Fe(OTf)₃-Catalyzed Annulation of α,β-Unsaturated Ketoxime Acetates with Enaminones for the Synthesis of Functionalized 2,4-Diarylpyridines

Xing-Mei Hu, Jing Yang, Jia-Ming Yang, Bi-Na Shao, Rong Huang* and Sheng-Jiao Yan*

Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.

Supporting Information

Table of Contents:

General Procedure for the Preparation of 3	S4
Spectroscopic Data of 3a-3p'	S5
The proposed mechanism of the cascade reaction	S19
Scheme S1. The mechanism were tested by HPLC-HRMS	S20
X-ray Structure and Data of 3u	S21
Figure S1. X-Ray crystal structure of 3u, ellipsoid is drawn at the 30% probability level	S21
Table S1. Crystal data and structure refinement for 3u	S22
Table S2. Bond Lengths for 3u	S23
Figure S2. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3a	S25
Figure S3. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3a	S26
Figure S4. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3b	S27
Figure S5. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3b	S28
Figure S6. ¹⁹ F NMR (564 MHz, CDCl ₃) spectra of compound 3b	S29
Figure S7. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3c	S30
Figure S8. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 3c	S31
Figure S9. ¹⁹ F NMR (564 MHz, DMSO- <i>d</i> ₆₃) spectra of compound 3c	S32
Figure S10. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3d	S33
Figure S11. ¹² C NMR (150 MHz, CDCl ₃) spectra of compound 3d	S34
Figure S12. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3e	S35
Figure S13. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3e	S36
Figure S14. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 3f	S37
Figure S15. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 3f	S38
Figure S16. ¹ H NMR (400 MHz, CDCl ₃) spectra of compound 3g	S39
Figure S17. ¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 3g	S40
Figure S18. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3h	S41
Figure S19. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3h	S42
Figure S20. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3i	S43
Figure S21. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3i	S44
Figure S22. ¹ H NMR (400 MHz, CDCl ₃) spectra of compound 3j	S45

Figure	323 . ¹³ C NMR (1	00 MHz, CDCl ₃) spectra of compound	d 3 j	S46
Figure	524 . ¹ H NMR (60	0 MHz, CDCl ₃) spectra of compound	3k	S47
Figure	325 . ¹³ C NMR (1)	50 MHz, CDCl ₃) spectra of compound	3k	S48
Figure	526 . ¹⁹ F NMR (56	64 MHz, CDCl ₃) spectra of compound	1 3k	S49
Figure	327 . ¹ H NMR (50	00 MHz, CDCl ₃) spectra of compound	31	S50
Figure	528 . ¹³ C NMR (12	25 MHz, CDCl ₃) spectra of compound	31	S51
Figure	529 . ¹⁹ F NMR (47	70 MHz, CDCl ₃) spectra of compound	31	S52
Figure	330 . ¹ H NMR (50	00 MHz, DMSO- <i>d</i> ₆) spectra of compo	und 3m	S53
Figure	31 . ¹³ C NMR (12	25 MHz, DMSO- <i>d</i> ₆) spectra of compo	und 3m	S54
Figure	332 . ¹⁹ F NMR (47	70 MHz, DMSO- d_6) spectra of compo	und 3m	S55
Figure	33 . ¹ H NMR (50	00 MHz, CDCl ₃) spectra of compound	3n	S56
Figure	34 . ¹³ C NMR (12	25 MHz, CDCl ₃) spectra of compound	l 3n	S57
Figure	335 . ¹⁹ F NMR (47	70 MHz, CDCl ₃) spectra of compound	3n	S58
Figure	336 . ¹ H NMR (50	0 MHz, CDCl ₃) spectra of compound	30	S59
Figure	37 . ¹³ C NMR (12	25 MHz, CDCl ₃) spectra of compound	30	S60
Figure	38 . ¹⁹ F NMR (47	70 MHz, CDCl3) spectra of compound	30	S61
Figure	339 . ¹ H NMR (50	00 MHz, CDCl ₃) spectra of compound	l 3p	S62
Figure	540 . ¹³ C NMR (12	25 MHz, CDCl ₃) spectra of compound	l 3p	S63
Figure	541. ¹⁹ F NMR (47	70 MHz, CDCl ₃) spectra of compound	3p	S64
Figure	542 . ¹ H NMR (50	00 MHz, CDCl ₃) spectra of compound	3q	S65
Figure	543 . ¹³ C NMR (12	25 MHz, CDCl ₃) spectra of compound	d 3q	S66
Figure	544. ¹⁹ F NMR (47	70 MHz, CDCl ₃) spectra of compound	3q	S67
Figure	545 . ¹ H NMR (50	00 MHz, CDCl ₃) spectra of compound	3r	S68
Figure	546 . ¹³ C NMR (12	25 MHz, $CDCl_3$) spectra of compound	l 3r	S69
Figure	547 . ¹ H NMR (50	00 MHz, CDCl ₃) spectra of compound	3s	S70
Figure	548. ¹³ C NMR (1)	25 MHz, CDCl ₃) spectra of compound	d 3s	S71
Figure	549 . ¹ H NMR (50	00 MHz, CDCl ₃) spectra of compound	3t	S72
Figure	550 . ¹² C NMR (12	25 MHz, CDCl ₃) spectra of compound	l 3t	S73
Figure	51 . ¹ H NMR (50	0 MHz, CDCl ₃) spectra of compound	3u	S74
Figure	552 . ¹³ C NMR (12	25 MHz, CDCl ₃) spectra of compound	3u	S75
Figure	53. ¹⁹ F NMR (47	70 MHz, CDCl ₃) spectra of compound	3u	S76
Figure	54 . ¹ H NMR (50	00 MHz, DMSO- d_6) spectra of compou	and 3v	S77
Figure	55 . ¹³ C NMR (1	25 MHz, DMSO- d_6) spectra of compo	ound 3v	S78
Figure	56 . ¹⁹ F NMR (47	70 MHz, DMSO- d_6) spectra of compo	ound 3v	S79
Figure	57 . ¹ H NMR (50	00 MHz, CDCl ₃) spectra of compound	3w	S80
Figure	58. ¹³ C NMR (1)	25 MHz, CDCl ₃) spectra of compound	d 3w	S81
Figure	559 . ¹ H NMR (50	00 MHz, CDCl ₃) spectra of compound	3x	S82
Figure	60. ¹³ C NMR (1)	25 MHz, CDCl ₃) spectra of compound	d 3x	S83
Figure	61. ¹⁹ F NMR (47	/0 MHz, CDCl ₃) spectra of compound	1 3x	S84
Figure	562. ¹ H NMR (50	00 MHz, CDCl ₃) spectra of compound	3y	S85
Figure	563. ¹³ C NMR (1)	25 MHz, CDCl ₃) spectra of compound	d 3 y	S86
Figure	564. ¹ H NMR (50	$00 \text{ MHz}, \text{CDCl}_3$) spectra of compound	1 3z	S87
Figure	565. ¹³ C NMR (1)	25 MHz, CDCl ₃) spectra of compound	d 3 z	588
Figure	66. 19F NMR (47	/0 MHz, CDCl ₃) spectra of compound	1 5 Z	S89

Figure S67. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3a'	S90
Figure S68. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3a'	S91
Figure S69. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3b'	S92
Figure S70. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3b'	S93
Figure S71. ¹⁹ F NMR (470 MHz, CDCl ₃) spectra of compound 3b'	S94
Figure S72. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3c'	S95
Figure S73. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3c'	S96
Figure S74. ¹⁹ F NMR (470 MHz, CDCl ₃) spectra of compound 3c'	S97
Figure S75. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3d'	S98
Figure S76. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3d'	S99
Figure S77. ¹ H NMR (400 MHz, CDCl ₃) spectra of compound 3e'	S100
Figure S78. ¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 3e'	S101
Figure S79. ¹ H NMR (400 MHz, CDCl ₃) spectra of compound 3f'	S102
Figure S80. ¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 3f'	S103
Figure S81. ¹ H NMR (400 MHz, CDCl ₃) spectra of compound 3g'	S104
Figure S82. ¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 3g'	S105
Figure S83. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3h'	S106
Figure S84. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3h'	S107
Figure S85. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3i'	S108
Figure S86. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3i'	S109
Figure S87. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3j'	S110
Figure S88. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3j'	S111
Figure S89. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3k'	S112
Figure S90. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3k'	S113
Figure S91. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 31'	S114
Figure S92. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 31'	S115
Figure S93. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3m'	S116
Figure S94. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3m'	S117
Figure S95. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3n '	S118
Figure S96. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3n'	S119
Figure S97. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 30'	S120
Figure S98. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 30'	S121
Figure S99. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3p'	S122
Figure S100. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3p'	S123
Figure S101. HPLC extracted ion flow diagrams of the reaction mixture	S124
Figure S102. HRMS of substrate 1e	S125
Figure S103. HRMS of HOAc	S126
Figure S104. HRMS of substrate 2f	S127
Figure S105. HRMS of intermediate 4e	S128
Figure S106. HRMS of intermediate 5e	S129
Figure S107. HRMS of intermediate 7f	S130
Figure S108. HRMS of intermediate 8f or 9f	S131
Figure S109. HRMS of the target compound 3f	S132
References and Notes	S133

General Information

All compounds were fully characterised by spectroscopic data. The NMR spectra were recorded on a Bruker DRX600 or DRX500 or DRX400. Chemical shifts (δ) are expressed in ppm, *J* values are given in Hz, and deuterated DMSO-*d*₆ was used as solvent, the solvent residue in DMSO-*d*₆ (¹³CNMR: 40.16 ppm, ¹H NMR, 2.50 ppm) and in CDCl₃ (¹³CNMR: 77.16 ppm, ¹H NMR, 7.26 ppm). IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on a XT-4A melting point apparatus and are uncorrected. HRMs were performed on an Agilent LC/Msd TOF instrument.

The α,β -unsaturated ketoximes **1** were synthesized by known literature procedures.¹ The enaminones **2** were synthesized by known literature procedures.² All the other chemicals and solvents were used as received without further purification unless otherwise stated. Two kinds of reagents which were used in the experiment were commercially available reagents.

General Procedure for the Preparation of 3

A round-bottomed flask was charged with α,β -unsaturated ketoximes **1** (1.0 mmol, 1.0 equiv), enaminones **2** (1.1 mmol, 1.1 equiv), and Fe(OTf)₃ (0.05 mmol, 0.05 equiv). The flask was supplemented with toluene (3 mL), and the mixture was stirred under reflux (in an oil bath) for 4 h. At this stage, the substrates were completely consumed in the reaction system. After cooling the reaction mixture to room temperature, it was extracted with ethyl acetate (3 × 15 mL). The organic layer was washed with water and brine. Then, the combined organic phases were dried over MgSO₄. Finally, the organic phases were filtered and concentrated under reduced pressure to obtain the crude product. Finally, the product **3** was isolated from the crude mixture by flash column chromatography over silica gel using a mixture of petroleum ether/ethyl acetate (8:1–6:1, v/v) as the eluent.

Spectroscopic Data of 3a-3p'

(4,6-Diphenylpyridin-3-yl)(4-nitrophenyl)methanone (3a)

White solid (86%, 328 mg); Mp: 163.4–163.9 °C; IR (KBr): 3788, 3574, 2784, 1767, 1666, 1529, 1493, 1244, 577 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 8.90 (s, 1H, ArH), 8.14–8.12 (m, 2H, ArH), 8.08–8.06 (m, 2H, ArH), 7.88 (s, 1H, ArH), 7.76–7.74 (m, 2H, ArH), 7.56–7.49 (m, 3H, ArH) , 7.30–7.23 (m,5H, ArH). ¹³C NMR (150 MHz, CDCl₃): δ = 195.2, 160.0, 150.1, 149.9, 149.8, 141.8, 138.1, 137.6, 131.5, 130.4, 130.1, 129.2, 129.0, 128.9, 128.7, 127.4, 123.4, 120.8. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₄H₁₆N₂O₃ 381.1234; found, 381.1342.

(4,6-Diphenylpyridin-3-yl)(4-(trifluoromethyl)phenyl)methanone (3b)

White solid (81%, 327 mg); Mp: 160.8–161.3°C; IR (KBr): 3865, 2930, 1667, 1584, 1411, 1323, 1134, 775, 699 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 8.77 (s, 1H, ArH), 8.05–8.03 (m, 2H, ArH), 7.79 (s, 1H, ArH), 7.68–7.67 (m, 2H, ArH), 7.47–7.40 (m, 4H, ArH), 7.23–7.17 (m,6H, ArH). ¹³C NMR (150 MHz, CDCl₃): δ = 195.6, 159.6, 149.9, 149.9, 140.0, 138.3, 137.7, 134.4, 134.2, 131.9, 129.9, 128.9 (d, *J* = 7.5 Hz), 128.6, 127.3, 125.3, 125.3, 122.5, 120.9. ¹⁹F NMR (560 MHz, CDCl₃): δ = –63.2 ppm. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₅H₁₆F₃NO 404.1257; found, 404.1262.

(4,6-Diphenylpyridin-3-yl)(4-fluorophenyl)methanone (3c)

White solid (88%, 312 mg); Mp: 142.0–142.5°C; IR (KBr): 3854, 1799, 1662, 1595, 1407, 706, 547 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 8.79$ (s, 1H, ArH), 8.29–8.28 (m, 2H, ArH), 8.13 (s, 1H, ArH), 7.74–7.72 (m, 2H, ArH), 7.57–7.52 (m, 3H, ArH), 7.41–7.40 (m, 2H, ArH), 7.35–7.31 (m, 3H, ArH), 7.22–7.19 (m, 2H, ArH). ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 195.1$, 165.5 (d, J = 252.0 Hz), 158.4, 149.5, 149.4 (d, J = 10.5 Hz), 138.3, 137.9, 133.9, 133.0 (d, J = 9.0 Hz), 132.7, 130.3, 129.3, 129.2, 129.1, 129.1, 127.6, 121.1, 116.2 (d, J = 22.5 Hz).¹⁹F NMR (560 MHz, DMSO- d_6): $\delta = -104.9$ ppm. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₄H₁₆FNO 354.1289; found, 354.1302.

White solid (89%, 330 mg); Mp: 194.4–194.9 °C; IR (KBr): 3877, 1721, 1659, 1586, 1488, 757, 586 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 8.81 (s, 1H, ArH), 8.12–8.10 (m, 2H, ArH), 7.85 (s, 1H, ArH), 7.85–7.61 (m, 2H, ArH), 7.54–7.47 (m, 3H, ArH), 7.33–7.25 (m, 7H, ArH). ¹³C NMR (150 MHz, CDCl₃): δ = 195.4, 159.3, 149.6, 149.6, 139.8, 138.4, 137.8, 135.5, 132.2, 131.1, 129.8, 129.0, 129.0, 128.8, 128.7, 128.6, 127.3, 120.9. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₄H₁₆ClNO 370.0993; found, 370.1003.

(4-Bromophenyl)(4,6-diphenylpyridin-3-yl)methanone (3e)

White solid (79%, 327 mg); Mp: 191.9–192.4 °C; IR (KBr): 3862, 3603, 3534, 1705, 1663, 1577, 1450, 679, 584 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 8.80 (s, 1H, ArH), 8.12–8.11 (m, 2H, ArH), 8.11 (s, 1H, ArH), 7.85–7.43 (m, 7H, ArH), 7.33–7.26 (m, 5H, ArH). ¹³C NMR (150 MHz, CDCl₃): δ = 195.6, 159.3, 149.7, 149.6, 138.4, 137.8, 135.9, 132.2, 131.7, 131.2, 129.8, 129.8, 129.0, 128.8, 128.8, 128.6, 127.3, 120.9. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₄H₁₆BrNO 414.0488; found, 414.0498.

(4,6-Diphenylpyridin-3-yl)(phenyl)methanone (3f)

White solid (88%, 295 mg); Mp: 129.0–129.5 °C; IR (KBr): 3842, 1722, 1650, 1598, 1453, 841, 756, 565 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 8.80 (s, 1H, ArH), 8.29–8.27 (m, 2H, ArH), 8.13 (s, 1H, ArH), 7.61–7.52 (m, 8H, ArH), 7.41–7.33 (m, 5H, ArH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 195.6, 158.5, 149.6, 149.5, 138.2, 137.8, 136.1, 132.5, 132.2, 131.8, 130.4, 129.4, 129.3, 129.2, 129.1, 128.2, 127.7, 121.1; HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₄H₁₈NO 336.1383; found, 336.1386.

(4,6-Diphenylpyridin-3-yl)(p-tolyl)methanone (3g)

White solid (86%, 301 mg); Mp: 142.2–142.7 °C; IR (KBr): 3820, 1712, 1655, 1598, 1450, 852, 755, 562 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.78 (s, 1H, ArH), 8.12–8.10 (m, 2H, ArH), 7.84 (s, 1H, ArH), 7.64–7.62 (m, 2H, ArH), 7.53–7.47 (m, 3H, ArH), 7.37–7.25 (m, 5H, ArH) , 7.13–7.11 (m, 2H, ArH) , 2.34 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 196.1, 158.8, 149.7, 149.5, 144.4, 138.7, 138.0, 134.6, 132.9, 130.1, 129.7, 129.1, 128.9, 128.7, 128.6, 127.2, 121.1, 21.7; HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₅H₁₉NO 350.1539; found, 350.1536.

(4,6-Diphenylpyridin-3-yl)(4-ethylphenyl)methanone (3h)

White solid (84%, 306 mg); Mp: 141.5–142.0 °C; IR (KBr): 3884, 1730, 1657, 1598, 1508, 1469, 1293, 697, 554 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 8.77 (s, 1H, ArH), 8.11–8.09 (m, 2H, ArH), 7.84 (s, 1H, ArH), 7.84–7.69 (m, 2H, ArH), 7.54–7.46 (m, 3H, ArH), 7.38–7.31 (m, 2H, ArH), 7.30–7.27 (m, 3H, ArH) , 6.80–6.78 (m, 2H, ArH), 4.06–4.02 (m, 2H, CH₂), 1.42–1.39 (m, 3H, CH₃). ¹³C NMR (150 MHz, CDCl₃): δ = 196.1, 158.8, 150.5, 149.7, 149.5, 138.6, 138.0, 134.9, 132.9, 130.2, 129.7, 128.9, 128.7, 128.6, 128.6, 127.9, 127.2, 121.1, 29.0, 15.0. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₆H₂₁NO 364.1696; found, 364.1699.

(4,6-diphenylpyridin-3-yl)(4-methoxyphenyl)methanone (3i)

White solid (85%, 311 mg); Mp: 148.5–149.0 °C; IR (KBr): 3811, 2917, 1721, 1657, 1597, 1449, 1149, 788, 549 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 8.80 (s, 1H, ArH), 8.14–8.12 (m, 2H, ArH), 7.87 (s, 1H, ArH), 7.87–7.73(m, 2H, ArH), 7.73–7.48 (m, 3H, ArH), 7.41–7.38 (m, 2H, ArH), 7.33–7.28 (m, 3H, ArH) , 6.84–6.81 (m, 2H, ArH), 3.83 (s, 3H, OCH₃) . ¹³C NMR (125 MHz, CDCl₃): δ = 195.0, 163.8, 158.7, 149.4, 149.4, 138.6, 138.1, 133.0, 132.3, 130.2, 129.6, 128.9, 128.7, 128.7, 128.6, 127.2, 121.0, 113.7, 55.5. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₅H₁₉NO₂ 366.1489; found, 366.1491.

(4-Chloro-3-methylphenyl)(4,6-diphenylpyridin-3-yl)methanone (3j)

White solid (85%, 326 mg); Mp: 166.1–166.6 °C; IR (KBr): 3866, 1712, 1653, 1589, 1452, 760, 562 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.79 (s, 1H, ArH), 8.12–8.10 (m, 2H, ArH), 8.10 (s, 1H, ArH), 7.85–7.43 (m, 5H, ArH), 7.35–7.25 (m, 6H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ = 195.5, 159.2, 149.8, 149.6, 140.0, 138.4, 137.9, 136.4, 135.4, 132.3, 132.2, 129.8, 129.2, 129.0, 128.9, 128.8, 128.6, 128.6, 127.3, 121.0, 19.9; HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₅H₁₈ClNO 384.1150; found, 384.1154.

(6-(4-Fluorophenyl)-4-phenylpyridin-3-yl)(4-(trifluoromethyl)phenyl)methanone (3k)

White solid (80%, 338 mg); Mp: 140.5–150.0 °C; IR (KBr): 3864, 3609, 2924, 1762, 1668, 1583, 1412, 1322, 1139, 845, 629 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 8.83 (s, 1H, ArH), 8.83–8.11 (m, 2H, ArH), 7.82 (s, 1H, ArH), 7.75–7.74 (m, 2H, ArH), 7.54–7.53 (m, 2H, ArH), 7.30–7.25 (m, 5H, ArH), 7.23–7.19 (m, 2H, ArH). ¹³C NMR (125 MHz, CDCl₃): δ = 195.5, 164.1 (d, *J* = 207.5 Hz), 158.5, 149.9 (d, *J* = 17.5 Hz), 139.9, 137.6, 134.0, 131.8, 129.9, 129.2 (d, *J* = 7.5 Hz), 129.1, 128.8, 128.6, 125.3, 125.3, 123.4 (d, *J* = 226.3 Hz), 120.5, 116.0 (d, *J* = 18.8 Hz). ¹⁹F NMR (470 MHz, CDCl₃): δ = -63.2, -111.2 ppm. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₅H₁₅F₄NO 422.0918; found, 422.0919.

(4,6-Bis(4-fluorophenyl)pyridin-3-yl)(4-fluorophenyl)methanone (31)

White solid (77%, 300 mg); Mp: 151.5–152.0 °C; IR (KBr): 3898, 3351, 2916, 1708, 1667, 1599, 1509, 1412, 1228, 1154, 843 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 8.77 (s, 1H, ArH), 8.12–8.09 (m, 2H, ArH), 7.76 (s, 1H, ArH), 7.72–7.69 (m, 2H, ArH), 7.32–7.29 (m, 2H, ArH), 7.21–7.17 (m, 2H, ArH), 7.01–6.97 (m, 4H, ArH). ¹³C NMR (125 MHz, CDCl₃): δ = 194.7, 165.9 (d, *J* = 255.0 Hz), 164.0 (d, *J* = 248.8 Hz), 163.1 (d, *J* = 248.8 Hz), 158.1, 149.6, 148.6, 134.4, 133.8, 133.4, 132.4 (d, *J* = 10.0 Hz), 132.3 (d, *J* = 20.0 Hz), 130.4 (d, *J* = 7.5 Hz), 129.2 (d, *J* = 8.8 Hz), 120.5, 115.9 (d, *J* = 21.3

Hz), 115.9 (d, J = 22.5 Hz), 115.7 (d, J = 22.5 Hz). ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -103.7$, -111.3, -112.0 ppm. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₄H₁₄F₃NO 390.1100; found, 390.1099.

(4-Fluorophenyl)(6-(4-fluorophenyl)-4-phenylpyridin-3-yl)methanone (3m)

White solid (85%, 317 mg); Mp: 145.0–145.5 °C; IR (KBr): 3690, 2360, 1721, 1662, 1598, 1408, 570 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 8.77–8.75 (m, 1H, ArH), 8.36–8.33 (m, 2H, ArH), 8.13 (s, 1H, ArH), 7.74–7.71 (m, 2H, ArH), 7.41–7.29 (m, 8H, ArH), 7.22–7.18 (m, 2H, ArH). ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 195.0, 165.7 (d, *J* = 212.5 Hz), 164.5, 162.8, 157.4, 149.5, 149.5, 137.8, 134.8, 132.9 (d, *J* = 10.0 Hz), 132.6, 129.9 (d, *J* = 8.8 Hz), 129.2 (d, *J* = 12.5 Hz), 129.1 (d, *J* = 8.8 Hz), 120.9, 116.3, 116.2 (d, *J* = 16.3 Hz), 116.1. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₄H₁₅F₂NO₃ 372.1194; found, 372.1202.

(4-Fluorophenyl)(4-(4-fluorophenyl)-6-phenylpyridin-3-yl)methanone (3n)

White solid (86%, 320 mg); Mp: 154.3–154.8 °C; IR (KBr): 3948, 1723, 1658, 1596, 1410, 1282, 1106, 547 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 8.80 (s, 1H, ArH), 8.11–8.10 (m, 2H, ArH), 7.81 (s, 1H, ArH), 7.74–7.70 (m, 2H, ArH), 7.55–7.47 (m, 3H, ArH), 7.33–7.26 (m, 2H, ArH), 7.02–6.97 (m, 4H, ArH). ¹³C NMR (125 MHz, CDCl₃): δ = 194.9, 165.9 (d, *J* = 255 Hz), 163.0 (d, *J* = 248.8 Hz), 159.3, 149.6, 148.5, 138.3, 133.9, 133.5, 132.4 (d, *J* = 8.8 Hz), 132.3, 130.4 (d, *J* = 7.5 Hz), 129.9, 129.0, 127.3, 120.8, 115.9 (d, *J* = 22.5 Hz), 115.6. ¹⁹F NMR (470 MHz, CDCl₃): δ = –103.7, –112.1 ppm. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₄H₁₅F₂NO 372.1194; found, 372.1200.

(4-Fluorophenyl)(4-(4-methoxyphenyl)-6-phenylpyridin-3-yl)methanone (30)

White solid (77%, 296 mg); Mp: 141.0–141.5°C; IR (KBr): 3863, 1708, 1662, 1534, 1405, 1145, 710, 669, 576 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.79$ (s, 1H, ArH),

8.79–8.12 (m, 2H, ArH), 7.84 (s, 1H, ArH), 7.75–7.72(m, 2H, ArH), 7.55–7.49 (m, 3H, ArH), 7.31–7.28 (m, 2H, ArH), 7.01–6.97 (m, 2H, ArH), 6.84–6.82 (m, 2H, ArH), 3.76 (s, 3H, OCH₃). ¹³C NMR (125 MHz, CDCl₃): δ = 195.3, 165.7 (d, *J* = 253.8 Hz), 160.2, 159.1, 149.6, 149.1, 138.5, 133.5, 132.4 (d, *J* = 10.0 Hz), 132.2, 130.1, 130.0, 129.7, 128.1 (d, *J* = 208.8 Hz), 120.7, 115.6 (d, *J* = 21.3 Hz), 114.3, 55.3. ¹⁹F NMR (470 MHz, CDCl₃): δ = –104.2 ppm. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₅H₁₈FNO₂ 384.1394; found, 384.1402.

(4-Fluorophenyl)(4-(4-fluorophenyl)-6-(p-tolyl)pyridin-3-yl)methanone (3p)

White solid (86%, 332 mg); Mp: 110.4–110.9 °C; IR (KBr): 3898, 1723, 1667, 1538, 1410, 635, 573 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 8.77 (s, 1H, ArH), 8.02–8.00 (m, 2H, ArH), 7.78 (s, 1H, ArH), 7.73–7.70 (m, 2H, ArH), 7.33–7.29 (m, 4H, ArH), 7.00–6.96 (m, 4H, ArH), 2.43 (s, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃): δ = 194.9, 165.8 (d, *J* = 255.0 Hz), 163.0 (d, *J* = 247.5 Hz), 159.3, 149.6, 148.5, 140.1, 135.5, 134.1, 134.0, 133.6, 132.5 (d, *J* = 8.8 Hz), 132.0, 130.4 (d, *J* = 8.8 Hz), 129.7, 127.1, 120.5, 115.9 (d, *J* = 21.3 Hz), 115.7 (d, *J* = 22.5 Hz), 21.4. ¹⁹F NMR (470 MHz, CDCl₃): δ = –103.9, –112.2 ppm. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₅H₁₇F₂NO 386.1351; found, 386.1357.

(4-Chlorophenyl)(6-(4-fluorophenyl)-4-phenylpyridin-3-yl)methanone (3q)

White solid (86%, 334 mg); Mp: 189.3–189.8 °C; IR (KBr): 3874, 1728, 1664, 1577, 1455, 762, 593 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 8.78 (s, 1H, ArH), 8.78–8.09 (m, 2H, ArH), 7.80 (s, 1H, ArH), 7.62–7.60 (m, 2H, ArH), 7.33–7.21 (m, 7H, ArH), 7.20–7.18 (m, 2H, ArH). ¹³C NMR (125 MHz, CDCl₃): δ = 195.3, 164.0 (d, *J* = 248.8 Hz), 158.2, 149.8, 149.6, 139.8, 137.7, 135.4, 134.5, 134.5, 132.1, 131.1, 129.2 (d, *J* = 8.8 Hz), 129.0, 128.8, 128.6 (d, *J* = 17.5 Hz), 120.6, 115.9 (d, *J* = 21.3 Hz). ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ = –111.4 ppm. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₄H₁₅F₂NO₃ 372.1194; found, 372.1202. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₄H₁₅ClFNO 388.0899; found, 388.0902.

(4-Chlorophenyl)(4-(4-methoxyphenyl)-6-phenylpyridin-3-yl)methanone (3r)

White solid (77%, 308 mg); Mp: 163.8–164.3 °C; IR (KBr): 3839, 2930, 2375, 1729, 1656, 1593, 1468, 1298, 825, 690, 559 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.76$ (s, 1H, ArH), 8.11–8.09 (m, 2H, ArH), 7.82 (s, 1H, ArH), 7.64–7.62 (m, 2H, ArH), 7.54–7.48 (m, 3H, ArH), 7.29–7.26 (m, 4H, ArH), 6.82–6.80 (m, 2H, ArH) , 3.77 (s, 3H, OCH₃). ¹³C NMR (125 MHz, CDCl₃): $\delta = 195.7$, 160.3, 159.2, 149.6, 149.2, 139.8, 138.5, 135.5, 132.1, 131.1, 130.1, 129.9, 129.7, 128.9, 128.7, 127.2, 120.7, 114.3, 55.3. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₅H₁₈ClNO₂ 400.1099; found, 400.1104.

(4-Chlorophenyl)(6-(4-methoxyphenyl)-4-phenylpyridin-3-yl)methanone (3s)

White solid (84%, 336 mg); Mp: 155.0–150.5 °C; IR (KBr): 3813, 1723, 1656, 1585, 1495, 841, 709, 566 cm⁻¹; ¹H NMR (500 MHz, CDCl3): δ = 8.76 (s, 1H, ArH), 8.09–8.07 (m, 2H, ArH), 7.78 (s, 1H, ArH), 7.62–7.60 (m, 2H, ArH), 7.32–7.25 (m, 7H, ArH), 7.05–7.03 (m, 2H, ArH). ¹³C NMR (125 MHz, CDCl₃): δ = 195.4, 161.2, 158.9, 149.6, 139.6, 138.0, 135.6, 131.5, 131.1, 130.9, 128.8, 128.7, 128.7, 128.7, 128.6, 128.6, 120.0, 114.4, 55.4. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₅H₁₈ClNO₂ 400.1099; found, 400.1101.

(4-Bromophenyl)(4-(4-nitrophenyl)-6-phenylpyridin-3-yl)methanone (3t)

White solid (82%, 376 mg); Mp: 186.5–187.0 °C; IR (KBr): 3824, 3383, 3164, 1736, 1662, 1585, 1450, 1280, 823, 679, 556 cm⁻¹; ¹H NMR (500 MHz, CDCl3): δ = 8.84 (s, 1H, ArH), 8.20–8.18 (m, 2H, ArH), 8.12–8.11 (m, 2H, ArH), 7.83 (s, 1H, ArH), 7.63–7.61 (m, 2H, ArH), 7.55–7.49 (m, 2H, ArH). ¹³C NMR (125 MHz, CDCl₃): δ = 194.4, 159.7, 149.9, 147.9, 147.8, 144.4, 137.8, 135.6, 132.1, 131.6, 131.3, 130.3, 129.5, 129.3, 129.1, 127.3, 124.0, 120.9. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₄H₁₅BrN₂O₃ 459.0339; found, 459.0343.

(4,6-Bis(4-fluorophenyl)pyridin-3-yl)(phenyl)methanone (3u)

White solid (86%, 320 mg); Mp: 161.0–161.5 °C; IR (KBr): 3836, 1707, 1661, 1533, 1410, 763, 685, 548 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.78$ (s, 1H, ArH), 8.12–8.09 (m, 2H, ArH), 7.76 (s, 1H, ArH), 7.70–7.69 (m, 2H, ArH), 7.50–7.47 (m, 1H, ArH), 7.35–7.30 (m, 4H, ArH), 7.22–7.19 (m, 2H, ArH), 6.99–6.95 (m, 2H, ArH). ¹³C NMR (125 MHz, CDCl₃): $\delta = 195.3$, 163.0 (d, J = 248.8 Hz), 162.0 (d, J = 248.8 Hz), 157.0, 148.7, 147.8, 136.0, 133.5, 133.0, 132.9, 131.5, 129.4 (d, J = 7.5 Hz), 128.8, 128.1 (d, J = 7.5 Hz), 127.5, 119.5, 114.9 (d, J = 21.3 Hz), 114.8 (d, J = 21.3 Hz). ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -111.5$, -112.3 ppm. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₄H₁₅F₂NO 372.1194; found, 372.1201.

(6-(4-Fluorophenyl)-4-phenylpyridin-3-yl)(phenyl)methanone (3v)

White solid (89%, 316 mg); Mp: 139.9–140.4 °C; IR (KBr): 3870, 2931, 1729, 1641, 1595, 1469, 779, 696, 541 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): δ = 8.75 (s, 1H, ArH), 8.36–8.33 (m, 2H, ArH), 8.12 (s, 1H, ArH), 7.66–7.65 (m, 2H, ArH), 7.56–7.53 (m, 1H, ArH), 7.42–7.28 (m, 9H, ArH). ¹³C NMR (125 MHz, DMSO- d_6): δ = 196.4, 163.8 (d, J = 246.7 Hz), 157.3, 149.4 (d, J = 11.3 Hz), 137.9, 137.1, 134.8, 134.8, 134.0, 132.9, 130.0, 129.9, 129.9, 129.2 (d, J = 10.0 Hz), 129.1, 129.0, 121.0, 116.2 (d, J = 22.5 Hz). HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₄H₁₆FNO 354.1289; found, 372.1202.

(4-(4-Methoxyphenyl)-6-phenylpyridin-3-yl)(phenyl)methanone (3w)

White solid (77%, 282 mg); Mp: 135.3–135.8 °C; IR (KBr): 3812, 3598, 1727, 1663, 1588, 1454, 1178, 612, 575 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.77$ (s, 1H, ArH), 8.11–8.10 (m, 2H, ArH), 7.82 (s, 1H, ArH), 7.72–7.70 (m, 2H, ArH), 7.53–7.44 (m, 4H, ArH), 7.33–7.25 (m, 4H, ArH), 6.81–6.78 (m, 2H, ArH), 3.74 (s, 3H, OCH₃). ¹³C NMR (125 MHz, CDCl₃): $\delta = 196.8$, 160.1, 158.9, 149.6, 149.3, 138.6, 137.1, 133.3, 132.5, 130.3, 130.0, 129.9, 129.6, 128.9, 128.4, 127.2, 120.8, 114.2, 55.3. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₅H₁₉NO₂ 366.1489; found, 366.1496.

White solid (82%, 302 mg); Mp: 127.2–127.7 °C; IR (KBr): 3877, 1722, 1640, 1588, 1440, 688, 578 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 8.79 (s, 1H, ArH), 8.02–8.00 (m, 2H, ArH), 7.78 (s, 1H, ArH), 7.71–7.69 (m, 2H, ArH), 7.69–7.46 (m, 1H, ArH), 7.35–7.25 (m, 6H, ArH), 6.99–6.94 (m, 2H, ArH), 2.44 (s, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃): δ = 196.4, 163.0 (d, *J* = 247.5 Hz), 159.1, 149.7, 148.7, 140.1, 137.1, 135.6, 134.2, 133.4, 132.2, 130.4 (d, *J* = 8.8 Hz), 129.8, 129.7, 128.4, 127.1, 120.5, 115.7 (d, *J* = 21.3 Hz), 21.4. ¹⁹F NMR (470 MHz, CDCl₃): δ = –112.6 ppm. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₅H₁₈FNO 368.1445; found, 368.1451.

(6-(4-Methoxyphenyl)-4-phenylpyridin-3-yl)(phenyl)methanone (3y)

White solid (88%, 323 mg); Mp: 118.0–118.5 °C; IR (KBr): 3899, 1729, 1662, 1583, 1450, 1281, 672, 542 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 8.77 (s, 1H, ArH), 8.09–8.07 (m, 2H, ArH), 7.78 (s, 1H, ArH), 7.71–7.69 (m, 2H, ArH), 7.45–7.42 (m, 1H, ArH), 7.34–7.24 (m, 7H, ArH), 7.02–7.01 (m, 2H, ArH), 3.87 (s, 3H, OCH₃). ¹³C NMR (125 MHz, CDCl₃): δ = 196.6, 161.2, 158.7, 149.8, 149.7, 138.2, 137.3, 133.2, 131.9, 131.0, 129.8, 129.8, 128.6, 128.6, 128.3, 128.3, 120.1, 114.3, 55.4. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₅H₁₉NO₂ 366.1489; found, 366.1498.

(6-(4-Fluorophenyl)-4-phenylpyridin-3-yl)(p-tolyl)methanone (3z)

White solid (85%, 312 mg); Mp: 128.3–128.8 °C; IR (KBr): 3750, 1729, 1645, 1598, 1473, 1296, 839, 697, 568 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 8.68 (s, 1H, ArH), 8.04–8.01 (m, 2H, ArH), 7.72 (s, 1H, ArH), 7.56–7.54 (m, 2H, ArH), 7.28–7.26 (m, 2H, ArH), 7.22–7.18 (m, 3H, ArH), 7.14–7.10 (m, 2H, ArH), 7.06–7.04 (m, 2H, ArH). ¹³C NMR (125 MHz, CDCl₃): δ = 194.9, 162.9 (d, *J* = 248.8 Hz), 156.7, 148.7, 148.5, 143.4, 136.9, 133.7, 133.7, 133.6, 131.8, 129.0, 128.1, 128.1, 127.7, 127.5, 119.7, 114.9 (d, *J* = 21.3 Hz), 20.7. ¹⁹F NMR (470 MHz, CDCl₃): δ = –111.8 ppm. HRMS

(4-(4-Nitrophenyl)-6-phenylpyridin-3-yl)(p-tolyl)methanone (3a')

White solid (83%, 328 mg); Mp: 145.9–146.4 °C; IR (KBr): 3872, 1730, 1658, 1599, 1519, 1468, 1348, 1292, 695, 565 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 8.84 (s, 1H, ArH), 8.18–8.16 (m, 2H, ArH), 8.12–8.10 (m, 2H, ArH), 7.83 (s, 1H, ArH), 7.67–7.66 (m, 2H, ArH), 7.55–7.47 (m, 5H, ArH), 7.26–7.19 (m, 2H, ArH), 2.39 (s, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃): δ = 195.1, 159.3, 149.9, 147.8, 147.7, 145.1, 144.7, 138.0, 134.4, 132.4, 130.2, 130.1, 129.5, 129.5, 129.0, 127.3, 123.9, 120.8, 21.8. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₅H₁₈N₂O₃ 395.1390; found, 395.1399.

(4-(4-Fluorophenyl)-6-(p-tolyl)pyridin-3-yl)(p-tolyl)methanone (3b')

White solid (89%, 340 mg); Mp: 150.4–150.9 °C; IR (KBr): 3809, 1755, 1614, 1581, 1447, 1241, 631, 568 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.75$ (s, 1H, ArH), 8.01–8.00 (m, 2H, ArH), 7.77 (s, 1H, ArH), 7.63–7.62 (m, 2H, ArH), 7.34–7.31 (m, 4H, ArH), 7.15–7.14 (m, 2H, ArH), 7.00–6.96 (m, 2H, ArH), 2.44 (s, 3H, CH₃), 2.36 (s, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃): $\delta = 196.0$, 163.0 (d, J = 247.5 Hz), 158.8, 149.5, 148.5, 144.5, 140.0, 135.6, 134.6, 134.2, 132.5, 130.4 (d, J = 8.8 Hz), 130.1, 129.7, 129.2, 127.1, 120.6, 115.7 (d, J = 22.5 Hz), 21.7, 21.3. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -112.7$ ppm. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₆H₂₀FNO 382.1602; found, 382.1608.

(4,6-Bis(4-fluorophenyl)pyridin-3-yl)(4-methoxyphenyl)methanone (3c')

White solid (87%, 350 mg); Mp: 131.9–132.4 °C; IR (KBr): 3877, 1728, 1614, 1597, 1510, 1426, 1164, 691, 566 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 8.74 (s, 1H, ArH), 8.11–8.08 (m, 2H, ArH), 7.75 (s, 1H, ArH), 7.70–7.69 (m, 2H, ArH), 7.35–7.32 (m, 2H,

ArH), 7.20–7.17 (m, 2H, ArH), 7.00–6.97 (m, 2H, ArH), 6.83–6.81 (m, 2H, ArH). ¹³C NMR (125 MHz, CDCl₃): δ = 194.7, 165.0, 164.0, 163.0 (d, *J* = 245.0 Hz), 157.7, 149.4, 148.4, 134.6, 134.0, 132.9, 132.3, 130.3 (d, *J* = 8.8 Hz), 130.0, 129.1 (d, *J* = 8.8 Hz), 120.5, 115.9 (d, *J* = 10.0 Hz), 115.8 (d, *J* = 10.0 Hz), 113.8, 55.5. ¹⁹F NMR (470 MHz, CDCl₃): δ = –111.6, –112.4 ppm. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₅H₁₇F₂NO₂ 402.1300; found, 402.1306.

(4-Methoxyphenyl)(6-(4-methoxyphenyl)-4-phenylpyridin-3-yl)methanone (3d')

White solid (88%, 349 mg); Mp: 152.0–152.5 °C; IR (KBr): 3820, 1719, 1661, 1591, 1450, 848, 760, 516 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 8.73 (s, 1H, ArH), 8.08–8.06 (m, 2H, ArH), 7.77 (s, 1H, ArH), 7.72–7.70 (m, 2H, ArH), 7.37–7.35 (m, 2H, ArH), 7.29–7.26 (m, 3H, ArH), 7.04–7.02 (m, 2H, ArH), 6.81–6.79 (m, 2H, ArH), 3.88 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃); ¹³C NMR (125 MHz, CDCl₃): δ = 195.0, 163.7, 161.1, 158.4, 149.5, 149.4, 138.2, 132.3, 131.1, 130.3, 128.6, 128.6, 128.6, 128.5, 120.2, 114.3, 114.3, 113.6, 55.5, 55.4; HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₆H₂₁NO₃ 396.1594; found, 396.1601.

(4-Chloro-3-methylphenyl)(6-(4-fluorophenyl)-4-phenylpyridin-3-yl)methanone (3e')

White solid (86%, 346 mg); Mp: 160.3–160.8°C; IR (KBr): 3859, 1717, 1650, 1592, 1450, 772, 585 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.77 (s, 1H, ArH), 8.13–8.08 (m, 2H, ArH), 7.79 (s, 1H, ArH), 7.58–7.43 (m, 1H, ArH), 7.38–7.36 (m, 1H, ArH), 7.33–7.20 (m, 6H, ArH), 7.19–7.11 (m, 2H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ = 195.4, 165.3, 162.8, 158.0, 149.7 (d, *J* = 22.0 Hz), 140.0, 138.9 (d, *J* = 220.0 Hz), 136.4, 135.4, 134.6, 134.3, 132.1, 129.2, 1290 (d, *J* = 19.0 Hz), 128.8, 128.7 (d, *J* = 18.0 Hz), 128.5, 120.6, 115.9 (d, *J* = 22.0 Hz), 19.9; HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₅H₁₇ClFNO 402.1055; found, 402.1058.

(6-(2,6-dichloro-3-fluorophenyl)-4-(3,4-dichlorophenyl)pyridin-3-yl)(3,4-dimethylphenyl)methanone (3f')

Yellow solid (84%, 434 mg); Mp: 149.4–149.9°C; IR (KBr): 3636, 3459, 1739, 1673, 1596, 1531, 1444, 1328, 1247, 1127, 991, 825 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.71 (s, 1H, ArH), 7.68 (s, 1H, ArH), 7.62 (s, 2H, ArH), 7.35–7.34 (d, 1H, ArH), 7.29–7. 27 (d, 1H, ArH), 7.12–7.09 (m, 2H, ArH), 7.03–7.01 (m, 1H, ArH), 6.86–6.85 (m, 1H, ArH), 2.33 (s, 6H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 193.3, 164.1 (d, *J* = 11.0 Hz), 161.6 (d, *J* = 12.0 Hz), 160.4, 149.9, 147.5, 140.0, 139.8, 138.7, 137.7, 133.5, 133.2, 132.0, 130.8, 130.7, 130.3, 127.8, 125.2, 120.9, 112.6 (d, *J* = 18.0 Hz), 112.6(d, *J* = 19.0 Hz), 109.2, 108.9, 108.7, 21.4, 21.4. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₆H₁₆Cl₄FNO 518.0043; found, 518.0045.

(4-(3,4-dichlorophenyl)-6-(3,4-dimethylphenyl)pyridin-3-yl)(3,4dimethylphenyl)methanone (3g')

Yellow liquid (80%, 367 mg); IR (KBr): 3807, 3527, 3346, 3277, 3155, 2982, 1919, 1758, 1659, 1583, 1539, 1245, 907, 825 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.77 (s, 1H, ArH), 7.76 (s, 1H, ArH), 7.71 (s, 2H, ArH), 7.54 (s, 1H, ArH), 7.48–7. 45 (m, 2H, ArH), 7.34–7.32 (d, 1H, ArH), 7.15–7.12 (m, 3H, ArH), 2.42 (s, 6H, CH₃), 2.29 (s, 3H, CH₃), 2.25 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.5, 159.4, 149.7, 147.3, 143.7, 138.6, 138.2, 138.2, 138.1, 137.2, 134.8, 133.0, 132.9, 132.9, 132.4, 131.7, 131.0, 130.5, 130.3, 129.9, 128.0, 127.9, 125.1, 120.9, 21.4, 21.4, 20.1, 19.7. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₈H₂₃Cl₂NO 460.1229; found, 460.1232.

1-(2-methyl-4,6-diphenylpyridin-3-yl)ethan-1-one (3h')

White solid (84%, 241 mg); Mp: 112.5–113.0 °C; IR (KBr): 3748, 3550, 1698, 1582, 1545, 1498, 1244, 762 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 7.97–7.95 (m, 2H, ArH), 7.49 (s, 1H, ArH), 7.41–7.37 (m, 5H, ArH), 7.36–7.33 (m, 3H, ArH), 2.55 (, 3H, CH₃),

1.93 (s, 3H, CH₃CO). ¹³C NMR (150 MHz, CDCl₃): δ = 206.3, 157.0, 154.1, 147.3, 138.8, 138.4, 134.5, 129.3, 129.0, 128.8, 128.6, 128.5, 127.2, 118.6, 32.1, 23.1. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₀H₁₇NO 288.1383; found, 288.1383.

methyl 2-methyl-4,6-diphenylnicotinate (3i')

Yellow solid (82%, 249 mg); Mp: 97.3–97.8 °C; IR (KBr): 3762, 1738, 1584, 1546, 1441, 1273, 1079, 701, 670 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 7.94–7.93 (m, 2H, ArH), 7.47 (s, 1H, ArH), 7.37–7.30 (m, 8H, ArH), 3.53 (s, 3H, CH₃O), 2.61 (s, 3H, CH₃). ¹³C NMR (150 MHz, CDCl₃): δ = 169.6, 157.5, 155.8, 149.0, 138.9, 138.8, 129.4, 128.8, 128.7, 128.6, 127.8, 127.3, 126.6, 118.5, 52.2, 23.2. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₀H₁₇NO₂ 304.1332; found, 304.1327.

ethyl 2-methyl-4,6-diphenylnicotinate (3j')

Yellow solid (79%, 251 mg); Mp: 110.1–110.6 °C; IR (KBr): 3915, 3492, 3277, 1766, 1638, 1529, 1464, 1245, 842, 716 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 7.95–7.93 (m, 2H, ArH), 7.48 (s, 1H, ArH), 7.39–7.36 (m, 2H, ArH) , 7.35–7.31 (m, 6H, ArH), 4.05–4.01 (m, 2H, CH₂), 2.64 (s, 3H, CH₃Ar), 0.92–0.90 (m, 3H, CH₃). ¹³C NMR (150 MHz, CDCl₃): δ = 169.0, 157.4, 155.8, 149.0, 139.0, 138.8, 129.4, 128.8, 128.6, 128.5, 128.0, 127.2, 126.8, 118.6, 61.4, 23.2, 13.7. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₁H₁₉NO₂ 318.1489; found, 318.1493.

isopropyl 2-methyl-4,6-diphenylnicotinate (3k')

Yellow liquid (77%, 255 mg); IR (KBr): 3896, 3686, 3562, 3227, 1722, 1584, 1547, 1458, 1381, 1244, 1098, 832, 698 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 7.92–7.91 (m, 2H, ArH), 7.44 (s, 1H, ArH), 7.36–7.29 (m, 8H, ArH), 4.94–4.92 (m, 1H, CH), 2.62 (s, 3H, CH₃Ar), 0.94 (s, 3H, CH₃), 0.92 (s, 3H, CH₃). ¹³C NMR (150 MHz, CDCl₃): δ = 168.4, 157.3, 155.5, 148.9, 138.9, 138.9, 129.3, 128.8, 128.6, 128.5, 128.5, 128.1, 127.3, 118.6, 69.1, 23.1, 21.4, 21.4. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₂H₂₁NO₂ 332.1645; found, 332.1642.

White solid (89%, 240 mg); Mp: 126.0–126.5 °C; IR (KBr): 3935, 3808, 3620, 3040, 2224, 1764, 1592, 1546, 1504, 1382, 1246, 1164, 1000, 878, 792, 696 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 8.01–7.99 (m, 2H, ArH), 7.60 (s, 1H, ArH), 7.57–7.55 (m, 2H, ArH), 7.47–7.40 (m, 6H, ArH), 2.84 (s, 3H, CH₃). ¹³C NMR (150 MHz, CDCl₃): δ = 162.8, 159.2, 153.9, 137.8, 136.6, 130.4, 129.9, 129.0, 129.0, 128.5, 127.5, 118.0, 117.3, 105.9, 24.4. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₁₉H₁₄N₂ 271.1230; found, 271.1229.

2-(methylthio)-3-nitro-4,6-diphenylpyridine (3m')

Yellow solid (77%, 248 mg); Mp: 137.4–137.9 °C; IR (KBr): 3825, 3745, 3333, 3069, 1771, 1580, 1435, 1243, 880, 697, 589 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 8.03-8.01$ (m, 2H, ArH), 7.41–7.27 (m, 6H, ArH), 7.26–7.25 (m, 2H, ArH), 6.94 (s, 1H, ArH), 3.17 (s, 3H, CH₃). ¹³C NMR (150 MHz, CDCl₃): $\delta = 159.0$, 152.5, 149.1, 138.3, 137.7, 130.5, 128.8, 128.7, 128.5, 127.9, 127.6, 127.0, 111.8, 28.6. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₁₈H₁₄N₂O₂S 323.0849; found, 323.0850.

2,4-diphenyl-7,8-dihydroquinolin-5(6H)-one (3n')

Yellow solid (87%, 260 mg); Mp: 120.0–120.5 °C; IR (KBr): 3878, 3565, 3066, 2952, 1739, 1696, 1580, 1532, 1498, 1441, 1368, 1241, 764, 696 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 7.99–7.98 (m, 2H, ArH), 7.44 (s, 1H, ArH), 7.41–7.37 (m, 3H, ArH), 7.36–7.32 (m, 3H, ArH), 7.21–7.19 (m, 2H, ArH), 3.22–3.20 (m, 2H, CH₂Ar), 2.61–2.59 (m, 2H, CH₂CO), 2.16–2.12 (m, 2H, CH₂). ¹³C NMR (150 MHz, CDCl₃): δ = 197.7, 164.9, 159.0, 152.7, 140.6, 138.1, 130.1, 128.9, 128.1, 127.8, 127.8, 127.5, 124.9, 122.0, 40.1, 34.0, 21.7. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₁H₁₇NO 300.1383; found, 300.1386.

7,7-dimethyl-2,4-diphenyl-7,8-dihydroquinolin-5(6H)-one (3o')

White solid (83%, 271 mg); Mp: 135.1–135.6 °C; IR (KBr): 3854, 3464, 2960, 1692, 1581, 1542, 1451, 1372, 1280, 1239, 888, cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 8.00–7.99 (m, 2H, ArH), 7.44 (s, 1H, ArH), 7.40–7.38 (m, 3H, ArH), 7.35–7.33 (m, 3H, ArH), 7.21–7.20 (m, 2H, ArH), 3.13 (s, 2H, CH₂Ar), 2.47 (s, 2H, CH₂CO), 1.08 (s, 6H, CH₃). ¹³C NMR (150 MHz, CDCl₃): δ = 197.8, 163.5, 159.4, 152.3, 140.5, 138.2, 130.0, 128.9, 128.0, 127.8, 127.8, 127.5, 123.9, 121.8, 53.8, 47.8, 32.7, 28.3, 28.3. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₃H₂₁NO 328.1696; found, 328.1698.

2,4-diphenyl-5,6,7,8-tetrahydroquinoline (3p')

White solid (83%, 237 mg); Mp: 117.3–117.8 °C; IR (KBr): 3805, 3631, 2937, 2863, 1587, 1546, 1442, 1381, 1244, 768, 698 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 7.89–7.88 (m, 2H, ArH), 7.36–7.23 (m, 9H, ArH), 3.02–3.00 (m, 2H, CH₂), 2.57–2.55 (m, 2H, CH₂), 1.86–1.82 (m, 2H, CH₂), 1.68–1.64 (m, 2H, CH₂). ¹³C NMR (150 MHz, CDCl₃): δ = 157.6, 154.3, 150.4, 139.7, 139.7, 128.7, 128.6, 128.6, 128.5, 128.4, 127.8, 127.0, 119.2, 33.3, 27.3, 23.1, 23.1. HRMS (TOF ES⁺) m/z: [M+H]⁺ calcd for C₂₁H₁₉N 286.1590; found, 286.1588.

The proposed mechanism of the cascade reaction

The proposed mechanism is shown in Scheme 2. Initially, α,β -unsaturated ketoxime acetate **1e** was formed **4e** via SET mechanism. Subsequently, the radical intermediate **4e** acquired one electron from the Fe²⁺ to form the intermediate **5e**. Then, the intermediate **5e** undergoes a bis-Michael reaction with the substrate **2f**, yielding the key intermediate **6f**. The intermediate was further oxidized by Fe³⁺ and formed the intermediate **7f** after losing two electrons. The intermediate **7f** produced the intermediate **8f** after losing one proton. Finally, the intermediate **8f** lost one molecule of PhNH₂ to yield the final product **3f**.

Scheme S1. The mechanism were tested by HPLC-HRMS

Furthermore, we tried to make the mixture of 1e (0.1 mmol), 2f (0.11 mmol) and Fe(OTf)₃ (0.05 equiv.) in toluene and carried out refluxing for 0.5 h. Following this, we immediately injected the reaction mixture into the high-pressure liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) system. Some intermediate molecular ion peaks appeared (ESI, Figures S101-S108). The molecular ion peaks that appeared in the high-resolution mass spectrum were: HRMS (TOF ES⁺): m/z calcd. for C₁₇H₁₅NNaO₂ [M+Na]⁺, 288.0995; found, 288.0996, which is the HRMS spectrum of 1e (SI, Figure S102); HRMS (TOF ES⁺): m/z calcd. for C₂H₅O₂ [M+H]⁺, 61.0284; found, 61.0281, which is the HRMS spectrum of HOAc (SI, Figure S103). HRMS (TOF ES⁺): *m/z* calcd. for C₁₅H₁₄NO [M+H]⁺, 224.1070; found, 224.1070, which is the HRMS spectrum of 2f (SI, Figure S104); HRMS (TOF ES⁺): m/z calcd. for $C_{15}H_{12}N^{+}[M]^{+}$, 206.0964; found, 206.0965, which is the HRMS spectrum of 4e (SI, Figure S105); HRMS (TOF ES⁺): m/z calcd. for C₁₅H₁₄N·[M+H]⁺, 208.1121; found, 208.1117, which is the HRMS spectrum of **5e** (SI, Figure S106); HRMS (TOF ES⁺): m/z calcd. for C₃₀H₂₇N₂O [M+H]⁺, 431.2118; found, 431.2115, which is the HRMS spectrum of 7f (SI, Figure S107); HRMS (TOF ES⁺): m/z calcd. for C₃₀H₂₅N₂O [M+H]⁺, 429.1961; found, 429.1957, which is the HRMS spectra of intermediates 8f or **9f** (SI, Figures S108); HRMS (TOF ES⁺): *m/z* calcd. for C₂₄H₁₈NO [M+H]⁺, 336.1383; found, 336.1380, which is the HRMS spectrum of target compound 3f (SI, Figure S109). Based on the molecular ion peaks of intermediates 4e-5e and 7f-9f (ESI, Figures

S105–S108). We believe there exist ample evidence in support of the proposed mechanism.

X-ray Structure and Data of 3u³

Single crystal culture and confirmation: First, compound **3u** (20 mg) was added to a bottle and dissolved by the addition of ethyl acetate (0.5 mL). Then, the bottle was placed in a dry, ventilated place at room temperature for 10 days. Some crystals appeared, and for single crystal parsing, crystals were selected with sizes of 0.34 mm x 0.24 mm x 0.18 mm. The Bruker D8 VENTURE was used to obtain single crystal diffraction at 100.0 K with the use of three-circle diffractometer MoK (lambda = 0.71073 A) for diffraction intensity data collection, using Φ and omega scanning. The crystal structure was solved by the atomic method using the SHELXL 2018/3 (Sheldrick, 2015) program (Supporting Information, Figure S1, CCDC 2260760).³

Figure S1. X-Ray crystal structure of **3u**, ellipsoid is drawn at the 30% probability level.

Identification code	1			
Empirical formula	$C_{24}H_{15}F_2NO$			
Formula weight	371.37			
Temperature	100.00 K			
Wavelength	0.71073 A			
Crystal system, space group	Triclinic, P-1			
Unit cell dimensions	a = 8.7520(7) A alpha = $88.991(3) deg$.			
	b = 9.0608(6) A beta = 76.810(3) deg.			
	c = 11.3766(9) A gamma = 82.972(3) deg.			
Volume	871.72(11) A^3			
Z, Calculated density	2, 1.415 Mg/m^3			
Absorption coefficient	0.101 mm^-1			
F(000)	384			
Crystal size	0.34 x 0.24 x 0.18 mm			
Theta range for data collection	2.265 to 28.446 deg.			
Limiting indices	-11<=h<=11, -12<=k<=11, -15<=l<=15			
Reflections collected / unique	19045 / 4364 [R(int) = 0.0457]			
Completeness to theta $= 25.242$	99.7 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.7457 and 0.7046			
Refinement method	Full-matrix least-squares on F^2			
Data / restraints / parameters	4364 / 0 / 253			
Goodness-of-fit on F^2	1.031			
Final R indices [I>2sigma(I)]	R1 = 0.0450, wR2 = 0.0956			
Rindices (all data)	R1 = 0.0671, wR2 = 0.1068			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.269 and -0.213 e.A^-3			

 Table S1. Crystal data and structure refinement for 3u

Atom	Atom	Length/Å	Atom	Atom	Length/Å
F(1)	C(1)	1.3622(16)	C(11)	H(11)	0.9500
F(2)	C(15)	1.3576(16)	C(12)	C(13)	1.398(2)
O(1)	C(18)	1.2209(17)	C(12)	C(17)	1.396(2)
N(1)	C(7)	1.3456(18)	C(13)	H(13)	0.9500
N(1)	C(11)	1.3318(19)	C(13)	C(14)	1.387(2)
C(1)	C(2)	1.376(2)	C(14)	H(14)	0.9500
C(1)	C(6)	1.374(2)	C(14)	C(15)	1.377(2)
C(2)	H(2)	0.9500	C(15)	C(16)	1.374(2)
C(2)	C(3)	1.389(2)	C(16)	H(16)	0.9500
C(3)	H(3)	0.9500	C(16)	C(17)	1.386(2)
C(3)	C(4)	1.395(2)	C(17)	H(17)	0.9500
C(4)	C(5)	1.397(2)	C(18)	C(19)	1.491(2)
C(4)	C(7)	1.4863(19)	C(19)	C(20)	1.398(2)
C(5)	H(5)	0.9500	C(19)	C(24)	1.394(2)
C(5)	C(6)	1.383(2)	C(20)	H(20)	0.9500
C(6)	H(6)	0.9500	C(20)	C(21)	1.384(2)
C(7)	C(8)	1.3958(19)	C(21)	H(21)	0.9500
C(8)	H(8)	0.9500	C(21)	C(22)	1.390(2)
C(8)	C(9)	1.3916(19)	C(22)	H(22)	0.9500
C(9)	C(10)	1.4008(19)	C(22)	C(23)	1.387(2)
C(9)	C(12)	1.4861(19)	C(23)	H(23)	0.9500
C(10)	C(11)	1.393(2)	C(23)	C(24)	1.388(2)
C(10)	C(18)	1.503(2)	C(24)	H(24)	0.9500

Table S2. Bond Lengths for 3u

Table S3. Bond Angles for 3u

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(11)	N(1)	C(7)	117.44(12)	C(14)	C(13)	C(12)	121.03(13)
F(1)	C(1)	C(2)	118.52(14)	C(14)	C(13)	H(13)	119.5
F(1)	C(1)	C(6)	118.43(13)	C(13)	C(14)	H(14)	120.9
C(6)	C(1)	C(2)	123.04(14)	C(15)	C(14)	C(13)	118.24(14)
C(1)	C(2)	H(2)	120.9	C(15)	C(14)	H(14)	120.9
C(1)	C(2)	C(3)	118.17(14)	F(2)	C(15)	C(14)	118.73(13)
C(3)	C(2)	H(2)	120.9	F(2)	C(15)	C(16)	118.43(13)
C(2)	C(3)	H(3)	119.6	C(16)	C(15)	C(14)	122.83(13)
C(2)	C(3)	C(4)	120.82(13)	C(15)	C(16)	H(16)	120.9
C(4)	C(3)	H(3)	119.6	C(15)	C(16)	C(17)	118.30(13)
C(3)	C(4)	C(5)	118.63(13)	C(17)	C(16)	H(16)	120.9
C(3)	C(4)	C(7)	121.63(12)	C(12)	C(17)	H(17)	119.4
C(5)	C(4)	C(7)	119.74(13)	C(16)	C(17)	C(12)	121.12(14)
C(4)	C(5)	H(5)	119.4	C(16)	C(17)	H(17)	119.4
C(6)	C(5)	C(4)	121.17(14)	O(1)	C(18)	C(10)	119.46(13)
C(6)	C(5)	H(5)	119.4	O(1)	C(18)	C(19)	120.89(13)
C(1)	C(6)	C(5)	118.12(13)	C(19)	C(18)	C(10)	119.50(12)
C(1)	C(6)	H(6)	120.9	C(20)	C(19)	C(18)	118.65(13)
C(5)	C(6)	H(6)	120.9	C(24)	C(19)-	C(18)	121.42(13)
N(1)	C(7)	C(4)	115.80(12)	C(24)	C(19)	C(20)	119.78(13)
N(1)	C(7)	C(8)	121.76(13)	C(19)	C(20)	H(20)	120.0
C(8)	C(7)	C(4)	122.44(13)	C(21)	C(20)	C(19)	119.95(14)
C(7)	C(8)	H(8)	119.7	C(21)	C(20)	H(20)	120.0
C(9)	C(8)	C(7)	120.65(13)	C(20)	C(21)	H(21)	120.0
C(9)	C(8)	H(8)	119.7	C(20)	C(21)	C(22)	120.08(14)
C(8)	C(9)	C(10)	117.28(13)	C(22)	C(21)	H(21)	120.0
C(8)	C(9)	C(12)	120.07(12)	C(21)	C(22)	H(22)	119.9
C(10)	C(9)	C(12)	122.61(13)	C(23)	C(22)	C(21)	120.18(14)
C(9)	C(10)	C(18)	125.17(13)	C(23)	C(22)	H(22)	119.9
C(11)	C(10)	C(9)	118.09(13)	C(22)	C(23)	H(23)	120.0
C(11)	C(10)	C(18)	116.75(12)	C(22)	C(23)	C(24)	120.06(14)
N(1)	C(11)	C(10)	124.69(13)	C(24)	C(23)	H(23)	120.0
N(1)	C(11)	H(11)	117.7	C(19)	C(24)	H(24)	120.0
C(10)	C(11)	H(11)	117.7	C(23)	C(24)	C(19)	119.93(14)
C(13)	C(12)	C(9)	120.57(13)	C(23)	C(24)	H(24)	120.0
C(17)	C(12)	C(9)	120.95(13)	C(14)	C(13)	C(12)	121.03(13)
C(17)	C(12)	C(13)	118.45(13)	C(14)	C(13)	H(13)	119.5
C(12)	C(13)	H(13)	119.5				

Figure S2. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3a

Figure S3. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3a

Figure S4. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3b

Figure S5. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3b

Figure S6. ¹⁹F NMR (564 MHz, CDCl₃) spectra of compound 3b

Figure S7. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound **3c**

Figure S8. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 3c

YUNNAN UNIVERSITY ASCEND AVIIIHD600 HXMD-2 Oct07-2022-huxingmei F19CPD DMSO

Figure S9. ¹⁹F NMR (564 MHz, DMSO-*d*₆₃) spectra of compound **3c**

Figure S10. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3d

DEPT135

Figure S11. ¹²C NMR (150 MHz, CDCl₃) spectra of compound 3d

Figure S12. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3e

Figure S13. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3e

DEPT135

Figure S14. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 3f

Figure S16. ¹H NMR (400 MHz, CDCl₃) spectra of compound 3g

Figure S17. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 3g

Figure S18. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3h

Figure S19. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3h

Figure S20. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3i

Figure S21. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3i

Figure S22. ¹H NMR (400 MHz, CDCl₃) spectra of compound 3j

0417-A

Figure S24. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3k

Figure S25. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3k

Figure S26. ¹⁹F NMR (564 MHz, CDCl₃) spectra of compound 3k

Figure S27. ¹H NMR (500 MHz, CDCl₃) spectra of compound 31

Figure S28. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 31

Figure S29. ¹⁹F NMR (470 MHz, CDCl₃) spectra of compound 31

Figure S30. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 3m

Figure S31. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 3m

Figure S32. ¹⁹F NMR (470 MHz, DMSO-*d*₆) spectra of compound **3m**

Figure S33. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3n

Figure S34. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 3n

Figure S35. ¹⁹F NMR (470 MHz, CDCl₃) spectra of compound 3n

Figure S36. ¹H NMR (500 MHz, CDCl₃) spectra of compound 30

Figure S37. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 30

YunNan University AVANCEHDIII 500M HXMD-20 Oct27-2022-huxingmei F19CPD CDCl3

Figure S38. ¹⁹F NMR (470 MHz, CDCl₃) spectra of compound 30

Figure S39. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3p

Figure S40. ¹³C NMR (125 MHz, CDCl₃) spectra of compound **3**p

Figure S41. ¹⁹F NMR (470 MHz, CDCl₃) spectra of compound **3p**

Figure S42. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3q

Figure S43. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 3q

Figure S44. ¹⁹F NMR (470 MHz, CDCl₃) spectra of compound 3q

Figure S46. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 3r

Figure S47. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3s

Figure S49. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3t

Figure S50. ¹²C NMR (125 MHz, CDCl₃) spectra of compound 3t

Figure S51. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3u

Figure S53. ¹⁹F NMR (470 MHz, CDCl₃) spectra of compound 3u

Figure S54. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 3v

Figure S56. ¹⁹F NMR (470 MHz, DMSO-*d*₆) spectra of compound 3v

Figure S57. ¹H NMR (500 MHz, CDCl₃) spectra of compound **3w**

Figure S58. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 3w

Figure S59. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3x

Figure S60. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 3x

Figure S61. ¹⁹F NMR (470 MHz, CDCl₃) spectra of compound 3x

Figure S62. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3y

Figure S63. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 3y

Figure S64. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3z

Figure S65. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 3z

Figure S66. ¹⁹F NMR (470 MHz, CDCl₃) spectra of compound 3z

Figure S67. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3a'

1

Figure S68. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 3a'

Figure S69. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3b'

Figure S70. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 3b'

Figure S71. ¹⁹F NMR (470 MHz, CDCl₃) spectra of compound 3b'

Figure S72. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3c'

Figure S73. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 3c'

YunNan University AVANCEHDIII 500M HXMD-18 Oct27-2022-huxingmei F19CPD CDCl3

Figure S75. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3d'

Figure S76. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3d'

Figure S77. ¹H NMR (400 MHz, CDCl₃) spectra of compound 3e'

Figure S78. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 3e'

Figure S79. ¹H NMR (400 MHz, CDCl₃) spectra of compound 3f'

Figure S80. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 3f'

Figure S81. ¹H NMR (400 MHz, CDCl₃) spectra of compound 3g'

Figure S82. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 3g'

Figure S83. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3h'

Figure S84. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3h'

Figure S85. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3i'

Figure S86. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3i'

Figure S87. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3j'

Figure S88. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3j'

Figure S89. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3k'

DEPT135

Figure S90. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3k'

Figure S91. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3I'

Figure S92. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3l'

DEPT135

Figure S93. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3m'

Figure S94. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3m'

Figure S95. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3n'

Figure S96. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3n'

Figure S97. ¹H NMR (600 MHz, CDCl₃) spectra of compound 30'

Figure S98. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3o'

Figure S99. ¹H NMR (600 MHz, CDCl₃) spectra of compound **3p'**

Figure S100. ¹³C NMR (150 MHz, CDCl₃) spectra of compound **3p'**

Figure S101. HPLC extracted ion flow diagrams of the reaction mixture

Figure S102. HRMS of substrate 1e

Figure S103. HRMS of HOAc

Figure S104. HRMS of substrate 2f

Figure S105. HRMS of intermediate 4e

Figure S106. HRMS of intermediate 5e

Figure S108. HRMS of intermediate 8f or 9f

Figure S109. HRMS of the target compound 3f

References and Notes

- 1. I. Erray, F. Rezgui, J. Oble, G. Poli, Microwave-Assisted Palladium-Catalyzed Allylation of β-Enaminones, *Synlett*, 2014, **25**, 2196–2200.
- Miao, C.-B.; Qiang, X.-Q.; Xu, X.; Song, X.-Q.; Zhou, S.-Q.; Lu, X.; Yang, H.-T. Synthesis of Stable N–H Imines with a Benzo[7,8]indolizine Core and Benzo[7,8]indolizino[1,2-c]quinolines via Copper-Catalyzed Annulation of α,β-Unsaturated O-Acyl Ketoximes with Isoquinolinium N-Ylides. *Org. Lett.*, 2022, 24, 3828–3833.
- 3. CCDC 2260760 contains the supplementary crystallographic data for compounds **3u**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center *via* <u>www.ccdc.cam.ac.uk/data_request/cif</u>