Substrate-controlled divergent synthesis with ortho-vinyl-functionalised 1,3-

enynes and imines via palladium catalysis

Bo Zhu,^a Teng Sun,^a Zhi-Chao Chen,^{*a} Lu Gao,^a Wei Du,^a and Ying-Chun Chen^{*a,b}

^aKey Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

^b College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.

*Corresponding Authors: chenzhichao@scu.edu.cn; ycchen@scu.edu.cn

Supplementary Information

1. General methods	S1
2. Substrate preparation and characterization	S2
2.1 Preparation of 1,3-enyne substrates 1a–1o	S2
2.2 Preparation of 1,3-enyne substrates 1p–1x	S2
3. Detailed condition optimization	S6
3.1 Detailed screening conditions for asymmetric synthesis of benzofulvene 3a	S6
3.2 Detailed screening conditions for asymmetric synthesis of indene derivative 4	S7
3.3 Detailed screening conditions for asymmetric synthesis of naphthalene 5	S7
3.4 Selected molecules embedding a benzofulvene or 1-naphthylated amine skeleton	S8
4. General procedure for asymmetric synthesis of benzofulvenes 3	S9
5. General procedure for asymmetric synthesis of indene derivative 4	S26
6. General procedure for asymmetric synthesis of naphthalenes 5	S27
7. General procedure for catalytic cascade reaction	S39
8. Transformations of the products	S42
9. More substrates and transformation exploration	S44
10. Proposed mechanism	S46
11. Crystal data and structural refinement	S47
12. NMR, HRMS spectra and HPLC chromatograms	S51

1. General methods

Unless otherwise noted, the reactions were carried out under ambient atmosphere; when the reactions required heating, the heat source was oil bath. ¹H NMR (400 MHz or 600 MHz), ¹³C NMR (100 MHz or 150 MHz) and ¹⁹F NMR (375 MHz) spectra were recorded on Varian INOVA 400/54, Agilent DD2 600/54 or Bruker AscendTM 400 instruments (Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution, unless otherwise noted). The following abbreviations were used to explain the multiplicities: s = singlet, d =doublet, t = triplet, q = quartet, dd = doublet doublet, td = triple doublet, dt = double triplet, brs = broad singlet, m = multiplet, and coupling constants (J) are reported in Hertz (Hz). High resolution mass spectra (HRMS) were recorded on a Waters SYNAPT G2, Agilent G1969-85000 or Shimadzu LCMS-IT-TOF using a time-of-flight mass spectrometer equipped with electrospray ionization (ESI) source. X-ray diffraction experiments were carried out on Bruker D8 venture diffractometer, and the data obtained were deposited at the Cambridge Crystallographic Data Centre (CCDC 2249982-2249984). In each case, enantiomeric excess was determined by HPLC analysis on a chiral stationary phase in comparison with the authentic racemate, using a Daicel Chiralpak AD-H Column (250×4.6 mm), Chiralpak IB Column (250 × 4.6 mm), Chiralpak IC Column (250 × 4.6 mm), Chiralpak IE Column (250 × 4.6 mm), Chiralpak IF Column (250 × 4.6 mm). UV detection was monitored at 254 nm. Column chromatography was performed on silica gel (200-300 mesh) eluting with redistilled EtOAc and petroleum ether. TLC was performed on glass-backed silica plates. UV light (monitored at 254 nm), I₂ and solution of potassium permanganate were used to visualize products or starting materials. All chemicals were used without purification as commercially available unless otherwise noted. THF was freshly distilled from sodium/benzophenone before use. Experiments involving moisture and/or air sensitive components were performed under a positive pressure of argon in oven-dried glassware equipped with a rubber septum inlet. Dried solvents and liquid reagents were transferred by oven-dried syringes.

2. Substrate preparation and characterization

2.1 Preparation of 1,3-enyne substrates 1a-1o

1,3-Enynes **1a–1j**, **1m–1o** were prepared according to the literature procedures,¹ which are known compounds and the spectroscopic data are consistent with the literature reports. The characterizations of new substrates are as follows:

1k, obtained as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.23 (d, J = 15.9
Hz, 1H), 8.09–7.93 (m, 2H), 7.79–7.69 (m, 1H), 7.67–7.55 (m, 2H), 7.55–7.43 (m,
BzBz3H), 7.42–7.30 (m, 2H), 6.07 (dd, J = 17.5, 11.2 Hz, 1H), 5.77 (dd, J = 17.5, 2.0 Hz,
1H), 5.60 (dd, J = 11.1, 2.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 191.0,

142.9, 138.2, 136.2, 133.1, 132.7, 129.9, 128.61, 128.58, 127.8, 126.7, 124.3, 124.1, 116.9, 94.4, 87.6; HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₁₉H₁₄ONa⁺ 281.0937; Found 281.0930.

11, obtained as a white solid, mp = 193–195 °C; ¹H NMR (400 MHz, CDCl₃)
δ (ppm) 8.05 (d, J = 15.5 Hz, 1H), 7.63–7.53 (m, 1H), 7.53–7.43 (m, 1H),
7.36–7.26 (m, 2H), 7.05 (d, J = 15.5 Hz, 1H), 6.07 (dd, J = 17.5, 11.2 Hz, 1H), 5.79 (dd, J = 17.6, 2.0 Hz, 1H), 5.58 (dd, J = 11.1, 2.0 Hz, 1H), 3.17 (s, 11)

3H), 3.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.7, 140.1, 136.7, 133.1, 128.9, 128.5, 127.6, 126.6, 123.3, 119.6, 117.0, 93.8, 87.9, 37.5, 35.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₅NONa⁺ 248.1046; Found 248.1053.

2.2 Preparation of 1,3-enyne substrates 1p-1x

Substrates S1 were prepared according to the literature procedures and the spectroscopic data of these compounds are consistent with the reports.² 1,3-Enyne derivatives 1p-1x were prepared according to the following procedures:

Step 1. To An oven-dried 50 mL flask was charged with $PdCl_2(PPh_3)_2$ (140.0 mg, 0.2000 mmol), CuI (95.0 mg, 0.500 mmol) and **S1** (10.0 mmol). After evacuating and refilling the flask with argon three times, Et₃N (20.0 mL) and ethynyltrimethylsilane (1.82 mL, 13.0 mmol, 1.3 equiv) were added sequentially. The mixture was stirred at room temperature until full consumption of **S1**. The mixture was filtered, and the filtrate was concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 50/1 to 20/1) to afford **S2**.

Step 2. **S2** (8.0 mmol, 1.0 equiv) was dissolved in anhydrous MeOH (10 mL) at room temperature. K_2CO_3 (110.4 mg, 0.8 mmol, 10 mol%) was added and the mixture was stirred for 10 minutes until complete conversion of **S2**. The reaction was quenched by H_2O and extracted with EtOAc (10 mL × 3). The combined organic layers were dried over anhydrous Na₂SO₄. After concentration, the crude product **S3** was used for the next step directly without further purification.

Step 3. To an over-dried flask equipped with a stirring bar were added CuI (76 mg, 0.4 mmol, 5 mol%) and Pd(PPh₃)₄ (184.8 mg, 0.1600 mmol, 2 mol%). After evacuating and refilling the flask with argon three times, Et₃N (20 mL), crude **S3** (8.0 mmol, 1.0 equiv) and vinyl bromide (1.0 M in THF, 9.6 mL, 9.6 mmol, 1.2 equiv) were added via syringe sequentially. The resulting mixture was stirred at room temperature until complete conversion of **S3**. The mixture was filtered, and the filtrate was concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 50/1 to 20/1) to afford **S4**.

Step 4. NaH (300 mg, 7.50 mmol, 1.5 equiv) was suspended in anhydrous THF (15 mL) under atmosphere of argon. *tert*-Butyl diethylphosphonoacetate (1.64 mL, 7.00 mmol, 1.4 equiv) was then added slowly to the suspension over 15 minutes at 0 °C. The mixture was stirred about 30 minutes, and **S4** (6 mmol, 1.0 equiv) was added. Then the reaction was stirred at 70 °C until full consumption of **S4**. After cooled to room temperature, the mixture was quenched with H₂O and extracted with EtOAc (20 mL \times 3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 50/1 to 20/1) to afford 1,3-enyne derivatives.

1H), 5.39 (dd, J = 11.1, 2.2 Hz, 1H), 2.36 (s, 3H), 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.3, 152.9, 140.7, 139.4, 137.3, 132.5, 129.0, 128.9, 128.3, 127.8, 126.6, 122.3, 121.3, 117.3, 90.8, 89.0, 80.1, 27.8, 21.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₄O₂Na⁺ 367.1669; Found 367.1677.

 $F_{3}C_{F_{3}C_{CO_{2}tBu}}$ **Ir**, obtained as a colorless oil; 21% yield for four steps; $E/Z = 11:1, E-1r: {}^{1}H$ NMR (400 MHz, CDCl₃) δ (ppm) 7.77 (s, 1H), 7.56 (d, J = 8.1 1H), 7.40–
7.26 (m, 4H), 7.25–7.19 (m, 2H), 6.42 (s, 1H), 5.82 (dd, J = 17.5, 11.1 Hz,
1H), 5.59–5.51 (dd, J = 17.5, 2.4 Hz, 1H), 5.51–5.43 (dd, J = 11.1, 2.3 Hz, 1H), 1.26 (s, 9H); ${}^{1}3C$ NMR
(150 MHz, CDCl₃) δ (ppm) 164.8, 151.4, 145.9, 139.4, 129.5, 129.3, 128.8 (q, ${}^{4}J_{FC} = 2.6$ Hz), 128.5,
127.9, 127.6, 125.0 (q, ${}^{1}J_{FC} = 250.1$ Hz), 124.4 (q, ${}^{4}J_{FC} = 2.4$ Hz), 123.5, 122.0, 116.7, 92.6, 87.1, 80.6,
77.2, 77.0, 76.8, 27.7; ${}^{19}F$ NMR (375 MHz, CDCl₃) δ (ppm) –62.8; HRMS (ESI-TOF) m/z: [M + Na]⁺
Calcd for C₂₄H₂₁F₃O₂Na⁺ 421.1386; Found 421.1378.

1s, obtained as a colorless oil; 37% yield for four steps; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.42 (d, J = 8.3 Hz, 1H), 7.36–7.25 (m, 6H), 7.15 (d, J = 2.2Hz, 1H), 5.42 (dd, J = 11.2, 2.2 Hz, 1H), 5.80 (dd, J = 17.6, 11.1 Hz, 1H), 5.49 (dd, J = 17.6, 2.2 Hz, 1H), 5.42 (dd, J = 11.2, 2.2 Hz, 1H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.0, 151.3, 143.9, 139.6, 133.9, 133.0, 129.2, 129.1, 128.5, 127.8, 127.7, 127.3, 122.0, 121.2, 116.9, 92.1, 87.6, 80.5, 27.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₁³⁵ClO₂Na⁺ 387.1122; Found 387.1115; Calcd for C₂₃H₂₁³⁷ClO₂Na⁺ 389.1093; Found 389.1090.

 $\begin{array}{l} \mbox{MeO} \\ \mbox{MeO} \\ \mbox{It} \ \mbox{Ph} \end{array} \label{eq:meO} \label{eq:meO} \mbox{It}, obtained as a colorless oil; 23% yield for four steps; <math>E/Z = 2.5:1, E-1t:$ $^{1}\mbox{H} \ \mbox{MeO} \ \mbox{MeO$

1u, obtained as a colorless oil; 19% yield for four steps; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.57–7.48 (m, 1H), 7.36–7.29 (m, 2H), 7.30–7.25 (m, 2H), 7.20–7.11 (m, 1H), 7.04–6.93 (m, 2H), 6.35 (s, 1H), 5.85 (dd, J = 17.5, 11.1 Hz, 1H), 5.53 (dd, J = 17.5, 2.2 Hz, 1H), 5.45 (dd, J = 11.0, 2.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.1, 163.2 (d, ¹ $J_{FC} = 247.9$ Hz), 151.6, 142.1, 136.5 (d,

 ${}^{3}J_{FC}$ = 3.2 Hz), 132.0, 129. 5 (d, ${}^{3}J_{FC}$ = 8.3 Hz), 129.0, 127.8 (d, ${}^{2}J_{FC}$ = 32.0 Hz), 126.9, 122.5, 121.2, 117.1, 115.3 (d, ${}^{2}J_{FC}$ = 21.5 Hz), 91.4, 88.5, 80.3, 27.7; ¹⁹F NMR (375 MHz, CDCl₃) δ (ppm) –112.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₁FO₂Na⁺ 371.1418; Found 371.1419.

1v, obtained as a colorless oil; 29% yield for four steps; E/Z = 3.1:1, E-**1v**: ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.52–7.45 (m, 1H), 7.33–7.25 (m, 2H), 7.23–7.17 (m, 2H), 7.17–7.10 (m, 1H), 6.87–6.75 (m, 2H), 6.31 (s, 1H), 5.83 (dd, J = 17.5, 11.1 Hz, 1H), 5.58–5.46 (m, 1H), 5.46–5.36 (m, 1H), 3.78 (s, 3H), 1.24 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 165.5, 160.4, 152.3, 142.6, 132.7,

131.9, 131.1, 129.1, 129.0, 127.9, 127.4, 126.7, 122.5, 121.9, 119.4, 117.2, 113.7, 91.1, 88.7, 79.9, 55.3, 27.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₄O₃Na⁺ 383.1618; Found 383.1626.

1w, obtained as a colorless oil; 16% yield for four steps; E/Z = 3.1:1, E-**1w**:¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.46–7.36 (m, 2H), 7.25 (m, 2H), 7.17–7.12 (m, 1H), 6.44 (s, 1H), 6.32–6.24 (m, 1H), 5.90 (d, J = 3.4 Hz, 1H), 5.85–5.75 (m, 1H), 5.54–5.42 (m, 1H), 5.41–5.31 (m, 1H), 1.16 (s, 9H); ¹³C NMR (150

MHz, CDCl₃) δ (ppm) 165.3, 153.5, 144.0, 131.9, 128.8, 127.70, 127.67, 126.9, 117.0, 113.7, 112.0, 91.2, 88.3, 79.9, 27.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₂₀O₃Na⁺ 343.1305; Found 343.1307.

1x, obtained as a colorless oil; 35% yield for four steps; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.57–7.49 (m, 1H), 7.42–7.31 (m, 3H), 7.28–7.22 (m, 1H), 6.97 (dd, J = 5.1, 3.7 Hz, 1H), 6.77 (dd, J = 3.8, 1.2 Hz, 1H), 6.43 (s, 1H), 5.88 (dd, J = 17.5, 11.1 Hz, 1H), 5.56 (dd, J = 17.5, 2.2 Hz, 1H), 5.46 (dd, J = 11.1, 2.2

Hz, 1H), 1.26 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.0, 146.2, 144.6, 141.5, 131.9, 129.1, 128.7, 127.82, 127.81, 127.7, 127.4, 127.0, 122.4, 118.6, 117.2, 91.4, 88.3, 80.1, 27.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₂₀O₂SNa⁺ 359.1076; Found 359.1075.

Substrate imines **2** were synthesized according to the literature procedures, and the spectroscopic data were consistent with the literature reports.³

References:

- 1.R. Huang, B. Yu, R. Li and H. Huang, Org. Lett., 2021, 23, 9510-9515.
- 2.X. Hu, Y. Dong and G. Liu, Mol. Divers., 2015, 19, 695-701.
- 3. B.-X. Xiao, B. Jiang, R.-J. Yan, J.-X. Zhu, K. Xie, X.-Y. Gao, Q. Ouyang, W. Du and Y.-C. Chen,

J. Am. Chem. Soc. 2021, **143**, 4809–4816.

3. Detailed condition optimization

3.1 Detailed screening conditions for asymmetric synthesis of benzofulvene 3a^a

15	L5	K ₂ CO ₃	100	80	24	_	EtOH	trace	_
16	L5	Et ₃ N	100	80	24	_	Toluene	47	65
17	L5	Et ₃ N	100	80	24	_	THF	56	68
18	L5	Et ₃ N	100	80	24	-	<i>i</i> -PrOH	84	73
19	L5	Et ₃ N	100	60	48	_	EtOH	73	88
20	L5	Et ₃ N	100	50	60	_	EtOH	73	90
21	L5	Et ₃ N	100	40	96	_	EtOH	80% conv	92
22	L5	Et ₃ N	100	50	60	A1	EtOH	87	91
23	L5	Et ₃ N	100	50	60	A2	EtOH	90% conv	91
24	L5	Et ₃ N	100	50	60	A3	EtOH	85	91
25	L5	Et ₃ N	100	50	60	A4	EtOH	76	91
26 ^e	L5	Et ₃ N	100	50	60	A1	EtOH	84	91
27 ^f	L5	Et ₃ N	100	50	60	A1	EtOH	63	91

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.05 mmol), **2a** (0.1 mmol), Pd₂(dba)₃ (5 mol%), **L** (12 mol%), base (x mol%), acid (20 mol%) and 4 Å MS (30 mg) in degassed dry solvent (0.5 mL) under Ar. ^{*b*} Yield of the isolated product. ^{*c*} Determined by HPLC analysis using a chiral stationary phase. ^{*d*} With Pd(PPh₃)₄ (10 mol%). ^{*e*} **L5** (20 mol%). ^{*f*} Pd₂(dba)₃ (2.5 mol%), **L5** (6 mol%)

3.2 Detailed screening conditions for asymmetric synthesis of indene derivative 4

To improve the diastereoselectivity for asymmetric synthesis of **4**, a series of solvents, enyne substrates and reductants were screened, but inferior results were generally obtained.

3.3 Detailed screening conditions for asymmetric synthesis of naphthalene 5^a

Entry	R	Solvent	Temp (°C)	Time (h)	Yield $(\%)^b$	ee (%) ^c
1	Et	EtOH	80	24	5r , 45	57 ^d
2	E 4	Diawana	20	24	4b , 15 5a 5 0	63
Z	Εl	Dioxane	80	24	5r , 39	01
3	Bn	Dioxane	80	24	5 s, 47	66
4	<i>t</i> Bu	Dioxane	80	24	5a , 66	73
5 ^e	<i>t</i> Bu	Dioxane	80	24	5a , 68	70
6	<i>t</i> Bu	Dioxane	60	48	5a , 67	79
7 ^f	<i>t</i> Bu	Dioxane	60	48	5a , 43	80
8	<i>t</i> Bu	Dioxane	50	60	5a , 63	82
9	<i>t</i> Bu	EtOH	50	60	5a , 81	82
10	<i>t</i> Bu	<i>i-</i> PrOH	50	60	5a , 78	81

^{*a*} Unless noted otherwise, when R is tert butyl, the substrate is a single E-configuration. The reactions were performed with **1** (0.05 mmol), **2a** (0.1 mmol), Pd₂(dba)₃ (5 mol%), **L5** (12 mol%), Et₃N (1.0 equiv) and 4 Å MS (30 mg) in solvent (0.5 mL) at 80 °C under Ar. ^{*b*} Yield of the isolated product. ^{*c*} Determined by HPLC analysis using a chiral stationary phase. ^{*d*} The structure of racemic **5r** has been determined by X-ray analysis. ^{*e*} E/Z = 3:1. ^{*f*} Without Et₃N.

3.4 Selected molecules embedding a benzofulvene or 1-naphthylated amine skeleton

(a) Chemistry & Biology., 2014, 21, 601; (b) J. Med. Chem., 2008, 51, 4911;
 (c) J. Org. Chem., 2019, 84, 10953; (d) Org. Lett., 2020, 22, 8962.

Benzofulvenes, as a class of important skeleton, are widely existed in various natural products and bioactive molecules. As briefly exemplified in the above scheme, Zhang's group disclosed that **K**-**8008** and **K-8012** are able to induce tumor apoptosis. Anmindenol A, separated from a marine-derived bacterium Streptomyces sp. in 2014, is a potential nitric oxide synthase inhibitor. In addition, Sulindac is widely used as a non-steroidal anti-inflammatory drug. In addition, the *ortho*-vinylated 1naphthylated amines can be used as ligands in asymmetric transition-metal catalysis.

4. General procedure for asymmetric synthesis of benzofulvenes 3

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *ortho*-vinylfunctionalized 1,3-enyne **1** (0.100 mmol), imine **2** (0.200 mmol), Pd₂(dba)₃ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and backfilled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was removed *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to give benzofulvene **3**.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)acrylate **1a** (22.6 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-benzylidene-4-methylbenzenesulfonamide **2a** (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), **L5** (7.9 mg, 0.012 mmol, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and

back-filled with argon for three times. Then Et₃N (14 μL, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3a**: 42.0 mg (0.0866 mmol), as a yellow solid; 87% yield; mp = 123–125 °C; $[\alpha]_D^{25}$ = +131.1 (*c* = 0.33 in CHCl₃); 91% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 6.19 min (minor), t_R = 7.61 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.43–8.38 (m, 1H), 7.47–7.36 (m, 4H), 7.34–7.25 (m, 3H), 7.16–7.02 (m, 2H), 6.91 (d, *J* = 8.1 Hz, 2H), 6.78 (dd, *J* = 7.0, 1.3 Hz, 1H), 6.32 (dd, *J* = 17.8, 11.5 Hz, 1H), 6.24 (s, 1H), 5.92 (d, *J* = 9.0 Hz, 1H), 5.54 (dd, *J* = 8.9, 3.0 Hz, 1H), 5.46 (dd, *J* = 11.5, 1.6 Hz, 1H), 5.19 (dd, *J* = 17.8, 1.6 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 2.25 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.0, 149.8, 143.3, 141.6, 140.6, 138.5, 138.1, 136.6, 133.2, 129.8, 128.92, 128.85, 128.0,

127.6, 127.1, 126.91, 126.89, 126.7, 122.6, 120.4, 119.1, 60.9, 53.9, 21.3, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₉H₂₇NO₄SNa⁺ 508.1553; Found 508.1555.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added
ethyl (E)-3-(2-(but-3-en-1-yn-1-yl)phenyl)acrylate 1a (22.6 mg, 0.0999 mmol, 1.0 equiv), (E)-N-(2-methoxybenzylidene)-4-methylbenzenesulfonamide 2b (59.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), L5 (7.9 mg, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled

with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 4/1) to give product **3b**: 45.7 mg (0.0886 mmol), as a yellow solid, 89% yield; mp = 57–59 °C; $[\alpha]_D^{25} = +13.1$ (c = 0.52 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel Chiralpak IC, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 9.56 min (minor), t_R = 13.55 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.45–8.34 (m, 1H), 7.56–7.47 (m, 2H), 7.32–7.27 (m, 1H), 7.26–7.18 (m, 2H), 7.15–7.06 (m, 2H), 6.98 (d, J = 8.0 Hz, 2H), 6.86–6.77 (m, 2H), 6.49 (dd, J = 17.8, 11.5 Hz, 1H), 6.33 (s, 1H), 5.99 (d, J = 5.4 Hz, 1H), 5.45 (dd, J = 11.5, 1.8 Hz, 1H), 5.33–5.25 (m, 1H), 5.10 (dd, J = 17.8, 1.8 Hz, 1H), 4.31 (q, J = 7.2 Hz, 2H), 3.70 (s, 3H), 2.28 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.3, 156.7, 150.0, 143.1, 142.7, 141.1, 137.7, 136.5, 133.0, 129.64, 129.55, 128.9, 128.6, 128.2, 127.4, 126.6, 126.5, 125.9, 122.3, 121.3, 120.6, 119.1, 110.8, 60.9, 55.3, 51.1, 21.4, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₂₉NO₅SNa⁺ 538.1659; Found 538.1666.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)acrylate **1a** (22.6 mg, 0.0999 mmol, 1.0 equiv), (*E*)-4-methyl-*N*-(3-methylbenzylidene)benzenesulfonamide **2c** (54.6 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5 mol%), **L5** (7.9 mg, 0.012 mmol, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg).

The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The

residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3c**: 35.8 mg (0.0717 mmol), as a yellow solid, 72% yield; mp = 135–137 °C; $[\alpha]_D^{25}$ = +152.3 (*c* = 0.26 in CHCl₃); 88% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 5.41 min (minor), t_R = 6.13 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.44–8.37 (m, 1H), 7.40 (d, *J* = 8.3 Hz, 2H), 7.25–7.23 (m, 1H), 7.18–7.03 (m, 5H), 6.91 (d, *J* = 8.0 Hz, 2H), 6.81–6.76 (m, 1H), 6.33 (dd, *J* = 17.8, 11.5 Hz, 1H), 6.24 (s, 1H), 5.89 (d, *J* = 9.2 Hz, 1H), 5.52–5.42 (m, 2H), 5.20 (dd, *J* = 17.7, 1.6 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 2.29 (s, 3H), 2.25 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.0, 149.9, 143.3, 141.7, 140.7, 138.7, 138.4, 138.0, 136.6, 133.2, 129.8, 128.9, 128.8, 128.7, 127.6, 127.3, 127.0, 126.9, 123.7, 122.6, 120.4, 119.0, 60.9, 53.9, 21.5, 21.3, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₂₉NO₄SNa⁺ 522.1710; Found 522.1718.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)acrylate **1a** (22.6 mg, 0.0999 mmol, 1.0 equiv), (*E*)-4-methyl-*N*-(4-methylbenzylidene)benzenesulfonamide **2d** (54.6 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), **L5** (7.9 mg, 0.012 mmol, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10

mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3d**: 44.7 mg (0.0896 mmol), as a yellow solid, 90% yield; mp = 140–142 °C; $[\alpha]_D^{25} = +104.3$ (c = 0.40 in CHCl₃); 91% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 6.75 min (minor), t_R = 8.43 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.43–8.37 (m, 1H), 7.45–7.37 (m, 2H), 7.31–7.27 (m, 2H), 7.16–7.06 (m, 4H), 6.92 (d, J = 8.1 Hz, 2H), 6.80–6.74 (m, 1H), 6.31 (dd, J = 17.7, 11.5 Hz, 1H), 6.23 (s, 1H), 5.87 (d, J = 8.9 Hz, 1H), 5.46 (dd, J = 11.5, 1.6 Hz, 1H), 5.36–5.27 (m, 1H), 5.18 (dd, J = 17.7, 1.6 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.31 (s, 3H), 2.25 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.0, 149.9, 143.3, 141.7, 140.7, 138.4, 137.9, 136.6, 135.1, 133.2, 129.7, 129.5, 128.9, 127.6, 127.1, 126.89, 126.87, 126.7, 122.5, 120.5, 119.0, 60.9, 53.8, 21.4, 21.1,

14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₂₉NO₄SNa⁺ 522.1710; Found 522.1715.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)acrylate **1a** (22.6 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-([1,1'-biphenyl]-4-ylmethylene)-4-methylbenzenesulfon amide **2e** (67.0 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 0.0050 mmol, 5 mol%), **L5** (7.9 mg, 0.012 mmol, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg).

The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3e**: 48.3 mg (0.0861 mmol), as a yellow solid, 86% yield; mp = 71–73 °C; $[\alpha]_D^{25}$ = +66.7 (*c* = 0.17 in CHCl₃); 92% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 8.64 min (minor), t_R = 10.94 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.45–8.38 (m, 1H), 7.58–7.46 (m, 6H), 7.46–7.38 (m, 4H), 7.36–7.30 (m, 1H), 7.17–7.06 (m, 2H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.83 (dd, *J* = 7.3, 1.3 Hz, 1H), 6.34 (dd, *J* = 17.7, 11.5 Hz, 1H), 6.26 (s, 1H), 5.96 (d, *J* = 9.0 Hz, 1H), 5.59–5.52 (m, 1H), 5.48 (dd, *J* = 11.5, 1.6 Hz, 1H), 5.22 (dd, *J* = 17.7, 1.6 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 2.25 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.0, 149.8, 143.4, 141.6, 141.0, 140.5, 140.4, 138.6, 137.1, 136.6, 133.2, 129.8, 129.0, 128.8, 127.6, 127.54, 127.51, 127.21, 127.16, 127.1, 127.0, 126.9, 122.7, 120.5, 119.2, 61.0, 53.8, 21.4, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₅H₃₁NO₄SNa⁺ 584.1866; Found 584.1875.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)acrylate **1a** (22.6 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-(3-fluorobenzylidene)-4-methylbenzenesulfonamide **2f** (55.4 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled

with argon for three times. Then Et_3N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash

chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3f**: 37.8 mg (0.0751 mmol), as a yellow solid, 75% yield; mp = 114–116 °C; $[\alpha]_D^{25}$ = +123.6 (*c* = 0.39 in CHCl₃); 83% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 9.78 min (minor), t_R = 11.62 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.41 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.45–7.39 (m, 2H), 7.31–7.24 (m, 1H), 7.22–7.05 (m, 4H), 7.00–6.91 (m, 3H), 6.75 (dd, *J* = 7.0, 1.4 Hz, 1H), 6.27 (dd, *J* = 17.8, 11.5 Hz, 1H), 6.25 (s, 1H), 5.88 (d, *J* = 9.1 Hz, 1H), 5.61–5.54 (m, 1H), 5.48 (dd, *J* = 11.5, 1.5 Hz, 1H), 5.19 (dd, *J* = 17.8, 1.5 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 2.26 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.9, 163.1 (d, ¹*J*_{FC} = 245.4 Hz), 149.6, 143.5, 141.2, 141.0 (d, ³*J*_{FC} = 7.0 Hz), 139.9, 138.7, 136.5, 133.1, 130.4 (d, ³*J*_{FC} = 8.2 Hz), 129.8, 129.0, 127.5, 127.3, 127.1, 126.9, 122.8, 122.3, 120.2, 119.6, 115. 1 (d, ²*J*_{FC} = 21.0 Hz), 113. 9 (d, ²*J*_{FC} = 23.0 Hz), 61.0, 53.5 (d, ⁴*J*_{FC} = 2.0 Hz), 21.4, 14.3; ¹⁹F NMR (375 MHz, CDCl₃) δ (ppm) –111.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₉H₂₆FNO₄SNa⁺ 526.1459; Found 526.1467.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)acrylate **1a** (22.6 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-(3-chlorobenzylidene)-4-methylbenzenesulfonamide **2g** (58.6 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled

with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3g**: 39.9 mg (0.0767 mmol), as a yellow solid, 77% yield; mp = 128–130 °C; $[\alpha]_D^{25} = +112.1$ (*c* = 0.38 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 9.77 min (minor), t_R = 11.60 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.48–8.36 (m, 1H), 7.49–7.36 (m, 3H), 7.32–7.20 (m, 3H), 7.20–7.07 (m, 2H), 7.00–6.91 (m, 2H), 6.80–6.70 (m, 1H), 6.28 (dd, *J* = 17.8, 11.5 Hz, 1H), 6.25 (s, 1H), 5.86 (d, *J* = 9.1 Hz, 1H), 5.54–5.43 (m, 2H), 5.19 (dd, *J* = 17.7, 1.5 Hz, 1H), 4.32 (q, *J* = 7.2 Hz, 2H), 2.27 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.9, 149.5, 143.5, 141.2, 140.4, 139.7, 138.8, 136.5,

134.9, 133.1, 130.1, 129.9, 129.1, 128.3, 127.5, 127.3, 127.1, 126.89, 126.85, 124.9, 122.9, 120.1, 119.6, 61.0, 53.5, 21.4, 14.3; HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₉H₂₆³⁵ClNO₄SNa⁺ 542.1163; Found 542.1158; Calcd for C₂₉H₂₆³⁷ClNO₄SNa⁺ 544.1134; Found 544.1133.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)acrylate **1a** (22.6 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-(4-chlorobenzylidene)-4-methylbenzenesulfonamide **2h** (58.6 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 5 mol%), **L5** (7.9 mg, 0.012 mmol, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube

was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10

mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3h**: 44.4 mg (0.0853 mmol), as a yellow solid, 85% yield; mp = 145–147 °C; $[\alpha]_{D}^{25} = +124.1$ (*c* = 0.54 in CHCl₃); 91% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 6.77 min (minor), t_R = 8.46 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.44–8.36 (m, 1H), 7.44–7.39 (m, 2H), 7.39–7.33 (m, 2H), 7.30–7.24 (m, 2H), 7.05–7.17 (m, 2H), 6.98–6.89 (m, 2H), 6.78–6.70 (m, 1H), 6.32–6.24 (dd, *J* = 17.7, 11.5 Hz, 1H), 6.24 (s, 1H), 5.85 (d, *J* = 9.2 Hz, 1H), 5.57–5.50 (m, 1H), 5.47 (dd, *J* = 11.5, 1.6 Hz, 1H), 5.16 (dd, *J* = 17.7, 1.6 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 2.26 (s, 3H), 1.38 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.9, 149.5, 143.5, 141.2, 139.9, 138.7, 136.8, 136.5, 134.0, 133.1, 129.8, 129.01, 128.99, 128.96, 128.2, 127.5, 127.2, 127.1, 126.9, 122.8, 120.2, 119.5, 61.0, 53.4, 21.3, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₉H₂₆NO₄S³⁵ClNa⁺ 542.1163; Found 542.1172; Calcd for C₂₉H₂₆NO₄S³⁷ClNa⁺ 544.1134; Found 544.1140.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)acrylate **1a** (22.6 mg, 0.0999 mmol, 1.0 equiv), imine (*E*)-4-methyl-*N*-(naphthalen-2-ylmethylene)benzene-sulfonamide **2i** (61.8 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was

evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and

degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3i**: 43.0 mg (0.0802 mmol), as a yellow solid, 80% yield; mp = 149–151 °C; $[\alpha]_D^{25} = +127.9$ (*c* = 0.43 in CHCl₃); 92% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 7.18 min (minor), t_R = 9.49 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.42 (d, *J* = 7.6 Hz, 1H), 7.86–7.75 (m, 3H), 7.76–7.67 (m, 1H), 7.54 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.48–7.39 (m, 4H), 7.15–7.09 (m, 1H), 7.08–7.01 (m, 1H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.80 (d, *J* = 7.4 Hz, 1H), 6.35 (dd, *J* = 17.7, 11.5 Hz, 1H), 6.27 (s, 1H), 6.07 (d, *J* = 9.2 Hz, 1H), 5.62 (d, *J* = 9.2 Hz, 1H), 5.47 (dd, *J* = 11.5, 1.6 Hz, 1H), 5.22 (dd, *J* = 17.7, 1.6 Hz, 1H), 4.33 (q, *J* = 7.2 Hz, 2H), 2.25 (s, 3H), 1.39 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.0, 149.8, 143.4, 141.7, 140.4, 138.7, 136.6, 135.6, 133.22, 133.18, 133.0, 129.8, 129.0, 128.8, 128.2, 127.6, 127.1, 127.0, 126.9, 126.41, 126.38, 125.5, 124.7, 122.8, 120.4, 119.2, 61.0, 54.2, 21.4, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₃H₂₉NO₄SNa⁺ 558.1870; Found 558.1868.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)acrylate **1a** (22.6 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-(furan-2-ylmethylene)-4-methylbenzenesulfonamide **2j** (49.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled

with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3j**: 35.4 mg (0.0744 mmol), as a yellow solid, 74% yield; mp = 76–78 °C; $[\alpha]_D^{25} = +115.9$ (*c* = 0.29 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 8.29 min (minor), t_R = 9.44 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.43–8.36 (m, 1H), 7.48–7.41 (m, 2H), 7.36–7.30 (m, 1H), 7.18–7.06 (m, 3H), 6.96–6.90 (m, 2H), 6.41 (dd, *J* = 17.7, 11.5 Hz, 1H), 6.31–6.21 (m, 3H), 5.92 (dd, *J* = 7.2, 1.1 Hz, 1H), 5.56 (dd, *J* = 11.5, 1.7 Hz, 1H), 5.44–5.36 (m, 1H), 5.33 (dd, *J* = 17.7, 1.7 Hz, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 2.25

(s, 3H), 1.37 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 165.9, 150.4, 149.8, 143.3, 142.8, 141.5, 138.8, 138.5, 136.4, 132.9, 129.7, 128.9, 127.5, 127.00, 126.96, 126.8, 123.2, 120.5, 119.4, 110.6, 108.2, 60.9, 49.4, 21.3, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₅NO₅SNa⁺ 498.1346; Found 498.1353.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)acrylate **1a** (22.6 mg, 0.0999 mmol, 1.0 equiv), (*E*)-4-methyl-*N*-(thiophen-2-ylmethylene)benzenesulfonamide **2k** (53.0 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled

with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3k**: 40.2 mg (0.0817 mmol), as a yellow solid, 82% yield; mp = 147–149 °C; $[\alpha]_{D}^{25} = +110.4$ (*c* = 0.48 in CHCl₃); 88% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 7.31 min (minor), t_R = 8.58 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.45–8.34 (m, 1H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.25–7.22 (m, 1H), 7.17–7.06 (m, 2H), 6.98–6.85 (m, 5H), 6.36 (dd, *J* = 17.7, 11.4 Hz, 1H), 6.25 (s, 1H), 6.04 (d, *J* = 8.9 Hz, 1H), 5.63 (d, *J* = 8.8 Hz, 1H), 5.53 (dd, *J* = 11.4, 1.6 Hz, 1H), 5.30 (dd, *J* = 17.7, 1.6 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 2.25 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.9, 149.8, 143.5, 142.1, 141.3, 139.9, 138.5, 136.4, 133.1, 129.8, 128.9, 127.4, 127.19, 127.17, 127.0, 126.9, 125.9, 125.6, 122.9, 120.4, 119.5, 61.0, 51.2, 21.4, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₅NO4S₂Na⁺ 514.1117; Found 514.1120.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)-4-methylphenyl)acrylate **1b** (24.0 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-benzylidene-4-methylbenzenesulfonamide **2a** (51.8 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12

mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were

added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3**!: 42.7 mg (0.0854 mmol), as a yellow thick oil, 85% yield; $[\alpha]_D^{25} = +100.0 (c = 0.57 \text{ in CHCl}_3)$; 90% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 8.73 min (minor), t_R = 10.09 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.32 (d, *J* = 7.9 Hz, 1H), 7.46–7.38 (m, 4H), 7.35–7.26 (m, 3H), 7.00–6.86 (m, 3H), 6.58 (s, 1H), 6.26 (dd, *J* = 17.7, 11.5 Hz, 1H), 6.17 (s, 1H), 5.88 (d, *J* = 9.0 Hz, 1H), 5.58–5.46 (m, 1H), 5.43 (dd, *J* = 11.5, 1.6 Hz, 1H), 5.15 (dd, *J* = 17.8, 1.6 Hz, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 2.25 (s, 3H), 2.21 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.1, 150.0, 143.3, 142.1, 140.6, 140.2, 138.8, 138.3, 136.6, 130.5, 128.9, 128.8, 128.0, 127.7, 127.5, 127.1, 126.9, 126.8, 122.4, 121.28, 121.26, 118.1, 60.8, 53.9, 21.7, 21.3, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₂₉NO₄SNa⁺ 522.1710; Found 522.1720.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)-4-methoxyphenyl)acrylate **1c** (25.6 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-benzylidene-4-methylbenzenesulfon-amide **2a** (51.8 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5 mol%), **L5**

(7.9 mg, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 4/1) to give product **3m**: 44.6 mg (0.0865 mmol), as a yellow solid, 87% yield; mp = 59–61 °C; $[\alpha]_D^{25} = +117.2$ (*c* = 0.57 in CHCl₃); 91% ee, determined by HPLC analysis [Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 6.08 min (major), t_R = 11.50 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.44 (d, *J* = 8.6 Hz, 1H), 7.51–7.36 (m, 4H), 7.36–7.22 (m, 3H), 6.96 (d, *J* = 8.0 Hz, 2H), 6.59 (dd, *J* = 8.6, 2.4 Hz, 1H), 6.35–6.21 (m, 2H), 6.12 (s, 1H), 5.88 (d, *J* = 8.8 Hz, 1H), 5.50–5.40 (m, 2H), 5.17 (dd, *J* = 17.8, 1.6 Hz, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 3.71 (s, 3H), 2.26 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.2, 161.1, 149.9, 143.9, 143.3, 140.1, 139.9, 138.2,

136.7, 129.0, 128.9, 128.0, 127.7, 126.9, 126.7, 125.8, 122.6, 117.0, 109.9, 108.1, 60.7, 55.5, 53.9, 21.4, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₂₉NO₅SNa⁺ 538.1659; Found 538.1659.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)-3-fluorophenyl)acrylate **1d** (24.4 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-benzylidene-4-methylbenzenesulfonamide **2a** (51.8 mg,

0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), L5 (7.9 mg, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3n**: 32.9 mg (0.0655 mmol), as a yellow solid, 66% yield; mp = 108–110 °C; $[\alpha]_{D}^{25}$ = +141.4 (*c* = 0.35 in CHCl₃); 92% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane/i-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: $t_R = 9.58 \text{ min (minor)}, t_R = 10.86 \text{ min (major)}; {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 8.24 (d, 100 \text{ MHz})$ *J* = 7.6 Hz, 1H), 7.48–7.20 (m, 7H), 7.17–7.06 (m, 1H), 6.87–6.76 (m, 3H), 6.47 (dd, *J* = 17.7, 11.5 Hz, 1H), 6.36 (s, 1H), 6.04 (d, J = 10.4 Hz, 1H), 5.66–5.44 (m, 2H), 5.28 (dd, J = 17.7, 1.5 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 2.19 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.8, 154.5 (d, ${}^{1}J_{FC} = 243.8$ Hz), 148.9, 148.8, 139.5, 138.4 (d, ${}^{3}J_{FC} = 5.8$ Hz), 138.1, 137.0, 135.9 (d, ${}^{3}J_{\text{FC}} = 6.1 \text{ Hz}$, 128.8, 128.7, 128.7, 128.7, 127.9, 127.2 (d, ${}^{2}J_{\text{FC}} = 14.2 \text{ Hz}$), 127.0, 126.5, 126.4, 123.6, 123.3 (d, ${}^{4}J_{FC} = 2.4$ Hz), 120.6 (d, ${}^{4}J_{FC} = 1.9$ Hz), 117.7 (d, ${}^{2}J_{FC} = 21.6$ Hz), 61.1, 53.7, 21.2, 14.3; ${}^{19}F$ NMR (375 MHz, CDCl₃) δ (ppm) -111.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₉H₂₆FNO₄SNa⁺ 526.1459; Found 526.1468.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)-4-chlorophenyl)acrylate **1e** (26.1 mg, 0.100 mmol, 1.0 equiv), (*E*)-*N*-benzylidene-4-methylbenzenesulfonamide **2a** (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12

mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After

completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **30**: 32.7 mg (0.0628 mmol), as a yellow solid, 63% yield; mp = 72–74 °C; $[\alpha]_D^{25} = +53.1$ (c = 0.34 in CHCl₃); 84% ee, determined by HPLC analysis [Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 5.45 min (major), t_R = 8.48 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.38 (d, J = 8.3 Hz, 1H), 7.47–7.40 (m, 2H), 7.38–7.28 (m, 5H), 7.08 (dd, J = 8.2, 2.0 Hz, 1H), 6.98–6.91 (m, 2H), 6.76 (d, J = 1.9 Hz, 1H), 6.38 (dd, J = 17.8, 11.5 Hz, 1H), 6.29 (s, 1H), 5.90 (d, J = 8.0 Hz, 1H), 5.53 (dd, J = 11.5, 1.5 Hz, 1H), 5.35–5.28 (m, 1H), 5.22 (dd, J = 17.8, 1.6 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.25 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.8, 148.8, 143.7, 143.4, 140.1, 139.7, 137.7, 136.5, 135.6, 131.3, 129.1, 129.0, 128.3, 128.1, 127.3, 127.0, 126.7, 126.4, 123.4, 120.8, 119.9, 61.1, 54.0, 21.3, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₉H₂₆³⁵CINO₄SNa⁺ 542.1163; Found 542.1170; Calcd for C₂₉H₂₆³⁷CINO₄SNa⁺ 544.1134; Found 544.1138.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)-4-(trifluoromethyl)phenyl)acrylate **1f** (29.4 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-benzylidene-4-methylbenzene-sulfonamide **2a** (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%),

L5 (7.9 mg, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3p**: 35.6 mg (0.0643 mmol), as a yellow solid, 64% yield; mp = 114–116 °C; $[\alpha]_D^{25} = +57.0$ (*c* = 0.17 in CHCl₃); 86% ee, determined by HPLC analysis [Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 0/10, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 4.42 min (major), t_R = 5.58 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.50 (d, *J* = 8.1 Hz, 1H), 7.44–7.27 (m, 8H), 7.03 (s, 1H), 6.91–6.82 (d, *J* = 8.0 Hz, 2H), 6.47 (dd, *J* = 17.8, 11.5 Hz, 1H), 6.41 (s, 1H), 5.98 (d, *J* = 7.5 Hz, 1H), 5.59 (dd, *J* = 11.5, 1.5 Hz, 1H), 1.39 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.6, 148.3, 143.4, 142.4, 140.1, 139.9, 137.5, 136.4, 136.0, 131.2 (q, ²*J*_{FC} = 31.9 Hz), 129.1, 128.9, 128.5, 127.2, 126.9, 126.8, 126.7, 126.5

(q, ${}^{1}J_{FC} = 271.0 \text{ Hz}$), 123.8, 123.7 (q, ${}^{3}J_{FC} = 3.9 \text{ Hz}$), 121.5, 116.9 (q, ${}^{3}J_{FC} = 3.8 \text{ Hz}$), 61.3, 54.0, 21.3, 14.3; ${}^{19}\text{F}$ NMR (375 MHz, CDCl₃) δ (ppm) –62.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₂₆F₃NO₄SNa⁺ 576.1427; Found 576.1436.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)-5-chlorophenyl)acrylate **1g** (26.1 mg, 0.100 mmol, 1.0 equiv), (*E*)-*N*-benzylidene-4-methylbenzenesulfonamide **2a** (51.8 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12

mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 *μ*L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3q**: 37.5 mg (0.0721 mmol), as a yellow solid, 72% yield; mp = 121–123 °C; $[\alpha]_D^{25} = +122.2$ (*c* = 0.36 in CHCl₃); 91% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 5.48 min (minor), t_R = 7.25 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.46 (d, *J* = 2.0 Hz, 1H), 7.44–7.27 (m, 7H), 7.07–7.00 (m, 1H), 6.94 (d, *J* = 8.1 Hz, 2H), 6.71 (d, *J* = 8.0 Hz, 1H), 6.35 (dd, *J* = 17.8, 11.5 Hz, 1H), 6.30 (s, 1H), 5.92 (d, *J* = 8.4 Hz, 1H), 5.51 (dd, *J* = 11.5, 1.6 Hz, 1H), 5.48–5.36 (m, 1H), 5.21 (dd, *J* = 17.7, 1.5 Hz, 1H), 4.34 (q, *J* = 7.1 Hz, 2H), 2.28 (s, 3H), 1.39 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.7, 148.8, 143.5, 140.0, 139.0, 137.7, 136.5, 134.6, 132.9, 129.3, 128.98, 128.95, 128.3, 127.6, 127.3, 126.9, 126.6, 123.1, 121.2, 120.4, 61.2, 53.9, 21.4, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₉H₂₆³⁵CINO4SNa⁺ 542.1163; Found 542.1172; Calcd for C₂₉H₂₆³⁷CINO4SNa⁺ 544.1134; Found 544.1138.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(6-(but-3-en-1-yn-1-yl)benzo[*d*][1,3]dioxol-5-yl)acrylate **1h** (27.0 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-benzylidene-4-methylbenzenesulfon-amide **2a** (51.8 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5 mol%), **L5**

(7.9 mg, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and backfilled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 3/1) to give product **3r**: 42.4 mg (0.0800 mmol), as a yellow solid, 80% yield; mp = 58–60 °C; $[\alpha]_D^{25} = +160.0$ (c = 0.41 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 10.00 min (minor), t_R = 14.54 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.10 (s, 1H), 7.51–7.44 (m, 2H), 7.42–7.35 (m, 2H), 7.34–7.26 (m, 3H), 7.00 (d, J = 8.0 Hz, 2H), 6.38–6.22 (m, 2H), 6.16 (s, 1H), 5.96–5.77 (m, 3H), 5.47–5.34 (m, 2H), 5.13 (dd, J = 17.7, 1.7 Hz, 1H), 4.30 (q, J = 7.2 Hz, 2H), 2.28 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.0, 149.7, 148.6, 146.7, 143.4, 139.8, 138.0, 137.7, 137.3, 136.7, 129.0, 128.9, 128.1, 127.5, 127.1, 127.0, 126.7, 121.9, 118.5, 109.2, 102.1, 101.5, 60.9, 53.9, 21.4, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₂₇NO₆SNa⁺ 552.1451; Found 552.1458.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added methyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)acrylate **1i** (21.2 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-benzylidene-4-methylbenzenesulfonamide **2a** (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%), BzOH (2.5 mg, 20

mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3s**: 31.3 mg (0.0663 mmol), as a yellow solid, 66% yield; mp = 145–147 °C; $[\alpha]_D^{25} = +126.4$ (*c* = 0.56 in CHCl₃); 87% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 6.49 min (minor), t_R = 8.25 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.40 (d, *J* = 7.3, 1H), 7.44–7.38 (m, 4H), 7.34–7.26 (m, 3H), 7.17–7.04 (m, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.78 (dd, *J* = 7.3, 1.4 Hz, 1H), 6.31 (dd, *J* = 17.7, 11.5 Hz, 1H), 6.25 (s, 1H), 5.91 (d, *J* = 8.9 Hz, 1H), 5.51–5.39 (m, 2H), 5.19 (dd, *J* = 17.7, 1.6 Hz, 1H), 3.86 (s, 3H), 2.25 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 166.3, 150.1, 143.3, 141.6, 140.7, 138.4, 138.1, 136.6, 133.1, 129.8, 128.9, 128.8, 128.0, 127.5, 127.1, 127.0, 126.9, 126.7, 122.6, 120.4, 118.5, 53.9, 51.9, 21.3; HRMS (ESI-TOF) m/z: [M +H]⁺ Calcd for C₂₈H₂₆NO₄S⁺ 472.1577; Found 472.1586.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added (E)-4-(2-(but-3-en-1-yn-1-yl)phenyl)but-3-en-2-one **1j** (19.6 mg, 0.0999 mmol, 1.0 equiv), (E)-N-benzylidene-4-methylbenzenesulfonamide **2a** (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%), BzOH (2.5 mg, 20

mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3t**: 28.7 mg (0.0631 mmol), as a yellow solid, 63% yield; mp = 162–164 °C; $[\alpha]_{D}^{25} = +126.6$ (*c* = 0.43 in CHCl₃); 82% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 7.90 min (minor), t_R = 9.49 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.29–8.09 (m, 1H), 7.47–7.36 (m, 4H), 7.35–7.26 (m, 3H), 7.14–7.01 (m, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.81–6.73 (m, 1H), 6.53 (s, 1H), 6.34 (dd, *J* = 17.8, 11.4 Hz, 1H), 5.92 (d, *J* = 8.8 Hz, 1H), 5.58–5.41 (m, 2H), 5.19 (dd, *J* = 17.8, 1.6 Hz, 1H), 2.43 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 199.3, 147.2, 143.3, 141.5, 141.4, 138.5, 138.1, 136.6, 133.2, 130.0, 128.92, 128.86, 128.1, 127.7, 127.2, 126.9, 126.7, 126.4, 126.3, 122.6, 120.5, 54.0, 32.1, 21.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₅NO₃SNa⁺ 478.1447; Found 478.1457.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added (E)-3-(2-(but-3-en-1-yn-1-yl)phenyl)-1-phenylprop-2-en-1-one **1k** (25.8 mg, 0.0999 mmol, 1.0 equiv), (E)-N-benzylidene-4-methylbenzenesulfonamide **2a** (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%),

BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3u**: 30.7 mg (0.0593 mmol), as a yellow solid, 59% yield; mp = 70–72 °C; $[\alpha]_D^{25} = +86.7$ (*c* = 0.27 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: $t_R = 9.98 \text{ min (minor)}$, $t_R = 11.78 \text{ min (major)}$; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.09–7.99 (m, 2H), 7.78 (dd, J = 7.1, 1.6 Hz, 1H), 7.66–7.59 (m, 1H), 7.57–7.49 (m, 2H), 7.49–7.40 (m, 4H), 7.36–7.27 (m, 3H), 7.10 (s, 1H), 7.08–6.98 (m, 2H), 6.95 (d, J = 8.0 Hz, 2H), 6.83–6.77 (m, 1H), 6.46 (dd, J = 17.8, 11.5 Hz, 1H), 5.97 (d, J = 8.8 Hz, 1H), 5.53 (dd, J = 11.5, 1.6 Hz, 1H), 5.45 (d, J = 8.8 Hz, 1H), 5.29 (dd, J = 17.8, 1.6 Hz, 1H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 193.0, 147.1, 143.5, 141.4, 140.5, 138.2, 137.9, 137.4, 136.6, 133.8, 133.5, 129.5, 129.0, 128.90, 128.87, 128.1, 127.8, 126.9, 126.8, 126.7, 125.7, 125.5, 122.7, 120.5, 54.0, 21.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₃H₂₇NO₃SNa⁺ 544.1604; Found 544.1606.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added (E)-3-(2-(but-3-en-1-yn-1-yl)phenyl)-N,N-dimethylacrylamide **11** (22.5 mg, 0.0999 mmol, 1.0 equiv), (E)-N-benzylidene-4-methylbenzenesulfonamide **2a** (51.8 mg,

Me₂NOC 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), L5 (7.9 mg, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 µL, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3v**: 37.2 mg (0.0767 mmol), as a yellow solid, 77% yield; mp = 226–228 °C; $[\alpha]_{D}^{25}$ = +98.0 (*c* = 0.26 in CHCl₃); 85% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane/i-PrOH = 60/40, flow rate = 1.0 mL/min, l = 254 nm]: $t_R = 5.28 \text{ min (minor)}, t_R = 6.57 \text{ min (major)}; {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MLz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MLz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MLz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{m}, \text{major}); {}^{1}\text{H NMR (400 MLz, CDCl_3)} \delta (\text{ppm}) 7.55 - 7.35 (\text{$ 5H), 7.33–7.26 (m, 3H), 7.12–6.92 (m, 4H), 6.88–6.79 (m, 1H), 6.52 (s, 1H), 6.39 (dd, *J* = 17.8, 11.5 Hz, 1H), 5.92 (d, J = 8.5 Hz, 1H), 5.45 (dd, J = 11.5, 1.6 Hz, 1H), 5.38 (d, J = 8.5 Hz, 1H), 5.24 (dd, J = 11.5, 1.6 Hz, 1H), 5.38 (d, J = 11.5, 1.6 Hz, 1H), 5.24 (dd, J = 11.5, 1.6 Hz, 1H), 5.38 (d, J = 11.5, 1.6 Hz, 1H), 5.24 (dd, J = 11.5, 1.6 Hz, 1H), 5.38 (d, J = 11.5, 1.6 Hz, 1H), 5.24 (dd, J = 11.5, 1.6 Hz, 1H), 5.38 (d, J = 11.5, 1H), 5.38 J = 17.8, 1.7 Hz, 1H), 3.14 (s, 3H), 3.02 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.4, 143.4, 141.7, 140.9, 138.7, 138.4, 136.74, 136.67, 133.7, 129.1, 128.8, 128.7, 127.9, 127.8, 127.0, 126.7, 126.3, 123.30, 123.26, 122.2, 120.4, 53.9, 37.7, 34.6, 21.5; HRMS (ESI-TOF) m/z: [M $+ Na]^+$ Calcd for C₂₉H₂₈N₂O₃SNa⁺ 507.1713; Found 507.1723.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added 1-(but-3-en-1-yn-1-yl)-2-styrylbenzene **1m** (23.0 mg, 0.0999 mmol, 1.0 equiv, E/Z **3w** = 2.7:1), (E)-N-benzylidene-4-methylbenzenesulfonamide **2a** (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), L5 (7.9 mg, 12 mol%), BzOH (2.5 mg, 20

mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3w**: 34.7 mg (0.0714 mmol), as a yellow solid, 71% yield; mp = 61–63 °C; $[\alpha]_{\rm D}^{25}$ = +142.4 (*c* = 0.55 in CHCl₃); *E/Z* = 2.5:1, 84% ee/89% ee, determined by HPLC analysis [Daicel Chiralpak IF, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 6.96 min (major), t_R = 8.11 min (minor); t_R = 7.63 min (minor), t_R = 9.51 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.55–7.38 (m, 9H), 7.36–7.26 (m, 7H), 7.22 (s, 1H), 7.04–6.94 (m, 3H), 6.92–6.81 (m, 3H), 6.48 (dd, *J* = 17.7, 11.5 Hz, 1H), 6.04–5.94 (m, 1H), 5.55–5.40 (m, 2H), 5.23 (dd, *J* = 17.8, 1.8 Hz, 1H), 5.05–4.90 (m, 1H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.9, 141.1, 139.5, 138.9, 138.6, 136.9, 136.5, 136.2, 134.5, 133.3, 130.6, 129.2, 128.9, 128.7, 128.5, 127.8, 127.0, 126.9, 125.2, 123.1, 121.7, 120.1, 54.1, 21.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₂H₂₇NO₂SNa⁺ 512.1655; Found 512.1662.

Propose process for the formation of Z-3w

Reaction of 2-styrylbenzene substituted enyne 1m with N-Ts imine 2a under the standard conditions would deliver η^1 -benzyl-Pd(II) intermediate III after vinylogous addition and 5-*exo-trig* migratory insertion, which underwent β -H elimination to form *E*-3w. As demonstrated in a previous

study (*Tetrahedron Lett.*, 2013, **54**, 5808), *E*-**3**w would feasibly undergo reversible hydropalladation and β -H elimination to form *Z*-**3**w. A base-mediated epimerization at the benzylic position of the intermediate III also might be possible for the formation of *Z*-**3**w isomer.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(3-methylbut-3-en-1-yn-1-yl)phenyl)acrylate **1n** (24.0 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-benzylidene-4-methylbenzenesulfonamide **2a** (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%), BzOH

(2.5 mg, 20 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3x**: 38.9 mg (0.0778 mmol), as a yellow solid, 78% yield; mp = 51–53 °C; $[\alpha]_D^{25} = +61.0$ (*c* = 0.32 in CHCl₃); 91% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 5.38 min (minor), t_R = 6.81 min (major); ¹H NMR (400 MHz, CDCl3) δ (ppm) 8.46 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.61–7.50 (m, 2H), 7.38–7.30 (m, 2H), 7.29–7.20 (m, 3H), 7.17–6.97 (m, 4H), 6.86 (d, *J* = 7.2, 1H), 6.19 (s, 1H), 5.79 (d, *J* = 7.1 Hz, 2H), 2.29 (s, 3H), 1.83 (s, 3H), 1.36 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.1, 150.1, 143.4, 143.3, 141.8, 139.8, 138.5, 137.8, 137.1, 132.9, 129.7, 129.1, 128.7, 127.9, 127.2, 127.0, 126.9, 126.6, 120.6, 119.54, 119.48, 60.9, 54.5, 24.5, 21.4, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₂₉NO4SNa⁺ 522.1710; Found 522.1716.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-nona-2,8-dien-6-ynoate **10** (17.8 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*benzylidene-4-methylbenzenesulfonamide **2a** (51.8 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%), BzOH (2.5 mg, 20 mol%) and 4

Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was

evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **3y**: 26.1 mg (0.0597 mmol), as a white semisolid, 60% yield; $[\alpha_{lD}^{25} = +84.6 \ (c = 0.35 \ in CHCl_3); 88\%$ ee, determined by HPLC analysis [Daicel Chiralpak IF, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 6.38 min (major), t_R = 7.15 min (minor); ¹H NMR (400 MHz, CDCl_3) δ (ppm) 7.71–7.61 (m, 2H), 7.31–7.27 (m, 2H), 7.26–7.17 (m, 5H), 6.25–6.18 (m, 1H), 5.73 (t, *J* = 2.5 Hz, 1H), 5.65 (d, *J* = 8.1 Hz, 1H), 5.46 (dd, *J* = 11.6, 1.6 Hz, 1H), 5.33 (dd, *J* = 8.2, 2.9 Hz, 1H), 5.27 (dd, *J* = 17.9, 1.7 Hz, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.93–2.79 (m, 1H), 2.71–2.58 (m, 1H), 2.36 (s, 3H), 2.33–2.22 (m, 2H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl_3) δ (ppm) 167.6, 166.2, 153.2, 143.7, 140.3, 138.1, 137.1, 129.4, 128.9, 128.03, 128.00, 127.1, 126.5, 121.7, 108.8, 59.6, 55.7, 30.3, 29.2, 21.4, 14.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₅H₂₇NO₄SNa⁺ 460.1553; Found 460.1563.

5. General procedure for asymmetric synthesis of indene derivative 4

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added ethyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)but-2-enoate **1y** (24.0 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*benzylidene-4-methylbenzenesulfonamide **2a** (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), **L5** (12 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 80 °C for 36 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **4**: 30.1 mg (0.0598 mmol), as a colourless oil, 60% yield; 2.2:1 dr, determined by ¹H NMR; 87% ee/70% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 7.99 min (major), t_R = 8.97 min (minor); t_R = 10.23 min (minor), t_R = 11.37 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.61–7.56 (m, 2H), 7.53–7.46 (m, 2H), 7.32–7.28 (m, 3H), 7.17–7.05 (m, 5H), 6.82 (d, *J* = 7.5 Hz, 1H), 6.30 (dd, *J* = 17.8, 11.6 Hz, 1H), 5.90 (d, *J* = 8.3 Hz, 1H), 5.36 (d, *J* = 8.3 Hz, 1H), 5.33–5.26 (m, 2H), 3.79 (q, J = 7.1 Hz, 2H), 2.84 (d, J = 14.2 Hz, 1H), 2.67 (d, J = 14.2 Hz, 1H), 2.33 (s, 3H), 1.13 (s, 3H), 0.82 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 151.3, 148.1, 143.3, 139.6, 139.2, 137.4, 136.4, 129.5, 128.5, 128.0, 127.5, 127.3, 127.0, 126.8, 126.7, 125.9, 122.1, 120.9, 118.5, 60.0, 53.0, 51.2, 42.2, 24.2, 21.4, 13.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₃₁NO₄SNa⁺ 524.1866; Found 524.1868.

6. General procedure for asymmetric synthesis of naphthalenes 5

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added 1,3-enyne derivative 1 (0.100 mmol), imine 2 (0.200 mmol), $Pd_2(dba)_3$ (4.6 mg, 5 mol%), L5 (12 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 48–60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to give product **5**.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)-3-phenylacrylate **1p** (33.0 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-benzylidene-4-methylbenzenesulfonamide **2a** (51.8 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with

argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **5a**: 47.6 mg (0.0807 mmol), as a white solid, 81% yield; mp =137–139 °C; $[\alpha]_D^{25} = +109.8$ (*c* = 0.51 in CHCl₃); 82% ee, determined by HPLC analysis [Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 10.81 min (major), t_R = 12.59 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.55–7.36 (m, 7H), 7.36–7.26 (m, 7H), 7.25–7.20 (m, 2H), 6.98–6.80 (m, 2H), 6.80–6.67 (m, 1H), 6.64 (d, *J* = 9.6 Hz, 1H), 5.91 (s, 1H), 5.45 (dd, J = 11.4, 1.6 Hz, 1H), 5.33 (dd, J = 17.9, 1.7 Hz, 1H), 2.27 (s, 3H), 1.16 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.5, 142.6, 140.5, 137.4, 137.2, 137.0, 134.1, 130.7, 130.4, 128.8, 128.7, 128.0, 127.9, 127.8, 127.5, 127.1, 126.6, 126.4, 125.9, 124.6, 122.2, 81.8, 27.6, 21.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₇H₃₅NO₄SNa⁺ 612.2179; Found 612.2170.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)-3-phenylacrylate **1p** (33.0 mg, 0.0999 mmol, 1.0 equiv), (*E*)-N-benzylidene-4-nitrobenzenesulfonamide **2o** (58.1 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%),

L5 (7.9 mg, 12 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **5b**: 40.1 mg (0.0647 mmol), as a white solid, 65% yield; mp = 145–147 °C; $[\alpha]_{D}^{25}$ = +120.3 (*c* = 0.48 in CHCl₃); 82% ee, determined by HPLC analysis [Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 7.96 min (major), t_R = 9.59 min (minor); ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.86–7.78 (d, *J* = 11.6 Hz, 1H), 5.36 (d, *J* = 17.8 Hz, 1H), 1.16 (s, 9H); ¹³C NMR (150MHz, CDCl₃) δ (ppm) 167.2, 149.1, 145.4, 139.2, 137.7, 136.6, 130.5, 130.0, 128.9, 128.6, 128.3, 128.2, 128.13, 128.09, 128.0, 127.94, 127.89, 127.7, 127.3, 126.5, 126.2, 123.0, 122.9, 122.7, 82.2, 27.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₆H₃₂N₂O₆SNa⁺ 643.1873; Found 643.1875.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)-3-phenylacrylate **1p** (33.0 mg, 0.0999 mmol, 1.0 equiv,), (*E*)-*N*-(2-fluorobenzylidene)-4-methylbenzenesulfon-amide **2l** (55.4 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with

argon for three times. Then Et_3N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **5c**: 49.8 mg (0.0819 mmol), as a white solid, 82% yield; mp = 187–189 °C; $[\alpha]_D^{25}$ = +24.0 (*c* = 0.38 in CHCl₃); 86% ee, determined by HPLC analysis [Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 14.00 min (major), t_R = 19.90 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.97 (d, *J* = 8.5 Hz, 1H), 7.54–7.48 (m, 1H), 7.47–7.38 (m, 4H), 7.37–7.26 (m, 6H), 7.25–7.22 (m, 1H), 7.11–7.04 (m, 1H), 7.02–6.95 (m, 1H), 6.91 (d, *J* = 8.0 Hz, 2H), 6.86–6.75 (m, 2H), 5.72 (d, *J* = 6.8 Hz, 1H), 5.43 (dd, *J* = 11.5, 1.7 Hz, 1H), 5.26 (dd, *J* = 17.9, 1.7 Hz, 1H), 2.28 (s, 3H), 1.14 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.6, 160.4(d, ¹*J*_{FC} = 247.3 Hz), 142.8, 137.5, 136.9, 134.4, 133.5, 133.3, 132.1, 131.2, 130.7, 130.4, 130.3, 129.7 (d, ³*J*_{FC} = 3.1 Hz), 129.6, 129.5, 128.9, 127.9, 127.81 (d, ²*J*_{FC} = 24.5 Hz), 127.77, 126.9, 126.8, 125.8, 124.6, 123.8 (d, ³*J*_{FC} = 3.5 Hz), 122.2, 116.1 (d, ²*J*_{FC} = 21.6 Hz), 81.7, 53.0, 27.6, 21.5; ¹⁹F NMR (375 MHz, CDCl₃) δ (ppm) –111.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₇H₃₄FNO₄SNa⁺ 630.2085; Found 630.2088.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)-3-phenylacrylate **1p** (33.0 mg, 0.0999 mmol, 1.0 equiv), (*E*)-4-methyl-*N*-(3-methylbenzylidene)benzene-sulfonamide **2c** (54.6 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-

filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **5d**: 47.2 mg (0.0782 mmol), as a white solid, 78% yield; mp = 99–101 °C; $[\alpha]_D^{25} = +40.8$ (c = 0.26 in CHCl₃); 81% ee, determined by HPLC analysis [Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 9.69 min (major), t_R = 11.06 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.44–7.33 (m, 4H), 7.36–7.25 (m, 5H), 7.25–7.03 (m, 6H), 6.91–6.81 (m, 2H), 6.81–6.68 (m, 1H), 6.62 (d, J = 9.6 Hz, 1H), 5.91 (brs, 1H), 5.46 (dd, J = 11.4, 1.6 Hz, 1H), 5.35 (dd, J = 17.9, 1.7 Hz, 1H), 2.31 (s, 3H), 2.27 (s, 3H), 1.17 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.6, 142.5, 140.4, 138.5, 137.4, 137.1, 137.0, 130.7, 130.4, 128.8, 128.5, 128.3, 128.0, 127.9, 127.8, 127.1, 126.4, 125.8, 123.7, 122.1, 81.8, 27.6, 21.6, 21.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₈H₃₇NO₄SNa⁺ 626.2336;

Found 626.2337.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)-3-phenylacrylate **1p** (33.0 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-(4-methoxybenzylidene)-4methylbenzenesulfonamide **2m** (57.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃

(4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%) and 4 Å MS (60 mg). The tube was evacuated and backfilled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 4/1) to give product **5e**: 38.7 mg (0.0623 mmol), as a white solid, 62% yield; mp = 168–170 °C; $[\alpha]_{D}^{25}$ = +33.8 (*c* = 0.49 in CHCl₃); 71% ee, determined by HPLC analysis [Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 15.26 min (major), t_R = 20.75 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.67–7.38 (m, 5H), 7.38–7.26 (m, 6H), 7.24–7.17 (m, 2H), 6.94–6.79 (m, 4H), 6.79–6.64 (m, 1H), 6.64–6.43 (m, 1H), 5.84 (brs, 1H), 5.44 (dd, *J* = 11.4, 1.6 Hz, 1H), 5.31 (d, *J* = 17.9 Hz, 1H), 3.78 (s, 3H), 2.27 (s, 3H), 1.16 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 167.5, 158.9, 142.5, 137.4, 137.1, 136.9, 132.3, 130.7, 130.39, 130.36, 128.8, 127.93, 127.87, 127.8, 127.0, 126.4, 125.8, 122.0, 114.0, 81.7, 55.3, 27.6, 21.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₈H₃₇NO₅SNa⁺ 642.2285; Found 642.2285.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)-3-phenylacrylate **1p** (33.0 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-([1,1'-biphenyl]-4-ylmethylene)-4-methylbenzenesulfonamide **2e** (67.0 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%) and 4 Å MS (60 mg).

The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **5f**: 55.2 mg (0.0829 mmol), as a white solid, 83% yield; mp = 118–120 °C; $[\alpha]_D^{25} = +50.0$

 $(c = 0.54 \text{ in CHCl}_3)$; 82% ee, determined by HPLC analysis [Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 15.23 min (major), t_R = 19.23 min (minor); ¹H NMR (400 MHz, CDCl}_3) δ (ppm) 7.52– 7.45 (m, 4H), 7.44–7.31 (m, 8H), 7.30–7.10 (m, 8H), 6.81 (s, 2H), 6.75–6.55 (m, 2H), 5.89 (brs, 1H), 5.40 (dd, *J* = 11.5, 1.6 Hz, 1H), 5.329 (d, *J* = 17.9 Hz, 1H), 2.20 (s, 3H), 1.09 (s, 9H); ¹³C NMR (100 MHz, CDCl}_3) δ (ppm) 167.5, 142.7, 140.5, 140.3, 137.4, 137.3, 137.0, 130.7, 130.4, 128.9, 128.8, 128.0, 127.93, 127.86, 127.42, 127.36, 127.1, 126.5, 81.8, 27.6, 21.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₄₃H₃₉NO₄SNa⁺ 688.2492; Found 688.2496.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)-3-phenylacrylate **1p** (33.0 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-(3-chlorobenzylidene)-4-methylbenzene-sulfonamide **2g** (58.6 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-

filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **5g**: 46.7 mg (0.0748 mmol), as a white solid, 75% yield; mp = 164–166 °C; $[\alpha]_D^{25}$ = +63.7 (*c* = 0.63 in CHCl₃); 83% ee, determined by HPLC analysis [Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 9.19 min (major), t_R = 10.40 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.43–7.33 (m, 5H), 7.30–24 (m, 2H), 7.24–7.11 (m, 8H), 6.93–6.73 (m, 2H), 6.69–6.55 (m, 1H), 6.55–6.40 (m, 1H), 5.84 (brs, 1H), 5.39 (dd, *J* = 11.4, 1.5 Hz, 1H), 5.26 (dd, *J* = 17.8, 1.5 Hz, 1H), 2.22 (s, 3H), 1.09 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.4, 142.9, 137.5, 137.3, 136.8, 134.8, 130.7, 130.3, 129.9, 129.0, 128.0, 127.93, 127.90, 127.7, 127.4, 126.6, 126.4, 126.0, 124.9, 81.9, 27.6, 21.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₇H₃₄³⁵CINO₄SNa⁺ 646.1789; Found 646.1790; Calcd for C₃₇H₃₄³⁷CINO₄SNa⁺ 647.1823; Found 647.1816.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)-3-phenylacrylate **1p** (33.0 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-(4-chlorobenzylidene)-4-methylbenzenesulfonamide **2h** (58.6 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%) and 4 Å MS (60 mg). The tube was evacuated

and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **5h**: 50.0 mg (0.0801 mmol), as a white solid, 80% yield; mp = 99–101 °C; $[\alpha]_D^{25}$ = +64.9 (*c* = 0.25 in CHCl₃); 81% ee, determined by HPLC analysis [Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 9.23 min (major), t_R = 11.48 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.51–7.44 (m, 5H), 7.43–7.34 (m, 2H), 7.34–7.18 (m, 8H), 7.03–6.76 (m, 2H), 6.78–6.60 (m, 1H), 6.60–6.43 (m, 1H), 5.91 (brs, 1H), 5.45 (dd, *J* = 11.4, 1.5 Hz, 1H), 5.30 (d, *J* = 17.8 Hz, 1H), 2.29 (s, 3H), 1.16 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.4, 142.9, 137.5, 137.3, 136.8, 133.4, 130.7, 130.3, 128.9, 128.8, 128.1, 128.0, 127.93, 127.90, 127.3, 126.5, 126.0, 81.9, 27.6, 21.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₇H₃₄³⁵ClNO₄SNa⁺ 646.1789; Found 646.1795; Calcd for C₃₇H₃₄³⁷ClNO₄SNa⁺ 647.1823; Found 647.1823.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)-3-phenylacrylate **1p** (33.0 mg, 0.0999 mmol, 1.0 equiv), (*E*)-4-methyl-*N*-(thiophen-2-ylmethylene)benzene-sulfonamide **2k** (53.0 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5 mol%),

L5 (7.9 mg, 12 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **5i**: 36.9 mg (0.0619 mmol), as a white solid, 62% yield; $[\alpha]_D^{25} = +40.8$ (c = 0.51 in CHCl₃); 73% ee, determined by HPLC analysis [Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 12.16 min

(major), $t_R = 14.64 \text{ min (minor)}; {}^{1}\text{H NMR}$ (400 MHz, CDCl₃) δ (ppm) 8.06–7.55 (m, 1H), 7.54–7.39 (m 4H), 7.39–7.26 (m, 5H), 7.26–7.21 (m, 2H), 7.02–6.56 (m, 6H), 6.00 (brs, 1H), 5.51 (d, J = 11.4 Hz, 1H), 5.40 (d, J = 17.8 Hz, 1H), 2.27 (s, 3H), 1.17 (s, 9H); ${}^{13}\text{C}$ NMR (100 MHz, CDCl₃) δ (ppm) 167.4, 145.3, 142.8, 137.5, 137.3, 136.7, 130.7, 130.3, 128.8, 128.0, 127.90, 127.85, 127.2, 126.5, 125.9, 125.5, 125.4, 122.4, 81.8, 27.6, 21.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₅H₃₃NO₄S₂Na⁺ 618.1743; Found 618.1736.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)-4-methylphenyl)-3-phenylacrylate **1q** (34.4 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-(2-fluorobenzylidene)-4-methylbenzenesulfonamide **2l** (51.8 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%) and 4 Å MS (60 mg). The tube was

evacuated and back-filled with argon for three times. Then Et₃N (14 μL, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **5j**: 45.7 mg (0.0734 mmol), as a white solid, 73% yield; mp = 125–127 °C; $[\alpha]_D^{25}$ = +19.6 (*c* = 0.25 in CHCl₃); 89% ee, determined by HPLC analysis [Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 12.03 min (major), t_R = 21.50 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.72 (s, 1H), 7.61–7.54 (m, 1H), 7.50–7.40 (m, 3H), 7.39–7.33 (m, 2H), 7.32–7.25 (m, 4H), 7.14–7.06 (m, 2H), 7.03–6.89 (m, 3H), 6.82–6.69 (m, 2H), 5.81–5.69 (m, 1H), 5.40 (dd, *J* = 11.4, 1.7 Hz, 1H), 5.25 (dd, *J* = 17.9, 1.7 Hz, 1H), 2.37 (s, 3H), 2.28 (s, 3H), 1.13 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.7, 160.4 (d, ¹*J*_{FC} = 247.3 Hz), 142.8, 137.7, 137.4, 136.9, 136.7, 134.6, 133.4, 132.5, 130.7, 130.6, 130.4, 130.3, 129.7 (d, ⁴*J*_{FC} = 3.1 Hz), 129.5 (d, ³*J*_{FC} = 8.2 Hz), 128.9, 128.0, 127.81, 127.80 (d, ²*J*_{FC} = 21.9 Hz), 127.5, 127.1, 127.0 (d, ³*J*_{FC} = 11.9 Hz), 126.8, 123.8, 123.6, 122.0, 116.0 (d, ²*J*_{FC} = 21.5 Hz), 115.9, 52.9, 27.6, 22.1, 21.5; ¹⁹F NMR (375 MHz, CDCl₃) δ (ppm) – 112.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₈H₃₆FNO4SNa⁺ 644.2234; Found 644.2234.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl-3-(2-(but-3-en-1-yn-1-yl)-4-(trifluoromethyl)phenyl)-3phenylacrylate **1r** (39.8 mg, 0.0999 mmol, 1.0 equiv, E/Z = 11:1), (E)-N-(2fluorobenzy-lidene)-4-methylbenzenesulfonamide **2l** (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%) and 4 Å MS

(60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated in *vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1to 5/1) to give product **5k**: 43.8 mg (0.0648 mmol), as a white solid, 65% yield; mp = 62–64 °C; $\lceil \alpha \rceil_{D}^{25}$ = +9.4 (c = 0.43 in CHCl₃); 87% ee, determined by HPLC analysis [Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 8.38 min (major), t_R = 9.85 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.32 (s, 1H), 7.44–7.30 (m, 6H), 7.27 (d, J = 8.1 Hz, 2H), 7.25–7.18 (m, 3H), 7.05–6.99 (m, 1H), 6.99–6.90 (m, 1H), 6.87–6.75 (m, 3H), 6.72 (d, J = 5.8 Hz, 1H), 5.56 (d, J = 5.8 Hz, 1H), 5.43 (dd, J = 11.5, 1.6 Hz, 1H), 5.27 (dd, J = 17.9, 1.6 Hz, 1H), 2.15 (s, 3H), 1.08 (s, 3 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.0, 160.2 (d, ¹J_{FC} = 246.6 Hz), 142.9, 137.6, 136.7, 136.5, 135.4, 135.2, 133.9, 133.4, 132.2, 130.6, 130.2, 130.0, 129.9 (d, ${}^{3}J_{FC} = 8.3$ Hz), 129.4 (d, ${}^{3}J_{FC}$ = 3.1 Hz), 129.0 (q, ${}^{1}J_{FC}$ = 252.1 Hz),128.8, 128.7 (d, ${}^{2}J_{FC}$ = 21.6 Hz), 128.23, 128.18, 128.1, 127.9, 126.9, 126.1 (d, ${}^{2}J_{FC} = 12.1$ Hz), 125.4, 124.1, 122.73, 122.6 (q, ${}^{3}J_{FC} = 3.1$ Hz), 121.3 (q, ${}^{3}J_{FC} = 3.2$ Hz), 116.2 (d, ${}^{2}J_{FC} = 21.5$ Hz), 82.3, 52.8, 27.6, 21.4; ${}^{19}F$ NMR (375 MHz, CDCl₃) δ (ppm) –112.4, – 62.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₈H₃₃F₄NO₄SNa⁺ 698.1959; Found 698.1957.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)-5-chlorophenyl)-3-phenylacrylate **1s** (36.4 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-(2-fluorobenzylidene)-4-methylbenzenesulfonamide **2l** (51.8 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%) and 4 Å MS (60 mg). The tube was

evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was

purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **5l**: 46.3 mg (0.0721 mmol), as a white solid, 72% yield; mp = 174–176 °C; $[\alpha]_{D}^{25}$ = +23.2 (*c* = 0.41 in CHCl₃); 83% ee, determined by HPLC analysis [Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 9.34 min (major), t_R = 10.37 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.96 (d, *J* = 9.2 Hz, 1H), 7.53–7.38 (m, 4H), 7.38–7.32 (m, 3H), 7.31–7.26 (m, 3H), 7.26–7.23 (m, 1H), 7.11–6.98 (m, 2H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.85–6.69 (m, 2H), 5.67 (d, *J* = 6.5 Hz, 1H), 5.45 (dd, *J* = 11.5, 1.6 Hz, 1H), 5.27 (dd, *J* = 17.8, 1.7 Hz, 1H), 2.28 (s, 3H), 1.14 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.2, 160.4 (d, ¹*J*_{FC} = 247.3 Hz), 143.0, 136.8, 136.72, 136.70, 134.4, 134.0, 133.9, 133.1, 132.1, 131.4, 130.6, 130.3, 129.9, 129.8 (d, ³*J*_{FC} = 8.2 Hz), 129.7 (d, ³*J*_{FC} = 3.1 Hz), 128.9, 128.8, 128.2, 128.12, 128.10, 127.5, 126.8, 126.6, 126.4 (d, ²*J*_{FC} = 11.9 Hz), 126.1, 124.0, 122.4, 116.2 (d, ²*J*_{FC} = 21.5 Hz), 52.9, 27.6, 21.5. ¹⁹F NMR (375 MHz, CDCl₃) δ (ppm) –112.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₇H₃₃³⁵CIFNO4SNa⁺ 664.1695; Found 664.1698; Calcd for C₃₇H₃₃³⁷CIFNO4SNa⁺ 665.1729; Found 665.1728.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl-3-(2-(but-3-en-1-yn-1-yl)-4,5-dimethoxyphenyl)-3-phenyl acrylate **1t** (39.0 mg, 0.0999 mmol, 1.0 equiv, E/Z = 2.5:1), (*E*)-*N*-(2-fluorobenzylidene)-4-methylbenzenesulfonamide **2l** (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%) and 4 Å MS (60

mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 4/1) to give product **5m**: 56.0 mg (0.0844 mmol), as a white solid, 84% yield; mp = 213–215 °C; $[\alpha]_D^{25}$ = +108.8 (*c* = 0.68 in CHCl₃); 85% ee, determined by HPLC analysis [Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 9.75 min (major), t_R = 20.01 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.83–7.69 (m, 2H), 7.48–7.41 (m, 4H), 7.36–7.28 (m, 2H), 7.26–7.20 (m, 2H), 7.13–7.09 (m, 1H), 7.07–7.00 (m, 2H), 6.98–6.92 (m, 1H), 6.69–6.66 (m, 1H), 6.61 (s, 1H), 5.94–5.76 (m, 1H), 5.34 (dd, *J* = 11.3, 1.8 Hz, 1H), 5.21 (dd, *J* = 17.9, 1.9 Hz, 1H), 5.05 (s, 1H), 3.78 (s, 3H), 3.57 (s, 3H), 2.32 (s, 3H), 1.13 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 168.0,
161.5 (d, ${}^{1}J_{FC} = 247.3$ Hz), 149.6, 148.9, 143.4, 143.1, 137.0, 136.1, 134.5, 132.0, 131.9, 130.5, 130.1, 130.0 (d, ${}^{2}J_{FC} = 20.3$ Hz), 129.7, 129.5, 129.4 (d, ${}^{3}J_{FC} = 8.2$ Hz), 129.1, 128.1, 128.0, 127.7, 127.4 (d, ${}^{3}J_{FC} = 11.9$ Hz), 127.0, 126.4, 126.3, 123.7, 121.7, 116.1 (d, ${}^{2}J_{FC} = 21.5$ Hz), 106.0, 104.1, 81.5, 56.0, 55.4, 53.3, 27.6, 21.5; 19 F NMR (375 MHz, CDCl₃) δ (ppm) –112.2; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₉H₃₈FNO₆SNa⁺ 690.2296; Found 690.2293.

NHTs

5n

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl (E)-3-(2-(but-3-en-1-yn-1-yl)phenyl)-3-(4-fluorophenyl)acrylate 1u (34.8 mg, 0.0999 mmol, 1.0 equiv), (E)-N-(2-fluorobenzylidene)-4^{CO2tBu} methylbenzenesulfonamide 2l (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), L5 (7.9 mg, 12 mol%) and 4 Å MS (60 mg). The tube was accurated and hash filled with ensure for three times. Then Et N (14 ad 0.10)

evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated in *vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1to 5/1) to give product 5n: 39.2 mg (0.0627 mmol), as a white solid, 63% yield; mp = 176-178 °C; $\left[\alpha\right]_{D}^{25}$ = +30.3 (c = 0.37 in CHCl₃); 82% ee, determined by HPLC analysis [Daicel Chiralpak IE, nhexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 6.87 min (major), t_R = 8.29 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.04–7.93 (m, 1H), 7.55–7.47 (m, 1H), 7.42–7.32 (m, 4H), 7.32–7.26 (m, 3H), 7.25–7.21 (m, 1H), 7.20–7.12 (m, 2H), 7.11–7.04 (m, 1H), 7.02–6.95 (m, 1H), 6.93 (d, J = 8.0 Hz, 2H), 6.83–6.72 (m, 2H), 5.68 (d, J = 7.2 Hz, 1H), 5.43 (dd, J = 11.5, 1.7 Hz, 1H), 5.26 (dd, J = 17.8, 1.7 Hz, 1H), 2.28 (s, 3H), 1.18 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 167.5, 162.3 (d, ${}^{1}J_{FC}$ = 325.9 Hz), 160.6 (d, ${}^{1}J_{FC}$ = 327.6 Hz), 142.8, 136.9, 136.3, 134.2, 133.6, 133.4, 133.3, 132.4 (d, ${}^{3}J_{FC} = 8.5$ Hz), 132.14, 132.06, 132.0, 131.6, 130.3, 129.6, 129.62, 129.60, 129.5, 128.9, 127.4, 126.9, 126.83, 126.76, 125.9, 124.7, 123.8 (d, ${}^{3}J_{FC} = 3.6 \text{ Hz}$), 122.3, 116.1 (d, ${}^{2}J_{FC} = 21.5 \text{ Hz}$), 115.0 (d, ${}^{3}J_{FC} = 4.5$ Hz), 114.8 (d, ${}^{3}J_{FC} = 4.4$ Hz), 81.9, 53.0, 27.6, 21.5; ${}^{19}F$ NMR (375 MHz, CDCl₃) δ (ppm) -114.2, -112.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₇H₃₃F₂NO₄SNa⁺ 648.1991; Found 648.1994.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl-3-(2-(but-3-en-1-yn-1-yl)phenyl)-3-(4-methoxyphenyl)acrylate **1v** (36.0 mg, 0.0999 mmol, 1.0 equiv, E/Z = 3.1:1), (E)-N-(2fluorobenzylidene)-4-methyl-benzenesulfonamide **2l** (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), L5 (7.9 mg, 12 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N

(14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 4/1) to give product **50**: 48.3 mg (0.0757 mmol), as a white solid, 76% yield; mp = 177–179 °C; $[\alpha]_D^{25} = +27.4$ (c = 0.38 in CHCl₃); 86% ee, determined by HPLC analysis [Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 8.23 min (major), t_R = 10.40 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.96 (d, J = 8.5 Hz, 1H), 7.55–7.47 (m, 1H), 7.46–7.41 (m, 1H), 7.38–7.30 (m, 3H), 7.30–7.26 (m, 1H), 7.25–7.17 (m, 3H), 7.11–7.04 (m, 1H), 7.03–6.95 (m, 3H), 6.91 (d, J = 8.0 Hz, 2H), 6.85–6.74 (m, 2H), 5.70 (d, J = 7.2 Hz, 1H), 5.43 (dd, J = 11.4, 1.7 Hz, 1H), 5.25 (dd, J = 17.8, 1.7 Hz, 1H), 3.88 (s, 3H), 2.27 (s, 3H), 1.19 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 167.7, 160.4 (d, ¹ $J_{FC} = 247.8$ Hz), 159.3, 142.7, 137.2, 136.9, 134.3, 133.6, 133.5, 132.5, 131.8, 131.5, 131.0, 130.3, 129.7 (d, ³ $J_{FC} = 3.0$ Hz), 129.6, 129.5, 128.8, 126.9(d, ² $J_{FC} = 12.0$ Hz), 126.8, 126.7, 125.7, 124.6, 123.8, 122.1, 116.1 (d, ² $J_{FC} = 21.5$ Hz), 113.4, 113.3, 81.7, 55.4, 53.0, 27.7, 21.5; ¹⁹F NMR (375 MHz, CDCl₃) δ (ppm) –111.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₈H₃₆FNO₅SNa⁺ 660.2190; Found 660.2188.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl-3-(2-(but-3-en-1-yn-1-yl)phenyl)-3-(furan-2-yl)acrylate **1w** (32.0 mg, 0.0999 mmol, 1.0 equiv, E/Z = 3.1:1), (E)-N-(2-fluorobenzylidene)-4methyl-benzenesulfonamide **2l** (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10

mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 48 h, and monitored by TLC. After completion, the solvent was evaporated *in*

vacuo. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **5p**: 41.5 mg (0.0695 mmol), as a white solid, 70% yield; mp = 104–106 °C; $[\alpha]_D^{25} = +14.4$ (*c* = 0.20 in CHCl₃); 88% ee, determined by HPLC analysis [Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 7.63 min (major), t_R = 9.09 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.97–7.86 (m, 1H), 7.70–7.57 (m, 2H), 7.49–7.31 (m, 3H), 7.30–7.26 (m, 1H), 7.24–7.18 (m, 2H), 7.10–6.95 (m, 2H), 6.90–6.70 (m, 4H), 6.62–6.47 (m, 2H), 5.66 (d, *J* = 7.2 Hz, 1H), 5.45 (dd, *J* = 11.4, 1.6 Hz, 1H), 5.23 (dd, *J* = 17.8, 1.7 Hz, 1H), 2.22 (s, 3H), 1.38 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 167.3, 160.4 (d, ¹*J*_{FC} = 247.3 Hz), 149.4, 142.9, 142.8, 136.4, 134.7, 134.0, 132.2, 130.4, 129.8, 129.7, 129.7, 128.7, 127.1, 127.0, 126.8, 126.5 (d, ³*J*_{FC} = 8.2 Hz), 126.4, 126.3, 124.8, 123.9 (d, ³*J*_{FC} = 3.5 Hz), 122.4, 116.2 (d, ²*J*_{FC} = 21.8 Hz), 112.0, 111.0, 82.1, 53.3, 27.9, 21.3; ¹⁹F NMR (375 MHz, CDCl₃) δ (ppm) –111.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₅H₃₂FNO₅SNa⁺ 620.1887; Found 620.1883.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl (*Z*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)-3-(thiophen-2-yl)acrylate **1x** (33.6 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-(2-fluorobenzylidene)-4-methyl-benzenesulfonamide **2l** (51.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), **L5** (7.9 mg, 12 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv)

and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 48 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 5/1) to give product **5q**: 51.2 mg (0.0835 mmol), as a white solid, 84% yield; mp = 107–109 °C; $[\alpha]_D^{25} = +15.2$ (*c* = 0.33 in CHCl₃); 87% ee, determined by HPLC analysis [Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 7.36 min (major), t_R = 9.34 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.00–7.89 (m, 1H), 7.65–7.56 (m, 1H), 7.53–7.48 (m, 1H), 7.48–7.41 (m, 1H), 7.38–7.25 (m, 5H), 7.17–7.11 (m, 1H), 7.11–6.96 (m, 3H), 6.92–6.72 (m, 4H), 5.70 (d, *J* = 7.1 Hz, 1H), 5.46 (dd, *J* = 11.4, 1.7 Hz, 1H), 5.28 (dd, *J* = 17.2, 1.7 Hz, 1H), 2.27 (s, 3H), 1.25 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 167.2, 160.4 (d, ¹*J*_{FC} = 247.3 Hz), 142.8, 137.1, 136.6, 135.2, 134.0, 133.1, 130.2, 129.9, 129.7 (d, ³*J*_{FC} = 8.1 Hz), 128.7, 127.3, 126.9, 126.74, 126.73, 126.6, 126.5

(d, ${}^{3}J_{FC} = 7.8$ Hz), 126.1, 124.6, 123.9, 122.5, 116.1 (d, ${}^{2}J_{FC} = 21.5$ Hz), 82.0, 53.1, 27.7, 21.6; ${}^{19}F$ NMR (375 MHz, CDCl₃) δ (ppm) –111.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₅H₃₂FNO₄S₂Na⁺ 636.1649; Found 636.1643.

7. General procedure for catalytic cascade reaction

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added β -aryl-acrylate derived 1,3-enyne **1** (0.100 mmol), 2-furfural derived imine **2n** (49.8 mg, 0.200 mmol, 0.200 mmol), Pd₂(dba)₃ (4.6 mg, 5 mol%), L**5** (12 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to give product **6**.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)-3-phenylacrylate **1p** (33.0 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-benzylidene-2-methylbenzene-sulfonamide **2n** (49.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), **L5** (7.9 mg,

12 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 4/1 to 5/1) to give product **6a**: 39.3 mg (0.0679 mmol), as a white solid, 68% yield, >19:1 dr, determined by ¹H NMR; mp = 119–121 °C; $[\alpha]_D^{25} = -68.3$ (*c* = 0.36 in CHCl₃); 75% ee, determined by HPLC analysis [Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 8.08 min (minor), t_R = 10.33 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.20 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.58–7.54 (m, 1H), 7.51–7.39 (m, 5H), 7.38–7.27 (m, 3H), 7.23–

7.15 (m, 2H), 7.02 (d, J = 8.2 Hz, 1H), 6.63 (d, J = 6.0 Hz, 1H), 6.33 (dd, J = 6.0, 1.6 Hz, 1H), 5.34 (d, J = 7.5 Hz, 1H), 5.08 (dd, J = 4.5, 1.7 Hz, 1H), 5.05–4.97 (m, 1H), 3.70 (dd, J = 8.4, 3.8 Hz, 1H), 2.51 (s, 3H), 2.01–1.94 (m, 1H), 1.83–1.76 (m, 1H), 1.14 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.8, 141.7, 140.3, 138.3, 138.2, 137.4, 136.1, 134.7, 134.0, 133.1, 132.6, 132.3, 130.9, 130.4, 130.1, 129.5, 128.3, 128.0, 127.7, 127.6, 127.62, 126.59, 126.1, 123.1, 98.0, 81.9, 80.6, 56.5, 49.2, 30.8, 27.5, 20.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₅H₃₃NO₅SNa⁺ 602.1972; Found 602.1981.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)-4-methylphenyl)-3-phenylacrylate **1q** (34.4 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-benzylidene-2-methylbenzenesulfonamide **2n** (49.8 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5

mol%), L5 (7.9 mg, 12 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 4/1) to give product **6b**: 42.8 mg (0.0722 mmol), as a white solid, 72% yield, >19:1 dr, determined by ¹H NMR; mp = 133–135 °C; $[\alpha]_{D}^{25} = -79.7$ (c = 0.71 in CHCl₃); 76% ee, determined by HPLC analysis [Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: $t_R = 5.98 \text{ min (minor)}, t_R = 7.34 \text{ min (major)}; {}^{1}H NMR (400 \text{ MHz}, 100 \text{ MHz})$ CDCl₃) δ (ppm) 8.19 (dd, J = 7.9, 1.5 Hz, 1H), 7.55–7.50 (m, 1H), 7.49–7.36 (m, 5H), 7.35–7.31 (m, 2H), 7.23–7.17 (m, 1H), 7.11 (dd, J = 8.7, 1.7 Hz, 1H), 6.98 (s, 1H), 6.70 (d, J = 6.0 Hz, 1H), 6.33 (dd, J = 6.0, 1.6 Hz, 1H), 5.35 (d, J = 7.6 Hz, 1H), 5.07 (dd, J = 4.5, 1.7 Hz, 1H), 5.00 (d, J = 7.6 Hz, 1H), 3.71 (dd, J = 8.4, 3.8 Hz, 1H), 2.54 (s, 3H), 2.20 (s, 3H), 2.00–1.92 (m, 1H), 1.79 (dd, J = 11.5, 8.4 Hz, 1H), 1.15 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.9, 141.9, 140.2, 138.5, 137.7, 137.1, 135.3, 134.5, 134.2, 133.1, 132.7, 130.9, 130.5, 130.0, 129.5, 129.4, 128.34, 128.26, 127.8, 127.6, 127.5, 126.5, 122.1, 98.1, 81.7, 80.6, 56.6, 49.2, 30.9, 27.5, 21.8, 20.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₆H₃₅NO₅SNa⁺ 616.2128; Found 616.2124.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)-5-chlorophenyl)-3-phenylacrylate **1s** (39.8 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-benzylidene-2-methylbenzenesulfonamide **2n** (49.8 mg, 0.200 mmol, 2.0 equiv), $Pd_2(dba)_3$ (4.6 mg, 5

mol%), L5 (7.9 mg, 12 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 8/1 to 4/1) to give product **6c**: 36.9 mg (0.0602 mmol), as a white solid, 60% yield, >19:1 dr, determined by ¹H NMR; mp = 163–165 °C; $[\alpha]_{D}^{25} = -78.0$ (*c* = 0.40 in CHCl₃); 75% ee, determined by HPLC analysis [Daicel Chiralpak IB, n-hexane/i-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: $t_R = 5.37 \text{ min (minor)}, t_R = 6.59 \text{ min (major)}; {}^{1}H \text{ NMR (400 MHz, 100 MHz)}$ CDCl₃) δ (ppm) 8.16 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.60–7.53 (m, 1H), 7.52–7.28 (m, 7H), 7.19–7.15 (m, 1H), 7.13 (dd, J = 8.9, 2.1 Hz, 1H), 7.01 (d, J = 8.9 Hz, 1H), 6.58 (d, J = 5.9 Hz, 1H), 6.32 (dd, J = 6.0, 1.6 Hz, 1H), 5.30 (d, J = 7.7 Hz, 1H), 5.11 (d, J = 7.8 Hz, 1H), 5.07 (dd, J = 4.4, 1.6 Hz, 1H), 3.67 (dd, *J* = 8.4, 3.8 Hz, 1H), 2.52 (s, 3H), 2.01–1.91 (m, 1H), 1.77 (dd, *J* = 11.5, 8.5 Hz, 1H), 1.14 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.4, 142.1, 139.4, 138.2, 137.5, 137.4, 136.4, 134.9, 133.7, 133.23, 133.19, 132.7, 132.2, 131.5, 130.8, 130.1, 129.4, 128.49, 128.45, 128.4, 128.0, 127.9, 126.74, 126.67, 124.8, 98.0, 82.2, 80.6, 56.4, 49.2, 30.7, 27.5, 20.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₅H₃₂³⁵ClNO₅SNa⁺ 636.1582; Found 636.1591; Calcd for C₃₅H₃₂³⁷ClNO₅SNa⁺ 637.1615; Found 637.1625.

To an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar were added *tert*-butyl (*E*)-3-(2-(but-3-en-1-yn-1-yl)phenyl)-3-phenylacrylate **1p** (33.0 mg, 0.0999 mmol, 1.0 equiv), (*E*)-*N*-(furan-2-ylmethylene)-4-methylbenzenesulfon-amide **2i** (49.8 mg, 0.200 mmol, 2.0 equiv), Pd₂(dba)₃ (4.6 mg, 5 mol%), **L5** (7.9 mg,

12 mol%) and 4 Å MS (60 mg). The tube was evacuated and back-filled with argon for three times. Then Et₃N (14 μ L, 0.10 mmol, 1.0 equiv) and degassed dry EtOH (1.0 mL) were added via syringe sequentially. The mixture was stirred at 50 °C for 60 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel

(petroleum ether/EtOAc = 8/1 to 4/1) to give product **6d**: 42.7 mg (0.0742 mmol), 74% yield, 6:1 dr, determined by ¹H NMR analysis; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.91 (d, *J* = 8.0 Hz, 2H), 7.50–7.41 (m, 2H), 7.41–7.32 (m, 3H), 7.26 (s, 1H), 7.30–7.26 (m, 2H), 7.25–7.20 (m, 1H), 7.06–6.98 (m, 1H), 6.96–6.84 (m, 1H), 6.72–6.57 (m, 2H), 6.35 (dd, *J* = 6.0, 1.6 Hz, 1H), 5.90–5.63 (m, 1H), 5.28 (d, *J* = 6.4 Hz, 1H), 5.07 (dd, *J* = 4.2, 1.7 Hz, 1H), 3.63 (dd, *J* = 8.2, 4.2 Hz, 1H), 2.53 (s, 3H), 1.98–1.79 (m, 2H), 1.11 (s, 1H), 1.06 (s, 8H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 167.5, 143.9, 142.2, 139.4, 137.5, 137.3, 136.3, 134.4, 134.1, 132.0, 130.6, 129.9, 129.5, 128.4, 128.3, 127.9, 127.8, 127.7, 126.7, 125.2, 98.1, 82.4, 80.6, 56.5, 49.6, 30.6, 27.3, 21.7.

8. Transformations of the products

To an oven-dried 10 mL tube equipped with a magnetic stir bar were added product **3a** (48.5 mg, 0.0999 mmol, 1.0 equiv), PdCl₂ (8.9 mg, 0.050 mmol, 0.5 equiv), CuCl (9.9 mg, 0.10 mmol, 1.0 equiv), and K₂CO₃ (27.6 mg, 0.200 mmol, 2.0 equiv). The tube was evacuated and back-filled three times with O₂. Then THF (1.0 mL) were added via syringe. The mixture was stirred at 40 °C for 3 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1 to 6/1) to give product 7: 40.2 mg (0.0832 mmol), as a brown thick oil, 83% yield; $[\alpha]_D^{25} = -65.5$ (*c* = 0.60 in CHCl₃); 89% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 7.08 min (major), t_R = 7.82 min (minor); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.57–8.50 (m, 1H), 7.52–7.47 (m, 2H), 7.44–7.38 (m, 2H), 7.24–7.19 (m, 3H), 7.17–7.06 (m, 4H), 6.91 (d, *J* = 7.0, 1H), 6.77 (d, *J* = 7.7 Hz, 1H), 6.31 (d, *J* = 4.0 Hz, 2H), 5.87 (d, *J* = 7.7 Hz, 1H), 4.31 (q, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 165.8, 146.9, 143.9, 141.8, 138.7, 136.4, 135.8, 133.8, 130.3, 130.2, 129.6, 128.7, 128.6, 127.8, 127.5, 127.0, 126.6, 125.5, 118.5, 117.2, 102.1, 61.0, 57.3, 21.5, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₉H₂₅NO4SNa⁺ 506.1397; Found 506.1393.

To a solution of product **3a** (48.5 mg, 0.0999 mmol, 1.0 equiv) in acetone (1.0 mL) was added Cs_2CO_3 (65.0 mg, 0.200 mmol, 2.0 equiv). The resultant mixture was stirred at room temperature for 10 min, and allyl bromide (17.2 µL, 0.200 mmol, 2.0 equiv) was added slowly. After complete consumption of **3a** (monitored by TLC), the mixture was concentrated and purified by flash chromatography on silica gel (petroleum ether / EtOAc = 10/1) to give the *N*-allylation product.

To the solution of *N*-allylation product in DCM (1.0 mL) was added Hoveyda-Grubbs 2nd Generation Catalyst (6.3 mg, 0.010 mmol, 0.1 equiv). Then the mixture was degassed and charged with argon balloon and stirred at 40 °C for 24 h. After completion monitored by TLC, the mixture was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 7/1) to give product **8**: 35.8 mg (0.0720 mmol), as a yollow oil, 72% yield; $[\alpha]_{\rm D}^{25}$ = +91.0 (*c* = 0.29 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 6.06 min (major), t_R = 6.99 min (minor); ¹H NMR (400 MHz, CDCl₃) 8 (ppm) 8.53–8.43 (m, 1H), 7.50–7.43 (m, 2H), 7.36–7.27 (m, 5H), 7.23–7.16 (m, 2H), 7.02–6.94 (m, 1H), 6.89 (d, *J* = 8.0 Hz, 2H), 6.47 (s, 1H), 6.10 (s, 1H), 5.99 (dd, *J* = 12.0, 2.9 Hz, 1H), 5.73–5.64 (m, 1H), 4.54–4.43 (m, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 3.64–3.52 (m, 1H), 2.24 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.1, 149.4, 143.6, 143.5, 143.3, 137.3, 136.7, 133.2, 132.4, 130.5, 130.3, 129.1, 128.8, 128.62, 128.60, 127.5, 127.4, 126.9, 119.9, 119.0, 116.3, 61.0, 58.6, 44.7, 21.3, 14.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₂₇NO₄SNa⁺ 520.1553; Found 520.1547.

To an oven-dried 10 mL tube equipped with a magnetic stir bar were added product **5b** (62.0 mg, 0.0999 mmol, 1.0 equiv), K₂CO₃ (138 mg, 1.00 mmol, 10.0 equiv). The tube was evacuated and back-

filled with argon for three times. Then dry MeCN (1.0 mL) and PhSH (41 μ L, 0.40 mmol, 4.0 equiv) were added via syringe sequentially. The mixture was stirred at 35 °C for 6 h, and monitored by TLC. After completion, the solvent was evaporated *in vacuo*. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 5/1 to 3/1) to give product **9**: 41.8 mg (0.0960 mmol), as a colourless oil, 96% yield; $[\alpha]_D^{25} = +143.0$ (c = 0.59 in CHCl₃); 82% ee, determined by HPLC analysis [Daicel Chiralpak IE, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm]: t_R = 8.30 min (minor), t_R = 12.74 min (major); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.96–7.89 (m, 1H), 7.52–7.37 (m, 8H), 7.34–7.29 (m, 2H), 7.27–7.26 (m, 1H), 7.24–7.18 (m, 2H), 7.12 (dd, *J* = 17.3, 11.8 Hz, 1H), 6.11 (s, 1H), 5.55 (s, 1H), 5.54–5.49 (m, 1H), 2.08–1.99 (m, 2H), 1.18 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 168.2, 145.0, 138.4, 137.9, 136.6, 135.0, 133.2, 132.9, 132.7, 130.7, 130.6, 130.4, 128.3, 127.9, 127.7, 127.6, 126.3, 126.2, 126.0, 125.7, 121.3, 81.7, 54.4, 27.6; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₀H₃₀NO₂⁺ 436.2271; Found 436.2275.

9. More substrates and transformation exploration

To further expand the substrate scope, several imines and alkene-tethered envnes were investigated under the optimal conditions. Unfortunately, these substrates generally showed low reactivity, and no apparent transformations were observed.

Treatment of **3j** in toluene at high temperature, the expected Diels–Alder adduct could be detected but only in a very low yield.

We tried several methods to remove the Ts group of racemic products **3a**, **5a** and **7**, but no obvious conversions or complex reaction profiles were uniformly observed, probably due to the effect of existence of olefinic groups. Nevertheless, the *N*-Ns protected imines could be similarly applied, which could be easily removed.

10. Proposed mechanism

As illustrated in the above scheme, Pd^0 coordinated with the double-bond of 1,3-enyne 1 chemoseletively, and the resultant highest occupied molecular orbital (HOMO) energy raised η^2 -complex **A** underwent vinylogous addition to imine **2** to produce η^3 - π -allyl palladium **B**. With the assistance of triethylamine, the complex **B** would first be protonated by EtOH to deliver *syn*-alkenyl palladium **C**, which readily isomerized to thermodynamically more stable *trans*-alkenyl palladium species **D** through a three-membered ring-type transition state (**TS-1**) (*ACS Catal.*, **2020**, *10*, 10516). The *trans*-alkenyl palladium species **D** might undergo 5-*exo* migratory addition, and the resultant species **E** would readily undertake β -H elimination to afford benzofulvene derivative **3** (for R¹ = H). In addition, for intermediate **E** bearing a quaternary carbon, a reduction process might be conducted to provide densely substituted indene **4**. Nevertheless, when 1'-aryl substituted enyne was used, a *6-endo* intramolecular migratory insertion to produce **F** might be favoured, because of steric hindrance and the formation of more stable benzyl palladium complex (*Acc. Chem. Res.*, 1979, **12**, 146; *J. Am.*

Chem. Soc., 1974, **96**, 1133). Subsequent β -H elimination delivered skeletally different formal 1-naphthylated amine **5**.

11. Crystal data and structural refinement

Procedure for the recrystallization of chiral 3a: To a 10 mL tube containing **3a** (45 mg) were added petroleum ether (2.5 mL) and EtOAc (1.0 mL). The mixture was heated until a clear solution was formed, which was kept aside at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the absolute configuration of enantiopure **3a**. The data were collected by Bruker D8 venture CCD equipped with a Mo radiation source (K α = 0.71073 Å) at 273.15 K. CCDC 2249982 (**3a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50%)

Identification code	3 a
Empirical formula	$C_{29}H_{27}NO_4S$
Formula weight	485.07
Temperature/K	273.15
Crystal system	monoclinic
Space group	P2 ₁
a/Å	9.7229(12)
b/Å	26.817(4)
c/Å	9.7328(16)
α/°	90
β/°	90.021(5)
$\gamma/^{o}$	90
Volume/Å ³	2537.8(7)
Ζ	4
$\rho_{calc}g/cm^3$	1.270
μ/mm^{-1}	0.163

F(000)	1022.0
Crystal size/mm ³	$0.27 \times 0.13 \times 0.07$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.184 to 55.122
Index ranges	$-11 \le h \le 12, -34 \le k \le 34, -12 \le l \le 12$
Reflections collected	26114
Independent reflections	11495 [$R_{int} = 0.0530, R_{sigma} = 0.0690$]
Data/restraints/parameters	11495/1/635
Goodness-of-fit on F ²	1.067
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0558, wR_2 = 0.1070$
Final R indexes [all data]	$R_1 = 0.0922, wR_2 = 0.1241$
Largest diff. peak/hole / e Å ⁻³	0.22/-0.32
Flack parameter	-0.06(5)

Procedure for the recrystallization of racemic 5r: To a 10 mL tube containing **5r** (50 mg) were added petroleum ether (3.5 mL) and EtOAc (1.0 mL). The mixture was heated until a clear solution was formed, which was kept aside at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the relative configuration of **5r**. The data were collected by Bruker D8 venture CCD equipped with a Mo radiation source (K α = 0.71073 Å) at 302.0 K. CCDC 2249983 (*rac*-**5r**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. The absolute configuration of chiral **5r** was assigned by similar vinylogous addition reaction with regard to enantiopure product **3a**.

CO₂Et

(ellipsoid contour probability 50%)

Identification code	5r
Empirical formula	C ₃₅ H ₃₁ NO ₄ S
Formula weight	562.715
Temperature/K	302.0
Crystal system	monoclinic
Space group	$P2_1/c$
	S48

a/Å	13.7631(11)
b/Å	18.1396(15)
c/Å	12.0870(11)
α/°	90
β/°	95.186(3)
$\gamma/^{\circ}$	90
Volume/Å ³	3005.3(4)
Z	4
$\rho_{calc}g/cm^3$	1.244
μ/mm^{-1}	0.147
F(000)	1189.0
Crystal size/mm ³	0.25 imes 0.23 imes 0.08
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.06 to 55.02
Index ranges	$-14 \le h \le 17, -23 \le k \le 23, -12 \le l \le 15$
Reflections collected	20675
Independent reflections	$6812 [R_{int} = 0.0695, R_{sigma} = 0.0811]$
Data/restraints/parameters	6812/6/372
Goodness-of-fit on F ²	1.088
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0676, wR_2 = 0.1500$
Final R indexes [all data]	$R_1 = 0.1498, wR_2 = 0.2040$
Largest diff. peak/hole / e Å ⁻³	0.47/-0.48

Procedure for the recrystallization of racemic 6d: To a 10 mL tube containing **6d** (40 mg) were added petroleum ether (2.5 mL) and CHCl₃ (1.0 mL). The mixture was heated until a clear solution was formed, which was kept aside at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the relative configuration of product **6d**. The data were collected by Bruker D8 venture CCD equipped with a Mo radiation source (K α = 0.71073 Å) at 240.0 K. CCDC 2249984 (*rac*-**6d**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. The absolute configuration of chiral **6d** was assigned by similar vinylogous addition reaction with regard to enantiopure product **3a**.

S49

(ellipsoid contour probability 50%)

Identification code	6d
Empirical formula	C ₃₅ H ₃₃ NO ₅ S
Formula weight	579.68
Temperature/K	240.0
Crystal system	monoclinic
Space group	C2/c
a/Å	26.644(2)
b/Å	11.4614(7)
c/Å	19.8518(17)
α/\circ	90
β/°	101.614(3)
$\gamma/^{o}$	90
Volume/Å ³	5938.2(8)
Z	8
$\rho_{calc}g/cm^3$	1.297
μ/mm^{-1}	0.153
F(000)	2448.0
Crystal size/mm ³	$0.28\times 0.09\times 0.04$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.882 to 55.072
Index ranges	$-33 \le h \le 34, \text{-}13 \le k \le 14, \text{-}25 \le l \le 25$
Reflections collected	32932
Independent reflections	6606 [$R_{int} = 0.1320$, $R_{sigma} = 0.0984$]
Data/restraints/parameters	6606/0/386
Goodness-of-fit on F ²	1.011
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0611, wR_2 = 0.1127$
Final R indexes [all data]	$R_1 = 0.1363, wR_2 = 0.1423$
Largest diff. peak/hole / e Å $^{-3}$	0.22/-0.34

12. NMR, HRMS spectra and HPLC chromatograms

110 100 f1 (ppm)

-10 100 90 f1 (ppm)

---62.763

110 100 f1 (ppm) -10 -20

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.052	BV R	0.18	992.9355	11555.7979	49.9992
7.459	BB	0.23	797.1862	11556.1553	50.0008
			Totals:	23111.9531	100.0000

[min]	Туре	[min]	[mÅU]	[mAU*s]	[%]
6.193	BBA	0.17	62.2099	694.1777	4.3245
7.608	BBA	0.22	1080.3180	15358.0850	95.6755
			Totals:	16052.2627	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.689	VB R	0.40	312.5956	8160.5161	50.2187
13.831	BB	0.59	209.3700	8089.4248	49.7813
			Totals:	16249.9409	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.558	BBA	0.37	42.5479	1031.7642	5.0256
13.553	BB	0.57	519.6494	19498.4609	94.9744
			Totals:	20530.2251	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.387	BV	0.20	422.4815	5417.5923	49.6468
6.111	VV R	0.22	390.1780	5494.6670	50.3532
			Totals:	10912.2593	100.0000

Totals:

12948.6548

S	7	8

100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
6.727	BB	0.29	366.7161	7245.6138	50.3393
8.417	BB	0.32	348.1396	7147.9292	49.6607
			Totals:	14393.5430	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
6.745	BB	0.19	70.1946	880.4067	4.3040
8.434	8.434 BB	0.25	1190.4943	19575.2656	95.6960
			Totals:	20455.6724	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
8.602	BB	0.31	630.9731	12771.9111	49.6368
10.893	BB	0.39	513.3306	12958.7939	50.3632
			Totals:	25730.7051	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.638	BBA	0.27	114.7376	1993.8225	4.0049
10.943	BBA	0.36	2053.2610	47791.1016	95.9951
			Totals:	49784.9241	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.666	BV	0.53	237.1501	8408.0137	49.8295
11.474	VV R	0.58	222.3759	8465.5596	50.1705
			Totals:	16873.5732	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
9.775	BBA	0.28	76.6214	1375.9526	8.3765
11.615	BB	0.34	694.0079	15050.3486	91.6235
			Totals:	16426.3013	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.662	BB	0.46	366.3933	10941.8984	50.0252
11.475	BB	0.50	337.7645	10930.8682	49.9748
			Totals:	21872.7666	100.0000

9.772	BBA	0.27	52.1811	922.5963	5.1395
11.604	BB	0.33	791.5866	17028.6543	94.8605
			Totals:	17951.2506	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.744	BV R	0.29	449.0412	8966.7578	50.1695
8.420	VV R	0.32	424.7675	8906.1768	49.8305
			Totals:	17872.9346	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.765	BBA	0.19	52.9751	634.1752	4.2940
8.457	BB	0.26	857.6638	14134.7295	95.7060
			Totals:	14768.9047	100.0000

Counts vs. Mass-to-Charge (m/z)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.149	VB R	0.28	412.5558	7639.4331	49.6618
9.458	VB R	0.33	355.0036	7743.4707	50.3382
			Totals:	15382.9038	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.176	BBA	0.21	74.9665	991.3522	4.1266
9.493	BB	0.29	1228.7633	23032.3984	95.8734
			Totals:	24023.7507	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.129	VV R	0.29	392.9979	7281.9351	50.1327
9.193	VB	0.32	355.3060	7243.3955	49.8673
			Totals:	14525.3306	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.291	BBA	0.26	49.4906	822.5424	5.0977
9.440	BB	0.30	796.1212	15313.0176	94.9023
			Totals:	16135.5599	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.290	BB	0.28	606.4496	11087.7090	49.7844
8.543	BV R	0.30	560.0510	11183.7588	50.2156
			Totals:	22271.4678	100.0000

Ret Time	Peak Type	Width	Height	Area	Area
Imml	турс	Immi	Imaci	[IIIAU 5]	[/ 0]
7.311	BBA	0.20	69.0308	897.5580	5.8031
8.575	BB	0.24	918.9404	14569.3174	94.1969
			Totals:	15466.8754	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.427	BV	0.40	270.6519	7366.6909	50.0479
9.748	VB	0.43	259.5555	7352.5889	49.9521
			Totals:	14719.2798	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.733	BBA	0.24	42.9750	669.2707	5.0734
10.091	BB	0.29	664.4868	12522.4707	94.9266
			Totals:	13191.7414	100.0000

S107

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.075	VB R	0.40	358.9065	8585.2813	50.3513
11.379	VB R	0.34	373.4622	8465.4717	49.6487
			Totals:	17050.7529	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.077	BB	0.36	1116.8179	26050.5859	95.5844
11.496	BBA	0.31	60.8612	1203.4249	4.4156
			Totals:	27254.0109	100.0000

Counts vs. Mass-to-Charge (m/z)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.461	\mathbf{BV}	0.46	84.0901	2544.9883	49.6609
10.726	VB	0.47	84.0386	2579.7480	50.3391
			Totals:	5124.7363	100.0000

Ret Time	Peak Type	Width [min]	Height ImAUI	Area [mAU*s]	Area 1%1
9.581	BB	0.32	40.4915	827.3523	4.0005
10.863	BB	0.35	887.6186	19853.7344	95.9995
			Totals:	20681.0867	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.218	VB R	0.28	459.2331	8983.3857	49.6326
9.468	BBA	0.31	454.3322	9116.3994	50.3674
			Totals:	18099.7852	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.453	BBA	0.15	1278.1001	12514.2422	91.8596
8.482	BBA	0.26	62.5954	1108.9912	8.1404
			Totals:	13623.2334	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
4.387	MM	0.15	401.4993	3648.7864	49.7731
5.642	MM	0.15	413.4528	3682.0486	50.2269
			Totals:	7330.8350	100.0000

	- 5				1.4.4.1
4.415	BBA	0.24	1263.8967	18512.2559	93.0064
5.582	BBA	0.24	92.1169	1392.0337	6.9936
			Totals:	19904.2896	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.483	BBA	0.19	61.6714	752.2999	4.7230
7.246	BBA	0.24	977.9205	15176.1416	95.2770
			Totals:	15928.4415	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.975	BB	0.36	163.2014	3737.9814	49.4434
14.503	VB R	0.50	115.6183	3822.1433	50.5566
			Totals:	7560.1248	100.0000

Ret Time [min]	Реак Туре	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
10.002	BB	0.29	12.6019	238.6169	5.0184
14.539	BB	0.47	149.6136	4516.2368	94.9816
			Totals:	4754.8537	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.464	VV R	0.27	442.7633	8097.3701	50.1978
8.170	BB	0.29	421.5631	8033.5498	49.8022
			Totals:	16130.9199	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.494	BBA	0.17	89.4755	988.5721	6.6971
8.250	BB	0.23	916.9753	13772.6953	93.3029
			Totals:	14761.2675	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.790	BB	0.31	186.6261	3789.8940	50.3415
9.329	BB	0.34	171.4154	3738.4810	49.6585
			Totals:	7528.3750	100.0000

l	Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
	7.902	BB	0.35	73.0211	1679.1783	9.2474
	9.493	BV R	0.37	679.5447	16479.2363	90.7526
				Totals:	18158.4147	100.0000

Counts vs. Mass-to-Charge (m/z)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
10.025	BB	0.38	228.3190	5604.2920	49.9059
11.829	BB	0.42	206.8966	5625.4287	50.0941
			Totals:	11229.7207	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.983	BBA	0.37	29.8991	716.8499	5.2254
11.776	BBA	0.42	481.5903	13001.7910	94.7746
			Totals:	13718.6409	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.360	VB	0.17	442.6902	4793.8110	49.8529
6.686	BB	0.22	342.9724	4822.0962	50.1471
			Totals:	9615.9072	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.279	BBA	0.18	181.3925	2094.7332	7.6337
6.573	BB	0.23	1744.3359	25345.7695	92.3663
			Totals:	27440.5027	100.0000

5.77.7.57 5.77.481 7.494 4.47.461 4.47.461 4.447 <li

Ret Time [min]	Реак Туре	width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.001	VV R	0.19	487.3712	6050.2515	36.7616
7.665	VV	0.20	159.5610	2123.4250	12.9020
8.154	VB	0.21	434.0111	6069.0122	36.8756
9.572	BV R	0.26	129.0926	2215.3716	13.4607
			Totals:	16458.0603	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.959	BV R	0.17	904.9175	10227.6650	62.4177
7.627	VV E	0.22	27.6450	416.7686	2.5435
8.110	VB	0.22	82.3834	1220.4019	7.4479
9.505	BB	0.25	277.7930	4521.0156	27.5910
			Totals:	16385.8511	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.430	BB	0.32	512.0977	10317.1680	49.5579
6.871	BV R	0.28	562.8331	10501.2432	50.4421
			Totals:	20818.4111	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.383	BBA	0.17	126.9306	1338.8942	4.5453
6.813	BBA	0.22	2031.9143	28117.7168	95.4547
			Totals:	29456.6110	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.534	BV	0.22	279.9293	4222.8760	51.3858
7.326	VV R	0.22	273.8208	3995.1094	48.6142
			Totals:	8217.9854	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	Area [%]
6.381	BB	0.17	660.3036	7509.8140	94.0707
7.154	BBA	0.18	40.9977	473.3452	5.9293
			Totals:	7983.1591	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.985	BV E	0.34	10.5819	236.0215	4.6193
8.966	VB R	0.35	67.6809	1533.2036	30.0071
10.228	BB	0.38	9.1286	221.6095	4.3372
11.372	BB	0.41	118.5133	3118.6306	61.0363
			Totals:	5109.4652	100.0000

-10 100 90 f1 (ppm)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
11.014	BV R	0.38	802.5752	19586.8789	50.0500
12.832	VV R	0.45	657.7418	19547.7578	49.9500
			Totals:	39134.6367	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
10.812	BBA	0.40	557.9377	14832.0020	91.1894
12.585	BBA	0.42	52.9944	1433.0531	8.8106
			Totals:	16265.0551	100.0000

-1.157

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.773	BV R	0.48	138.1967	4531.0581	50.2714
9.301	VBA	0.61	112.2253	4482.1289	49.7286
			Totals:	9013.1870	100.0000

[]	ypc	[]	Imaci		[/0]
7.960	\mathbf{BV}	0.38	340.1908	8038.5566	91.1440
9.594	VV R	0.46	25.1141	781.0633	8.8560
			Totals:	8819.6199	100.0000

Spectrum from 20230510.wiff2 (sample 2) - 2, +TOF MS (300 - 800) from 0.050 to 0.101 min, Recalibrated, centroided

100 90 f1 (ppm)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
13.142	BBA	0.45	266.9952	7741.9546	50.8511
18.096	BB	0.72	155.7985	7482.8101	49.1489
			Totals:	15224.7646	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
9.688	BV	0.42	198.1110	5079.8975	50.2752
10.999	VB	0.43	180.4312	5024.2783	49.7248
			Totals:	10104.1758	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.686	BBA	0.25	1149.2441	18818.1953	90.6083
11.060	BBA	0.31	96.6658	1950.5299	9.3917
			Totals:	20768.7252	100.0000

S161

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.509	BB	0.53	252.3438	8551.8818	50.1373
21.199	BBA	0.71	183.1120	8505.0342	49.8627
			Totals:	17056.9160	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.261	BB	0.43	382.7608	10767.6221	85.6492
20.752	BBA	0.61	45.9644	1804.1548	14.3508
			Totals:	12571.7769	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.216	BB	0.50	401.9093	13107.0479	50.5471
19.050	BB	0.59	318.9063	12823.3057	49.4529
			Totals:	25930.3535	100.0000

[min]	Реак Туре	width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.230	BBA	0.45	1150.4845	34432.0898	90.7963
19.227	BBA	0.56	95.6247	3490.2544	9.2037
			Totals:	37922.3442	100.0000

f1 (ppm)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.143	BV	0.42	253.9170	6602.9429	50.3202
10.281	VB	0.44	226.8676	6518.9121	49.6798
			Totals:	13121.8550	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.188	BB	0.24	1583.1528	24892.0000	91.5290
10.402	BBA	0.32	109.6029	2303.7468	8.4710
			Totals:	27195.7468	100.0000

645.4 645.5 645.6 645.7 645.8 645.9 646 646.1 646.2 646.3 646.4 646.5 646.6 646.7 646.8 646.9 647 647.1 647.2 647.3 647.4 647.5 647.6 647.7 647.8 647.9 648 648.1 Counts vs. Mass-to-Charge (m/z)

100 90 f1 (ppm)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.287	BB	0.48	194.7628	5861.9072	50.2757
11.463	BBA	0.46	193.0011	5797.6216	49.7243
			Totals:	11659.5288	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.233	BB	0.27	1079.9955	18781.6973	90.2885
11.481	BB	0.33	94.1222	2020.1724	9.7115
			Totals:	20801.8696	100.0000

100 90 f1 (ppm)

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
12.361	BBA	0.48	234.1625	7225.2637	50.5206
14.775	BB	0.51	216.1072	7076.3452	49.4794
			Totals:	14301.6089	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
12.158	BBA	0.39	1049.2786	25989.9453	86.6007
14.635	BBA	0.43	144.7619	4021.2808	13.3993
			Totals:	30011.2261	100.0000

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Ret Time [min]	Реак Туре	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
11.916	BV R	0.36	478.4497	11309.1582	50.3392
21.123	BBA	1.04	153.6520	11156.7617	49.6608
			Totals:	22465.9199	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
12.029	BBA	0.33	466.0885	10085.8760	94.4656
21.496	BB	0.97	8.8415	590.9008	5.5344
			Totals:	10676.7767	100.0000

f1 (ppm)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.202	BV	0.34	464.1207	9875.3887	50.0727
9.607	VV R	0.42	348.8387	9846.7100	49.9273
			Totals:	19722.0986	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.379	BBA	0.22	1514.4275	21907.9297	93.5985
9.845	BBA	0.34	67.9740	1498.3434	6.4015
			Totals:	23406.2731	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.462	VV R	0.33	320.2312	6746.8213	49.7404
10.474	VB	0.36	289.0894	6817.2397	50.2596
			Totals:	13564.0610	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.336	BB	0.24	1123.1202	17779.9023	91.5730
10.368	BBA	0.28	88.5395	1636.1914	8.4270
			Totals:	19416.0938	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
9.837	BBA	0.34	215.5876	4911.1758	50.2053
20.042	BBA	1.03	70.3176	4871.0068	49.7947
			Totals:	9782.1826	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
9.754	BB	0.32	954.0012	20439.1855	92.3151
20.007	BBA	0.96	26.7394	1701.4841	7.6849
			Totals:	22140.6697	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.714	MM	0.20	168.9042	2003.1720	50.9783
8.058	BV R	0.28	98.3440	1926.2898	49.0217
			Totals:	3929.4618	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.866	BV R	0.20	987.6791	12607.7207	90.9045
8.293	BBA	0.28	69.4877	1261.4764	9.0955
			Totals:	13869.1971	100.0000

S191

-411.943

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.546	MM	0.28	202.5246	3456.7046	50.0380
10.765	MM	0.47	121.6565	3451.4490	49.9620
			Totals:	6908.1536	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.229	BB	0.23	435.7132	6695.1084	93.0066
10.403	BBA	0.36	21.2800	503.4248	6.9934
			Totals:	7198.5332	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.069	VBAR	0.24	186.6031	2945.9395	50.2008
9.681	BB	0.34	130.3542	2922.3713	49.7992
			Totals:	5868.3108	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.634	VBAR	0.22	1268.8865	18013.0625	93.8242
9.092	BBA	0.28	64.8426	1185.6801	6.1758
			Totals:	19198.7426	100.0000

---111.827

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.328	VBAR	0.21	94.5603	1330.9934	50.3355
9.254	BB	0.36	53.9834	1313.2479	49.6645
			Totals:	2644.2413	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.360	VBAR	0.22	1001.2925	14140.5576	93.4809
9.343	BBA	0.34	44.1863	986.1213	6.5191
			Totals:	15126.6790	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
7.875	BV R	0.28	663.1407	12343.9590	49.8141
10.250	MM	0.35	592.7851	12436.1064	50.1859
			Totals:	24780.0654	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.076	BBA	0.43	51.5447	1530.3451	12.4035
10.329	BBA	0.47	345.7148	10807.6768	87.5965
			Totals:	12338.0219	100.0000

S203

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.743	BV R	0.19	376.4645	4880.0991	49.7970
6.986	BB	0.20	369.9242	4919.8867	50.2030
			Totals:	9799.9858	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.977	BBA	0.20	175.5388	2383.9958	11.7948
7.335	VBAR	0.23	1161.0538	17828.3496	88.2052
			Totals:	20212.3455	100.0000

[min]	Реак Туре	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.446	BBA	0.16	1434.5337	15108.5186	49.9358
6.701	BBA	0.19	1261.0889	15147.3936	50.0642
			Totals:	30255.9121	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
5.371	BB	0.15	206.4075	2019.1595	12.7252
6.589	VB R	0.18	1183.7113	13848.3047	87.2748
			Totals:	15867.4642	100.0000

S209

8.551 8.553 8.553 8.553 8.553 7.7491 7.7491 7.7491 7.7413 7.7413 7.7413 7.7413 7.7413 7.7413 7.741145 7.74213 7.741145 7.74213 7.741145 7.74213 7.741145 7.74213 7.741145 7.74213 7.741145 7.74213 7.741145 7.74213 7.742145 7.74213 7.742145 7.744145

00 100 90 f1 (ppm) 0 -10 50 30 190 170 160 150 140 130 120 110 80 70 60 40 20 10 180

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.216	VB R	0.17	196.9011	2209.7517	50.0356
7.213	BB	0.21	166.7277	2206.6091	49.9644
			Totals:	4416.3608	100.0000

6.064	VBAR	0.16	862.2455	8988.3438	95.0923
6.986	BBA	0.19	38.3731	463.8831	4.9077
			Totals:	9452.2268	100.0000

fl (ppm)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.118	VB R	0.21	505.5327	6928.7729	49.8832
12.562	BBA	0.35	304.3535	6961.2271	50.1168
			Totals:	13890.0000	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.302	BBA	0.21	70.9360	958.5382	9.0040
12.743	BBA	0.36	414.9878	9687.1885	90.9960
			Totals:	10645.7267	100.0000

