleum ether/ethyl acetate $=10 / 1(500 \mathrm{~mL})$ to $5 / 1(1500 \mathrm{~mL})$]: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.60-7.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, $7.44(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.03\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right), 4.96(\mathrm{~d}$, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{OCH}_{2}\right), 3.72\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right)$, $3.29\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.31\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.97(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{OAc}), 1.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.60-1.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.92\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.4,171.6,169.8,157.1,136.6,133.3,131.4,128.4$, 128.1, 84.9, 57.3, 44.1, 25.49, 25.46, 21.1, 20.3, 13.5; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3061,2962$, 2933, 2869, 1748, 1694, 1682, 1597, 1581, 1448, 1364, 1223, 1123, 1057, 1023; MS (EI): $m / z(\%) 330\left(\mathrm{M}^{+}, 3.97\right), 105(100) ;$ HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right): 330.1467$; Found: 330.1468.
4.12 Synthesis of 4-(2-acetoxy-4-oxo-4-(p-tolyl)butan-2-yl)-3-propyl-2(5H)-furanone 5ia (fjj-2-022)

Typical Procedure II: To a dry Schlenk tube were added $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(31.0 \mathrm{mg}$, $0.05 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(399.3 \mathrm{mg}, 2.0 \mathrm{mmol})$, and $\mathbf{3 a}(189.2 \mathrm{mg}, 1.5 \mathrm{mmol})$. The reaction vessel was degassed under vacuum and backfilled with nitrogen for three times. Then $\mathbf{1 i}(160.3 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL})$ were added under nitrogen atmosphere sequentially. After being continuously stirred at $50^{\circ} \mathrm{C}$ for 1.5 h , the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of silica gel eluted with ethyl acetate $(20 \mathrm{~mL} \times 3)$, the combined filtrate was concentrated in vacuo and the crude residual was purified by chromatography on silica gel [eluent: petroleum ether/ethyl ether $=3 / 1(1000 \mathrm{~mL})$ to petroleum ether/ethyl acetate $=2 / 1(300 \mathrm{~mL})$] to afford 5ia $(160.2 \mathrm{mg}, 46 \%)$ as an oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\operatorname{ArH}), 5.03\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right), 4.97(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{OCH}_{2}\right), 3.70\left(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 3.21(\mathrm{~d}, J=15.3 \mathrm{~Hz}$, 1 H , one proton of CH_{2}), $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.30\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.00(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{OAc}), 1.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.60-1.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.92\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13}{ }^{3} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.1,171.6,169.9,157.3,144.3,134.3,131.4,129.2$, 128.4, 85.0, 57.4, 44.3, 25.6, 25.5, 21.5, 21.2, 20.4, 13.6; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3032,2962$, 2934, 2873, 1747, 1690, 1669, 1607, 1572, 1451, 1407, 1366, 1224, 1183, 1121, 1057, 1028; MS (EI): $m / z(\%) 344\left(\mathrm{M}^{+}, 8.82\right), 119(100) ;$ HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$:
4.13 Synthesis of 4-(2-acetoxy-4-(3,4-(methylenedioxy)phenyl)-4-oxobutan-2-yl)-3-propyl-2(5H)-furanone $\mathbf{5 j a}$ (fjj-1-054)

Following Typical Procedure I, the reaction of $\mathbf{1 j}$ ($189.0 \mathrm{mg}, 1.0 \mathrm{mmol}$), 3a (189.1 $\mathrm{mg}, 1.5 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(30.8 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(399.2 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL}) / \mathrm{MeOH}(0.13 \mathrm{~mL})$ afforded $\mathbf{5 j a}(183.7 \mathrm{mg}, 49 \%)$ as an oil [eluent: petroleum ether/ethyl acetate $=20 / 1(1000 \mathrm{~mL})$ to $5 / 1(1000 \mathrm{~mL})$, then $2 / 1(200$ $\mathrm{mL})]:{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52\left(\mathrm{dd}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.34$ $(\mathrm{d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.04\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{O}_{2} \mathrm{CH}_{2}\right), 5.01$ $\left(\mathrm{dd}, J_{1}=14.7 \mathrm{~Hz}, J_{2}=14.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.66(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2}\right), 3.14\left(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.30\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.04$ $(\mathrm{s}, 3 \mathrm{H}, \mathrm{OAc}), 1.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.58-1.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.5,171.7,170.0,157.5,152.1,148.2,131.7$, 131.4, 125.2, 107.9, 107.8, 101.9, 85.1, 57.6, 44.5, 25.64, 25.58, 21.3, 20.5, 13.6; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3080,2963,2929,2874,1748,1682,1604,1505,1489,1446,1367$, 1256, 1220, 1108, 1036; MS (EI): $m / z(\%) 374\left(\mathrm{M}^{+}, 8.42\right), 149$ (100); HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 397.1258$; Found: 397.1257.
4.14 Synthesis of 4-(2-acetoxy-4-(3-chlorophenyl)-4-oxobutan-2-yl)-3-butyl-2(5H)furanone 5kb (fjj-1-095)

Following Typical Procedure I, the reaction of $\mathbf{1 k}(180.2 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{3 b}$ ($210.3 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(31.1 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(399.2$ $\mathrm{mg}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL}) / \mathrm{MeOH}(0.13 \mathrm{~mL})$ afforded $\mathbf{5 k b}(170.3 \mathrm{mg}, 45 \%)$ as an oil [eluent: petroleum ether/ethyl acetate $=10 / 1(500 \mathrm{~mL})$ to $5 / 1(1000 \mathrm{~mL})$, then 4/1 (500 mL)]: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-7.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.78(\mathrm{~d}, J=3.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.41(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.02(\mathrm{~d}$, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{OCH}_{2}\right), 4.96\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right)$, $3.70\left(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 3.23(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2}\right), 2.32\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.54-1.38$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.38-1.22(m, 2 H, CH 2$), 0.92\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 194.4, 171.6, 170.0, 156.7, 138.3, 135.0, 133.4, 132.1, 130.0, 128.3, $126.6,84.9,57.4,44.6,30.1,25.6,23.6,22.4,20.5 ; 13.8$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3062,2958$, 2929, 2872, 1755, 1748, 1698, 1682, 1570, 1424, 1366, 1224, 1123, 1031; MS (EI): $m / z(\%) 380\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)^{+}, 2.47\right], 378\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)^{+}, 7.20\right], 139$ (100); HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{5}{ }^{35} \mathrm{Cl}\left(\mathrm{M}^{+}\right)$: 378.1234; Found: 378.1234.
4.15 Synthesis of 4-(2-acetoxy-4-oxo-4-(thiophen-2-yl)butan-2-yl)-3-butyl-2(5H)-
furanone 5lb (fjj-1-090)

Following Typical Procedure I, the reaction of $\mathbf{1 1}(152.4 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{3 b}(210.3$ $\mathrm{mg}, 1.5 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(31.1 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(399.2 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL}) / \mathrm{MeOH}(0.13 \mathrm{~mL})$ afforded $\mathbf{5 l b}(163.0 \mathrm{mg}, 46 \%)$ as an oil [eluent: petroleum ether/ethyl acetate $=5 / 1(1500 \mathrm{~mL})]:{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.74(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.67(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.13(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 5.03\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right), 4.98(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of OCH_{2}), $3.63\left(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 3.19(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, 1 H , one proton of $\left.\mathrm{CH}_{2}\right), 2.31\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.63(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{CH}_{3}\right), 1.52-1.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.37-1.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.1,171.5,169.9,157.0,144.1,134.8,133.4$, 131.7, 128.3, 84.9, 57.4, 45.7, 30.0, 25.3, 23.4, 22.3, 20.4; 13.7; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3094$, 2958, 2929, 2872, 1747, 1667, 1651, 1519, 1455, 1417, 1362, 1227, 1109, 1051; MS (EI): $m / z(\%) 350\left(\mathrm{M}^{+}, 7.34\right), 111(100) ;$ HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}\left(\mathrm{M}^{+}\right): 350.1188$; Found: 350.1189.
4.16 Synthesis of 4-(2-acetoxy-4-oxodecan-2-yl)-3-allyl-2(5H)-furanone 5ad (fjj-1135, fjj-2-008)

1a, 1.2 equiv
3d, 1 mmol
5ad, 37\%

Following Typical Procedure I, the reaction of $\mathbf{1 a}(185.0 \mathrm{mg}, 1.2 \mathrm{mmol})$, 3d ($124.2 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(31.1 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(599.1$ $\mathrm{mg}, 3.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL}) / \mathrm{MeOH}(0.13 \mathrm{~mL})$ afforded 5ad (126.0 mg, 37\%) as an oil [eluent: petroleum ether/ethyl acetate $=5 / 1(1000 \mathrm{~mL})$]: ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 5.91-5.72 (m, $\left.1 \mathrm{H},=\mathrm{CH}\right), 5.17-5.03\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}_{2}\right), 4.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 3.13-3.01 (m, $3 \mathrm{H}, \mathrm{CH}_{2}$ and one proton of $\left.\mathrm{CH}_{2}\right), 2.77(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of CH_{2}), $2.44\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.60-14.1\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{2}\right), 1.37-1.15\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right), 0.87\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 206.4,171.2,169.8,159.0,132.7,128.3,116.6,85.0,57.4,48.4,44.5,31.3$, $28.4,27.6,25.1,23.0,22.2,20.4,13.8$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3077,2955,2925,2858,1755$, 1716, 1640, 1368, 1218, 1122, 1047; MS (EI): $m / z(\%) 336\left(\mathrm{M}^{+}, 1.10\right), 164$ (100); HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$: 336.1937; Found: 336.1934.
4.17 Synthesis of 4-(2-acetoxy-4-oxodecan-2-yl)-3-phenethyl-2(5H)-furanone 5ae (fjj-2-018)

Following Typical Procedure I, the reaction of 1a ($154.0 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{3 e}(282.4$ $\mathrm{mg}, 1.5 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(30.9 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(399.8 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL}) / \mathrm{MeOH}(0.13 \mathrm{~mL})$ afforded 5ae ($210.2 \mathrm{mg}, 51 \%, 97 \%$ purity $)$ as an oil [eluent: petroleum ether/ethyl ether $=3 / 1(1000 \mathrm{~mL})$]: ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.37-7.03 (m, $\left.5 \mathrm{H}, \mathrm{ArH}\right), 4.57\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right)$, $4.46\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right), 2.93(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of CH_{2}), 2.88-2.78 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.74-2.57 ($\mathrm{m}, 3 \mathrm{H}$, one proton of CH_{2} and CH_{2}), 2.42 (td, $\left.J_{1}=7.3 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.57-1.37\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{2}\right), 1.36-1.16\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \times 3\right), 0.87\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 206.4,171.5,169.7,158.6,140.5,129.9,128.6,128.3,126.2,85.0,57.0,48.6$, $44.5,33.6,31.5,28.6,25.8,24.7,23.1,22.3,20.5,13.9$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3063,3027$, 2931, 2859, 1748, 1712, 1601, 1496, 1455, 1368, 1220, 1047; MS (EI): $m / z(\%) 400$ $\left(\mathrm{M}^{+}, 6.12\right), 91$ (100); HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$: 400.2250; Found: 400.2248 .
4.18 Synthesis of 4-(2-acetoxy-4-oxobutan-2-yl)-3-propyl-2(5H)-furanone 5ma (fjj-2023)

Following Typical Procedure II, the reaction of $\mathbf{1 m}(70.3 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{3 a}$ ($189.4 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(31.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(399.5$ $\mathrm{mg}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL})$ afforded $\mathbf{5 m a}(129.8 \mathrm{mg}, 51 \%)$ as an oil [eluent:
petroleum ether/ethyl ether $=2 / 1(1000 \mathrm{~mL})$ to $1 / 1(500 \mathrm{~mL})]:{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 9.63(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 4.97\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right)$, $4.87\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right), 2.98\left(\mathrm{dd}, J_{1}=16.1 \mathrm{~Hz}, J_{2}=2.3 \mathrm{~Hz}, 1\right.$ H , one proton of CH_{2}), $2.74\left(\mathrm{dd}, J_{1}=15.9 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of CH_{2}), $2.33\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.66-1.41\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{3}\right)$, $0.93\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.0,171.1,169.8,156.9$, 132.1, 84.4, 56.7, 49.2, 25.5, 24.7, 21.2, 20.3, 13.5; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2964,2929,2875$, 2744, 1747, 1676, 1455, 1368, 1222, 1136, 1064, 1030; MS (EI): m/z (\%) $254\left(\mathrm{M}^{+}\right.$, 2.49), 43 (100); HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$: 254.1154; Found: 254.1156.
4.19 Synthesis of 4-(2-acetoxy-4-oxobutan-2-yl)-3-butyl-2(5H)-furanone 5mb (fjj-2001)

Following Typical Procedure I, the reaction of $\mathbf{1 m}(70.2 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{3 b}(210.3$ $\mathrm{mg}, 1.5 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(30.9 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(399.1 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL}) / \mathrm{MeOH}(0.13 \mathrm{~mL})$ afforded $\mathbf{5 m b}(149.0 \mathrm{mg}, 55 \%)$ as an oil [eluent: petroleum ether/ethyl ether $=4 / 1(500 \mathrm{~mL})$ to $2 / 1(200 \mathrm{~mL})$]: ${ }^{1} \mathrm{H}$ NMR $(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 9.67-9.56 (m, $1 \mathrm{H}, \mathrm{CHO}$), 5.02-4.80 (m, $2 \mathrm{H}, \mathrm{OCH}_{2}$), 3.03-2.90 (m, 1 H , one proton of CH_{2}), $2.72\left(\mathrm{dd}, J_{1}=15.9 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of CH_{2}), 2.40-2.27 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.14-2.03 (m, $3 \mathrm{H}, \mathrm{OAc}$), 1.61-1.54 (m, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.54-1.42
$\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.41-1.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.97-0.86\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 198.1,171.2,169.9,156.6,132.5,84.4,56.8,49.3,30.1,24.7,23.5,22.4,20.4$, 13.6; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3480,2959,2925,2873,2745,1748,1674,1455,1380,1227$, 1137, 1032; MS (EI): $m / z(\%) 268\left(\mathrm{M}^{+}, 4.24\right), 43$ (100); HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5}$ $\left(\mathrm{M}^{+}\right):$268.1311; Found: 268.1311.
4.20 Synthesis of 4-(2-acetoxy-4-oxobutan-2-yl)-3-(3-chloropropyl)-2(5H)-furanone. 5mc (fjj-2-094)

Following Typical Procedure II, the reaction of $\mathbf{1 m}(69.3 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{3 c}$ ($240.4 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(31.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(399.3$ mg, 2.0 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL})$ afforded $\mathbf{5 m c}(115.0 \mathrm{mg}, 38 \%, 95 \%$ purity $)$ as an oil [200~300 mesh silica gel, eluent: petroleum ether/ethyl ether $=5 / 1(1000 \mathrm{~mL})$ to $3 / 1$ (500 mL), then $1 / 1(1000 \mathrm{~mL})]:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.64(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CHO}), 4.99\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right), 4.89(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{OCH}_{2}\right), 3.57\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.02\left(\mathrm{dd}, J_{1}=16.2 \mathrm{~Hz}, J_{2}=1.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2}\right), 2.77\left(\mathrm{dd}, J_{1}=16.2 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right)$, 2.62-2.46 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.17-1.97 (m, $5 \mathrm{H}, \mathrm{OAc}$ and $\left.\mathrm{CH}_{2}\right), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.8,171.0,169.9,158.0,130.5,84.6,56.8,49.0,44.0$,
29.9, 24.7, 21.1, 20.4; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2963,2933,2852,2746,1747,1680,1446$, 1369, 1306, 1223, 1134, 1064; MS (EI): m/z (\%) $290\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)^{+}, 0.2\right], 288\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)^{+}\right.$, 0.6], 43 (100); HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{5}{ }^{35} \mathrm{Cl}\left(\mathrm{M}^{+}\right)$: 288.0765; Found: 288.0766 .
4.21 Synthesis of 4-(2-acetoxy-4-oxobutan-2-yl)-3-phenethyl-2(5H)-furanone 5me (fjj-2-020)

1m, 1 mmol
3e, 1.5 equiv
5me, 46\%
Following Typical Procedure II, the reaction of $\mathbf{1 m}(69.7 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathbf{3 e}$ ($282.5 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(31.1 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(399.3$ $\mathrm{mg}, 2.0 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2.7 \mathrm{~mL})$ afforded $\mathbf{5 m e}(145.5 \mathrm{mg}, 46 \%)$ as an oil [eluent: petroleum ether/ethyl ether $=2 / 1(1000 \mathrm{~mL})$ to petroleum ether/ethyl acetate $=1 / 1(500$ $\mathrm{mL})$: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.53(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 7.33-7.06(\mathrm{~m}, 5$ $\mathrm{H}, \mathrm{ArH}), 4.47\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right), 4.30(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{OCH}_{2}\right), 2.96-2.78\left(\mathrm{~m}, 3 \mathrm{H}\right.$, one proton of CH_{2} and $\left.\mathrm{CH}_{2}\right), 2.76-2.52(\mathrm{~m}, 3 \mathrm{H}$, one proton of CH_{2} and CH_{2}), $2.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 1.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 198.1,171.0,169.7,158.0,140.1,130.7,128.7,128.5,126.4,84.6,56.4,49.4$, $33.4,25.8,24.6,20.4$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3062,3027,2934,2864,2747,1747,1721$, 1603, 1496, 1455, 1368, 1223, 1047; MS (EI): $m / z(\%) 316\left(\mathrm{M}^{+}, 3.58\right), 91$ (100); HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$: 316.1311; Found: 316.1312.

5. A Gram Scale Reaction

Following Typical Procedure II, the reaction of $\mathbf{1 m}$ ($559.7 \mathrm{mg}, 8 \mathrm{mmol}$), 3a ($1514.2 \mathrm{mg}, 12 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(0.2473 \mathrm{~g}, 0.4 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(3195.3$ $\mathrm{mg}, 16 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(21.6 \mathrm{~mL})$ afforded $\mathbf{5 m a}(1.0113 \mathrm{~g}, 50 \%)$ as an oil [eluent: petroleum ether/ethyl acetate $=5 / 1(2000 \mathrm{~mL})]:{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.63(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{CHO}), 4.96\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right), 4.85(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{OCH}_{2}\right), 2.96\left(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.71(\mathrm{~d}, J=15.9$ $\mathrm{Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2}\right), 2.33\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc})$, 1.65$1.46\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{3}\right), 0.93\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

6. Synthetic Applications

6.1 Preparation of 4-(2-acetoxy-6-ethoxy-6-oxohexan-2-yl)-3-propyl-2(5H)-furanone 7 (fjj-4-017, 018)

7, 63\% from 5 ma to $\mathbf{7}$
To a Schlenk tube was added ethyl (triphenylphosphoranylidene)acetate (83.9 mg , 0.24 mmol). After degassed under vacuum and backfilled with nitrogen for three times at room temperature, THF $(1 \mathrm{~mL})$ and $\mathbf{5 m a}(50.1 \mathrm{mg}, 0.2 \mathrm{mmol}) / \mathrm{THF}(0.5 \mathrm{~mL})$ were added under nitrogen atmosphere. After being continuously stirred at room temperature for 37 h , the reaction was complete as monitored by thin layer chromatography (TLC). The reaction mixture was concentrated in vacuo and the crude residual was purified by chromatography on silica gel [eluent: petroleum ether/ethyl acetate $=5 / 1(1000 \mathrm{~mL})$] to afford the corresponding alkenoate $\mathbf{S 7}(53.3 \mathrm{mg}, E / Z=84 / 16,83 \%)$.

A Schlenk tube was degassed under vacuum and backfilled with nitrogen for three times at room temperature. Then Raney Ni (5 mg , Note: commercial product nickel from Aladdin is stabilized with water) was added and washed with MeOH for three times to remove water. Then the Schlenk tube was degassed under vacuum and backfilled with hydrogen for three times, which was followed by the addition of the
above prepared alkenoate $\mathbf{S 7} / \mathrm{MeOH}(2 \mathrm{~mL})$ under hydrogen atmosphere. After being continuously stirred at room temperature for 14 h , the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of Celite® pad eluted with ethyl acetate $(20 \mathrm{~mL} \times 3)$, the combined filtrate was concentrated in vacuo and the crude residual was purified by chromatography on silica gel (200~300 mesh) [eluent: petroleum ether/ethyl acetate $=8 / 1(600 \mathrm{~mL})$] to afford 7 ($40.7 \mathrm{mg}, 63 \%$ from two steps) as an oil: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.91(\mathrm{~d}, J=$ 14.1 Hz, 1 H , one proton of $\left.\mathrm{OCH}_{2}\right), 4.85\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right)$, $4.12\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.41-2.20\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \times 2\right), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.98-$ $1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.65-1.35\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2} \times 2\right.$ and $\left.\mathrm{CH}_{3}\right), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.93\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,172.1,170.1$, $157.4,131.7,87.0,60.3,57.1,36.7,33.6,25.6,24.4,21.5,20.5,18.5,14.1,13.7$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2963,2935,2874,1748,1456,1372,1222,1028 ; \mathrm{MS}(\mathrm{EI}): m / z(\%) 326$ $\left(\mathrm{M}^{+}, 23.9\right), 151$ (100); HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{6}(\mathrm{M})^{+}: 326.1729$; Found: 326.1730.
6.2 Preparation of 4-(2-acetoxy-4-hydroxybutan-2-yl)-3-propyl-2(5 H)-furanone $\mathbf{8}^{4}$ (fjj-2-090)

To a dry Schlenk tube were added $\mathbf{5 m a}(49.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethyl acetate (2 mL). Sodium cyanoborohydride ($57.4 \mathrm{mg}, 4.5 \mathrm{mmol}$) was added in three portions (13.2
$\mathrm{mg}, 14.2 \mathrm{mg}$, and 30.0 mg) every hour. After being continuously stirred at room temperature for 4 h , the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of silica gel eluted with ethyl acetate ($20 \mathrm{~mL} \times 3$), the combined filtrate was concentrated in vacuo and the crude residual was purified by chromatography on silica gel (200~300 mesh) [eluent: petroleum ether/ethyl acetate $=2 / 1(1500 \mathrm{~mL})]$ to afford $\mathbf{8}(39.5 \mathrm{mg}, 79 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.92\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.73-3.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.31(\mathrm{t}, J$ $\left.=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.23-1.93\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{CH}_{2}\right.$, and OH$), 1.64-1.42\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{3}\right), 0.93\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,170.2$, $158.6,130.9,86.3,57.6,57.5,39.8,25.6,24.7,21.4,20.6,13.7$; IR (neat) $v\left(\mathrm{~cm}^{\square}\right) 3478$, 2963, 2934, 2875, 1747, 1674, 1455, 1379, 1367, 1122, 1138, 1053, 1031; MS (EI): m/z (\%) $256\left(\mathrm{M}^{+}, 4.51\right), 43$ (100); HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$: 256.1311; Found: 256.1312 .
6.3 Preparation of 4-(4-hydroxy-2-methyloxetan-2-yl)-3-propyl-2(5H)-furanone 9. (fjj-2-098, fjj-2-162)

To a dry Schlenk tube were added 5ma ($51.1 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{MeOH}(4 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(166 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ sequentially. After being continuously stirred at $85^{\circ} \mathrm{C}$ for 24
h, the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of silica gel eluted with ethyl acetate $(20 \mathrm{~mL} \times 3)$, the combined filtrate was then concentrated in vacuo and the crude residual was purified by chromatography on silica gel (200~300 mesh) [eluent: petroleum ether/ethyl acetate $=5 / 1(300 \mathrm{~mL})$ to $3 / 1(500 \mathrm{~mL})]$ to afford $9(35.7 \mathrm{mg}, 84 \%, \mathrm{dr}=2.6: 1)$ as an oil: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [5.43 (t, $\left.\left.J=4.2 \mathrm{~Hz}, 0.67 \mathrm{H}\right), 5.12-5.05(\mathrm{~m}, 0.27 \mathrm{H}), \mathrm{OCHO}\right]$, [4.73 (d, $J=13.8 \mathrm{~Hz}, 0.27 \mathrm{H}), 4.64(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 0.72 \mathrm{H})$, one proton of OCH_{2}], [4.44 (d, $J=12.0 \mathrm{~Hz}, 0.72 \mathrm{H}), 4.28(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 0.28 \mathrm{H})$, one proton of OCH_{2}], $[3.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.22 \mathrm{H}), 2.74-2.65(\mathrm{~m}, 0.59 \mathrm{H}), \mathrm{OH}],\left[2.54\left(\mathrm{dd}, J_{1}=15.0 \mathrm{~Hz}, J_{2}=\right.\right.$ $3.0 \mathrm{~Hz}, 0.28 \mathrm{H}), 2.46(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 0.70 \mathrm{H})$, one proton of $\left.\mathrm{CH}_{2}\right], 2.33-2.19(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right)$, [1.94-1.84 (m, 0.7 H, one proton of $\left.\mathrm{CH}_{2}\right), 1.74-1.66\left(\mathrm{~m}, 2.38 \mathrm{H}, \mathrm{CH}_{3}\right.$ and one proton of $\left.\mathrm{CH}_{2}\right), 1.64-1.47\left(\mathrm{~m}, 3.94 \mathrm{H}, \mathrm{CH}_{3}\right.$ and $\left.\left.\mathrm{CH}_{2}\right)\right], 0.91\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3419,2962,2929,2873,1751,1732,1457,1337,1212,1188,1062$, 1004; MS (EI): $m / z(\%) 212\left(\mathrm{M}^{+}, 3.1\right), 43$ (100); HRMS Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: 212.1049; Found: 212.1050.
6.5 Preparation of 4-(2,4-dihydroxybutan-2-yl)-3-propyl-2(5H)-furanone 10. (fjj-2-180)

To a dry Schlenk tube were added 5ma ($51.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{MeOH}(4 \mathrm{~mL})$, and
$\mathrm{Et}_{3} \mathrm{~N}(166 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ sequentially. After being continuously stirred at $80^{\circ} \mathrm{C}$ for 24 h, the resulting mixture was cooled to room temperature and treated with NaBH_{4} (19.0 $\mathrm{mg}, 0.5 \mathrm{mmol}$). After being continuously stirred at room temperature for 5.5 h , the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of silica gel eluted with ethyl acetate $(10 \mathrm{~mL} \times 3)$, the combined filtrate was then concentrated in vacuo and the crude residual was purified by chromatography on silica gel (200~300 mesh) [eluent: dichloromethane/ methanol $=50 / 1(800 \mathrm{~mL})$] to afford $10(24.2 \mathrm{mg}, 56 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $4.62\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right), 4.29(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}$, one proton of OCH_{2} and OH), $3.76-3.58\left(\mathrm{~m}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 3.47(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of CH_{2}), $3.18(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.39-2.08\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \times 2\right), 1.70-1.36(\mathrm{~m}, 5$ $\mathrm{H}, \mathrm{CH}_{2}$ and $\left.\mathrm{CH}_{3}\right), 0.91\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4$, $164.6,128.2,86.3,56.8,56.5,39.7,25.4,25.0,21.5,13.7 ; \operatorname{IR}$ (neat) $v\left(\mathrm{~cm}^{-1}\right) 3428,2962$, 2929, 2874, 1729, 1668, 1456, 1379, 1315, 1181, 1136, 1051; MS (EI): $m / z(\%) 214$ $\left(\mathrm{M}^{+}, 5.1\right), 43$ (100); HRMS Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right):$214.1205; Found: 214.1207.
6.4 Preparation of 4-(β-methyl- β-lactonyl)-3-propyl-2(5 H)-furanone $\mathbf{1 1}^{5}$ (fjj-4-014)

A dry Schlenk tube containing $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(3.9 \mathrm{mg}, 0.01 \mathrm{mmol})$, TEMPO (1.5
$\mathrm{mg}, 0.01 \mathrm{mmol})$, and $\mathrm{KCl}(0.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ was degassed under vacuum and backfilled with oxygen for three times. Then $9(22.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and toluene (0.5 mL) were added under oxygen atmosphere sequentially. After being continuously stirred at room temperature for 10 h , the reaction was complete as monitored by thin layer chromatography (TLC). After filtration through a short column of silica gel eluted with ethyl acetate $(20 \mathrm{~mL} \times 3)$, the combined filtrate was concentrated in vacuo and the crude residual was purified by chromatography on silica gel (200~300 mesh) [eluent: petroleum ether/ethyl acetate $=5 / 1(600 \mathrm{~mL})$] to afford $\mathbf{1 1}(14.1 \mathrm{mg}, 64 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $5.31\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right), 5.18(\mathrm{~d}, J=$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{OCH}_{2}\right), 3.26\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.65$ (d, $J=17.1 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of CH_{2}), 2.45-2.15 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.73-1.47 (m, 5 H , CH_{2} and $\left.\mathrm{CH}_{3}\right), 0.93\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0$, $165.7,153.6,127.9,79.6,63.5,44.2,25.7,23.4,21.0,13.6$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2963$, 2934, 2874, 1747, 1457, 1384, 1310, 1238, 1182, 1115, 1061, 1035; MS (EI): m/z (\%) $210\left(\mathrm{M}^{+}, 15.0\right), 167$ (100); HRMS Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right): 210.0892$; Found: 210.0893.

7. References

1. Luo, H.; Ma, S. Eur. J. Org. Chem. 2013, 3041.
2. (a) Miao, B.; Li, G.; Ma, S. Chem. Eur.J. 2015, 21, 17224; (b) Castellano, S.; Fiji, H.
D. G.; Kinderman, S. S.; Watanabe, M.; de Leon, P.; Tamanoi, F.; Kwon, O. J. Am.

Chem. Soc. 2007, 129, 5843.
3. Fan, J.; Fu, C.; Wu, X.; Ma, S. Chem. Commun. 2021, 57, 10411.
4. Zeynizadeh, B.; Kouhkan, M. J. Chin. Chem. Soc. 2018, 65, 1521.
5. Liu, J.; Xie, X.; Ma, S. Synthesis 2012, 44, 1569.
8. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR Spectra of the Compounds

p|ə!ર YWN \%8 'eeg

∞
8
$\stackrel{1}{1}+1$

Wdd $0 \quad$ 乙 \downarrow

7.127
4.936
4.887
4.882
4.834

3.724

1.506
1.491
1.463
1.437
1.412
1.377
1.353
1.330
1.304
1.279
1.256
0.929
0.905
0.905
0.882

(2)

$\stackrel{\pi}{0}$

qYS

5.043
4.996
4.980
4.933

乙

WddO

Wdd

140.129
130.699
128.676
128.483
126.406

σ
+
Kı!...nduı! *

 \because

(
$\square \quad \begin{array}{r}-2.031 \\ 2.012\end{array}$
2.053
2.031
2.012
1.578
1.578
1.554
$\begin{array}{r}\square \\ \square \\ \square \\ - \\ \hline\end{array}$

* from petroleum ether
$002 \quad 092$

ル

29.687

