Supporting Information

Synthesis of *N*-β-Aminoacrylate Substituted Indoles *via* ^tBuOK Catalyzed Addition of Indoles to Ketenimines

Yan-Qiu Deng,^a Man-Zhen Gu,^a Guo-Shu Chen,^{a*} Xin-Yu Li,^a Ying He,^a Yi-Lin Zheng,^a Qi-Mei Yang,^a and Yun-Lin Liu^{a*}

School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006 (China) Email: <u>ylliu@gzhu.edu.cn</u>

1) General Information	S2
2) General Procedure and Spectral Data of Products 3	S3
3) General Procedure and Spectral Data of Product 5	S14
4) X-Ray Crystallographic Data for 5a	S15
5) DFT Calculation Results	S16
6) Copies of ¹ H NMR and ¹³ C NMR Spectra of Products 3 and 5	S18

1) General Information


Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. ¹H and ¹³C NMR spectra were obtained using a Bruker DPX-400 spectrometer. Chemical shifts are reported in ppm from CDCl₃ with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet, br = broad.

Anhydrous solvents such as CH₂Cl₂, CH₃CN, THF, toluene, and EtOAc, and the catalysts such as Et₃N, DABCO, DBU, 'BuOLi, 'BuONa, and 'BuOK were purchased from Energy Chemical. Unless otherwise stated, all purchased reagents were used without further purification. The; All reactions involving air- or moisture-sensitive compounds were carried out under nitrogen atmosphere in dried Schlenk tube. The ketenimines **1**^[1] was prepared using the literature procedures.

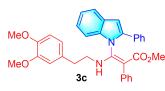
References

[1] (a) P. Lu and Y. Wang, *Chem. Soc. Rev.*, 2012, *41*, 5687; (b) G.-S. Chen, S.-J. Chen, J. Luo, X.-Y. Mao, A. S.-C. Chan, R. W.-Y. Sun and Y.-L. Liu, *Angew. Chem. Int. Ed.*, 2020, 59, 614; (c) J. Luo, G.-S. Chen, S.-J. Chen, Z.-D. Li, Y.-L. Zhao and Y.-L. Liu, *Adv. Synth. Catal.* 2020, *362*, 3635.

2) General Procedure and Spectral Data of Products 3.

To a 10.0 mL Schlenk tube were successively added 'BuOK (30 mol%), indole or pyrrole 1 (0.10 mmol), anhydrous MeCN (1.0 mL) and ketenimines 2 (0.15 mmol). The reaction mixture was stirred vigorously at 60 °C for 3-6 h under N₂ atmosphere till full consumption of 1. The reaction mixture was then concentrated by rotary vaporation, and the residue was subjected to column chromatography using petroleum ether/ethyl acetate (from 20:1-3:1) as eluent to afford the desired products **3**.

The reaction was run at 60 °C for 3 h, affording product **3a** as a yellow solid (91% yield, 41.5 mg). ¹H NMR (400 MHz, CDCl₃): δ 2.70 (t, J = 6.8 Hz, 2H), 2.92-3.01 (m, 1H), 3.12-3.19 (m, 1H), 3.71 (s, 3H), 3.79 (s, 3H), 3.86 (s, 3H), 6.20 (dd, J = 3.2, 0.8 Hz, 1H),


6.30 (d, J = 3.2 Hz, 1H), 6.48 (d, J = 2.0 Hz, 1H), 6.59 (dd, J = 8.0, 2.0 Hz, 1H), 6.76 (d, J = 8.4 Hz, 1H), 6.80-6.82 (m, 2H), 6.91-6.95 (m, 3H), 7.08-7.12 (m, 1H), 7.18-7.23 (m, 1H), 7.35 (dd, J = 8.4, 0.8 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 9.23 (t, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 154.1, 148.8, 147.6, 135.8, 135.4, 130.9, 130.5, 128.3, 127.8, 127.3, 125.8, 122.8, 120.82, 120.76, 112.0, 111.2, 111.1, 103.7, 97.0, 55.9, 55.6, 51.4, 45.5, 37.1; HRMS (ESI): Exact mass calcd for C₂₈H₂₈N₂O₄Na [M+Na]⁺: 479.1941, Found: 479.1952.

The reaction was run at 60 °C for 3 h, affording product **3b** as a yellow solid (91% yield, 42.8 mg). ¹H NMR (400 MHz, CDCl₃): δ 2.06 (s, 3H), 2.62-2.66 (m, 2H), 2.83-2.90 (m, 2H), 3.71 (s, 3H), 3.77 (s, 3H), 3.84 (s, 3H), 6.07 (s, 1H), 6.39 (s, 1H), 6.55 (d, J =

8.0 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 6.85-6.93 (m, 5H), 7.05 (t, J = 7.2 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H), 7.37 (d, J = 7.6 Hz, 1H), 9.41 (t, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 152.3, 148.8, 147.6, 136.7, 135.6, 134.9, 130.8, 130.4, 128.1, 127.1, 125.9, 121.6, 120.5, 120.4, 119.6, 111.7, 111.1, 110.4, 102.2, 98.4, 55.8, 55.6,

51.4, 44.8, 36.7, 12.6; HRMS (ESI): Exact mass calcd for C₂₉H₃₀N₂O₄Na [M+Na]⁺: 493.2098, Found: 493.2108.

The reaction was run at 60 °C for 6 h, affording product **3c** as a yellow solid (48% yield, 25.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.84 (t, J = 6.8 Hz, 2H), 3.26-3.38 (m, 2H), 3.61 (s, 3H), 3.84 (s, 3H), 3.87 (s, 3H), 6.18 (dd, J = 8.0, 1.2 Hz, 2H), 6.42 (d, J = 0.4

Hz, 1H), 6.68-6.72 (m, 4H), 6.80 (d, J = 8.4 Hz, 1H), 6.86 (tt, J = 7.2, 1.6 Hz, 1H), 7.01-7.04 (m, 2H), 7.13-7.17 (m, 1H), 7.20-7.25 (m, 3H), 7.27-7.29 (m, 1H), 7.34 (dd, J = 8.0, 0.8 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 9.57 (t, J = 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 152.8, 148.9, 147.7, 139.7, 137.9, 134.4, 131.7, 131.0, 130.3, 128.2, 128.1, 127.6, 127.2, 126.7, 125.6, 123.0, 121.1, 120.8, 120.6, 112.2, 111.3, 111.1, 103.7, 97.5, 55.9, 55.8, 51.2, 45.4, 36.0; HRMS (ESI): Exact mass calcd for C₃₄H₃₂N₂O₄Na [M+Na]⁺: 555.2254, Found: 555.2246.

The reaction was run at 60 °C for 6 h, affording product **3d** as a yellow solid (37% yield, 21.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.89 (t, J = 6.8 Hz, 2H), 3.38-3.43 (m, 2H), 3.56 (s, 3H), 3.83 (s, 3H), 3.88 (s, 3H), 6.12 (d, J = 7.6 Hz, 2H), 6.54 (s, 1H),

6.65 (t, J = 8.0 Hz, 2H), 6.71 (d, J = 7.6 Hz, 2H), 6.80 (d, J = 8.0 Hz, 1H), 6.87 (t, J = 7.2 Hz, 1H), 7.16-7.19 (m, 2H), 7.25-7.28 (m, 1H), 7.37 (d, J = 8.4 Hz, 1H), 7.48-7.50 (m, 2H), 7.53-7.55 (m, 2H), 7.67-7.71 (m, 2H), 7.82-7.85 (m, 1H), 9.62 (t, J = 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 152.9, 148.9, 147.7, 139.7, 138.1, 134.3, 133.0, 132.6, 130.9, 130.3, 129.2, 128.3, 127.6, 126.7, 126.3, 126.20, 126.17, 125.7, 125.2, 123.1, 121.2, 120.7, 120.6, 112.1, 111.2, 111.1, 104.2, 97.5, 55.8, 55.7, 51.2, 45.4, 36.0; HRMS (ESI): Exact mass calcd for C₃₈H₃₄N₂O₄Na [M+Na]⁺: 605.2411, Found: 605.2396.

The reaction was run at 60 °C for 3 h, affording product **3e** as a yellow solid (88% yield, 41.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.00 (d, J = 1.2 Hz, 3H), 2.69 (td, J = 6.8, 2.4 Hz, 2H), 2.95-3.03 (m, 1H), 3.11-3.19 (m, 1H), 3.71 (s, 3H), 3.78 (s, 3H), 3.86 (s, 3H),

6.05 (d, J = 1.2 Hz, 1H), 6.48 (d, J = 2.0 Hz, 1H), 6.59 (dd, J = 8.4, 2.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.79-6.81 (m, 2H), 6.91-6.94 (m, 3H), 7.07-7.11 (m, 1H), 7.15-7.19 (m, 1H), 7.28 (dt, J = 8.0, 0.8 Hz, 1H), 7.37-7.39 (m, 1H), 9.19 (t, J = 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 154.4, 148.8, 147.6, 136.0, 135.6, 131.0, 130.5, 128.9, 127.2, 125.6,

125.1, 122.7, 120.8, 120.2, 118.7, 113.0, 111.9, 111.2, 111.0, 96.6, 55.9, 55.6, 51.3, 45.6, 37.1, 9.2; HRMS (ESI): Exact mass calcd for C₂₉H₃₀N₂NaO₄ [M+Na]⁺: 493.2098, Found: 493.2108.

The reaction was run at 60 °C for 4 h, affording product **3f** as a yellow solid (69% yield, 33.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.66-2.77 (m, 2H), 2.85-2.91 (m, 1H), 3.22-3.27 (m, 1H), 3.74 (s, 3H), 3.79 (s, 3H), 3.88 (s, 3H), 6.45 (s, 1H), 6.52 (d, J = 2.4 Hz,

1H), 6.57 (dd, J = 8.0, 2.0 Hz, 1H), 6.74-6.80 (m, 3H), 6.91-6.95 (m, 3H), 7.28-7.40 (m, 3H), 8.14 (d, J = 7.6 Hz, 1H), 9.21-9.23 (m, 1H), 9.55 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 184.8, 170.5, 152.4, 148.9, 147.8, 138.7, 137.1, 134.3, 130.7, 130.2, 127.8, 126.5, 125.1, 124.2, 123.6, 122.2, 121.1, 119.5, 112.1, 111.3, 111.2, 97.9, 56.0, 55.6, 51.6, 45.7, 37.3; HRMS (ESI): Exact mass calcd for C₂₉H₂₈N₂O₅Na [M+Na]⁺: 507.1890, Found: 507.1834.

The reaction was run at 60 °C for 6 h, affording product **3g** as a yellow solid (69% yield, 38.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.67-2.80 (m, 2H), 2.84-2.94 (m, 1H), 3.17 (d, *J* = 18.8 Hz, 1H), 3.35-3.42 (m, 1H), 3.55 (d, *J* = 18.8 Hz, 1H), 3.71 (s, 3H), 3.75 (s,

3H), 3.92 (s, 3H), 6.04 (s, 1H), 6.44 (d, J = 2.0 Hz, 1H), 6.67-6.70 (m, 3H), 6.87 (d, J = 8.0 Hz, 1H), 6.94-7.02 (m, 3H), 7.32-7.33 (m, 2H), 8.16-8.17 (m, 1H), 9.18 (dd, J = 9.2, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 181.0, 170.3, 151.9, 149.1, 147.9, 136.0, 135.0, 134.3, 131.2, 130.14, 130.11, 128.4, 127.9, 126.8, 126.1, 125.8, 122.2, 121.9, 114.8, 113.9, 112.6, 112.4, 111.4, 98.0, 56.2, 55.7, 51.8, 45.9, 37.9, 28.8; HRMS (ESI): Exact mass calcd for C₃₁H₂₈ClN₃O₅Na [M+Na]⁺: 580.1615, Found: 580.1613.

The reaction was run at 60 °C for 4 h, affording product **3h** as a yellow solid (78% yield, 37.8 mg).¹H NMR (400 MHz, CDCl₃) δ 2.00 (s, 3H), 2.03 (s, 3H), 2.59-2.67 (m, 2H), 2.76-2.84 (m, 1H), 2.86-2.95 (m, 1H), 3.70 (s, 3H), 3.76 (s, 3H), 3.84 (s, 3H), 6.36 (d,

J = 2.0 Hz, 1H), 6.54 (dd, J = 8.0, 2.0 Hz, 1H), 6.73 (d, J = 8.4 Hz, 1H), 6.84-6.86 (m, 2H), 6.89-6.92 (m, 3H), 7.05 (td, J = 8.0, 1.6 Hz, 1H), 7.11 (td, J = 7.2, 1.6 Hz, 1H), 7.16-7.19 (m, 1H), 7.33 (d, J = 7.6 Hz, 1H), 9.41 (t, J = 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 152.8, 148.8, 147.5, 135.8, 135.1, 131.3, 130.9, 130.5, 128.9, 127.0, 125.7, 121.6, 120.5, 119.8, 117.8, 111.7, 111.1, 110.2, 109.1, 98.3, 55.8, 55.6, 51.3, 44.8, 36.8, 10.2, 8.6; HRMS (ESI): Exact mass calcd for C₃₀H₃₂N₂NaO₄ [M+Na]⁺: 507.2254, Found: 507.2244.

The reaction was run at 60 °C for 5 h, affording product **3i** as a yellow solid (83% yield, 39.0 mg). ¹H NMR (400 MHz, CDCl₃): δ 2.43 (s, 3H), 2.69 (t, *J* = 6.8 Hz, 2H), 2.90-2.95 (m, 1H), 3.11-3.16 (m, 1H), 3.71 (s, 3H), 3.79 (s, 3H), 3.86 (s, 3H), 6.20 (d, *J* = 3.2

Hz, 1H), 6.29 (d, J = 3.6 Hz, 1H), 6.47 (s, 1H), 6.59 (d, J = 8.0 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 6.82-6.83 (m, 2H), 6.90 (d, J = 7.2 Hz, 1H), 6.95-6.96 (m, 3H), 7.11 (t, J = 7.6 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H), 9.23 (t, J = 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 154.2, 148.8, 147.6, 135.6, 135.5, 130.9, 130.5, 130.2, 128.1, 127.3, 127.1, 125.7, 122.9, 121.1, 120.8, 112.0, 111.1, 108.8, 102.2, 96.9, 55.9, 55.6, 51.4, 45.5, 37.1, 18.6; HRMS (ESI): Exact mass calcd for C₂₉H₃₀N₂O₄Na [M+Na]⁺: 493.2098, Found: 493.2111.

The reaction was run at 60 °C for 4 h, affording product **3j** as a yellow solid (85% yield, 40.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.41 (s, 3H), 2.69 (t, *J* = 6.4 Hz, 2H), 2.92-2.98 (m, 1H), 3.13-3.18 (m, 1H), 3.71 (s, 3H), 3.79 (s, 3H), 3.86 (s, 3H), 6.10 (d, *J* = 3.2

Hz, 1H), 6.22 (d, J = 3.2 Hz, 1H), 6.47 (s, 1H), 6.59 (d, J = 8.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.80-6.81 (m, 2H), 6.94-6.95 (m, 3H), 7.03 (d, J = 8.0 Hz, 1H), 7.25 (d, J = 8.0 Hz, 2H), 9.21 (t, J = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 154.3, 148.7, 147.6, 135.6, 134.2, 130.9, 130.5, 130.1, 128.6, 127.9, 127.4, 125.7, 124.4, 120.8, 120.6, 112.0, 111.0, 110.9, 103.3, 96.7, 55.9, 55.6, 51.3, 45.6, 37.1, 21.3; HRMS (ESI): Exact mass calcd for C₂₉H₃₀N₂O₄Na [M+Na]⁺: 493.2098, Found: 493.2106.

The reaction was run at 60 °C for 3 h, affording product **3k** as a yellow solid (94% yield, 52.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.69 (t, J = 6.8 Hz, 2H), 2.92-3.01 (m, 1H), 3.13-3.18 (m, 1H), 3.69 (s, 3H), 3.79 (s, 3H), 3.85 (s, 3H), 5.03 (s, 2H), 6.09 (d, J =

3.2 Hz, 1H), 6.24 (d, J = 3.6 Hz, 1H), 6.50 (s, 1H), 6.58 (d, J = 8.4 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 6.80-6.81 (m, 2H), 6.91-6.98 (m, 5H), 7.25 (d, J = 8.0 Hz, 1H), 7.32 (t, J = 6.8 Hz, 1H), 7.38 (t, J = 7.2 Hz, 2H), 7.44 (d, J = 7.6 Hz, 2H), 9.17 (t, J = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 154.2, 154.0, 148.7, 147.6, 137.4, 135.5, 131.0, 130.9, 130.5, 128.9, 128.5, 128.4, 127.8, 127.5, 127.3, 125.7, 120.8, 113.3, 112.01, 111.96, 111.1, 103.9, 103.5, 96.8, 70.5, 55.9, 55.6, 51.3, 45.6, 37.1; HRMS (ESI): Exact mass calcd for C₃₅H₃₄N₂O₅Na [M+Na]⁺: 585.2360, Found: 585.2364.

The reaction was run at 60 °C for 6 h, affording product **31** as a yellow solid (72% yield, 34.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.70 (t, J = 6.8 Hz, 2H), 2.92-3.00 (m, 1H), 3.09-3.17 (m, 1H), 3.71 (s, 3H), 3.81 (s, 3H), 3.87 (s, 3H), 6.15 (d, J = 3.2 Hz, 1H), 6.33 (d,

J = 3.2 Hz, 1H), 6.51 (d, J = 2.0 Hz, 1H), 6.59 (dd, J = 8.0, 2.0 Hz, 1H), 6.75-6.81 (m, 3H), 6.90-6.96 (m, 4H), 7.09 (dd, J = 9.2, 2.4 Hz, 1H), 7.24 (dd, J = 9.2, 4.4 Hz, 1H), 9.19 (t, J = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 158.3 (d, J = 235 Hz), 153.7, 148.8, 147.6, 135.3, 132.2, 130.8, 130.4, 129.4, 128.7 (d, J = 10.1 Hz), 127.4, 125.9, 120.8, 112.0, 111.8 (d, J = 9.5 Hz), 111.1, 111.0 (d, J = 25.9 Hz), 105.8 (d, J = 23.5 Hz), 103.7 (d, J = 4.4 Hz), 97.2, 55.9, 55.6, 51.4, 45.5, 37.1; HRMS (ESI): Exact mass calcd for C₂₈H₂₇FN₂O₄Na [M+Na]⁺: 497.1847, Found: 497.1859.

The reaction was run at 60 °C for 5 h, affording product **3m** as a yellow solid (74% yield, 36.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.67-2.71 (m, 2H), 2.89-2.98 (m, 1H), 3.07-3.15 (m, 1H), 3.71 (s, 3H), 3.80 (s, 3H), 3.86 (s, 3H), 6.13 (d, *J* = 3.2 Hz, 1H), 6.30 (d, *J*

= 3.6 Hz, 1H), 6.48 (d, J = 1.2 Hz, 1H), 6.58 (dd, J = 8.0, 2.0 Hz, 1H), 6.75-6.79 (m, 3H), 6.95-6.96 (m, 3H), 7.14 (dd, J = 8.8, 2.0 Hz, 1H), 7.24 (d, J = 9.2 Hz, 1H), 7.42 (d, J = 1.6 Hz, 1H), 9.17 (t, J = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 153.6, 148.9, 147.8, 135.3, 134.3, 130.9, 130.5, 129.4, 129.2, 127.6, 126.5, 126.0, 123.2, 121.0, 120.4, 112.3, 112.1, 111.2, 103.3, 97.3, 56.0, 55.7, 51.6, 45.6, 37.3; HRMS (ESI): Exact mass calcd for C₂₈H₂₈ClN₂O₄ [M+H]⁺: 491.1732, Found: 491.1723.

The reaction was run at 60 °C for 5 h, affording product **3n** as a yellow solid (82% yield, 43.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.67-2.71 (m, 2H), 2.88-2.97 (m, 1H), 3.07-3.14 (m, 1H), 3.71 (s, 3H), 3.80 (s, 3H), 3.86 (s, 3H), 6.13 (d, *J* = 3.6 Hz, 1H), 6.28 (d, *J*

= 3.2 Hz, 1H), 6.48 (d, J = 2.0 Hz, 1H), 6.58 (dd, J = 8.0, 1.6 Hz, 1H), 6.75-6.79 (m, 3H), 6.94-6.96 (m, 3H), 7.20 (d, J = 8.8 Hz, 1H), 7.26-7.29 (m, 1H), 7.58 (d, J = 2.0 Hz, 1H), 9.17 (t, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 153.4, 148.8, 147.7, 135.1, 134.4, 130.7, 130.4, 129.9, 129.0, 127.4, 126.0, 125.7, 123.3, 120.8, 114.0, 112.6, 111.9, 111.1, 103.2, 97.4, 55.9, 55.6, 51.5, 45.5, 37.1; HRMS (ESI): Exact mass calcd for C₂₈H₂₇BrN₂O₄Na [M+Na]⁺: 557.1046, Found: 557.1054.

The reaction was run at 60 °C for 4 h, affording product **30** as a yellow solid (79% yield, 37.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.45 (s, 3H), 2.70 (t, J = 6.8 Hz, 2H), 2.94-3.02 (m, 1H), 3.14-3.21 (m, 1H), 3.71 (s, 3H), 3.79 (s, 3H), 3.85 (s, 3H), 6.14 (dd, J = 3.2, 0.8 Hz, 1H), 6.24 (d, J = 3.2 Hz, 1H), 6.49 (d, J = 2.0 Hz, 1H), 6.59 (dd, J = 8.0, 2.0 Hz, 1H), 6.76 (d, J = 8.4 Hz, 1H), 6.80-6.83 (m, 2H), 6.92-6.95 (m, 4H), 7.16 (s, 1H), 7.33 (d, J = 8.0 Hz, 1H), 9.24 (t, J = 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 154.3, 148.8, 147.6, 136.2, 135.6, 132.7, 131.0, 130.5, 127.3, 127.2, 126.1, 125.7, 122.5, 120.8, 120.3, 112.1, 111.23, 111.17, 103.6, 96.9, 55.9, 55.6, 51.3, 45.6, 37.2, 21.8; HRMS (ESI): Exact mass calcd for C₂₉H₃₀N₂O₄Na [M+Na]⁺: 493.2098, Found: 493.2109.

The reaction was run at 60 °C for 3 h, affording product **3p** as a yellow solid (83% yield, 41.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.69-2.79 (m, 2H), 2.90-2.99 (m, 1H), 3.17-3.25 (m, 1H), 3.73 (s, 3H), 3.80 (s, 3H), 3.87 (s, 3H), 6.32 (d, J = 3.2 Hz, 1H), 6.53-6.56

(m, 2H), 6.60 (d, J = 8.4 Hz, 1H), 6.76-6.78 (m, 3H), 6.91-6.92 (m, 3H), 7.49 (d, J = 8.4 Hz, 1H), 7.98 (dd, J = 8.8, 1.2 Hz, 1H), 8.25 (s, 1H), 9.18 (t, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 152.2, 148.8, 147.7, 143.8, 134.8, 134.3, 133.3, 132.8, 130.5, 130.3, 127.5, 126.2, 120.8, 120.7, 116.3, 112.0, 111.1, 108.0, 104.3, 98.1, 55.9, 55.6, 51.6, 45.6, 37.2; HRMS (ESI): Exact mass calcd for C₂₈H₂₇N₃O₆Na [M+Na]⁺: 524.1792, Found: 524.1786.

The reaction was run at 60 °C for 5 h, affording product **3q** as a yellow solid (70% yield, 37.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.68-2.77 (m, 3H), 3.14-3.19 (m, 1H), 3.68 (s, 3H), 3.82 (s, 3H), 3.85 (s, 3H), 6.28 (d, J = 3.6 Hz, 1H), 6.49 (d, J = 3.2 Hz, 1H),

6.53 (d, J = 2.0 Hz, 1H), 6.61 (dd, J = 8.0, 2.0 Hz, 1H), 6.77 (d, J = 8.4 Hz, 1H), 6.91-6.96 (m, 4H), 7.00-7.03 (m, 2H), 7.37 (t, J = 7.2 Hz, 2H), 9.35 (d, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 153.5, 148.8, 147.6, 135.1, 133.2, 130.9, 130.9, 130.5, 129.6, 127.3, 127.2, 125.9, 121.7, 120.7, 120.2, 111.9, 111.1, 104.3, 104.0, 98.1, 55.9, 55.7, 51.3, 44.9, 36.4; HRMS (ESI): Exact mass calcd for C₂₈H₂₇BrN₂O₄Na [M+Na]⁺: 557.1046, Found: 557.1050.



The reaction was run at 60 °C for 4 h, affording product **3r** as a yellow solid (74% yield, 34.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.58 (s, 3H), 2.62-2.72 (m, 3H), 2.95-3.00 (m, 1H), 3.70 (s, 3H), 3.81 (s, 3H), 3.85 (s, 3H), 6.25 (d, J = 3.2 Hz, 1H), 6.36 (d, J = 3.2

Hz, 1H), 6.45 (s, 1H), 6.57 (d, J = 8.0 Hz, 1H), 6.76 (d, J = 8.4 Hz, 1H), 6.92-7.02 (m, 7H),

7.31 (d, J = 7.6 Hz, 1H), 9.42 (t, J = 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 155.4, 148.8, 147.6, 135.3, 135.0, 130.83, 130.81, 128.9, 128.4, 127.4, 125.8, 125.2, 121.5, 120.9, 120.7, 118.8, 111.9, 111.1, 103.8, 97.7, 55.9, 55.6, 51.3, 44.7, 36.7, 17.8; HRMS (ESI): Exact mass calcd for C₂₉H₃₀N₂O₄Na [M+Na]⁺: 493.2098, Found: 493.2111.

The reaction was run at 60 °C for 3 h, affording product **3s** as a yellow solid (98% yield, 39.8 mg). ¹H NMR (400 MHz, CDCl₃): δ 2.74 (t, J = 6.8 Hz, 2H), 3.17 (dd, J = 13.2, 6.8 Hz, 2H), 3.68 (s, 3H), 3.87 (s, 6H), 5.95 (t, J = 2.4 Hz, 2H), 6.28 (t, J = 2.0 Hz, 2H), 6.63-6.68 (m, 2H), 6.80 (d, J = 8.4 Hz, 1H), 6.93-6.95 (m, 2H), 7.04-7.12 (m, 3H), 9.05 (t, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 155.6, 148.8, 147.6, 135.7, 131.0, 130.7, 127.3, 125.7, 121.4, 120.8, 112.11, 111.2, 109.4, 96.1, 55.9, 55.7, 51.2, 45.5, 37.2; HRMS (ESI): Exact mass calcd for C₂₄H₂₆N₂O₄Na [M+Na]⁺: 429.1785, Found: 429.1790.

The reaction was run at 60 °C for 3 h, affording product **3t** as a yellow solid (96% yield, 40.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.72 (t, J = 7.2 Hz, 2H), 2.91-3.00 (m, 1H), 3.11-3.17 (m, 1H), 3.73 (s, 3H), 3.79 (s, 3H), 6.22 (d, J = 3.2 Hz, 1H), 6.37 (d, J = 3.6

Hz, 1H), 6.79-6.85 (m, 4H), 6.94-6.97 (m, 5H), 7.11 (t, J = 8.0 Hz, 1H), 7.21 (t, J = 7.2 Hz, 1H), 7.38 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 9.20 (t, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 158.3, 154.0, 135.8, 135.5, 130.5, 130.3, 129.8, 128.3, 127.7, 127.3, 125.7, 122.8, 120.8, 120.7, 113.9, 111.2, 103.8, 97.1, 55.2, 51.3, 45.4, 36.5; HRMS (ESI): Exact mass calcd for C₂₇H₂₆N₂O₃Na [M+Na]⁺: 449.1836, Found: 449.1826.

The reaction was run at 60 °C for 3 h, affording product **3u** as a yellow solid (97% yield, 41.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.73 (t, J = 6.8 Hz, 2H), 2.93-3.01 (m, 1H), 3.11-3.17 (m, 1H), 3.72 (s, 3H), 6.23 (d, J = 3.2 Hz, 1H), 6.36 (d, J = 3.6 Hz, 1H), 6.82-6.83

(m, 2H), 6.94-6.96 (m, 5H), 7.11 (t, J = 7.6 Hz, 1H), 7.19-7.23 (m, 3H), 7.35 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 9.18 (t, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 153.9, 136.8, 135.8, 135.4, 132.4, 130.5, 130.3, 128.6, 128.3, 127.6, 127.4, 125.8, 122.9, 120.8, 111.1, 104.0, 97.4, 51.4, 45.0, 36.8; HRMS (ESI): Exact mass calcd for C₂₆H₂₃ClN₂O₂Na [M+Na]⁺: 453.1340, Found: 453.1342.

The reaction was run at 60 °C for 5 h, affording product **3v** as a yellow solid (67% yield, 25.0 mg). ¹H NMR (400 MHz, CDCl₃): δ 1.05-1.12 (m, 2H), 1.29-1.36 (m, 2H), 1.37-1.46 (m, 2H), 1.61-1.70 (m, 3H), 1.78-1.83 (m, 1H), 2.81-2.86 (m, 1H), 3.72 (s, 3H), 6.27 (dd, J = 3.6, 0.8 Hz, 1H),

6.67 (d, J = 3.2 Hz, 1H), 6.84-6.88 (m, 2H), 6.92-6.95 (m, 3H), 7.08-7.12 (m, 1H), 7.18-7.22 (m, 1H), 7.44-7.48 (m, 2H), 9.14 (d, J = 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 153.5, 136.1, 135.6, 130.5, 128.3, 127.8, 127.2, 125.7, 122.8, 120.73, 120.67, 111.1, 104.0, 97.3, 52.2, 51.3, 35.0, 33.3, 25.3, 24.3, 24.1; HRMS (ESI): Exact mass calcd for C₂₄H₂₆N₂O₂Na [M+Na]⁺: 397.1886, Found: 397.1888.

The reaction was run at 60 °C for 3 h, affording product **3w** as a yellow solid (99% yield, 37.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.54 (s, 3H), 3.78 (s, 3H), 5.99 (d, J = 8.4 Hz, 1H), 6.29 (d, J = 3.2 Hz, 1H), 6.61 (t, J = 8.0 Hz, 1H), 6.71 (d, J = 3.6 Hz, 1H), 6.77 (t, J = 7.6 Hz, 1H), 6.97-7.04

(m, 7H), 7.10 (d, J = 7.6 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 7.36 (d, J = 7.6 Hz, 1H), 10.86 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 149.4, 137.4, 135.1, 135.0, 130.7, 130.5, 128.9, 128.5, 127.52, 127.48, 126.4, 126.1, 123.8, 122.6, 120.8, 120.5, 119.6, 111.6, 105.2, 99.4, 51.8, 18.4; HRMS (ESI): Exact mass calcd for C₂₅H₂₂N₂O₂Na [M+Na]⁺: 405.1574, Found: 405.1570.

The reaction was run at 60 °C for 3 h, affording product 3x as a yellow solid (99% yield, 40.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 1.41 (d, J = 6.4 Hz, 6H), 3.51-3.58 (sep, J = 6.8 Hz, 1H), 3.79 (s, 3H), 6.17 (d, J = 8.0 Hz, 1H), 6.26 (d, J = 3.6 Hz, 1H), 6.61 (t, J = 7.6 Hz, 1H), 6.71 (d, J = 3.2 Hz,

1H), 6.87 (t, J = 7.6 Hz, 1H), 6.93-7.03 (m, 7H), 7.19 (d, J = 7.6 Hz, 1H), 7.25 (d, J = 8.4 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 10.88 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 150.1, 140.2, 135.8, 135.2, 135.1, 130.7, 128.4, 127.7, 127.4, 126.0, 125.9, 125.6, 124.8, 122.4, 121.2, 120.7, 120.5, 111.7, 105.1, 99.4, 51.8, 28.1; HRMS (ESI): Exact mass calcd for C₂₇H₂₆N₂O₂Na [M+Na]⁺: 433.1886, Found: 433.1880.

Br 3y CO₂Me

The reaction was run at 60 °C for 3 h, affording product **3y** as a yellow solid (94% yield, 41.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 3.80 (s, 3H), 6.00 (s, 1H), 6.30 (s, 1H), 6.66-6.69 (m, 3H), 7.00-7.05 (m, 6H), 7.31-7.37 (m, 3H), 7.48 (s, 1H), 10.88 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3,

147.7, 137.3, 135.1, 134.6, 132.7, 130.7, 128.5, 127.8, 127.6, 127.5, 126.3, 124.5, 123.0,

121.0, 120.6, 120.2, 115.6, 111.7, 105.5, 101.0, 52.0; HRMS (ESI): Exact mass calcd for C₂₄H₁₉BrN₂O₂Na [M+Na]⁺: 469.0522, Found: 469.0526.

The reaction was run at 60 °C for 6 h, affording product 3z as a yellow solid (78% yield, 34 mg). ¹H NMR (400 MHz, CDCl₃) δ 3.81 (s, 3H), 6.17-6.19 (m, 1H), 6.31 (d, J = 3.2 Hz, 1H), 6.74 (d, J = 3.2 Hz, 1H), 6.90-6.92 (m, 2H), 6.95-7.04 (m, 7H), 7.33-7.36 (m, 2H), 7.53-7.55 (m, 1H),

11.07 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 147.8, 137.2, 135.1, 134.5, 132.4, 130.6, 128.5, 127.6, 127.5, 126.4, 123.2, 122.9, 121.4, 121.2, 121.0, 120.9 (J = 29.5 Hz), 120.6, 111.6, 105.8, 102.1, 52.1; HRMS (ESI): Exact mass calcd for C₂₅H₁₉F₃N₂O₂Na [M+Na]⁺: 459.1291, Found: 459.1276.

The reaction was run at 60 °C for 5 h, affording product **3a'** as a yellow solid (95% yield, 42.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 3.72 (s, 3H), 6.21 (d, J = 3.2 Hz, 1H), 6.34 (d, J = 8.0 Hz, 1H), 6.48 (d, J = 3.2 Hz, 1H), 6.81 (t, J = 8.0 Hz, 1H), 6.89-6.93 (m, 3H), 6.97-7.03 (m, 5H), 7.13-7.16

(m, 2H), 7.33 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 6.8 Hz, 1H), 7.54- 7.61(m, 4H), 10.63 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 148.8, 139.0, 136.1, 135.14, 135.08, 134.8, 130.61, 130.58, 129.4, 128.7, 128.5, 127.8, 127.6, 127.4, 126.0, 124.1, 122.4, 121.0, 120.8, 120.4, 112.0, 105.0, 100.1, 51.7; HRMS (ESI): Exact mass calcd for C₃₀H₂₄N₂O₂Na [M+Na]⁺: 467.1730, Found: 467.1720.

The reaction was run at 60 °C for 3 h, affording product **3b'** as a yellow solid (97% yield, 39.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 3H), 6.26 (dd, J = 8.0, 0.8 Hz, 1H), 6.34 (d, J = 3.2 Hz, 1H), 6.53 (t, J = 2.0 Hz, 1H), 6.69 (d, J = 3.2 Hz, 1H), 6.78-6.81 (m, 1H), 6.86 (t, J = 8.0 Hz,

1H), 6.98-7.01 (m, 3H), 7.03-7.08 (m, 4H), 7.31 (d, J = 8.0 Hz, 1H), 7.39-7.41 (m, 1H), 10.86 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 148.3, 140.3, 135.0, 134.5, 130.6, 129.9, 128.6, 127.6, 127.2, 126.4, 123.5, 123.0, 121.1, 120.7, 120.1, 117.7, 111.7, 105.7, 100.8, 51.9; HRMS (ESI): Exact mass calcd for C₂₄H₁₉ClN₂O₂Na [M+Na]⁺: 425.1027, Found: 425.1023.

The reaction was run at 60 °C for 3 h, affording product **3c'** as a yellow solid (98% yield, 37.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.09 (s, 3H), 3.79 (s, 3H), 6.22 (d, *J* = 8.0 Hz, 1H), 6.33 (d, *J* = 3.2 Hz, 1H), 6.40 (s, 1H), 6.66 (d, *J* = 7.6 Hz, 1H), 6.74 (d, *J* = 3.6 Hz, 1H), 6.84 (t, *J* = 7.6

Hz, 1H), 6.98-7.07 (m, 7H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.39 (d, *J* = 7.6 Hz, 1H), 10.88 (s, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 170.6, 149.0, 138.8, 138.7, 135.1, 134.9, 130.7, 128.7, 128.5, 127.4, 126.1, 124.4, 122.7, 120.9, 120.8, 120.5, 116.8, 111.9, 105.2, 99.5, 51.7, 21.2; HRMS (ESI): Exact mass calcd for C₂₅H₂₂N₂O₂Na [M+Na]⁺: 405.1573, Found: 405.1573.

The reaction was run at 60 °C for 3 h, affording product **3d'** as a yellow solid (97% yield, 37.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 3.79 (s, 3H), 6.30 (d, J = 2.8 Hz, 1H), 6.50-6.53 (m, 2H), 6.66-6.71 (m, 3H), 6.98-7.08 (m, 7H), 7.32 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 7.2 Hz, 1H), 10.86 (s,

1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 159.2 (d, J = 242 Hz), 149.2, 135.01, 134.98, 134.96, 134.7, 130.6, 128.4, 127.5, 127.4, 126.2, 122.8, 121.9 (d, J = 8.1 Hz), 121.0, 120.6, 115.7 (d, J = 22.6 Hz), 111.8, 105.4, 99.6, 51.8; HRMS (ESI): Exact mass calcd for C₂₄H₁₉FN₂O₂Na [M+Na]⁺: 409.1323, Found: 409.1319.

The reaction was run at 60 °C for 3 h, affording product **3e'** as a yellow solid (98% yield, 39.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 3H), 6.32 (d, *J* = 2.8 Hz, 1H), 6.41 (d, *J* = 8.8 Hz, 2H), 6.69 (d, *J* = 3.2 Hz, 1H), 6.92-7.07 (m, 9H), 7.30 (d, *J* = 8.3 hz, 1H), 7.39 (d, *J* = 7.2 Hz,

1H), 10.88 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 148.5, 137.6, 134.9, 134.6, 130.6, 129.0, 128.8, 128.5, 127.5, 127.2, 126.3, 123.0, 121.1, 120.7, 111.7, 105.6, 100.3, 51.9; HRMS (ESI): Exact mass calcd for C₂₄H₁₉ClN₂O₂Na [M+Na]⁺: 425.1027, Found: 425.1025.

The reaction was run at 60 °C for 3 h, affording product **3f** as a yellow solid (96% yield, 42.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 3H), 6.32 (dd, J = 3.6, 0.8 Hz, 1H), 6.34-6.36 (m, 2H), 6.69 (d, J = 3.6 Hz, 1H), 6.97-7.00 (m, 2H), 7.01-7.06 (m, 5H), 7.08-7.10 (m, 2H), 7.30 (dd,

J = 8.0, 1.2 Hz, 1H), 7.38-7.41 (m, 1H), 10.87 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 148.4, 138.2, 134.9, 134.5, 132.0, 130.6, 128.5, 127.6, 127.2, 126.3, 123.0, 121.4, 121.1, 120.7, 116.4, 111.7, 105.6, 100.5, 51.9; HRMS (ESI): Exact mass calcd for C₂₄H₁₉BrN₂O₂Na [M+Na]⁺: 469.0522, Found: 469.0519.

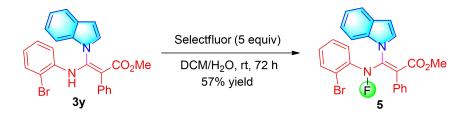
The reaction was run at 60 °C for 3 h, affording product **3g'** as a yellow solid (98% yield, 37.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.12 (s, 3H), 3.78 (s, 3H), 6.30 (dd, J = 3.2, 0.3 Hz, 1H), 6.43 (d, J = 8.3 Hz, 2H), 6.72 (d, J = 3.2 Hz, 1H), 6.79 (d, J = 8.0 Hz, 2H), 6.97-7.06 (m, 7H),

7.33 (d, J = 8.3 Hz, 1H), 7.38 (d, J = 7.2 Hz, 1H), 10.86 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 149.3, 136.3, 135.1, 135.0, 133.3, 130.7, 129.5, 128.4, 127.5, 127.4, 126.0, 122.7, 120.8, 120.5, 120.2, 111.9, 105.1, 99.1, 51.7, 20.6; HRMS (ESI): Exact mass calcd for C₂₅H₂₂N₂O₂Na [M+Na]⁺: 405.1573, Found: 405.1574.

The reaction was run at 60 °C for 3 h, affording product **3h'** as a yellow solid (94% yield, 37.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 3.61 (s, 3H), 3.78 (s, 3H), 6.29 (d, J = 3.2 Hz, 1H), 6.54 (s, 4H), 6.73 (d, J = 3.2 Hz, 1H), 6.98-7.08 (m, 7H), 7.34 (d, J = 8.0 Hz, 1H), 7.37

 $(d, J = 7.6 \text{ Hz}, 1\text{H}), 10.86 (s, 1\text{H}); {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 170.7, 156.1, 149.7, 135.03, 134.98, 131.9, 130.7, 128.3, 127.5, 127.4, 126.0, 122.6, 122.0, 120.7, 120.4, 114.1, 111.9, 105.0, 98.7, 55.1, 51.6; HRMS (ESI): Exact mass calcd for C₂₅H₂₂N₂O₃Na [M+Na]⁺: 421.1523, Found: 421.1528.$

The reaction was run at 60 °C for 6 h, affording product **3i'** as a yellow solid (83% yield, 39.9 mg). ¹H NMR (400 MHz, CDCl₃): δ 2.71 (t, J = 7.2 Hz, 2H), 3.00-3.08 (m, 1H), 3.19-3.25 (m, 1H), 3.72 (s, 3H), 3.79 (s, 3H), 3.86 (s, 3H), 6.24 (s, 2H), 6.49 (s, 1H), 6.58 (d, J = 8.3 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 6.86 (d, J = 7.6 Hz, 2H),

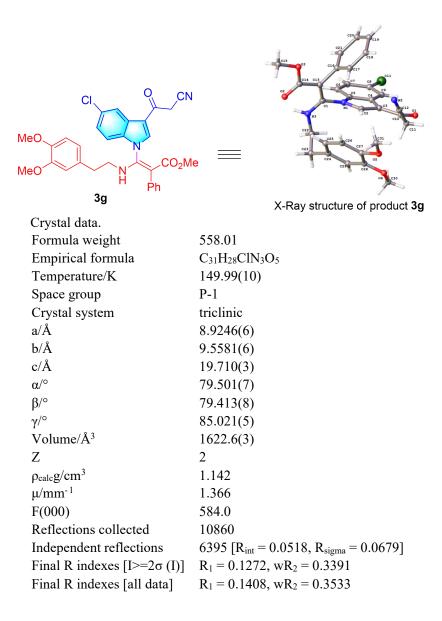

7.12 (t, J = 7.6 Hz, 1H), 7.17-7.22 (m, 3H), 7.25-7.26 (m, 1H), 7.49 (d, J = 8.0 Hz, 1H), 9.34 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 154.5, 148.8, 147.7, 141.0, 135.6, 131.1, 130.9, 130.6, 128.3, 127.2, 123.3, 121.3, 121.1, 120.8, 119.1, 112.0, 111.1, 110.9, 108.9, 104.7, 95.4, 55.9, 55.6, 51.4, 45.7, 36.9; HRMS (ESI): Exact mass calcd for C₂₉H₂₇N₃O₄Na [M+Na]⁺: 504.1894, Found: 504.1903.

The reaction was run at 60 °C for 5 h, affording product **3j'** as a yellow solid (89% yield, 44.9 mg). ¹H NMR (400 MHz, CDCl₃): δ 1.23 (t, J = 7.6 Hz, 3H), 2.69 (t, J = 6.8 Hz, 2H), 2.91-3.00 (m, 1H), 3.10-3.18 (m, 1H), 3.78 (s, 3H), 3.85 (s, 3H), 4.12-4.28 (m, 2H), 6.24 (s, 1H), 6.29 (s, 1H), 6.47 (s, 1H), 6.57 (d, J = 8.3 Hz, 1H),

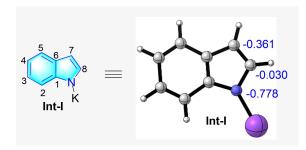
6.71-6.76 (m, 3H), 6.88 (d, J = 8.0 Hz, 2H), 7.11 (t, J = 7.6 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 7.32 (d, J = 8.3 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 9.26 (t, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 154.0, 148.8, 147.6, 135.7, 134.2, 131.7, 131.3, 130.8, 128.3, 127.6, 127.4, 122.9, 120.9, 120.8, 112.0, 111.09, 111.06, 104.1, 96.1, 60.0, 55.9, 55.6, 45.5, 37.1, 14.4; HRMS (ESI): Exact mass calcd for C₂₉H₂₉ClN₂O₄Na [M+Na]⁺: 527.1708, Found: 527.1711.

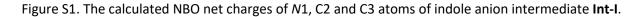
3) Synthetic Transformation of Product 3y.

To a 5.0 mL vial was successively added 3y (0.1 mmol. 1.0 equiv), DCM/H₂O (v/v = 1:1, 2 mL), and selectfluor (0.50 mmol, 5 equiv). The vial was capped and the reaction mixture was allowed to stir at room temperature for 72 h. Upon completion, the mixture was extracted with DCM (5 mL * 3), and the combined organic layers were dried over anhydrous Na₂SO₄. After evaporation of the solvent in vacuo, the residue was purified by silica gel chromatography eluting with petroleum ether/ethyl acetate (5:1 to 2:1) to afford compound **5** (26.4 mg, pale-yellow solid).



¹H NMR (400 MHz, CDCl₃) δ 3.89 (s, 3H), 6.18 (d, *J* = 7.2 Hz, 1H), 6.47 (d, *J* = 3.2 Hz, 1H), 6.77-6.83 (m, 2H), 6.98-7.04 (m, 4H), 7.39-7.42 (m, 4H), 7.54-7.57 (m, 1H), 7.71-7.74 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1 (d, *J* = 26.8 Hz), 144.4, 134.7, 134.0, 133.8, 133.1, 129.4, 128.3, 128.3, 127.6, 126.9,


125.9 (d, J = 9.0 Hz), 125.5 (d, J = 4.7 Hz), 123.1, 121.4, 120.6, 119.6, 118.2, 112.3, 106.2, 53.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -158.9; HRMS (ESI): Exact mass calcd for C₂₄H₁₈BrFN₂O₂Na [M+Na]⁺: 487.0428, Found: 487.0440.


4) X-Ray crystallographic data for compound 3g.

Data intensity of 3g was collected using a Bruker 'Bruker APEX-II CCD' diffractometer at 149.99(10) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. CCDC deposition number 2249124 (**3g**).

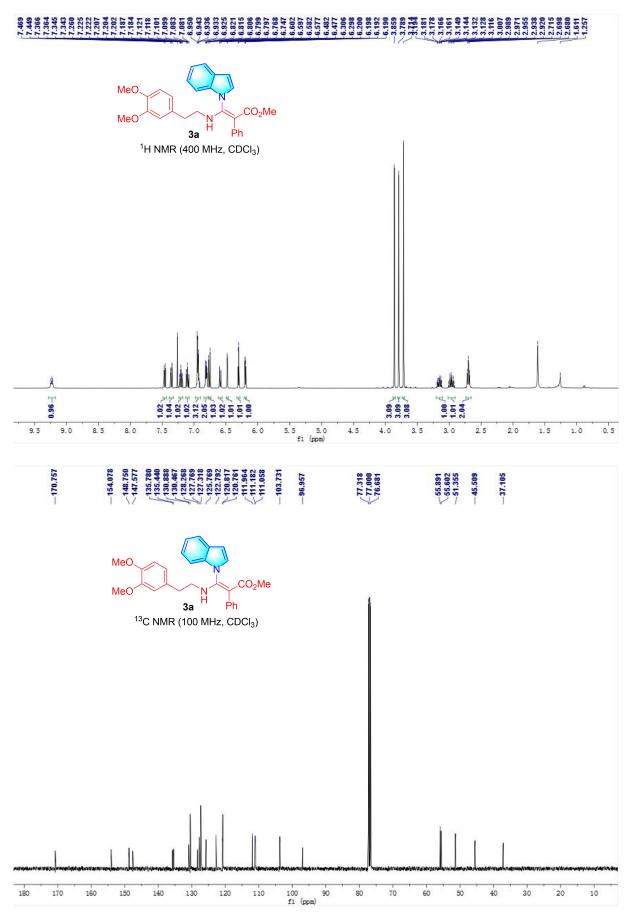
5) DFT Calculation Results.

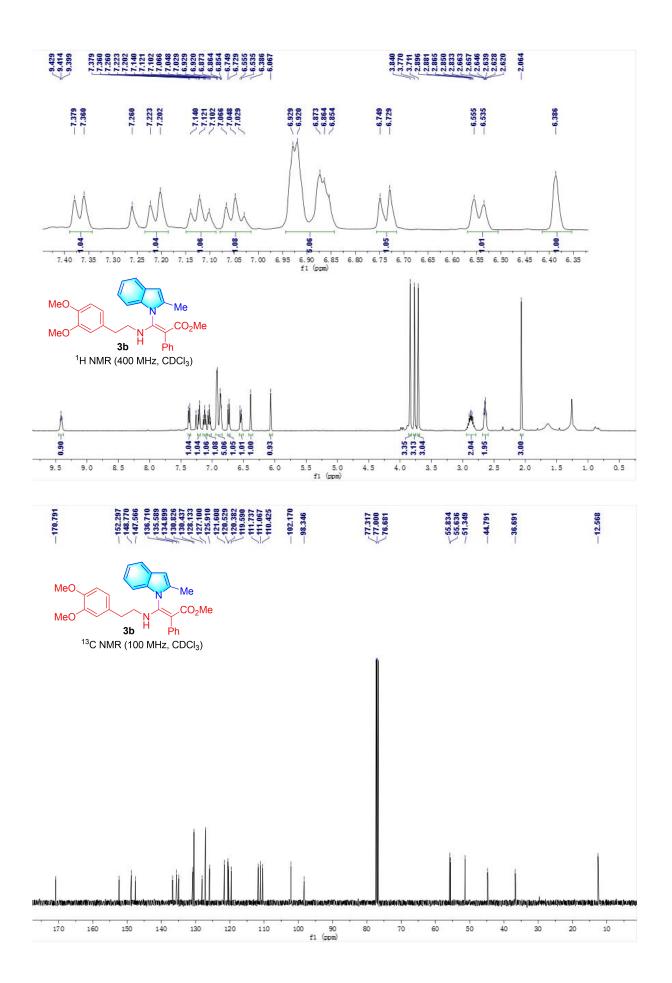
Redundant internal coordinates found in file.

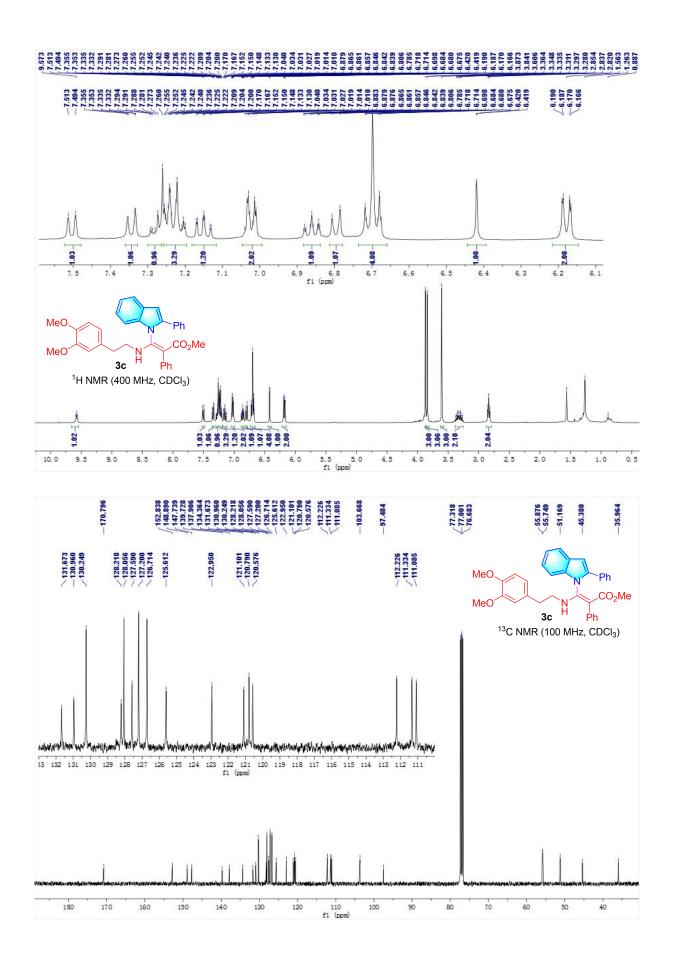
- C, 0, 2.4376263591, -0.4693175229, 0.
- C, 0, 1.0094560996, -0.5418907503, 0.
- C, 0, 0.2460740235, 0.6394996451, 0.
- C, 0, 0.887225519, 1.8665534559, 0.
- C, 0, 2.294396899, 1.9379297536, 0.
- C, 0, 3.0649405543, 0.7878886019, 0.
- C, 0, 2.8808436419, -1.8237706974, 0.
- C, 0, 1.734609945, -2.5911823119, 0.
- H, 0, -0.8518256986, 0.6261934537, 0.
- H, 0, 0.3028088925, 2.7820959674, 0.
- H, 0, 2.7753395583, 2.911584529, 0.
- H, 0, 4.1501209338, 0.8572353118, 0.
- H, 0, 3.9016392874, -2.1808275035, 0.
- H, 0, 1.6736263196, -3.6746906662, 0.
- N, 0, 0.5858934973, -1.8499766815, 0.
- K, 0, -1.5405555717, -1.6918457947, 0

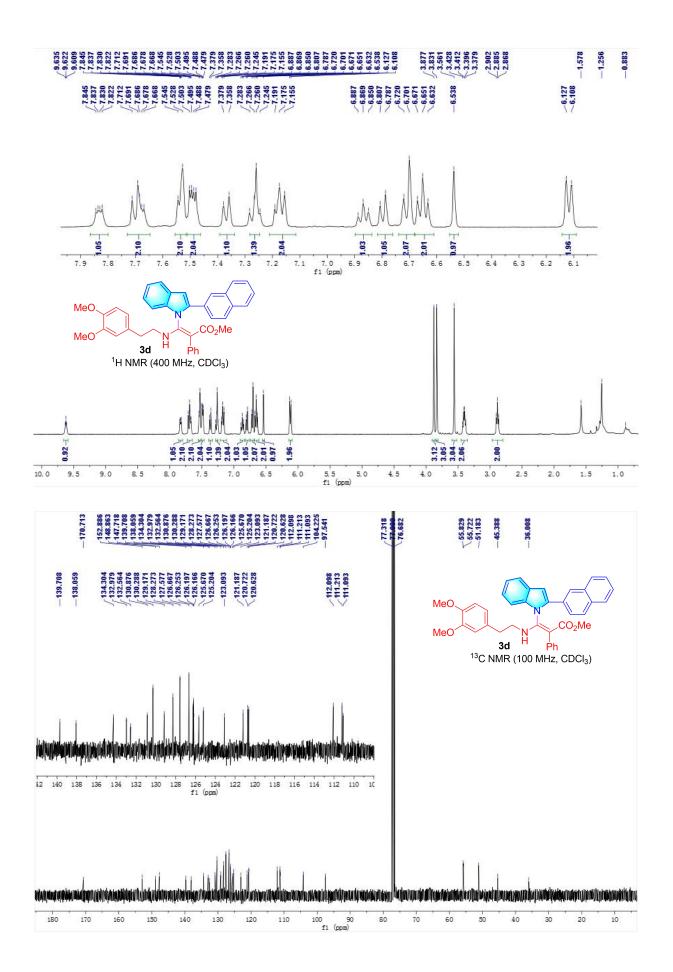
Mulliken charges:

- 1 C 0.071130
- 2 C 0.277162
- 3 C -0.213879
- 4 C -0.193611
- 5 C -0.184178
- 6 C -0.206853
- 7 C -0.262559

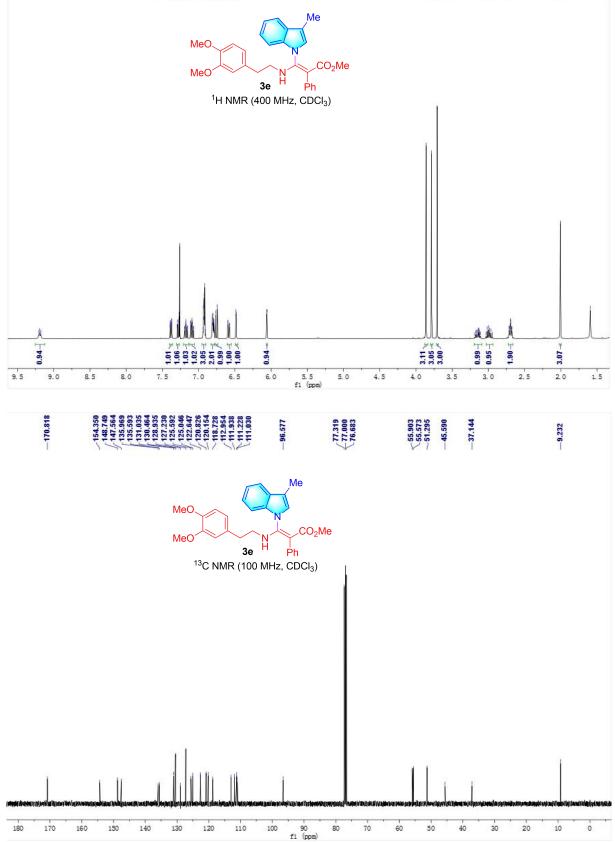

8 C	-0.013316			
9 H	0.093472			
10 H	0.132461			
11 H	0.133925			
12 H	0.140763			
13 H	0.131572			
14 H	0.128539			
15 N	-0.718867			
16 K	0.684239			

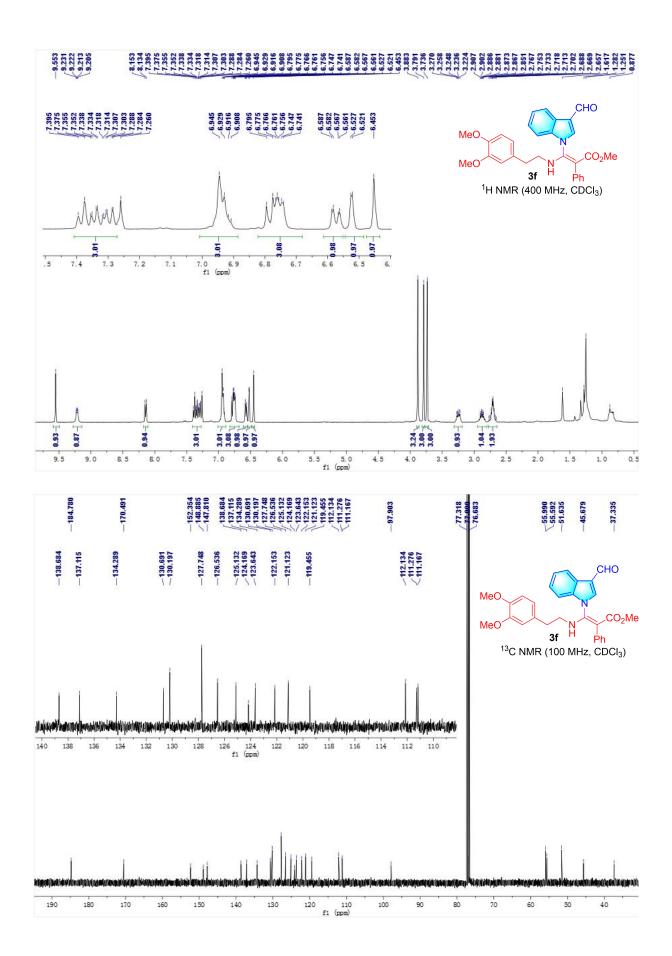

Summary of Natural Population Analysis:

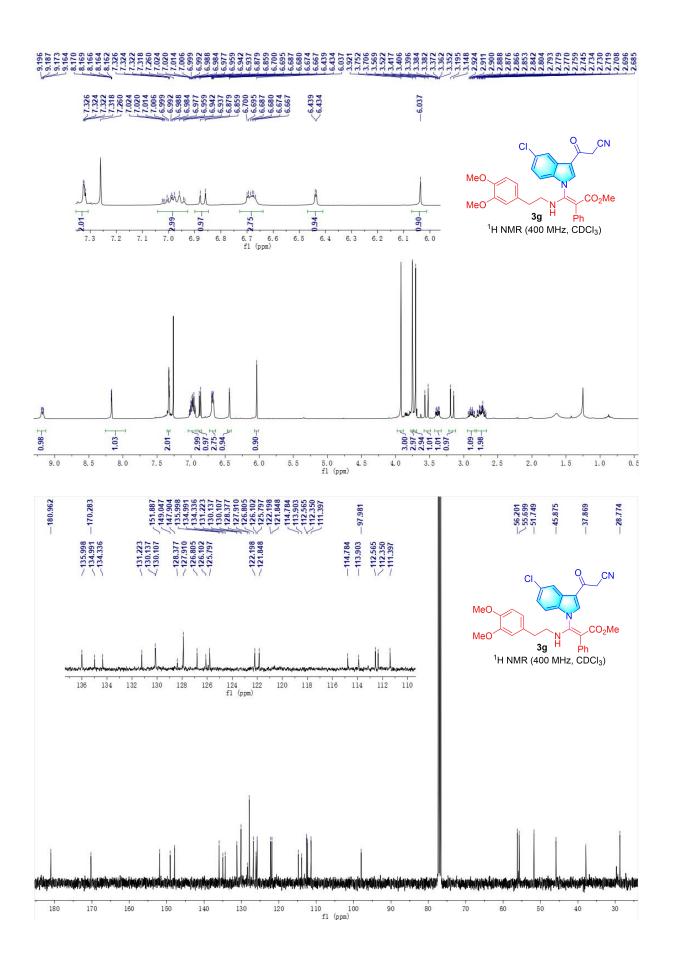

Ate	om 1	No	Charge	Core	Valence	Rydberg	Total
С	1	-0.	11676	1.99906	4.10296	0.01474	6.11676
С	2	0.	13183	1.99906	3.85114	0.01797	5.86817
С	3	-0.	29337	1.99903	4.28283	0.01151	6.29337
С	4	-0.	26762	1.99914	4.25336	0.01512	6.26762
С	5	-0.2	28340	1.99914	4.27034	0.01392	6.28340
С	6	-0.2	22111	1.99906	4.20918	0.01288	6.22111
С	7	-0.	36135	1.99902	4.35022	0.01211	6.36135
С	8	-0.	03046	1.99921	4.00832	0.02293	6.03046
Н	9	0.	16581	0.00000	0.83321	0.00097	0.83419
Н	10	0	.22989	0.00000	0.76936	0.00075	0.77011
Н	11	0	.23195	0.00000	0.76734	0.00072	0.76805
Н	12	0	.23261	0.00000	0.76644	0.00095	0.76739
Н	13	0	.23377	0.00000	0.76573	0.00051	0.76623
Н	14	0	.21154	0.00000	0.78796	0.00050	0.78846
Ν	15	-0	.77850	1.99947	5.76533	0.01369	7.77850
K =====	16	0.	91518	9.99751	0.08306	0.00425	10.08482

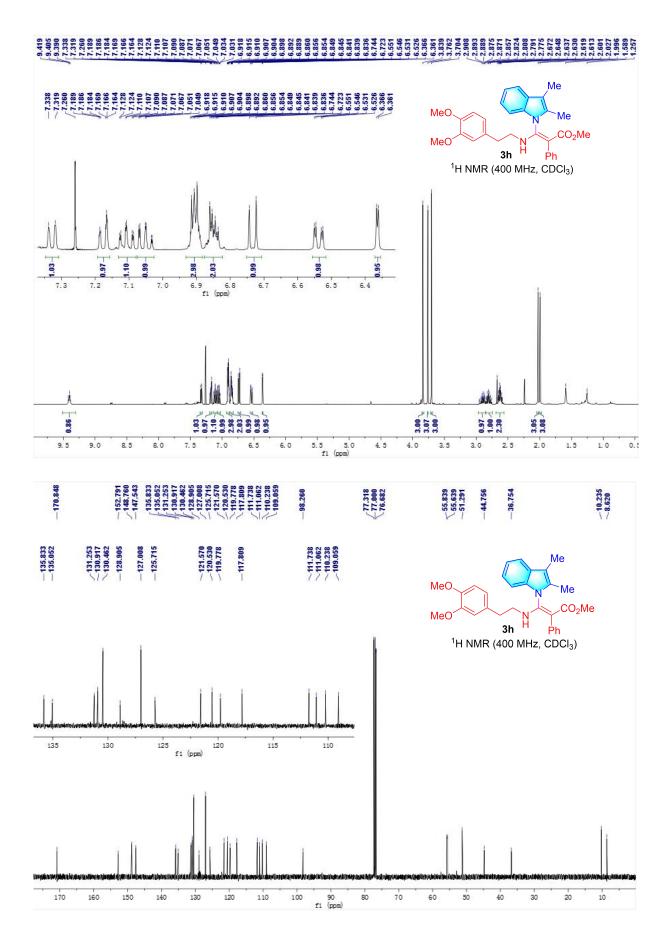

* Total * 0.00000 27.98969 43.86677 0.14353 72.00000

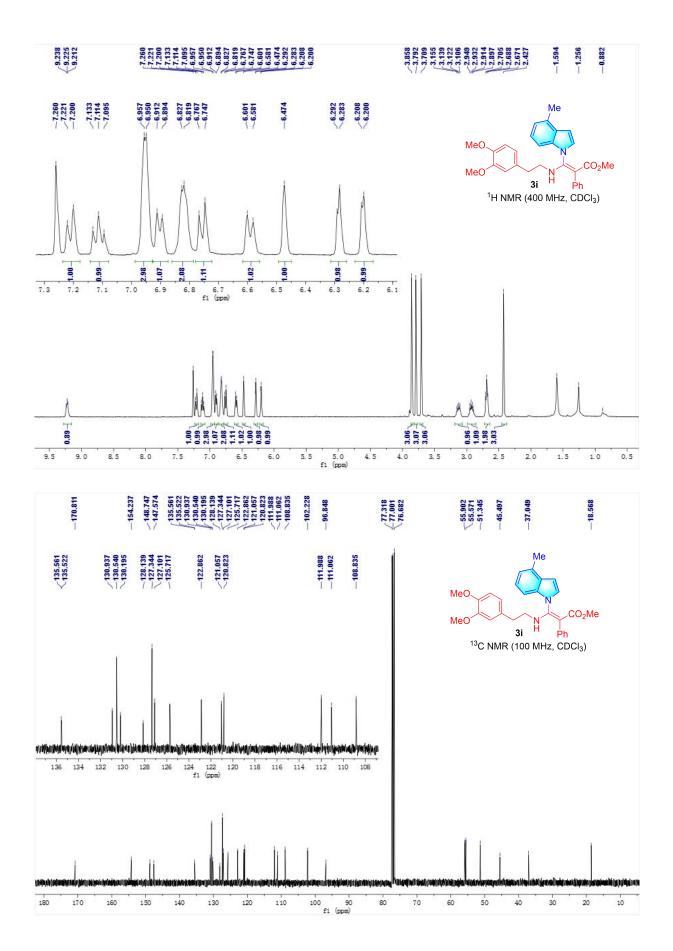
6) Copies of ¹H NMR and ¹³C NMR Spectra of Products 3 and 5.

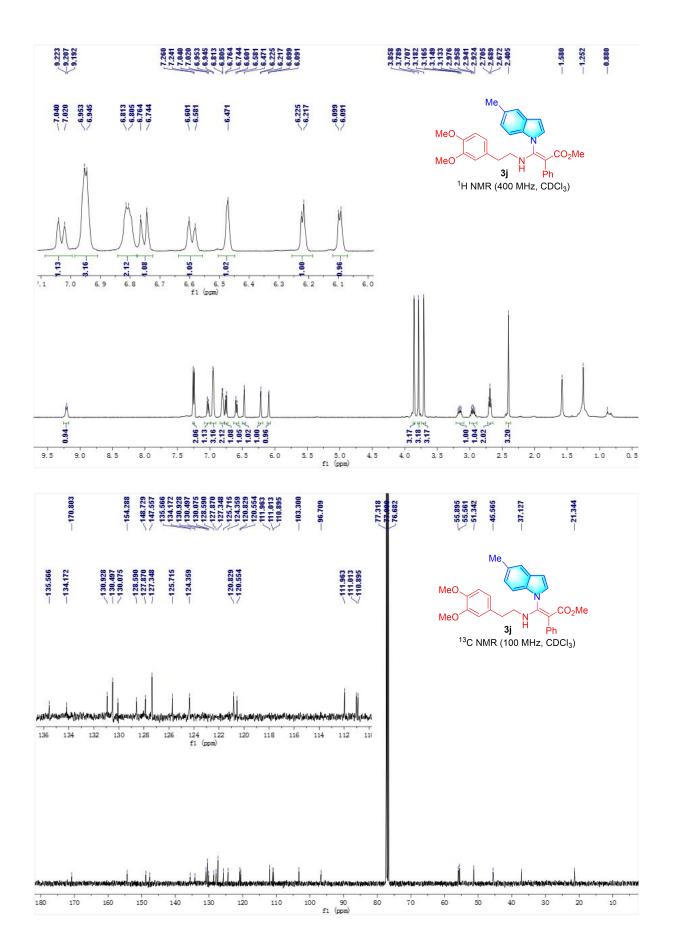


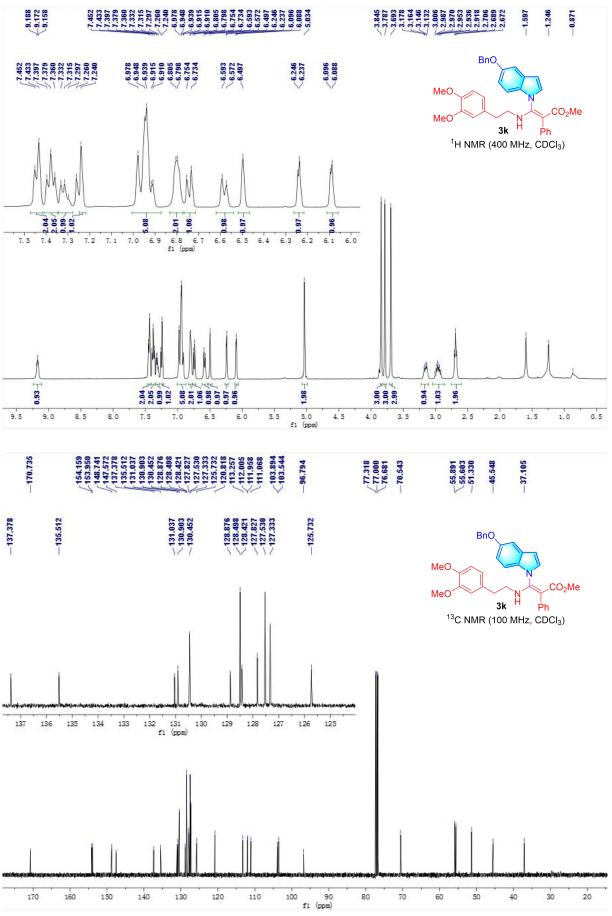


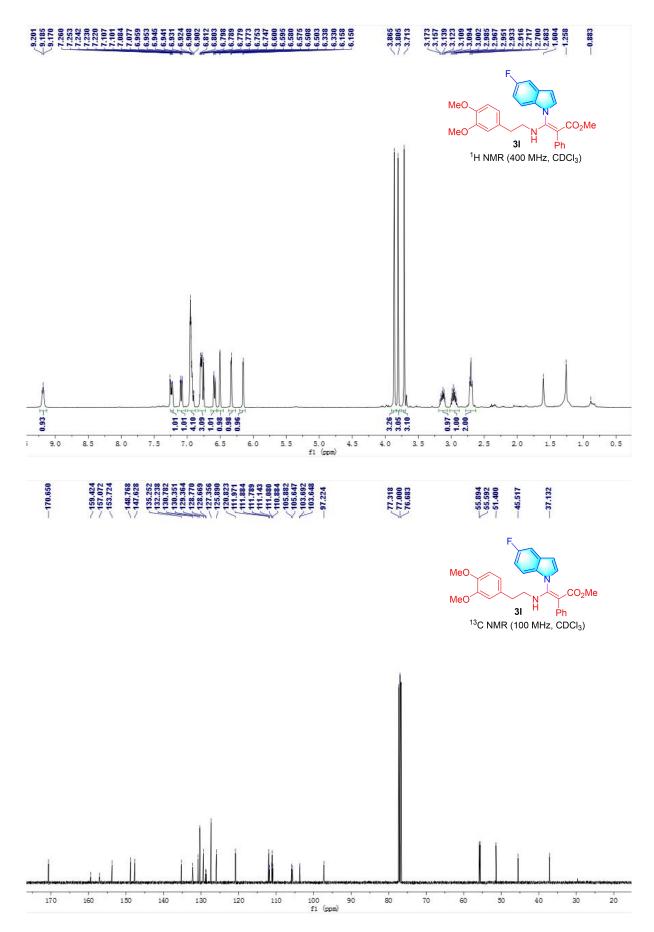


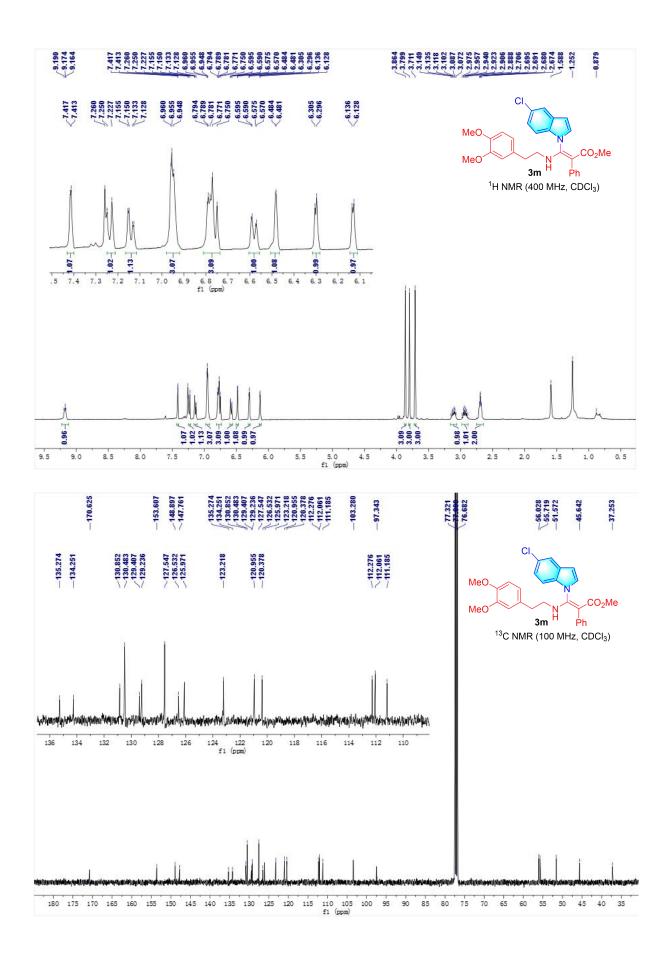


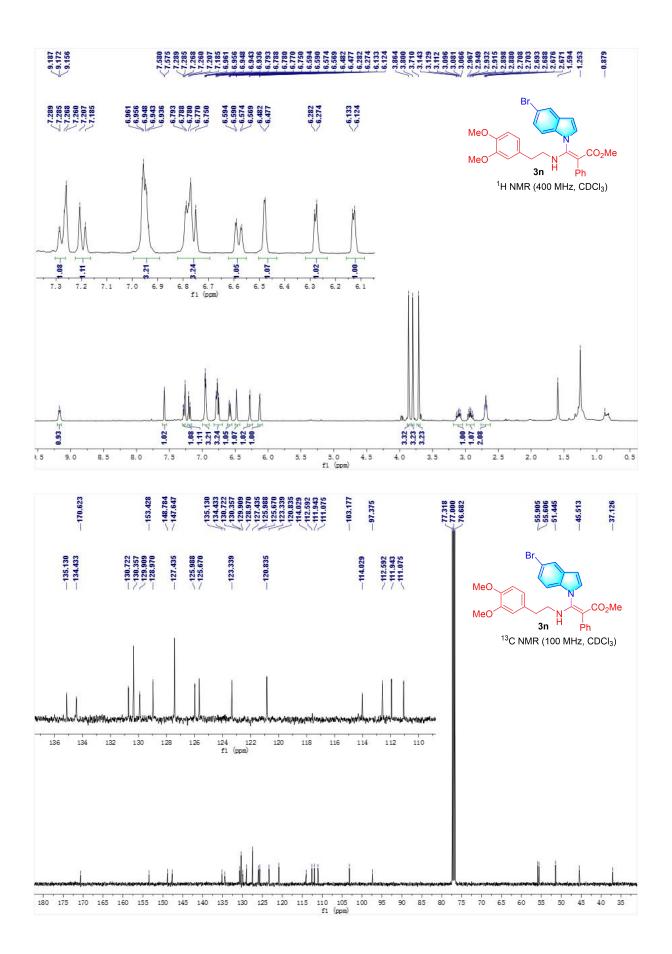


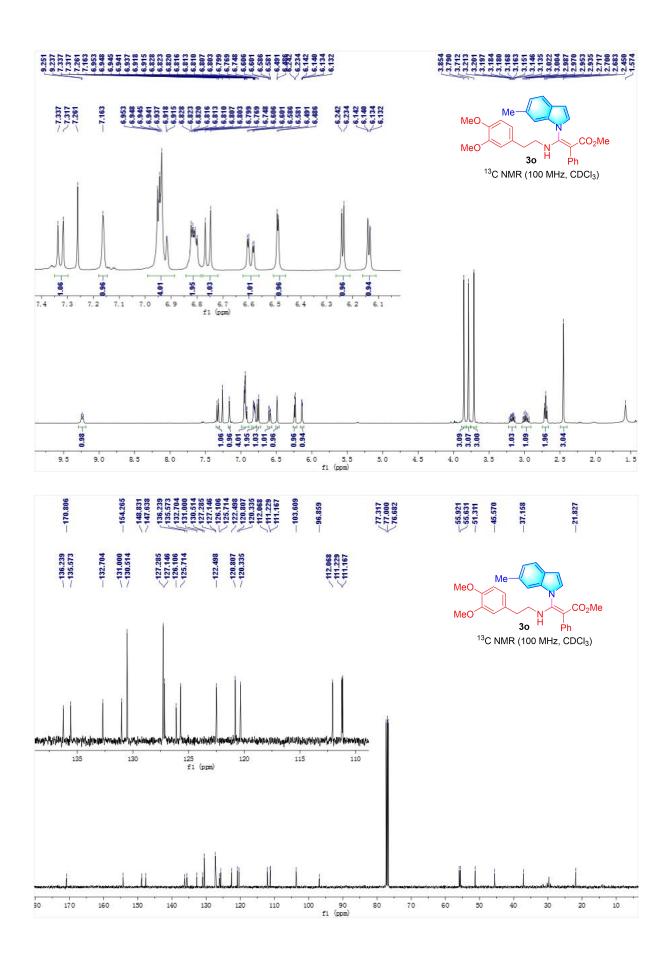


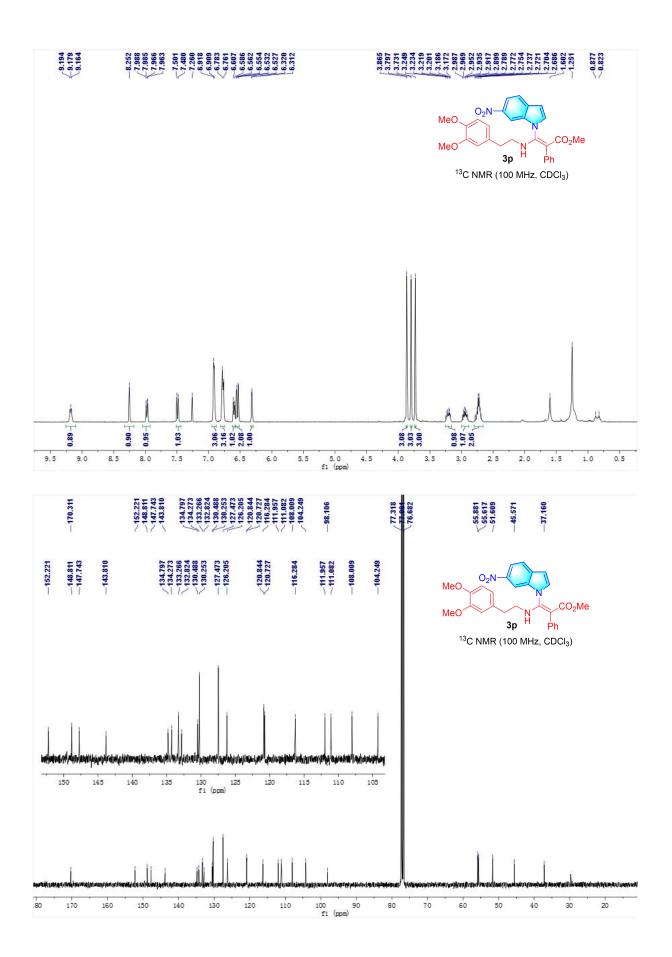











S28

