Supporting Information

From intramolecular cyclization to intermolecular hydrolysis: TMSCF₂Br-enabled carbonylation of aldehydes/ketones and amines to α-hydroxyamides

An Liu, Shuo Sun, Qiqiang Xie, Rumin Huang, Taige Kong, Chuanfa Ni, and Jinbo Hu*

Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Ling-Ling Road, Shanghai 200032 (China) E-mail: jinbohu@sioc.ac.cn

Table of contents

1	General information	S1
2	Optimization of the reaction conditions	S1
3	Procedures for the synthesis of α -hydroxyamides	S2
4	Gram-scale synthesis	S23
5	The synthesis of ¹⁸ O-labeled α -hydroxyamides	S24
6	Mechanistic investigations	S25
7	Procedures for the synthesis of substrates	S27
8	References	S27
9	¹ H, ¹⁹ F and ¹³ C NMR spectra of products	S28

1 General information

Unless otherwise mentioned, all solvents and reagents were purchased from commercial sources. Tetrahydrofuran (THF), 1,4-dioxacyclohexane (1,4-Dioxane) and *N*,*N*-dimethylformamide (DMF) were used directly from a solvent purification system. All the melting points were uncorrected. NMR spectra were recorded on 400 or 600 MHz NMR spectrometer for ¹H, ¹⁹F, and ¹³C acquisitions. ¹H NMR chemical shifts were determined relative to internal (CH₃)₄Si (TMS) at δ 0.00 ppm or to the signal of the residual protonated solvent: CDCl₃ at δ 7.26 ppm. ¹⁹F NMR chemical shifts were determined relative to internal CFCl₃ at δ 0.00 ppm. ¹³C NMR chemical shifts were determined relative to the signal of the solvent: CDCl₃ at δ 77.16 ppm. Data for ¹H, ¹⁹F, ¹³C NMR were recorded as follows: chemical shifts (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiple, q = quartet, dd = doublet of doublets, br = broad, tt = triplet of triplets). Mass spectra were recorded on a high-resolution mass spectrometer in the EI, FI, ESI or DART mode.

2 Optimization of the reaction conditions

Typical procedures (Taking entry 1 and 8 in Table 1 as examples)

Entry 1:

Under argon atmosphere, a solution of 4-fluorobenzaldehyde (1a, 0.2 mmol, 1.0 equiv.), TMSCF₂Br (0.22 mmol, 1.1 equiv.) and *N*,*N*-dimethyl-1-phenylmethanamine (0.22 mmol, 1.1 equiv.) in 1,4-dioxane (2 mL) was stirred at room temperature for an hour. Then *t*-BuOH (0.4 mmol, 2.0 equiv.) was added and the mixture was stirred at 100 °C for 0.5 hour. Yields were determined by ¹⁹F NMR using 1-fluoronaphthalene as an internal standard.

Entry 8:

Under argon atmosphere, a solution of 4-fluorobenzaldehyde (1a, 0.2 mmol, 1.0 equiv.), TMSCF₂Br (0.4 mmol, 2.0 equiv.) and *N*,*N*-dimethyl-1-phenylmethanamine (0.4 mmol, 2.0 equiv.) in 1,4-dioxane (2 mL) was stirred at room temperature for an

hour. Then H_2O (0.2 mL) was added and the mixture was stirred at room temperature for 0.5 hour. Yields were determined by ¹⁹F NMR using 1-fluoronaphthalene as an internal standard.

3 Procedures for the synthesis of α -hydroxyamides

Typical procedures (Taking the compound 9 as an example)

Under argon atmosphere, a solution of 4-fluorobenzaldehyde (1a, 0.5 mmol, 1.0 equiv.), TMSCF₂Br (1.0 mmol, 2.0 equiv.) and *N*,*N*-dimethyl-1-phenylmethanamine (2a, 1.0 mmol, 2.0 equiv.) in 1,4-dioxane (5 mL) was stirred at room temperature for an hour. Then H₂O (0.5 mL) was added and the mixture was stirred at room temperature for 0.5 hour. The mixture was quenched with water, and extracted with ethyl acetate for three times. The combined extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography using petroleum ether/ethyl acetate to afford product **9**.

2-Hydroxy-*N*,*N*-dimethyl-2-(p-tolyl)acetamide (5)¹

White solid (80 mg, 83% yield). $R_f = 0.6$ (petroleum ether/ethyl acetate = 1:1). M.p.: 135 – 140 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (q, J = 8.1 Hz, 4H), 5.16 (s, 1H), 4.71 (s, 1H), 3.02 (s, 3H), 2.77 (s, 3H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 138.4, 136.3, 129.8, 127.5, 71.4, 36.5, 36.3, 21.3; MS (EI, m/z): 193 [M]⁺, 165, 121, 93; HRMS (FI, m/z): exact mass calculated for [M]⁺ (C₁₁H₁₅O₂N) requires m/z193.1097, found m/z 193.1102; IR (film): 3307, 3030, 2908, 1634, 1504, 1403, 1261, 1076, 913, 809, 743, 687, 577 cm⁻¹. 2-(4-(tert-Butyl)phenyl)-2-hydroxy-N,N-dimethylacetamide (6)

White solid (82 mg, 70% yield). $R_f = 0.6$ (petroleum ether/ethyl acetate = 1:1). M.p.: 83 – 86 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 7.29 – 7.18 (m, 2H), 5.19 (s, 1H), 4.71 (s, 1H), 3.03 (s, 3H), 2.78 (s, 3H), 1.30 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.7, 151.5, 136.2, 127.2, 126.0, 71.4, 36.6, 36.4, 34.7, 31.4; MS (EI, *m/z*): 235 [M]⁺, 207, 163; HRMS (FI, *m/z*): exact mass calculated for [M]⁺ (C₁₄H₂₁O₂N) requires *m/z* 235.1567, found *m/z* 235.1563; IR (film): 3404, 2961, 2869, 1651, 1511, 1378, 1264, 1153, 1058, 857, 823, 657, 583 cm⁻¹.

2-Hydroxy-2-(4-methoxyphenyl)-N,N-dimethylacetamide (7)

White solid (80.4 mg, 76% yield). R_f = 0.4 (petroleum ether/ethyl acetate = 1:1). M.p.: 114 – 116 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.04 (dd, *J* = 141.7, 8.7 Hz, 4H), 5.14 (s, 1H), 4.68 (s, 1H), 3.78 (s, 3H), 3.01 (s, 3H), 2.76 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 172.7, 159.7, 131.6, 128.8, 114.5, 77.5, 77.2, 76.8, 71.1, 55.4, 36.5, 36.3; **MS** (EI, *m/z*): 209 [M]⁺, 181, 137, 109; **HRMS** (FI, *m/z*): exact mass calculated for [M]⁺ (C₁₁H₁₅O₃N) requires *m/z* 209.1046, found *m/z* 209.1053; **IR** (film): 3312, 2932, 2833, 1633, 1508, 1457, 1420, 1403, 1259, 1177, 1071, 1030, 814, 737, 691, 641, 574 cm⁻¹.

2-Hydroxy-*N*,*N*-dimethyl-2-(4-(methylthio)phenyl)acetamide (8)

White solid (96 mg, 85% yield). $R_f = 0.4$ (petroleum ether/ethyl acetate = 1:1). M.p.: 130 – 132 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (s, 4H), 5.16 (d, J = 4.6 Hz, 1H),

4.73 (d, J = 5.9 Hz, 1H), 3.02 (s, 3H), 2.77 (s, 3H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 139.2, 136.0, 128.0, 126.9, 71.2, 36.5, 36.4, 15.7; MS (EI, *m/z*): 225 [M]⁺, 153, 109, 72; HRMS (EI, *m/z*): exact mass calculated for [M]⁺ (C₁₁H₁₅O₂NS) requires *m/z* 225.0818, found *m/z* 225.0820; IR (film): 3316, 2918, 2360, 1633, 1489, 1425, 1403, 1258, 1074, 915, 806, 748, 669, 638, 536 cm⁻¹.

2-(4-Fluorophenyl)-2-hydroxy-N,N-dimethylacetamide (9)

White solid (84 mg, 85% yield). $R_f = 0.4$ (petroleum ether/ethyl acetate = 1:1). M.p.: 120 – 122 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.20 (m, 2H), 7.11 – 6.96 (m, 2H), 5.20 (s, 1H), 4.77 (s, 1H), 3.03 (s, 3H), 2.78 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -113.27 (m, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 162.7 (d, J = 247.2 Hz), 135.3 (d, J = 3.4 Hz), 129.4 (d, J = 8.4 Hz), 116.0 (d, J = 21.7 Hz), 70.8, 36.4 (d, J = 7.1 Hz). MS (EI, m/z): 197 [M]⁺, 169, 125, 97, 72; HRMS (FI, m/z): exact mass calculated for [M]⁺(C₁₀H₁₂O₂NF) requires m/z 197.0847, found m/z 197.0845; IR (film): 3256, 1635, 1602, 1506, 1403, 1264, 1225, 1072, 913, 819, 743, 574 cm⁻¹.

2-(4-Chlorophenyl)-2-hydroxy-N,N-dimethylacetamide (10)

White solid (97 mg, 91% yield). $R_f = 0.4$ (petroleum ether/ethyl acetate = 1:1). M.p.: 150 – 152 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.15 (m, 4H), 5.19 (s, 1H), 4.79 (s, 1H), 3.03 (s, 3H), 2.78 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 137.8, 134.5, 129.3, 129.0, 70.9, 36.5, 36.4; MS (FI, *m/z*): 213 [M]⁺; HRMS (FI, *m/z*): exact mass calculated for [M]⁺ (C₁₀H₁₂O₂NCl) requires *m/z* 213.0551, found *m/z* 213.0558; IR (film): 3297, 1636, 1505, 1403, 1261, 1076, 913, 814, 744, 641, 541 cm⁻¹. 2-(4-Bromophenyl)-2-hydroxy-N,N-dimethylacetamide (11)

White solid (112.6 mg, 87% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 1:1). M.p.: 160 – 162 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, J = 118.5, 8.4 Hz, 4H), 5.16 (d, J = 3.9 Hz, 1H), 4.75 (d, J = 6.0 Hz, 1H), 3.02 (s, 3H), 2.77 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 138.3, 132.3, 129.3, 122.7, 70.9, 36.5, 36.5; MS (EI, m/z): 257 [M]⁺, 229, 185, 72; HRMS (FI, m/z): exact mass calculated for [M]⁺ (C₁₀H₁₂O₂NBr) requires m/z 257.0046, found m/z 257.0047; IR (film): 1635, 1507, 1405, 1260, 1075, 913, 812, 743, 633, 526 cm⁻¹.

2-Hydroxy-N,N-dimethyl-2-(4-nitrophenyl)acetamide (12)

White solid (96 mg, 86% yield). $R_f = 0.2$ (petroleum ether/ethyl acetate = 1:1). M.p.: 167 – 169 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.7 Hz, 2H), 7.51 (d, J = 8.7 Hz, 2H), 5.30 (d, J = 5.9 Hz, 1H), 4.83 (d, J = 6.2 Hz, 1H), ¹³C NMR (101 MHz, CDCl₃) δ 3.05 (s, 3H), 2.81 (s, 3H); 171.3, 148.0, 146.1, 128.6, 124.4, 70.6, 36.6, 36.5; MS (EI, m/z): 224 [M]⁺, 194, 72; HRMS (FI, m/z): exact mass calculated for [M]⁺ (C₁₀H₁₂O₄N₂) requires m/z 224.0792, found m/z 224.0790; IR (film): 3252, 1636, 1513, 1404, 1349, 1264, 1079, 913, 826, 743, 728, 699, 637 cm⁻¹.

2-(4-Cyanophenyl)-2-hydroxy-N,N-dimethylacetamide (13)

White solid (80 mg, 78% yield). $R_f = 0.3$ (petroleum ether/ethyl acetate = 1:1). M.p.: 135 – 137 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, J = 87.6, 8.1 Hz, 4H), 5.24 (d, J = 5.3 Hz, 1H), 4.81 (d, J = 6.1 Hz, 1H), 3.01 (s, 3H), 2.78 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) *δ* 171.3, 144.2, 132.9, 128.3, 118.4, 112.5, 70.8, 36.5, 36.5; **MS** (EI, *m/z*): 204 [M]⁺, 132, 72; **HRMS** (FI, *m/z*): exact mass calculated for [M]⁺ (C₁₁H₁₂O₂N₂) requires *m/z* 204.0893, found *m/z* 204.0892; **IR (film)**: 3253, 2935, 2228, 1638, 1501, 1423, 1404, 1263, 1157, 1079, 818, 736, 687, 648, 568 cm⁻¹.

2-Hydroxy-N,N-dimethyl-2-(4-(trifluoromethyl)phenyl)acetamide (14)

White solid (108 mg, 88% yield). $R_f = 0.6$ (petroleum ether/ethyl acetate = 1:1). M.p.: 133 – 135 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, J = 72.0, 8.0 Hz, 4H), 5.25 (s, 1H), 4.81 (s, 1H), 3.03 (s, 3H), 2.78 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.74 (s, 3F); ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 143.1, 130.8 (q, J = 32.6 Hz), 128.0, 126.1 (q, J = 3.8 Hz), 124.0 (q, J = 272.1 Hz), 120.0, 71.0, 36.5; MS (EI, m/z): 247 [M]⁺, 175, 127, 72; HRMS (FI, m/z): exact mass calculated for [M]⁺ (C₁₁H₁₂O₂NF₃) requires m/z247.0815, found m/z 247.0813; IR (film): 3214, 2930, 1635, 1500, 1420, 1403, 1331, 1157, 1124, 1080, 1069, 819, 636 cm⁻¹.

2-Hydroxy-N,N-dimethyl-2-(4-(trifluoromethoxy)phenyl)acetamide (15)

White solid (118 mg, 90% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 1:1). M.p.: 111 – 113 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (dd, J = 59.0, 8.3 Hz, 4H), 5.21 (s, 1H), 4.78 (s, 1H), 3.03 (s, 3H), 2.78 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -57.90 (s, 3F); ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 149.3 (d, J = 2.0 Hz), 138.0, 129.1, 121.6, 117.9 (q, J = 257.5 Hz), 70.8, 36.5 (d, J = 5.5 Hz); MS (EI, m/z): 235, 191, 72; HRMS (FI, m/z): exact mass calculated for [M]⁺ (C₁₁H₁₂O₃NF₃) requires m/z 263.0764, found m/z 263.0767; IR (film): 1737, 1637, 1505, 1404, 1215, 1155, 1079, 913, 743 cm⁻¹. 4-(2-(Dimethylamino)-1-hydroxy-2-oxoethyl)phenyl acetate (16)

White solid (76 mg, 64% yield). $R_f = 0.4$ (petroleum ether/ethyl acetate = 1:1). M.p.: 143 – 145 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (dd, J = 96.3, 8.6 Hz, 4H), 5.19 (d, J = 6.3 Hz, 1H), 4.73 (d, J = 6.4 Hz, 1H), 3.01 (s, 3H), 2.78 (s, 3H), 2.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 169.3, 150.8, 136.8, 128.7, 122.2, 70.9, 36.5, 36.4, 21.2; MS (EI, m/z): 237 [M]⁺, 209, 165, 123; HRMS (FI, m/z): exact mass calculated for [M]⁺ (C₁₂H₁₅O₄N) requires m/z 237.0996, found m/z 237.0993; IR (film): 1764, 1633, 1505, 1403, 1203, 1077, 913, 743 cm⁻¹.

2-(2-Chlorophenyl)-2-hydroxy-N,N-dimethylacetamide (17)

White solid (98 mg, 92% yield). $R_f = 0.2$ (petroleum ether/ethyl acetate = 5:1). M.p.: 99 – 101 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.38 (m, 1H), 7.30 – 7.19 (m, 3H), 5.68 (s, 1H), 4.76 (s, 1H), 3.04 (s, 3H), 2.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 136.8, 133.7, 129.9, 128.5, 127.9, 77.4, 77.1, 76.8, 67.8, 36.4, 36.0; MS (EI, *m/z*): 178, 141, 72; HRMS (FI, *m/z*): exact mass calculated for [M]⁺ (C₁₀H₁₂O₂NCl) requires *m/z* 213.0551, found *m/z* 213.0555; IR (film): 3394, 2931, 1651, 1500, 1474, 1441, 1378, 1261, 1065, 761, 737 cm⁻¹.

2-Hydroxy-2-(4-methoxy-3-nitrophenyl)-*N*,*N*-dimethylacetamide (18)

White solid (118 mg, 93% yield). $R_f = 0.2$ (petroleum ether/ethyl acetate = 1:1). M.p.: 120 – 123 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 2.4 Hz, 1H), 7.50 (dd, J = 8.7, 2.4 Hz, 1H), 7.08 (d, J = 8.7 Hz, 1H), 5.21 (s, 1H), 4.78 (s, 1H), 3.94 (s, 3H), 3.02 (s, 3H), 2.81 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 153.0, 139.6, 133.2, 131.8, 124.9, 114.3, 77.5, 77.2, 76.8, 70.0, 56.8, 36.5 (d, J = 4 Hz); MS (EI, m/z): 254 [M]⁺, 226, 182, 166, 107, 72; HRMS (FI, m/z): exact mass calculated for [M]⁺ (C₁₁H₁₄O₅N₂) requires m/z 254.0897, found m/z 254.0904; IR (film): 2994, 1769, 1758, 1644, 1530, 1373, 1246, 1056, 913, 743 cm⁻¹.

2-Hydroxy-*N*,*N*-dimethyl-2-(perfluorophenyl)acetamide (19)

White solid (108 mg, 80% yield). $R_f = 0.3$ (petroleum ether/ethyl acetate = 5:1). M.p.: 111 – 112 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 5.48 (d, J = 5.5 Hz, 1H), 4.98 (d, J = 5.6 Hz, 1H), 3.06 (s, 3H), 2.77 (s, 3H); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -142.48 (m, 2F), -152.87 (m, 1F), -160.76 (m, 2F); ¹³**C NMR** (101 MHz, CDCl₃) δ 169.5, 147.1 – 145.3 (m), 144.5 – 143.4 (m), 143.3 – 142.2 (m), 141.1 – 139.7 (m), 139.4 – 138.6 (m), 137.4 – 135.6 (m), 115.9 – 110.3 (m), 78.7 – 75.3 (m), 61.6, 36.9, 35.9; **MS** (EI, *m/z*): 269 [M]⁺, 197, 72; **HRMS** (FI, *m/z*): exact mass calculated for [M]⁺ (C₁₀H₈O₂NF₅) requires *m/z* 269.0470, found *m/z* 269.0473; **IR (film)**: 3226, 1655, 1524, 1497, 1397, 1317, 1290, 1114, 1082, 993, 925, 857, 773 cm⁻¹.

2-([1,1'-Biphenyl]-4-yl)-2-hydroxy-*N*,*N*-dimethylacetamide (20)

White solid (89 mg, 70% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 1:1). M.p.: 167 – 169 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (t, J = 7.2 Hz, 4H), 7.51 – 7.33 (m, 5H), 5.25 (d, J = 6.1 Hz, 1H), 4.80 (d, J = 6.3 Hz, 1H), 3.05 (s, 3H), 2.82 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 141.5, 140.6, 138.2, 128.9, 128.0, 127.9, 127.6, 127.2, 71.4, 36.6, 36.4; MS (EI, m/z): 255 [M]⁺, 227, 183, 155, 72; HRMS (FI, m/z): exact mass calculated for [M]⁺(C₁₆H₁₇O₂N) requires *m/z* 255.1254, found *m/z* 255.1252; **IR (film)**: 3318, 2914, 1632, 1498, 1400, 1260, 1075, 820, 755, 765, 733, 695 cm⁻¹.

2-Hydroxy-*N*,*N*-dimethyl-2-(naphthalen-1-yl)acetamide (21)

White solid (94 mg, 82% yield). $R_f = 0.1$ (petroleum ether/ethyl acetate = 5:1). M.p.: 98 – 100 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.30 (d, J = 8.5 Hz, 1H), 7.92 – 7.80 (m, 2H), 7.65 – 7.49 (m, 2H), 7.46 – 7.37 (m, 1H), 7.32 – 7.22 (m, 1H), 5.90 (s, 1H), 4.73 (s, 1H), 3.11 (s, 3H), 2.63 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 173.0, 134.8, 134.3, 131.5, 129.4, 128.9, 127.0, 126.1, 125.5, 125.0, 123.4, 68.9, 36.6, 36.3; **MS** (EI, *m/z*): 229 [M]⁺, 157, 129, 72; **HRMS** (EI, *m/z*): exact mass calculated for [M]⁺ (C₁₄H₁₅O₂N) requires *m/z* 229.1097, found *m/z* 229.1101; **IR (film)**: 3395, 3046, 2930, 1647, 1507, 1379, 1261, 1161, 1056, 913, 803, 775, 743 cm⁻¹.

2-(Benzo[b]thiophen-3-yl)-2-hydroxy-*N*,*N*-dimethylacetamide (22)

Pale yellow solid (99 mg, 84% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 1:1). M.p.: 93 – 95 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 6.48 – 6.17 (m, 4H), 5.30 (s, 1H), 4.57 (d, J = 5.9 Hz, 1H), 3.04 (s, 3H), 2.84 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 152.2, 142.8, 110.7, 108.2, 100.1, 64.7, 36.5, 36.3; MS (EI, m/z): 235 [M]⁺, 169, 141, 97, 72; HRMS (FI, m/z): exact mass calculated for [M]⁺ (C₁₂H₁₃O₂NS) requires m/z 235.0662, found m/z 235.0658; IR (film): 3106, 2902, 2849, 1644, 1498, 1399, 1256, 1065, 1009, 919, 830, 742, 637 cm⁻¹.

2-Hydroxy-*N*,*N*-dimethyl-5-phenylpentanamide (23)

Yellow oil (95 mg, 86% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.24 (m, 2H), 7.23 – 7.15 (m, 3H), 4.37 (dd, J = 8.2, 3.0 Hz, 1H), 3.73 (br, 1H), 2.99 (s, 3H), 2.87 (s, 3H), 2.76 – 2.59 (m, 2H), 1.91 – 1.77 (m, 2H), 1.75 – 1.62 (m, 1H), 1.58 – 1.44 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.4, 141.9, 128.5, 128.4, 125.9, 67.9, 36.3, 36.0, 35.4, 33.9, 26.4; MS (FI, *m/z*): 221 [M]⁺; HRMS (FI, *m/z*): exact mass calculated for [M]⁺ (C₁₃H₁₉O₂N) requires *m/z* 221.1410, found *m/z* 221.1409; **IR (film)**: 3417, 3025, 2933, 2858, 1644, 1469, 1453, 1380, 1261, 1090, 913, 747, 700 cm⁻¹.

2-Hydroxy-N,N-dimethyl-4-phenylbutanamide (24)

Yellow oil (48 mg, 46% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.10 (m, 5H), 4.28 (dd, J = 9.0, 2.7 Hz, 1H), 3.80 (s, 1H), 2.93 (s, 3H), 2.85 – 2.69 (m, 5H), 1.94 – 1.82 (m, 1H), 1.76 (qd, J = 8.6, 4.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 141.3, 128.7, 128.5, 126.1, 77.5, 77.2, 76.8, 67.0, 36.5, 36.2, 35.9, 31.3; MS (EI, m/z): 207 [M]⁺, 103, 91, 72; HRMS (FI, m/z): exact mass calculated for [M]⁺ (C₁₂H₁₇O₂N) requires m/z 207.1254, found m/z 207.1251; IR (film): 3481, 3026, 2928, 2859, 1644, 1496, 1454, 1380, 1261, 1145, 1087, 753, 700, 492 cm⁻¹.

2-Hydroxy-*N*,*N*,3,3-tetramethylbutanamide (25)²

White solid (54 mg, 68% yield). $R_f = 0.1$ (petroleum ether/ethyl acetate = 5:1). M.p.: 52 – 55 °C. ¹H NMR (400 MHz, CDCl₃) δ 4.16 (d, J = 9.1 Hz, 1H), 3.31 (d, J = 9.2 Hz,

1H), 3.01 (s, 2H), 2.97 (s, 1H), 0.93 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 77.5, 77.2, 76.8, 74.0, 38.0, 36.7, 35.9, 26.0; MS (EI, *m/z*): 159 [M]⁺, 103, 72; HRMS (FI, *m/z*): exact mass calculated for [M]⁺ (C₈H₁₇O₂N) requires *m/z* 159.1254, found *m/z* 159.1257; IR (film): 3447, 2955, 2870, 1636, 1505, 1480, 1365, 1258, 1145, 1047, 1020, 841 cm⁻¹.

2-Hydroxy-N,N-dimethyl-2-(4-(methylthio)phenyl)propenamide (26)

White solid (93 mg, 77% yield). R_f = 0.5 (petroleum ether/ethyl acetate = 1:1). M.p.: 103 – 105 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.12 (m, 4H), 5.27 (s, 1H), 3.01 (s, 3H), 2.65 (s, 3H), 2.47 (d, *J* = 1.4 Hz, 3H), 1.80 (d, *J* = 1.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 139.9, 138.3, 126.8, 126.1, 74.5, 38.4, 37.7, 24.8, 15.8; **MS** (EI, *m/z*): 239 [M]⁺, 167, 151, 125; **HRMS** (FI, *m/z*): exact mass calculated for [M]⁺ (C₁₂H₁₇O₂NS) requires *m/z* 239.0975, found *m/z* 239.0977; **IR (film)**: 3373, 2980, 2924, 1623, 1492, 1438, 1398, 1363, 1258, 1096, 1014, 918, 822, 752, 653, 586 cm⁻¹.

3-(4-Fluorophenyl)-2-hydroxy-*N*,*N*,2-trimethylpropanamide (27)

White solid (85 mg, 75% yield). $R_f = 0.6$ (petroleum ether/ethyl acetate = 1:1). M.p.: 95 – 97 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.11 (m, 2H), 7.04 – 6.75 (m, 2H), 4.46 (s, 1H), 3.25 – 2.84 (m, 8H), 1.55 – 1.46 (m, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -116.3 – -116.5 (m, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 162.0 (d, J = 245.0 Hz), 132.2, 131.6, 131.5, 115.1, 114.9, 74.8, 45.2, 26.1; MS (EI, m/z): 207, 153, 116; HRMS (FI, m/z): exact mass calculated for [M]⁺ (C₁₂H₁₆O₂NF) requires m/z 225.1160, found m/z 225.1153; IR (film): 2932, 1618, 1509, 1391, 1363, 1221, 1157, 1101, 913, 822, 746 cm⁻¹.

2-Hydroxy-N,N-dimethyl-2-(naphthalen-2-yl)acetamide (28)

White solid (88 mg, 76% yield). $R_f = 0.6$ (petroleum ether/ethyl acetate = 1:1). M.p.: 120 – 122 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (m, 4H), 7.47 (dd, J = 6.3, 3.3 Hz, 2H), 7.40 (d, J = 7.3 Hz, 1H), 5.35 (s, 1H), 4.88 (s, 1H), 3.00 (s, 3H), 2.74 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 136.4, 133.2, 133.1, 129.0, 128.0, 127.6, 126.8, 126.4, 126.3, 124.7, 71.6, 36.4, 36.2; MS (EI, m/z): 229 [M]⁺, 201, 157, 129, 72; HRMS (EI, m/z): exact mass calculated for [M]⁺ (C₁₄H₁₅O₂N) requires m/z 229.1097, found m/z 229.1102; IR (film): 3315, 2938, 1644, 1505, 1263, 1162, 1066, 868, 754, 693, 623 cm⁻¹.

N,N-Diethyl-2-hydroxy-2-(naphthalen-2-yl)acetamide (29)

Yellow oil (107 mg, 83% yield). $R_f = 0.6$ (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.72 (m, 4H), 7.58 – 7.37 (m, 3H), 5.35 (s, 1H), 3.53 (dq, J = 14.1, 7.1 Hz, 1H), 3.34 (dq, J = 14.1, 7.1 Hz, 1H), 3.20 (dq, J = 14.3, 7.1 Hz, 1H), 3.05 (dq, J = 14.4, 7.1 Hz, 1H), 1.14 (t, J = 7.1 Hz, 3H), 0.77 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 137.1, 133.4, 133.2, 129.1, 128.0, 127.7, 126.9, 126.4, 126.4, 124.8, 71.7, 41.0, 40.8, 13.2, 12.6; MS (EI, m/z): 257 [M]⁺, 229, 157, 129, 100, 72; HRMS (EI, m/z): exact mass calculated for [M]⁺ (C₁₆H₁₉NO₂) requires m/z257.1410, found m/z 257.1418; IR (film): 3070, 2974, 2929, 1685, 1637, 1464, 1381, 1360, 1277, 1066, 949, 819, 749, 478 cm⁻¹.

N-Ethyl-2-hydroxy-*N*-methyl-2-(naphthalen-2-yl)acetamide (30)

Yellow oil (87.8 mg, 72% yield). $R_f = 0.4$ (petroleum ether/ethyl acetate = 5:1). A rotameric ratio of approx. 55:45 is observed in the ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.74 (m, 4H), 7.47 (d, J = 9.5 Hz, 2H), 7.40 (d, J = 8.2 Hz, 1H), 5.35 (s, 0.45×1H), 5.31 (s, 0.55×1H), 5.18 – 4.09 (br, 1H), 3.58 – 3.34 (m, 1H), 3.28 – 3.03 (m, 1H), 2.97 (s, 0.45×3H), 2.71 (s, 0.55×3H), 1.09 (t, J = 7.2 Hz, 0.55×3H), 0.74 (t, J = 7.1 Hz, 0.45×3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.8 (d, J = 9.1 Hz), 137.0, 136.5, 133.3 (d, J = 2.9 Hz), 129.0 (d, J = 2.8 Hz), 127.8 (d, J = 29.6 Hz), 126.9 (d, J = 15.5 Hz), 126.4 (d, J = 2.7 Hz), 124.8 (d, J = 2.7 Hz), 71.7 (d, J = 3.1 Hz), 43.4 (d, J = 35.4 Hz), 33.5 (d, J = 77.2 Hz), 12.2 (d, J = 50.3 Hz). MS (FI, m/z): 243 [M]⁺; HRMS (FI, m/z): exact mass calculated for [M]⁺ (C₁₅H₁₇NO₂) requires m/z 243.1254, found m/z 243.1250; **IR (film)**: 3392, 2972, 2932, 1641, 1380, 1058, 820, 750 cm⁻¹.

N-Benzyl-2-hydroxy-*N*-methyl-2-(naphthalen-2-yl)acetamide (31)

Yellow oil (112.2 mg, 74% yield). $R_f = 0.2$ (petroleum ether/ethyl acetate = 4:1). Rotamers are observed in spectra. ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.75 (m, 4H), 7.53 – 6.84 (m, 8H), 5.42 (d, J = 7.1 Hz, 1H), 4.89 (s, 1H), 4.78 – 4.05 (m, 2H), 3.02 – 2.66 (d, J = 112.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.8 (d, J = 21.8 Hz), 136.7, 136.3 (d, J = 7.7 Hz), 135.1, 133.3 (d, J = 3.6 Hz), 129.2 (d, J = 13.1 Hz), 128.8 (d, J = 16.4 Hz), 128.1 – 127.7 (m), 127.0 (d, J = 7.9 Hz), 126.6 – 126.4 (m), 124.8 (d, J = 17.7 Hz), 71.9 (d, J = 6.1 Hz), 52.2 (d, J = 20.4 Hz), 34.2 (d, J = 10.3 Hz); MS (FI, m/z): 305 [M]⁺; HRMS (FI, m/z): exact mass calculated for [M]⁺ (C₂₀H₁₉NO₂) requires m/z 305.1410, found m/z 305.1412; IR (film): 3403, 3057, 3028, 2926, 1644, 1494, 1543, 1383, 1267, 1060, 821, 749, 701 cm⁻¹.

2-Hydroxy-*N*-methyl-2-(naphthalen-2-yl)-*N*-phenethylacetamide (32)

Yellow oil (144 mg, 90% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 2:1). A rotameric ratio of approx. 60:40 is observed in the ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.71 (m, 4H), 7.57 – 6.73 (m, 8H), 5.30 (d, J = 5.9 Hz, 0.6×1H), 5.15 (d, J = 5.8 Hz, 0.4×1H), 4.93 – 4.81 (m, 1H), 3.91 – 3.21 (m, 2H), 3.04 (s, 1H), 2.87 – 2.04 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 172.2 (d, J = 2.5 Hz), 138.4, 137.4, 136.9, 136.3, 133.4, 133.2 (d, J = 4.5 Hz), 129.2, 129.0, 128.8 – 128.6 (m), 128.4, 128.0, 127.7 (d, J = 5.9 Hz), 127.0, 126.8, 126.5 – 126.3 (m), 124.8, 71.8, 71.7, 50.9, 50.5, 35.3, 34.1, 33.9, 33.4. MS (FI, m/z): 319 [M]⁺; HRMS (FI, m/z): exact mass calculated for [M]⁺(C₂₁H₂₁NO₂) requires m/z 319.1567, found m/z 319.1571; **IR (film)**: 3395, 3057, 3026, 2931, 1644, 1495, 1454, 1385, 1288, 1251, 1166, 1061, 863, 820, 749, 701, 479 cm⁻¹.

2-Hydroxy-2-(naphthalen-2-yl)-1-(piperidin-1-yl)ethan-1-one (33)

Pale yellow solid (107 mg, 79% yield). $R_f = 0.7$ (petroleum ether/ethyl acetate = 1:1). M.p.: 93 – 95 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.73 (m, 4H), 7.55 – 7.38 (m, 3H), 5.38 (s, 1H), 4.98 (s, 1H), 3.93 – 3.69 (m, 1H), 3.64 – 3.44 (m, 1H), 3.35 – 3.08 (m, 2H), 1.67 – 1.39 (m, 4H), 1.35 – 1.18 (m, 1H), 1.01 – 0.69 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 137.1, 133.5, 133.3, 129.2, 128.1, 127.8, 126.9, 126.5, 124.9, 71.6, 46.0, 44.2, 25.5, 25.4, 24.3; MS (EI, *m/z*): 269 [M]⁺, 241, 157, 129, 112; HRMS (FI, *m/z*): exact mass calculated for [M]⁺ (C₁₇H₁₉NO₂) requires *m/z* 269.1410, found *m/z* 269.1415; IR (film): 2936, 2855, 1638, 1470, 1444, 1396, 1256, 1066, 1011, 914, 818, 748, 683, 478 cm⁻¹.

1-(Azocan-1-yl)-2-hydroxy-2-(naphthalen-2-yl)ethan-1-one (34)

Yellow oil (80 mg, 54% yield). $R_f = 0.2$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.77 (m, 4H), 7.51 – 7.41 (m, 3H), 5.36 (s, 1H), 5.03 (s, 1H), 3.60 – 3.39 (m, 2H), 3.31 – 3.10 (m, 2H), 1.87 – 1.75 (m, 2H), 1.59 – 1.12 (m, 8H); ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 136.8, 133.2 (d, *J* = 9.5 Hz), 129.0, 127.9, 127.7, 127.0, 126.3, 124.9, 71.9, 48.5, 47.6, 26.5, 26.3, 25.7, 25.6, 23.8; MS (FI, *m/z*): 297 [M]⁺; HRMS (FI, *m/z*): exact mass calculated for [M]⁺ (C₁₉H₂₃NO₂) requires *m/z* 297.1723, found *m/z* 297.1722; **IR (film)**: 3387, 2927, 2853, 1636, 1474, 1396, 1064, 819, 748 cm⁻¹.

2-Hydroxy-1-(4-methylpiperidin-1-yl)-2-(naphthalen-2-yl)ethan-1-one (35)

Yellow oil (124 mg, 87% yield). $R_f = 0.6$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.73 (m, 4H), 7.50 (dt, J = 6.8, 3.7 Hz, 2H), 7.42 (t, J = 6.6Hz, 1H), 5.38 (t, J = 5.5 Hz, 1H), 4.99 – 4.92 (m, 1H), 4.68 – 4.57 (m, 1H), 3.75 – 3.65 (m, 1H), 2.97 – 2.47 (m, 2H), 1.75 – 1.05 (m, 4H), 1.03 – 0.01 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4 (d, J = 13.5 Hz), 137.0 (d, J = 20.1 Hz), 133.4 (d, J = 4.5 Hz), 133.2, 129.0 (d, J = 2.6 Hz), 128.0 (d, J = 4.1 Hz), 127.7 (d, J = 4.1 Hz), 126.9, 126.7, 126.4, 124.8 (d, J = 5.8 Hz), 71.5 (d, J = 10.6 Hz), 45.1 (d, J = 28.5 Hz), 43.4 (d, J =9.7 Hz), 34.1, 33.6 (d, J = 5.7 Hz), 32.8, 30.7, 21.5 (d, J = 11.8 Hz); **MS** (FI, *m/z*): 283 [M]⁺; **HRMS** (FI, *m/z*): exact mass calculated for [M]⁺ (C₁₈H₂₁NO₂) requires *m/z* 283.1567, found *m/z* 283.1565; **IR (film)**: 3391, 2949, 2925, 1640, 1456, 1397, 1270, 1242, 1068, 973, 819, 748 cm⁻¹.

2-Hydroxy-1-morpholino-2-(naphthalen-2-yl)ethan-1-one (36)

White solid (87 mg, 64% yield). $R_f = 0.4$ (petroleum ether/ethyl acetate = 1:1). M.p.: 135 – 137 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.72 (m, 4H), 7.55 – 7.48 (m, 2H), 7.41 (dd, J = 8.5, 1.8 Hz, 1H), 5.37 (d, J = 5.4 Hz, 1H), 4.81 (d, J = 5.7 Hz, 1H), 3.85 – 3.50 (m, 4H), 3.48 – 2.95 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 136.5, 133.4, 133.4, 129.4, 128.1, 127.9, 127.0, 126.7, 126.7, 124.7, 71.8, 66.7, 66.0, 45.4, 43.3; **MS** (EI, *m/z*): 271 [M]⁺, 243, 157, 129; **HRMS** (FI, *m/z*): exact mass calculated for [M]⁺ (C₁₆H₁₇NO₃) requires *m/z* 271.1203, found *m/z* 271.1209; **IR (film)**: 3404, 2922, 2855, 1642, 1458, 1388, 1360, 1271, 1246, 1112, 1068, 1028, 913, 747, 478 cm⁻¹.

2-Hydroxy-2-(naphthalen-2-yl)-1-(4-phenylpiperidin-1-yl)ethan-1-one (37)

Yellow oil (124 mg, 93% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 2:1). A rotameric ratio of approx. 54:46 is observed in the ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.77 (m, 4H), 7.48 (s, 3H), 7.34 – 7.01 (m, 4H), 6.81 (d, J = 7.1 Hz, 1H), 5.45 (s, 0.46×1H), 5.42 (s, 0.54×1H), 4.83 (d, J = 12.9 Hz, 1H), 4.28 (s, 1H), 3.84 (d, J = 13.5 Hz, 1H), 3.08 – 2.49 (m, 3H), 2.11 – 0.41 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 170.7 (d, J = 11.1 Hz), 144.6 (d, J = 17.1 Hz), 136.9 (d, J = 25.2 Hz), 133.5 – 133.2 (m), 129.1 (d, J = 4.1 Hz), 128.6, 128.4, 128.0 (d, J = 9.3 Hz), 127.8 (d, J = 5.2 Hz), 127.1 – 126.3 (m), 124.8 (d, J = 4.0 Hz), 71.6 (d, J = 12.2 Hz), 45.5 (d, J = 34.4 Hz), 43.8 (d, J = 17.4 Hz), 42.3 (d, J = 19.0 Hz), 33.4, 32.8 (d, J = 6.4 Hz), 31.6; MS (FI, m/z): 345 [M]⁺; HRMS (FI, m/z): exact mass calculated for [M]⁺ (C₂₃H₂₃NO₂) requires m/z 345.1723, found m/z 345.1718; IR (film): 3394, 3055, 2936, 1640, 1452, 1396, 1268, 1069, 1006, 749 cm⁻¹.

1-(4-(4-Fluorophenyl)piperidin-1-yl)-2-hydroxy-2-(naphthalen-2-yl)ethan-1-one (38)

Yellow oil (162 mg, 89% yield). $R_f = 0.6$ (petroleum ether/ethyl acetate = 1:1). A rotameric ratio of approx. 56:44 is observed in the ¹⁹F NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.77 (m, 4H), 7.53 – 7.40 (m, 3H), 7.09 (dd, J = 8.6, 5.4 Hz, 1H), 6.98 (t, J = 8.7 Hz, 1H), 6.85 – 6.70 (m, 2H), 5.45 (d, J = 6.0 Hz, 0.44×1H), 5.42 (d, J = 5.7 Hz, 0.56×1H), 5.00 (d, J = 6.1 Hz, 0.53×1H), 4.95 (d, J = 6.3 Hz, 0.44×1H), 4.83 (d, J = 12.4 Hz, 1H), 3.87 – 3.79 (m, 1H), 3.10 – 2.41 (m, 3H), 1.93 – 0.15 (m, 4H); ¹⁹F NMR (376 MHz, CDCl₃) δ -116.87 (tt, J = 8.6, 5.2 Hz, 0.44×1F), -117.06 (tt, J = 8.6, 5.2 Hz, 0.56×1F); ¹³C NMR (101 MHz, CDCl₃) δ 170.7 (d, J = 10.8 Hz), 140.4 – 140.1 (m), 137.0, 136.7, 133.4 (d, J = 7.2 Hz), 133.2, 129.1 (d, J = 2.2 Hz), 128.1 – 127.7 (m), 127.0, 126.7, 126.6 – 126.2 (m), 124.8 (d, J = 9.1 Hz), 115.2 (t), 71.6 (d, J = 10.4 Hz), 45.5, 45.2, 43.8, 43.6, 41.6, 41.4, 33.5, 32.9 (d, J = 11.8 Hz), 31.7; MS (FI, m/z): 363 [M]⁺; HRMS (FI, m/z): exact mass calculated for [M]⁺ (C₂₃H₂₂NO₂F) requires m/z 363.1629, found m/z 363.1633; IR (film): 3396, 2936, 2860, 1640, 1509, 1472, 1395, 1277, 1220, 1159, 1068, 1004, 833, 749 cm⁻¹.

2-Hydroxy-1-(4-(4-methoxyphenyl)piperidin-1-yl)-2-(naphthalen-2-yl)ethan-1one (39)

Yellow oil (142 mg, 76% yield). $R_f = 0.5$ (petroleum ether/ethyl acetate = 1:1). A rotameric ratio of approx. 54:46 is observed in the ¹H NMR. ¹H NMR (400 MHz,

CDCl₃) δ 7.92 – 7.78 (m, 4H), 7.54 – 7.42 (m, 3H), 7.06 (d, J = 8.4 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 6.71 (dd, J = 22.4, 8.6 Hz, 2H), 5.47 (s, 0.46×1H), 5.43 (s, 0.54×1H), 5.01 (s, 1H), 4.82 (d, J = 13.4 Hz, 1H), 3.88 – 3.79 (m, 1H), 3.77 (s, 0.46×3H), 3.69 (s, 0.54×3H), 3.04 – 2.47 (m, 3H), 1.91 – 0.37 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5 (d, J = 12.4 Hz), 158.1 (d, J = 18.4 Hz), 137.1 – 136.5 (m), 133.3 (d, J = 6.8 Hz), 133.1, 129.0 (d, J = 2.8 Hz), 127.9 (d, J = 9.8 Hz), 127.7 (d, J = 5.1 Hz), 127.4, 127.2, 126.9, 126.6, 126.4 (d, J = 5.8 Hz), 124.8 (d, J = 4.7 Hz), 71.5 (d, J = 11.6 Hz), 55.1 (d, J = 7.5 Hz), 45.6, 45.2, 43.7 (d, J = 16.5 Hz), 41.3 (d, J = 19.7 Hz), 33.6, 32.9 (d, J = 6.3 Hz), 31.8; MS (FI, m/z): 375 [M]⁺; HRMS (FI, m/z): exact mass calculated for [M]⁺ (C₂₄H₂₅NO₃) requires m/z 375.1829, found m/z 375.1827; IR (film): 3395, 2935, 2862, 1644, 1513, 1462, 1394, 1367, 1247, 1179, 1069, 828 cm⁻¹.

1-(6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-2-hydroxy-2-(naphthalen-2yl)ethan-1-one (40)

Yellow oil (176 mg, 93% yield). $R_f = 0.4$ (petroleum ether/ethyl acetate = 1:1). Rotamers are observed in spectrum. ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.73 (m, 4H), 7.49 – 7.36 (m, 3H), 6.60 – 6.07 (m, 2H), 5.45 (d, J = 4.0 Hz, 1H), 5.17 – 4.19 (m, 3H), 4.06 (d, J = 15.4 Hz, 1H), 3.92 – 3.65 (m, 5H), 3.56 (s, 1H), 3.46 (t, J = 5.8 Hz, 1H), 2.85 – 1.93 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.2 (d, J = 10.6 Hz), 148.3 – 147.5 (m), 136.5 (d, J = 27.3 Hz), 133.1 (d, J = 2.8 Hz), 129.2, 127.9 (d, J = 11.4 Hz), 127.7 (d, J = 5.3 Hz), 126.8 (d, J = 2.7 Hz), 126.5 – 126.2 (m), 125.2, 124.7 (d, J = 2.4 Hz), 124.0, 123.3, 111.3 (d, J = 20.3 Hz), 109.2, 108.6, 71.9, 56.3 – 55.5 (m), 46.3, 44.8, 42.5, 41.3, 27.7 (d, J = 21.2 Hz); MS (FI, m/z): 377 [M]⁺; HRMS (FI, m/z): exact mass calculated for [M]⁺(C₂₃H₂₃NO₄) requires m/z 377.1622, found m/z 377.1619; IR (film): 3399, 3055, 2935, 2836, 1644, 1518, 1454, 1257, 1115, 1049, 734 cm⁻¹.

methyl-2-(naphthalen-2-yl)acetamide (41)

Yellow oil (173 mg, 89% yield). $R_f = 0.2$ (petroleum ether/ethyl acetate = 2:1). d.r. 60:40 (determined by HPLC). A mixture of 4 pairs of isomers (arising from rotational isomerism and diastereoisomerism). d.r. 60:40 (determined by HPLC). ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.59 (m, 4H), 7.53 – 7.31 (m, 3H), 6.76 – 5.11 (m, 3H), 4.87 (br, 1H), 4.21 – 3.62 (m, 7H), 3.35 – 2.97 (m, 4H), 2.89 – 2.37 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.7 (d, J = 18.4 Hz), 172.3 (d, J = 18.0 Hz), 150.3, 150.2, 149.9, 149.7, 149.4 (d, J = 9.0 Hz), 137.3 – 136.2 (m), 134.8, 134.5, 134.1 – 133.1 (m), 129.2 – 128.9 (m), 128.1 – 127.6 (m), 127.2 – 126.7 (m), 126.6 – 126.2 (m), 125.0, 124.7, 124.5, 107.4 (d, J = 14.7 Hz), 106.9 (d, J = 23.7 Hz), 106.3 (d, J = 36.0 Hz), 71.7 (d, J = 14.1 Hz), 56.3 (d, J = 3.7 Hz), 56.2 – 55.9 (m), 55.6, 53.6, 52.5 (d, J = 14.9 Hz), 52.0, 40.8, 40.6, 40.0 (d, J = 4.6 Hz), 36.4, 35.9, 34.2 (d, J = 6.7 Hz), 33.9, 33.5, 32.8; MS (EI, m/z): 391 [M]⁺; HRMS (EI, m/z): exact mass calculated for [M]⁺ (C₂₄H₂₅NO₄) requires m/z 391.1778, found m/z 391.1781; IR (film): 3399, 3054, 2923, 1650, 1591, 1490, 1384, 1059, 822, 750 cm⁻¹.

N-(3-(4-((Difluoro- λ^3 -methyl)- λ^2 -fluoraneyl)phenoxy)-3-phenylpropyl)-2hydroxy-N-methyl-2-(naphthalen-2-yl)acetamide (42)

Yellow oil (155 mg, 63% yield). $R_f = 0.4$ (petroleum ether/ethyl acetate = 2:1). A mixture of 4 pairs of isomers (arising from rotational isomerism and diastereoisomerism). d.r. 60:40 (determined by chiral HPLC). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 25.8 Hz, 4H), 7.61 – 7.09 (m, 9H), 6.98 – 6.50 (m, 3H), 5.34 (d,

J = 2.8 Hz, 0.58×1H), 5.30 (d, *J* = 6.1 Hz, 0.42×1H), 5.15 – 4.59 (m, 1H), 3.89 – 3.21 (m, 2H), 3.09 – 2.67 (m, 3H), 2.29 – 1.41 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ - 60.5 – -64.4 (m, 3F); ¹³C NMR (101 MHz, CDCl₃) δ 172.5 (d, *J* = 5.9 Hz), 172.1 (d, *J* = 37.5 Hz), 160.2, 159.8 (d, *J* = 13.0 Hz), 140.3 (d, *J* = 12.2 Hz), 139.5, 137.1, 136.8, 136.3 (d, *J* = 3.1 Hz), 133.4 – 133.1 (m), 129.4 – 128.7 (m), 128.3 – 127.6 (m), 127.1 (d, *J* = 10.3 Hz), 126.6 (dd, *J* = 13.3, 9.8 Hz), 125.7 – 125.4 (m), 125.0, 124.6 (dd, *J* = 12.5, 3.5 Hz), 115.7 (d, *J* = 9.9 Hz), 115.4 (d, *J* = 12.4 Hz), 78.0 – 77.1 (m), 72.0, 71.7 (d, *J* = 7.3 Hz), 46.6, 46.2, 45.7, 45.3, 36.5, 36.0 (d, *J* = 8.5 Hz), 35.7, 35.0, 34.0 (d, *J* = 6.4 Hz); MS (FI, *m/z*): 493 [M]⁺; HRMS (FI, *m/z*): exact mass calculated for [M]⁺ (C₂₉H₂₆F₃NO₄) requires *m/z* 493.1859, found *m/z* 493.1866; IR (film): 3396, 3058, 2931, 1644, 1516, 1380, 1327, 1248, 1162, 1111, 1067, 836, 750 cm⁻¹; Chiral HPLC (IK3, 0.46×15 cm, 5 µm, *n*-hexane/isopropanol = 90/10, flow 0.7 mL/min, detection at 214 nm): retention time = 39.23 min (29.70%), 42.08 min (20.59%), 104.45 min (29.85%) and 132.98 min (19.85%).

4871 SS-1-9+- IK3 91 214 0.7								
Sample Name:	SS-1-9+- IK3 91 214 0.7	Injection Volume:	3.0					
Sample Type:	unknown	Wavelength:	214.0					
Control Program:	test-dad	Bandwidth:	4					
Quantif. Method:	WXL	Dilution Factor:	1.0000					
Recording Time:	2023-7-3 13:34	Sample Weight:	1.0000					
Run Time (min):	168.54	Sample Amount:	1.0000					

1	NO.	Ret. Time	Peak Name	neight	Area	Rel.Area	Amount	rype
l		min		mAU	mAU*min	%		
	1	39.23	n.a.	612.229	608.551	29.70	n.a.	BM
	2	42.08	n.a.	347.693	421.839	20.59	n.a.	MB
	3	104.45	n.a.	75.602	611.608	29.85	n.a.	BMB*
	4	132.98	n.a.	38.256	406.687	19.85	n.a.	BMB*
	Total:			1073.780	2048.685	100.00	0.000	

 $\it N-(2-(Benzhydryloxy)ethyl)-2-hydroxy-N-methyl-2-(naphthalen-2-yl)acetamide$

(43)

Yellow oil (179 mg, 84% yield). $R_f = 0.8$ (petroleum ether/ethyl acetate = 1:1). A rotameric ratio of approx. 62:38 is observed in the ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.74 (m, 4H), 7.54 – 7.42 (m, 3H), 7.35 – 7.12 (m, 10H), 5.63 (s, 0.38×1H), 5.40 (s, 0.62×1H), 5.27 (s, 0.62×1H), 5.12 (s, 0.38×1H), 3.95 – 3.05 (m, 4H), 3.00 (s, 0.38×3H), 2.86 (s, 0.62×3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.6 (d, *J* = 53.1 Hz), 141.8 (d, *J* = 2.3 Hz), 141.6, 141.4, 137.0, 136.3, 133.3 – 133.0 (m), 129.0 (d, *J* = 2.9 Hz), 128.4 (d, *J* = 5.4 Hz), 128.3, 128.2, 128.0, 127.7 – 127.5 (m), 127.5 – 127.3 (m), 127.0, 126.8, 126.7 – 126.6 (m), 126.4, 126.3 (d, *J* = 4.0 Hz), 84.1, 83.9, 71.7 (d, *J* = 1.9 Hz), 66.8, 65.6, 49.1, 48.6, 36.2, 34.5; **MS** (FI, *m/z*): 425 [M]⁺; **HRMS** (FI, *m/z*): exact mass calculated for [M]⁺ (C₂₈H₂₇NO₃) requires *m/z* 425.1985, found *m/z* 425.1992; **IR (film)**: 3400, 3057, 2936, 1651, 1493, 1453, 1384, 1062, 862, 820, 745, 703, 479 cm⁻¹.

2-((1-(2-Hydroxy-2-(naphthalen-2-yl)acetyl)piperidin-4-yl)methyl)-5,6dimethoxy-2,3-dihydro-1H-inden-1-one (44)

Yellow oil (207 mg, 88% yield). $R_f = 0.2$ (petroleum ether/ethyl acetate = 1:1). A mixture of 4 pairs of isomers (arising from rotational isomerism and diastereoisomerism). d.r. 50:50 (determined by chiral HPLC). ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.69 (m, 4H), 7.49 (dd, J = 6.4, 3.2 Hz, 2H), 7.41 (dt, J = 8.5, 2.5 Hz, 1H), 7.12 (d, J = 20.4 Hz, 1H), 6.86 – 6.73 (m, 1H), 5.37 (s, 1H), 4.93 (s, 1H), 4.68 (t, J = 13.9 Hz, 1H), 3.99 – 3.91 (m, 3H), 3.88 (d, J = 8.5 Hz, 3H), 3.82 – 3.67 (m, 1H), 3.36 – 2.39 (m, 5H), 1.98 – 0.04 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 207.1 (d, J = 3.9 Hz), 170.4 (d, J = 18.3 Hz), 155.5 (d, J = 5.3 Hz), 149.4 (d, J = 5.2 Hz), 148.4, 136.9, 136.8, 133.3 (d, J = 4.9 Hz), 133.1, 129.3 – 128.9 (m), 128.1 – 127.8 (m), 127.7 (d, J = 3.6 Hz), 127.6, 126.8 (d, J = 3.9 Hz), 126.6, 126.3 (d, J = 4.7 Hz), 124.7, 124.5 (d, J = 5.6 Hz), 107.3 (d, J = 4.9 Hz), 104.3 (d, J = 5.3 Hz), 71.5 (d, J = 9.7 Hz), 56.1

(d, J = 14.1 Hz), 45.3 - 44.4 (m), 43.2 (d, J = 14.5 Hz), 38.3 - 37.8 (m), 34.2, 34.0, 33.6 - 32.9 (m), 32.7, 32.2 - 31.8 (m), 31.6 - 31.0 (m), 30.6; **MS** (DART, m/z): 425 ([M+H]⁺); **HRMS** (DART, m/z): exact mass calculated for [M+H]⁺ (C₂₉H₃₂NO₅) requires m/z 474.2275, found m/z 474.2278; **IR** (film): 3390, 2925, 1693, 1640, 1463, 1313, 1265, 1123, 1067, 1036, 732 cm⁻¹. **Chiral HPLC** (Lux 5u Cellulose-3, 0.46×25 cm, 5 µm, CH₃CN/H₂O = 50/50, flow 0.7 mL/min, detection at 214 nm): retention time = 15.89 min (24.90%), 17.60 min (25.11%), 19.92 min (25.11%) and 24.02 min (24.88%).

4 Gram-scale synthesis

Under argon atmosphere, a solution of 4-fluorobenzaldehyde (1, 10.0 mmol, 1.0 equiv.), TMSCF₂Br (20.0 mmol, 2.0 equiv.) and *N*,*N*-dimethyl-1-phenylmethanamine (2, 20.0 mmol, 2.0 equiv.) in 1,4-dioxane (50 mL) was stirred at room temperature for

1.0 hour. Then $H_2O(10 \text{ mL})$ was added and the mixture was stirred at room temperature for 0.5 hour. The mixture was quenched with water, and extracted with ethyl acetate for three times. The combined extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography using petroleum ether/ethyl acetate to afford product (1.6 g, 81%).

5 The synthesis of ¹⁸O-labeled α -hydroxyamides

Under argon atmosphere, a solution of 4-fluorobenzaldehyde (1, 0.2 mmol, 1.0 equiv.), TMSCF₂Br (0.4 mmol, 2.0 equiv.) and *N*,*N*-dimethyl-1-phenylmethanamine (**2**, 0.4 mmol, 2.0 equiv.) in 1,4-dioxane (2 mL) was stirred at room temperature for 1.0 hour. Then H₂¹⁸O (0.2 mL) was added and the mixture was stirred at room temperature for 0.5 hour. The mixture was quenched with water, and extracted with ethyl acetate for three times. The combined extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography using petroleum ether/ethyl acetate to afford product. The ¹⁸O content of sample [¹⁸O]- α -hydroxyamides **46** was estimated peak heights of ¹⁶O- and ¹⁸O-parent peaks in mass spectrum. And the final **46** enriched in the ¹⁸O isotope with 97%

2-(4-Fluorophenyl)-2-hydroxy-N,N-dimethylacetamide-¹⁸O (45)

White solid (32 mg, 80% yield, 97% ¹⁸*O*-isotopic purity.). $R_f = 0.4$ (petroleum ether/ethyl acetate = 1:1). M.p.: 118 – 120 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (dt, J = 9.7, 4.7 Hz, 2H), 7.05 (t, J = 8.5 Hz, 2H), 5.19 (d, J = 5.4 Hz, 1H), 4.75 (d, J = 6.1 Hz, 1H), 3.03 (s, 3H), 2.78 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -113.6 – -113.9 (m, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 164.0, 161.6, 135.3 (d, J = 3.4 Hz), 129.4 (d, J = 8.3 Hz), 116.1 (d, J = 21.6 Hz), 70.9, 36.5 (d, J = 6.3 Hz); MS (EI, m/z): 199 [M]⁺, 169, 125, 97, 74; HRMS (FI, m/z): exact mass calculated for [M]⁺ (C₁₀H₁₂O¹⁸ONF) requires m/z 199.0889, found m/z 199.0887. IR (film): 3291, 2925,

1612, 1506, 1403, 1261, 1255, 1156, 1701, 817, 749, 574 cm⁻¹.

6 Mechanistic investigations

i. <u>monitoring experiments (GC-MS and ¹⁹F NMR)</u>

Under argon atmosphere, a solution of 4-phenylbenzaldehyde (0.5 mmol, 1.0 equiv.), TMSCF₂Br (1.0 mmol, 2.0 equiv.) and *N*,*N*-dimethyl-1-phenylmethanamine (**2a**, 1.0 mmol, 2.0 equiv.) in 1,4-dioxane (5 mL) was stirred at room temperature for 1.0 hour. 1-Fluoronaphthalene (30 μ L) was added into the mixture as an internal standard, and the reaction was monitored by GC-MS and ¹⁹F NMR. Then H₂O (0.5 mL) was added and the mixture was stirred at room temperature for 0.5 hour, the reaction was monitored again by GC-MS and ¹⁹F NMR.

Peaks in GC spectrum were identified by the corresponding mass spectral signals, see:

ii. The isolation of TMS-protected α -hydroxyamide

TMS-protected α -hydroxyamide (46) was successfully isolated when 2,2,2-

trifluoro-1-phenylethan-1-one was subject to the standard conditions.

3,3,3-Trifluoro-N,N-dimethyl-2-phenyl-2-((trimethylsilyl)oxy)propenamide (46)

Pale yellow solid (121.5 mg, 76% yield). $R_f = 0.2$ (petroleum ether/ethyl acetate = 5:1). M.p.: 91 – 93 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.44 (m, 2H), 7.43 – 7.30 (m, 3H), 2.92 (s, 3H), 2.61 (s, 3H), 0.26 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃) δ -74.0 (s, 3F); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 135.7, 129.1, 128.4, 126.3, 123.5 (q, J =286.7 Hz), 81.5 (q, J = 26.6 Hz), 37.7, 36.4, 0.8 ; MS (EI, m/z): 319 [M⁺], 304, 247, 145, 105, 72; HRMS (FI, m/z): exact mass calculated for [M]⁺ (C₁₄H₂₀O₂NF₃Si) requires m/z 319.1210, found m/z 319.1216; IR (film): 3353, 2957, 1660, 1495, 1450, 1395, 1256, 1192, 1157, 1135, 1006, 955, 880, 846, 763, 714 cm⁻¹.

7 Procedures for the synthesis of substrates

 $TMSCFCl_2{}^3,\,TMSCFClBr_2{}^3,\,TMSCCl_2Br^4$ and benzylamines 5 were prepared by the reported methods.

8 References

1 K. A. Mix, J. E. Lomax and R. T. Raines, Cytosolic Delivery of Proteins by Bioreversible Esterification. *J. Am. Chem. Soc.* 2017, **139**, 14396.

2 B. Bánhidai and U. Schöllkopf, (Dimethylcarbamoyl)lithium from Dimethylformamide and Lithium Diisopropylamide; Synthesis of α-Hydroxy N,N-Dimethylcarboxyamides. *Angew. Chem. Int. Ed.* 1973, **12**, 836.

D. Chen, Z. Fan, L. Huang, K. Gao, P. Xiao, C. Ni and J. Hu, TMSCFX₂ (X = Cl, Br) as halofluorocarbene sources for the synthesis of halofluorocyclopropanes. *Chem. Commun.*, 2021, 57, 319.

4 D. S. Lee, M. J. Duran-Pena, L. Burroughs and S. Woodward, Efficient Preparation of TMSCCl₂Br and Its Use in Dichlorocyclopropanation of Electron-Deficient Alkenes. *Chem. Eur. J.*, 2016, **22**, 7609.

5 A. Liu, C. Ni, Q. Xie and J. Hu, TMSCF₂Br-Enabled Fluorination-Aminocarbonylation of Aldehydes: Modular Access to alpha-Fluoroamides. *Angew. Chem. Int. Ed.*, 2022, **61**, e202115467.

9 ¹H, ¹⁹F and ¹³C NMR spectra of products

S30

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 (ppm)

(ppm)

	1 1	1 1			1																1 1		
30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200
(ppm)																							

_ (ppm)

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 (ppm)

	· .									'								1			1	· .		1			'	
240	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	- 30	20	10	0	-10	-20	-30	-40
														(ppm)														

 $\frac{1}{70}$ $\frac{1}{20}$ -10 (ppm)

S66

(ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 (ppm)

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 (ppm)

7.87	7.85	7.84	7.81	7.74	7 50	00.7	7.49	7.48	7.47	7 41	1.39	7.37	7.35	7 22	0 · · -	7.18	7.17	7 4 4	t (7.13	7.08	00 1	00.7	6.78	6.78	6 77	5.31	5.29	10	0.10	5.14	4 89	4.88	4.87	1 85	4.00	3.88	3.86	3 85		3.84	3.83	3.81	- u	0.0	3.49	3.47	3.47	3.46	3 44	22.0	2 C C	3.32	3.31	3.30	3.29	3 04	2.83	2.81	2.80	2.61	2 12	; t	- ç i c	2.10	2.08
<u> </u>	_	_	_			L	L	L	L							-	1		_	-	_			_			5			-	\neg		2	_			<u> </u>			5	2	-			-	-	-	4				-	-	_	_	_	_	_	_	_					_	-

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	37 36	81	000011200001100000000000000000000000000
~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~	2. 2.	44	
	\searrow	$\mathbf{\mathbf{\nabla}}$	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	11.20	n.a.	947.205	196.962	60.05	n.a.	BM *
2	11.66	n.a.	683.902	131.042	39.95	n.a.	MB*
Total	:		1631.107	328.004	100.00	0.000	

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 (ppm)

mĀU	mAU*min
612.229	608.551
347.693	421.839
75.602	611.608

3

4

Total:

104.45

132.98

n.a.

n.a.

38.256

1073.780

406.687

2048.685

29.85

19.85

100.00

BMB*

BMB*

n.a.

n.a.

0.000

(ppm)

(ppm)

Integr	ation Results								
No.	Retention Time	Area	Height	Relative Area	Resolution (EP)	Asymmetry (EP)	ĸ	Plates (EP)	
	min	mAU*min	mAU	%					
n.a.	15.887	302.4990	390.1664	24.901	1.28	n.a.	n.a.	2762	
n.a.	17.600	304.9780	324.5777	25.105	1.50	n.a.	n.a.	2268	
n.a.	19.923	305.0374	294.7748	25.110	2.20	1.00	n.a.	2373	
n.a.	24.023	302.2736	227.0692	24.883	n.a.	0.99	n.a.	2097	
Total:		1214.788	1401.998	100.000					

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 (ppm)

(ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 (ppm)

		· · ·			'								·		1 1			- I - I				
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
210	200	150	100	110	100	100	140	100	120	110	100	50	00	10	00	00	-10	50	20	10	0	10
											(ppm)											