Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Electrochemical oxidative radical cascade reactions for synthesis of difluoromethylated benzoxazines

Xiang Chen, Jun Jiang, Xiao-Jun Huang, and Wei-Min He*

Contents

General information	2
General procedure for preparation of N-acyl-(2-ene)-anilines	2
General procedure for the synthesis of difluoromethylated benzoxazines	2
Investigation of reaction conditions	3
Control experiments	4
The radical-radical coupling mechanism	5
The pictures of reaction apparatuses	5
References	6
Characterization Data for Products	6
NMR spectra for compounds	16

General information

Chromatography: HaiLang Silica Flash P60 size 40~63 μ m (200~300 mesh), TLC: HaiLang silica gel 60 (0.25mm). Visualization of the chromatogram was performed by UV, phosphomolybdic acid and KMnO₄ staining. Mass spectra were recorded on Bruker UltiMate3000 & Compact, Thermo ISQ LT, LTQ XL and VELOS pro & ORBITRIP mass spectrometers. ¹H, ¹³C, ¹⁹F were recorded on Bruker 500 using CDCl₃ or DMSO-d6 as solvent. Chemical shift values are reported in ppm with the solvent resonance as the internal standard (CDCl₃: δ 7.26 for ¹H, δ 77.16 for ¹³C). Data are reported as follows: chemical shifts, multiplicity (s = singlet, bs = broad singlet, d = doublet, dd = doublet of doublets, t = triplet, td = triplet of doublets, m = multiplet), coupling constants (Hz), and integration. If no special description, all reactions were conducted under air atmosphere. Starting materials were purchased from adamas and used without further purification.

General procedure for preparation of N-acyl-(2-ene)-anilines

N-acyl-(2-ene)-anilines in the reactions were prepared with revised protocol according to the reported methods ^[1,2].

To a solution of methyltriphenylphosphonium bromide (5.36 g, 15.0 mmol) in dry THF (20.0 mL) under N₂ atmosphere was added t-BuOK (1.68 g, 15.0 mmol) at 0 °C. The reaction medium was allowed to RT and stir for 0.5 h. 2-aminoacetophenone (1.35 g, 10.0 mmol) was dropwise added. The reaction medium was stirred at room temperature for 12 h. Upon completion of ketone, monitored by TLC, the medium was poured into hexane, stirred for 1.0 h, plugged through a silica pad. The filtrate was concentrated under reduced pressure, the crude product was purified with column chromatography on silica gel (200~300 mesh) and PE to PE/EA (20/1, v/v) as eluent to afford corresponding styrene. To a solution of styrene (0.99 g, 7.4 mmol) and Et₃N (1.53 g, 11.1 mmol) in DCM (15.00 mL) was dropwise added the solution of acyl chloride (8.90 mmol) in dichloromethane (5.00 mL) at 0 °C. After completion, the reaction mixture was purified via column chromatography to give **1a**.

General procedure for the synthesis of difluoromethylated benzoxazines

In an undivided flask (4 mL) equipped with a stir bar, N-acyl-(2-ene)-anilines **1** (0.3 mmol), Sodium fluoromethylsulfonate **2** (0.6 mmol), Bu₄NBF₄ (0.3 mmol), MeCN/TFA (30/1, v/v, 8 mL) were added.

The flask was equipped with platinum cathode (20 mm \times 10 mm \times 0.1 mm) and graphite plate anode (20 mm \times 10 mm \times 0.1 mm). The reaction medium was stirred and electrolyzed at a constant current of 6 mA under RT for 6.5 h. After completion, the solvent was concentrated under reduced pressure, and the pure products **3** were obtained by flash chromatography on silica gel.

Investigation of reaction conditions

Table S1 reaction conditions screening

4			⁺ CF₂HSO₂Na ·	electrolyte (y equiv.) additive (z equiv.) solvent (8 mL) CCE at 6.0 mA, 35 °C,]
	1 (0.3 mmol)		2 (m equiv.)		3	
entry	m	х	electrolyte (y)	additive (z)	solvent y	ield of 3 / %
1 ^a	2.0	Pt	^{<i>n</i>} Bu ₄ NBF ₄ (1.0)		MeCN	0
2	2.0	Pt	^{<i>n</i>} Bu₄NBF₄ (1.0)		MeCN	38 ^b
3	2.0	Ti	^{<i>n</i>} Bu ₄ NBF ₄ (1.0)		MeCN	0
4	2.0	Cu	^{<i>n</i>} Bu ₄ NBF ₄ (1.0)		MeCN	12
5	2.0	Ag	ⁿ Bu ₄ NBF ₄ (1.0)		MeCN	trace
6	2.0	Ni	^{<i>n</i>} Bu ₄ NBF ₄ (1.0)		MeCN	trace
7	2.0	Zn	ⁿ Bu ₄ NBF ₄ (1.0)		MeCN	0
8	2.0	AI	^{<i>n</i>} Bu ₄ NBF ₄ (1.0)		MeCN	22
9	2.0	Pt	ⁿ Bu ₄ NBF ₄ (2.0)		MeCN	24
10	2.0	Pt	ⁿ Bu ₄ NPF ₆ (1.0)		MeCN	40
11	2.0	Pt	^{<i>n</i>} Bu ₄ NI (1.0)		MeCN	0
12	2.0	Pt	^{<i>n</i>} Bu ₄ NHSO ₄ (1.0)		MeCN	31
13	2.0	Pt	LiClO ₄ (1.0)		MeCN	39
14	2.0	Pt	ⁿ Bu ₄ NOAc (1.0)		MeCN	17
15	2.0	Pt	$KPF_{6}(1.0)$		MeCN	17
16	2.0	Pt Dt	Et_4NCIO_4 (1.0)			14
17	2.0	PL	$"Bu_4NBF_4$ (1.0)			14 50b
18	2.0	Pt	^{//} Bu ₄ NBF ₄ (1.0)		MeCN/HOAC (7/1, v/v)	525
19	2.0	Pt	^{<i>n</i>} Bu ₄ NBF ₄ (1.0)		MeCN/H ₂ O (7/1, V/V)	26
20	2.0	Pt	^{//} Bu ₄ NBF ₄ (1.0)			24
21	2.0	Pt	^{<i>n</i>} Bu ₄ NBF ₄ (1.0)		MeCN/DMF (7/1, v/v)	14
22	2.0	Pt	^{<i>n</i>} Bu ₄ NBF ₄ (1.0)		DMSO	0
23	2.0	Pt	^{//} Bu ₄ NBF ₄ (1.0)		NMP	0
24	2.0	Pt	^{<i>n</i>} Bu ₄ NBF ₄ (1.0)			0
25	2.5	Pt	"Bu ₄ NBF ₄ (1.0)		MeCN/HOAc (7/1, v/v)	59
26	4.0	Pt Dt	$^{n}\text{Bu}_{4}\text{NBF}_{4}(1.0)$			62
21	2.0	Pl Dt	$LICIO_4(1.0)$		MeCN/HOAc $(7/_1, v/v)$	25
20	2.0	Dt	$^{n}Bu_{4}NPF_{6}(1.0)$		MeCN/HOAc (6.5/1.5. v/v)	51
30	2.0	Dt	$^{\prime\prime}Bu_4NBF_4(1.0)$		MeCN/HOAc (6/2, v/v)	52
31	4.0	Dt	$^{n}Bu_{4}NBF_{4}(1.0)$	TEA (3.0)		83
32	4.0	Dt	$n_{\text{Bu}_4\text{NBF}_4}(1.0)$	TCA (3.0)		70
33	4.0	Dt	$^{n}\text{Bu}_{4}\text{NBF}_{4}(1.0)$	$\operatorname{Liclo}_{(3,0)}$		70
34	4.0	Dt	$^{n}Bu_{4}NBF_{4}(1.0)$	$LiCiO_4$ (1.0)		74
35	4.0 / 0	Pt	n_{DU} NDE (0.5)	ⁿ Du NDE (0.5)	MeCN/HOAc (7/1, v/v)	50
36	4.0 / 0	Df	$\frac{1}{2} Bu_4 NBF_4 (0.5)$	$E_{P}(C_{p}) = (0, 1)$	M = CN/HOAc (7/1, v/v)	56
37	2.0	Pt	$n_{\text{BU,NBE}} (0.3)$		HOAc (771, V/V)	trace
38	2.0	Pt	$^{n}\text{Bu}_{4}\text{NBF}_{4}$ (1.0)		TFA	trace

Yields were determined by GC-MS with PhOMe as internal standard. a) CCE at 10 mA; b) isolated yield; c) 0.5 mmol scale.

Control experiments

1. Radical capturing reactions

1.1 Radical capturing experiment

In an undivided flask (20 mL) equipped with a stir bar, N-acyl-(2-ene)-anilines 1 (0.3 mmol), Sodium fluoromethylsulfonate 2 (0.6 mmol), Bu_4NBF_4 (0.3 mmol), BHT (3.0 equiv.) or TEMPO (3.0 equiv.) MeCN/TFA (30/1, v/v, 8 mL) or MeCN (8 mL) were added. The flask was equipped with platinum cathode (20 mm × 10 mm × 0.1 mm) and graphite plate anode (20 mm × 10 mm ×1 mm). The reaction medium was stirred and electrolyzed at a constant current of 6 mA under RT for 6.5 h. After completion, compound **3** was determined with trace amount when BHT was added, and 0% yield when TEMPO as radical scavangers and MeCN as solvent were added. Compound **4** and **5** could be determined by EI-MS.

In an undivided flask (20 mL) equipped with a stir bar, N-acyl-(2-ene)-anilines 1 (0.3 mmol), Bu₄NBF₄ (0.3 mmol), TEMPO (3.0 equiv.) MeCN (8 mL) were added. The flask was equipped with platinum cathode (20 mm \times 10 mm \times 0.1 mm) and graphite plate anode (20 mm \times 10 mm \times 1 mm). The reaction medium was stirred and electrolyzed at a constant current of 6 mA under RT for 6.5 h. After completion, Compound **6** could not be observed by HRMS.

1.2 Self-coupling of 2a under standard condition

In an undivided flask (20 mL) equipped with a stir bar, N-acyl-(2-ene)-anilines 1 (0.3 mmol), Bu₄NBF₄ (0.3 mmol), MeCN/TFA (30/1, v/v, 8 mL) or MeCN (8 mL) were added. The flask was

equipped with platinum cathode (20 mm \times 10 mm \times 0.1 mm) and graphite plate anode (20 mm \times 10 mm \times 1 mm). The reaction medium was stirred and electrolyzed at a constant current of 6 mA under RT for 6.5 h. After completion, Compound 7 could not be detected by HRMS, neither as compound 8.

2. Cyclic Voltammetry Experiments

Figure S1. Cyclic Voltammogram (CV) Experiments

CV measurements were performed on a CHI 660E potentiostat, and the conditions are as follow: a glassy carbon disk working electrode (diameter, 3 mm), Pt disk and Ag/AgCl as counter and reference electrode. Cyclic voltammograms of reactants and their mixtures in 0.1 M LiClO₄ glassy carbon disk working electrode (diameter, 3 mm), Pt disk and Ag/AgCl (0.1 M in MeCN) as counter and reference electrode at 50 mV/s scan rate: 1) MeCN (8 mL) (green line), (2) 10 mM of **1a** in MeCN (8 mL) (black line), (3) 10 mM of **1a** in MeCN/TFA (30/1, v/v, 8 mL) (red line), (4) 10 mM of **2a** in MeCN (8 mL) (pink line), (5) 10 mM of **1a** and **2a** in MeCN/TFA (30/1, v/v, 8 mL) (blue line).

The radical-radical coupling mechanism

Figure S2 the radical-radical coupling mechanism

The pictures of reaction apparatuses

Figure S3 the pictures of reaction devices

References

- [1] Q.-H. Deng, J.-R. Chen, Q. Wei, Q.-Q. Zhao, L.-Q. Lua and W.-J. Xiao, Chem. Commun., 2015, 51, 3537.
- [2] F. Lu, J. Xu, H. Li, K. Wang, D. Ouyang, L. Sun, M. Huang, J. Jiang, J. Hu, H. Alhumade, L. Lu and A. Lei, *Green Chem.*, 2021, 23, 7982.

Characterization Data for Products

4-(2,2-Difluoroethyl)-4-methyl-2-phenyl-4H-benzo[d][1,3]oxazine (3aa)

Colorless oil, 82% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.18 – 8.10 (m, 2H), 7.54 – 7.49 (m, 1H), 7.46 (dd, J = 8.3, 6.6 Hz, 2H), 7.34 (d, J = 4.3 Hz, 2H), 7.26 – 7.20 (m, 1H), 7.12 (d, J = 7.6 Hz, 1H), 6.15 – 5.86 (m, 1H), 2.69 – 2.44 (m, 2H), 1.79 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.9, 138.4, 132.5, 131.7, 129.3, 128.5, 128.5, 127.9, 127.1, 125.7, 122.7, 115.0 (t, J = 239.3 Hz), 77.6 (t, J = 5.5 Hz), 45.0 (t, J = 21.3 Hz), 27.5. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.6 (d, J = 67.6 Hz, 2F); HRMS: calcd for C₁₇H₁₆F₂NO⁺ [M+H]⁺, 288.1194, found 288.1189.

4-(2,2-Difluoroethyl)-4-methyl-2-(p-tolyl)-4H-benzo[d][1,3]oxazine (3ba)

Colorless oil, 76% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.05 – 7.99 (m, 2H), 7.36 – 7.30 (m, 2H), 7.25 (d, J = 7.9 Hz, 2H), 7.23 – 7.18 (m, 1H), 7.13 – 7.08 (m, 1H), 6.00 (tdd, J = 55.8, 5.3, 3.9 Hz, 1H), 2.66 – 2.45 (m, 2H), 2.41 (s, 3H), 1.78 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 156.1, 142.2, 138.6,

129.7, 129.3, 129.2, 128.6, 127.9, 126.9, 125.6, 122.7, 115.1 (t, J = 239.3 Hz), 77.5 – 77.5 (m), 44.9 (t, J = 21.3 Hz), 27.4, 21.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -111.9 – -113.3 (m, 2F). HRMS: calcd for C₁₈H₁₈F₂NO⁺ [M+H]⁺, 302.1351, found 302.1357.

4-(2,2-Difluoroethyl)-2-(4-methoxyphenyl)-4-methyl-4H-benzo[d][1,3]oxazine (3ca)

Colorless oil, 84% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.13 – 8.03 (m, 2H), 7.36 – 7.29 (m, 2H), 7.21 (ddd, J = 7.6, 6.4, 2.2 Hz, 1H), 7.11 (dd, J = 7.4, 1.2 Hz, 1H), 6.99 – 6.93 (m, 2H), 6.01 (tdd, J = 55.7, 5.2, 4.0 Hz, 1H), 3.87 (s, 3H), 2.67 – 2.43 (m, 2H), 1.79 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.6, 155.9, 138.8, 129.8, 129.3, 128.5, 126.6, 125.5, 124.9, 122.7, 115.1 (t, J = 239.3 Hz), 113.8, 77.6 – 77.4 (m), 55.5, 44.9 (t, J = 21.3 Hz), 27.3. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -110.4 – -113.6 (m, 2F). HRMS: calcd for C₁₈H₁₈F₂NO₂⁺ [M+H]⁺, 318.1300, found 318.1291.

4-(2,2-Difluoroethyl)-4-methyl-2-(4-(trifluoromethoxy)phenyl)-4H-benzo[d][1,3]oxazine (3da)

Colorless oil, 83% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.22 – 8.13 (m, 2H), 7.38 – 7.31 (m, 2H), 7.28 (d, *J* = 8.5 Hz, 2H), 7.27 – 7.22 (m, 1H), 7.12 (dd, *J* = 7.7, 1.2 Hz, 1H), 5.97 (tdd, *J* = 55.7, 5.2, 4.0 Hz, 1H), 2.71 – 2.38 (m, 2H), 1.80 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 154.7, 151.7, 138.2, 131.0, 129.7, 129.4, 128.3, 127.4, 125.9, 122.8, 120.5 (q, *J* = 258.0 Hz), 120.5, 115.0 (t, *J* = 239.4 Hz), 78.0 (t, *J* = 6.0 Hz), 45.1 (t, *J* = 21.4 Hz), 27.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -57.6 (s, 3F), -112.7 – -112.7 (m, 2F). HRMS: calcd for C₁₈H₁₅F₅NO₂⁺ [M+H]⁺,372.1017, found 372.1010.

4-(2,2-Difluoroethyl)-4-methyl-2-(4-((trifluoromethyl)thio)phenyl)-4H-benzo[d][1,3]oxazine (3ea) Colorless oil, 75% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, J = 8.2 Hz, 2H), 7.73 (d, J = 8.1 Hz, 2H), 7.39 – 7.31 (m, 2H), 7.26 (td, J = 7.0, 2.2 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 5.97 (tt, J = 55.7, 4.6 Hz, 1H), 2.69 – 2.42 (m, 2H), 1.80 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 154.7, 138.1, 135.9, 134.9, 129.5 (q, J = 308.4 Hz), 129.5, 128.8, 128.3, 128.0 (q, J = 2.1 Hz), 127.7, 126.0, 122.8, 115.0 (t, J = 239.5 Hz), 78.1 (t, J = 6.1 Hz), 45.1 (t, J = 21.4 Hz), 27.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -42.1 (s, 3F), -112.6 – -112.8 (m, 2F). HRMS: calcd for C₁₈H₁₅F₅NOS⁺ [M+H]⁺, 388.0789, found 388.0796.

4-(2,2-Difluoroethyl)-2-(4-fluorophenyl)-4-methyl-4H-benzo[d][1,3]oxazine (3fa)

Colorless oil, 65% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.17 – 8.10 (m, 2H), 7.37 – 7.29 (m, 2H), 7.27 – 7.20 (m, 1H), 7.12 (td, *J* = 8.3, 2.1 Hz, 3H), 5.98 (tt, *J* = 55.7, 4.6 Hz, 1H), 2.65 – 2.41 (m, 2H), 1.79 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.0 (d, *J* = 252.3 Hz), 155.0, 138.3, 130.1 (d, *J* = 9.0 Hz), 129.3, 128.6 (d, *J* = 3.0 Hz), 128.2, 127.1, 125.6, 122.7, 115.5 (d, *J* = 22.0 Hz), 114.9 (t, *J* = 239.4 Hz), 77.7 (t, *J* = 6.0 Hz), 44.9 (t, *J* = 21.3 Hz), 27.5. ¹⁹F NMR (471 MHz, CDCl₃) δ -108.0 (s, 1F), -112.7 (d, *J* = 30.1 Hz, 2F). HRMS: calcd for C₁₇H₁₅F₃NO⁺ [M+H]⁺, 306.1100, found 306.1107.

2-(4-Chlorophenyl)-4-(2,2-difluoroethyl)-4-methyl-4H-benzo[d][1,3]oxazine (3ga)

Colorless oil, 77% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.10 – 8.03 (m, 2H), 7.44 – 7.39 (m, 2H), 7.37 – 7.30 (m, 2H), 7.27 – 7.21 (m, 1H), 7.11 (dd, J = 7.7, 1.3 Hz, 1H), 6.14 – 5.78 (m, 1H), 2.69 – 2.38 (m, 2H), 1.79 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 138.3, 137.9, 131.0, 129.4, 129.3, 128.7, 128.4, 127.3, 125.8, 122.8, 115.0 (t, J = 239.4 Hz), 77.9 (t, J = 6.0 Hz), 45.1 (t, J = 21.4 Hz), 27.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -111.3 – -113.8 (m, 2F). HRMS: calcd for C₁₇H₁₅ClF₂NO⁺ [M+H]⁺, 322.0805, found 322.0796.

2-(4-Bromophenyl)-4-(2,2-difluoroethyl)-4-methyl-4H-benzo[d][1,3]oxazine (3ha)

Colorless oil, 79% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, J = 8.6 Hz, 2H), 7.50 (d, J = 8.6 Hz, 2H), 7.29 – 7.22 (m, 2H), 7.19 – 7.14 (m, 1H), 7.03 (dd, J = 7.6, 1.3 Hz, 1H), 5.89 (tdd, J = 55.7, 5.2, 4.0 Hz, 1H), 2.65 – 2.25 (m, 2H), 1.71 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.1, 138.2, 132.5, 131.7, 131.4, 129.5, 129.4, 128.3, 127.4, 126.5, 125.8, 122.8, 115.0 (t, J = 239.4 Hz), 77.9 (t, J = 6.0 Hz), 45.0 (t, J = 21.4 Hz), 27.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.7 (d, J = 25.0 Hz, 2F). HRMS: calcd for C₁₇H₁₄BrF₂NNaO⁺ [M+Na]⁺, 388.0119, found 388.0121.

Me CF₂H

4-(2,2-Difluoroethyl)-2-(4-iodophenyl)-4-methyl-4H-benzo[d][1,3]oxazine (3ia)

Colorless oil, 72% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.6 Hz, 2H), 7.79 (d, J = 8.4 Hz, 2H), 7.38 – 7.29 (m, 2H), 7.24 (td, J = 7.6, 7.2, 2.0 Hz, 1H), 7.11 (dd, J = 7.7, 1.3 Hz, 1H), 6.11 – 5.82 (m, 1H), 2.67 – 2.38 (m, 2H), 1.79 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.3, 138.2, 137.7, 132.0, 129.5, 129.4, 128.4, 127.4, 125.8, 122.8, 115.0 (t, J = 239.5 Hz), 98.9, 77.9 (t, J = 6.1 Hz), 45.0 (t, J = 21.3 Hz), 27.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -111.7 – -113.7 (m, 2F). HRMS: calcd for C₁₇H₁₅F₂INO⁺ [M+H]⁺, 414.0161, found 414.0160.

2-([1,1'-Biphenyl]-4-yl)-4-(2,2-difluoroethyl)-4-methyl-4H-benzo[d][1,3]oxazine (3ja)

Colorless oil, 74% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 8.3 Hz, 2H), 7.68 (d, J = 8.3 Hz, 2H), 7.66 – 7.62 (m, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.41 – 7.31 (m, 3H), 7.26 – 7.20 (m, 1H), 7.12 (d, J = 7.6 Hz, 1H), 6.03 (tt, J = 55.7, 4.6 Hz, 1H), 2.71 – 2.43 (m, 2H), 1.81 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.8, 144.4, 140.3, 138.5, 131.3, 129.3, 129.0, 128.5, 128.4, 128.0, 127.3, 127.1, 127.1, 125.7, 122.7, 115.1 (t, J = 239.4 Hz), 77.6 (t, J = 6.0 Hz), 45.0 (t, J = 21.3 Hz), 27.5. ¹⁹F NMR (471 MHz, CDCl₃) δ -111.7 – -113.6 (m, 2F). HRMS: calcd for C₂₃H₂₀F₂NO⁺ [M+H]⁺, 364.1507, found 364.1505.

4-(4-(2,2-Difluoroethyl)-4-methyl-4H-benzo[d][1,3]oxazin-2-yl)benzaldehyde (3ka)

Colorless oil, 68% yield, ¹H NMR (500 MHz, CDCl₃) δ 10.09 (s, 1H), 8.29 (d, J = 8.1 Hz, 2H), 7.95 (d, J = 8.1 Hz, 2H), 7.36 (d, J = 4.2 Hz, 2H), 7.27 (dt, J = 8.5, 4.2 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 5.98 (tt, J = 55.7, 4.6 Hz, 1H), 2.66 – 2.47 (m, 2H), 1.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.9, 154.7, 138.3, 138.1, 138.0, 129.6, 129.5, 128.5, 128.4, 127.8, 126.2, 122.8, 115.0 (t, J = 239.5 Hz), 78.2 (t, J = 6.0 Hz), 45.3 (t, J = 21.5 Hz), 27.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.5 – -112.9 (m, 2F). HRMS: calcd for C₁₈H₁₆F₂NO₂⁺ [M+H]⁺, 316.1144, found 316.1139.

1-(4-(4-(2,2-Difluoroethyl)-4-methyl-4H-benzo[d][1,3]oxazin-2-yl)phenyl)ethan-1-one (3la)

Colorless oil, 84% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.22 (d, J = 8.3 Hz, 2H), 8.03 (d, J = 8.4 Hz, 2H), 7.39 – 7.33 (m, 2H), 7.27 (ddd, J = 8.5, 5.5, 3.2 Hz, 1H), 7.14 (d, J = 7.6 Hz, 1H), 6.14 – 5.84 (m, 1H), 2.66 (s, 3H), 2.64 – 2.45 (m, 2H), 1.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.9, 154.9, 139.1,

138.1, 136.6, 129.5, 128.4, 128.3, 128.1, 127.7, 126.0, 122.8, 115.0 (t, J = 239.5 Hz), 78.0 (t, J = 6.1 Hz), 45.1 (t, J = 21.4 Hz), 27.7, 27.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.7 (d, J = 25.8 Hz, 2F). HRMS: calcd for C₁₉H₁₈F₂NO₂⁺ [M+H]⁺, 330.1300, found 330.1303.

Methyl 4-(4-(2,2-difluoroethyl)-4-methyl-4H-benzo[d][1,3]oxazin-2-yl)benzoate (3ma)

Colorless oil, 80% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 8.3 Hz, 2H), 8.11 (d, J = 8.3 Hz, 2H), 7.39 – 7.33 (m, 2H), 7.26 (td, J = 6.4, 5.6, 2.9 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 5.99 (tt, J = 55.7, 4.6 Hz, 1H), 3.95 (s, 3H), 2.69 – 2.44 (m, 2H), 1.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.7, 155.0, 138.1, 136.6, 132.6, 129.6, 129.5, 128.4, 127.8, 127.6, 126.0, 122.8, 115.0 (t, J = 239.5 Hz), 78.0 (t, J = 6.1 Hz), 52.5, 45.1 (t, J = 21.3 Hz), 27.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.7 (d, J = 29.6 Hz, 2F). HRMS: calcd for C₁₉H₁₈F₂NO₃⁺ [M+H]⁺, 346.1249, found 346.1253.

4-(2,2-Difluoroethyl)-4-methyl-2-(4-(trifluoromethyl)phenyl)-4H-benzo[d][1,3]oxazine (3na)

Colorless oil, 67% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.25 (d, J = 8.2 Hz, 2H), 7.71 (d, J = 8.2 Hz, 2H), 7.39 – 7.33 (m, 2H), 7.27 (ddd, J = 8.5, 6.0, 2.8 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 5.97 (tt, J = 55.7, 4.6 Hz, 1H), 2.76 – 2.36 (m, 2H), 1.81 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 154.5, 138.0, 135.9, 133.1 (q, J = 32.6 Hz), 129.5, 128.3, 128.2, 127.7, 126.0, 124.0 (q, J = 272.4 Hz), 125.4 (q, J = 3.8 Hz), 122.8, 115.0 (t, J = 239.5 Hz), 78.1 (t, J = 6.0 Hz), 45.2 (t, J = 21.4 Hz), 27.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.8 (s, 3F), -112.6 – -112.9 (m, 2F). HRMS: calcd for C₁₈H₁₅F₅NO⁺ [M+H]⁺, 356.1068, found 356.1073.

4-(4-(2,2-Difluoroethyl)-4-methyl-4H-benzo[d][1,3]oxazin-2-yl)benzonitrile (3oa)

Colorless oil, 74% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.24 (d, J = 8.3 Hz, 2H), 7.74 (d, J = 8.3 Hz, 2H), 7.39 – 7.32 (m, 2H), 7.28 (td, J = 7.6, 2.1 Hz, 1H), 5.96 (tt, J = 55.6, 4.6 Hz, 1H), 2.71 – 2.43 (m, 2H), 1.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 154.0, 137.8, 136.6, 132.2, 129.6, 128.3, 128.2, 128.0, 126.1, 122.9, 118.6, 114.9 (t, J = 239.6 Hz), 114.7, 78.3 (t, J = 6.0 Hz), 45.2 (t, J = 21.4 Hz), 27.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.7 (d, J = 3.1 Hz, 2F). HRMS: calcd for C₁₈H₁₅F₂N₂O⁺ [M+H]⁺, 313.1147, found 313.1150.

4-(2,2-Difluoroethyl)-4-methyl-2-(4-nitrophenyl)-4H-benzo[d][1,3]oxazine (3pa)

Colorless oil, 54% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.30 (s, 4H), 7.40 – 7.34 (m, 2H), 7.31 – 7.27 (m, 1H), 7.16 – 7.11 (m, 1H), 5.96 (tt, J = 55.7, 4.6 Hz, 1H), 2.67 – 2.45 (m, 2H), 1.83 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 153.8, 149.7, 138.4, 137.8, 129.6, 128.8, 128.2, 128.2, 126.3, 123.6, 122.9, 114.9 (t, J = 239.6 Hz), 78.4 (d, J = 6.2 Hz), 45.3 (t, J = 21.5 Hz), 28.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.6 – -112.9 (m, 2F). HRMS: calcd for C₁₇H₁₅F₂N₂O₃⁺ [M+H]⁺, 333.1045, found 333.1049.

4-(2,2-Difluoroethyl)-4-methyl-2-(m-tolyl)-4H-benzo[d][1,3]oxazine (3qa)

Colorless oil, 79% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 2.1 Hz, 1H), 7.93 – 7.89 (m, 1H), 7.37 – 7.30 (m, 4H), 7.22 (dt, J = 8.4, 4.3 Hz, 1H), 7.11 (d, J = 7.6 Hz, 1H), 6.00 (tdd, J = 55.7, 5.2, 3.9 Hz, 1H), 2.67 – 2.44 (m, 2H), 2.43 (s, 3H), 1.79 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 156.2, 138.5, 138.2, 132.6, 132.4, 129.3, 128.5, 128.5, 128.4, 127.0, 125.7, 125.1, 122.7, 115.1 (t, J = 239.3Hz), 77.6 (d, J = 6.0 Hz), 45.0 (t, J = 21.3 Hz), 27.5, 21.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -111.5 – -113.6 (m, 2F). HRMS: calcd for C₁₈H₁₈F₂NO⁺ [M+H]⁺, 302.1351, found 302.1351.

4-(2,2-Difluoroethyl)-4-methyl-2-(o-tolyl)-4H-benzo[d][1,3]oxazine (3ra)

Colorless oil, 79% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.77 (dd, J = 7.8, 1.5 Hz, 1H), 7.37 – 7.29 (m, 3H), 7.29 – 7.22 (m, 3H), 7.11 (dd, J = 7.7, 1.2 Hz, 1H), 5.96 (tdd, J = 55.8, 5.2, 4.0 Hz, 1H), 2.68 – 2.52 (m, 5H), 1.79 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.7, 138.3, 132.4, 131.6, 130.6, 129.6, 129.3, 127.8, 127.2, 125.9, 125.8, 122.7, 115.2 (d, J = 239.7 Hz), 78.0 (d, J = 6.2 Hz), 45.1 (t, J = 21.5 Hz), 28.1, 21.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.5 – -112.9 (m, 2F). HRMS: calcd for C₁₈H₁₈F₂NO⁺ [M+H]⁺, 302.1351. found 302.1349.

4-(2,2-Difluoroethyl)-4-methyl-2-(naphthalen-2-yl)-4H-benzo[d][1,3]oxazine (3sa)

Colorless oil, 59% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, J = 1.6 Hz, 1H), 8.26 (dd, J = 8.7, 1.6 Hz, 1H), 7.98 (dd, J = 7.3, 2.0 Hz, 1H), 7.90 (dd, J = 12.0, 8.4 Hz, 2H), 7.56 (tt, J = 7.2, 5.4 Hz, 2H), 7.41 – 7.34 (m, 2H), 7.28 – 7.23 (m, 1H), 7.15 (d, J = 7.6 Hz, 1H), 6.22 – 5.91 (m, 1H), 2.74 – 2.47 (m, 2H), 1.86 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 156.0, 138.6, 135.1, 132.9, 129.8, 129.4, 129.2, 128.6, 128.5, 128.2, 127.9, 127.8, 127.2, 126.6, 125.8, 124.5, 122.8, 115.1 (t, J = 239.4 Hz), 77.8 (d, J = 6.0 Hz), 45.0 (t, J = 21.3 Hz), 27.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.4 – -112.8 (m, 2F). HRMS: calcd for C₂₁H₁₈F₂NO⁺ [M+H]⁺, 338.1351, found 338.1361.

4-(2,2-Difluoroethyl)-4-methyl-2-(pyridin-4-yl)-4H-benzo[d][1,3]oxazine (3ta)

Colorless oil, 69% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.75 (s, 2H), 7.95 (d, J = 5.2 Hz, 2H), 7.35 (d, J = 3.2 Hz, 2H), 7.30 – 7.26 (m, 1H), 7.13 (d, J = 7.6 Hz, 1H), 5.96 (tt, J = 55.5, 4.6 Hz, 1H), 2.71 – 2.41 (m, 2H), 1.81 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 153.9, 150.3, 140.1, 137.7, 129.5, 128.4, 128.1, 126.3, 122.9, 121.5, 114.9 (t, J = 239.6 Hz), 78.3 (t, J = 6.0 Hz), 45.4 (t, J = 21.6 Hz), 27.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.1 – -113.4 (m, 2F). HRMS: calcd for C₁₆H₁₅F₂N₂O⁺ [M+H]⁺, 289.1147, found 289.1151.

4-(2,2-Difluoroethyl)-2,4-dimethyl-4H-benzo[d][1,3]oxazine (3ua)

Colorless oil, 86% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.25 (m, 1H), 7.21 – 7.11 (m, 2H), 7.04 (d, *J* = 7.6 Hz, 1H), 5.88 (tt, *J* = 56.2, 4.4 Hz, 1H), 2.42 (dqd, *J* = 52.1, 15.0, 4.5 Hz, 2H), 2.12 (s, 3H), 1.70 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.5, 137.9, 129.3, 127.6, 126.9, 124.9, 122.8, 115.1 (t, *J* = 239.1 Hz), 77.2 (t, *J* = 6.2 Hz), 45.7 (t, *J* = 21.2 Hz), 28.0, 21.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.7 (d, *J* = 12.3 Hz, 2F). HRMS: calcd for C₁₂H₁₄F₂NO⁺ [M+H]⁺, 226.1038, found 226.1041.

4-(2,2-Difluoroethyl)-4-methyl-2-pentyl-4H-benzo[d][1,3]oxazine (3va)

Colorless oil, 80% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.25 (m, 1H), 7.20 – 7.14 (m, 2H), 7.04 (d, *J* = 7.5 Hz, 1H), 5.89 (tdd, *J* = 55.8, 5.5, 3.7 Hz, 1H), 2.56 – 2.37 (m, 2H), 2.37 – 2.32 (m, 2H), 1.82 – 1.63 (m, 5H), 1.41 – 1.32 (m, 4H), 0.95 – 0.87 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.3, 137.9, 129.2, 127.8, 126.8, 125.0, 122.7, 115.1 (t, *J* = 239.1 Hz), 77.0 (dd, *J* = 7.1, 5.2 Hz), 45.3 (t, *J* = 21.3 Hz), 35.5, 31.6, 28.0, 26.0, 22.5, 14.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.7 (d, *J* = 69.3 Hz, 2F). HRMS: calcd for C₁₆H₂₂F₂NO⁺ [M+H]⁺, 282.1664, found 282.1667.

2-Cyclopropyl-4-(2,2-difluoroethyl)-4-methyl-4H-benzo[d][1,3]oxazine (3wa)

Colorless oil, 83% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.27 (td, J = 7.6, 1.4 Hz, 1H), 7.14 (t, J = 7.1 Hz, 2H), 7.05 – 6.98 (m, 1H), 5.84 (tdd, J = 55.8, 5.3, 3.8 Hz, 1H), 2.57 – 2.29 (m, 2H), 1.71 (tt, J = 8.3, 4.8 Hz, 1H), 1.63 (s, 3H), 1.04 (dt, J = 6.9, 3.3 Hz, 2H), 0.87 (dq, J = 7.1, 3.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 162.5, 138.3, 129.3, 127.8, 126.3, 124.5, 122.6, 115.1 (t, J = 239.1 Hz), 45.0 (t, J = 21.4 Hz), 27.7, 14.7, 7.0, 6.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.4 – -112.8 (m, 2F). HRMS: calcd for C₁₄H₁₆F₂NO⁺ [M+H]⁺, 252.1194, found 252.1191.

2-Cyclohexyl-4-(2,2-difluoroethyl)-4-methyl-4H-benzo[d][1,3]oxazine (3xa)

Colorless oil, 62% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.24 (m, 1H), 7.20 – 7.14 (m, 2H), 7.03 (d, *J* = 7.6 Hz, 1H), 5.90 (tdd, *J* = 55.9, 5.3, 3.9 Hz, 1H), 2.58 – 2.35 (m, 2H), 2.30 (tt, *J* = 11.8, 3.5 Hz, 1H), 1.98 – 1.90 (m, 2H), 1.81 (dq, *J* = 11.6, 4.5, 4.1 Hz, 2H), 1.73 – 1.68 (m, 1H), 1.65 (s, 3H), 1.55 – 1.44 (m, 2H), 1.35 – 1.22 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 164.9, 138.1, 129.2, 128.0, 126.7, 125.1, 122.7, 76.8 (dd, *J* = 7.2, 5.0 Hz), 44.0, 29.6, 27.8, 25.9, 25.9, 25.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -111.8 – -113.4 (m, 2F). HRMS: calcd for C₁₇H₂₂F₂NO⁺ [M+H]⁺, 294.1664, found 294.1660.

2-(Adamantan-1-yl)-4-(2,2-difluoroethyl)-4-methyl-4H-benzo[d][1,3]oxazine (3ya)

Colorless oil, 81% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.26 (t, J = 7.6 Hz, 1H), 7.16 (dd, J = 19.4, 7.5 Hz, 2H), 7.01 (d, J = 7.6 Hz, 1H), 5.91 (tt, J = 56.0, 4.6 Hz, 1H), 2.56 – 2.38 (m, 2H), 2.06 (s, 3H), 1.94 (d, J = 3.0 Hz, 6H), 1.79 – 1.71 (m, 6H), 1.62 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.5, 138.5, 129.1, 128.3, 126.6, 125.4, 122.5, 115.2 (t, J = 239.0 Hz), 76.5 (dd, J = 7.2, 5.2 Hz), 44.9 (t, J = 21.3 Hz), 39.2, 39.1, 36.8, 28.3, 27.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.0 – -112.8 (m, 2F). HRMS: calcd for C₂₁H₂₆F₂NO⁺ [M+H]⁺, 346.1977, found 346.1969.

4-(2,2-Difluoroethyl)-2,4-diphenyl-4H-benzo[d][1,3]oxazine (3za)

Colorless oil, 87% yield, ¹H NMR (500 MHz, CDCl₃) δ 8.28 – 8.20 (m, 2H), 7.51 (t, *J* = 7.2 Hz, 1H), 7.46 (dd, *J* = 8.3, 6.4 Hz, 2H), 7.39 – 7.35 (m, 2H), 7.34 – 7.31 (m, 2H), 7.30 – 7.21 (m, 5H), 6.05 (tt, *J* = 55.6, 4.3 Hz, 1H), 3.01 (td, *J* = 15.1, 4.3 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 156.0, 142.1, 139.2, 132.2, 131.8, 129.6, 128.7, 128.5, 128.5, 128.0, 126.8, 126.6, 125.9, 125.6, 124.5, 115.4 (t, *J* = 240.0 Hz), 81.0 (t, *J* = 6.5 Hz), 44.9 (t, *J* = 22.4 Hz). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -110.2 – -112.3 (m, 2F). HRMS: calcd for C₂₂H₁₈F₂NO⁺ [M+H]⁺, 350.1351, found 350.1344.

(5R,8R,9S,10S,13R,14S,17R)-17-((R)-4-((S)-4-(2,2-Difluoroethyl)-4-methyl-4H-benzo[d][1,3]oxazin -2-yl)butan-2-yl)-10,13-dimethyldodecahydro-3H-cyclopenta[a]phenanthrene-3,7,12(2H,4H)-trione (3Aa)

Colorless oil, 64% yield, dr = 1:1, ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.25 (m, 1H), 7.20 – 7.13 (m, 2H), 7.03 (d, J = 7.6 Hz, 1H), 6.01 – 5.75 (m, 1H), 2.95 – 2.82 (m, 3H), 2.56 – 2.39 (m, 3H), 2.34 (ddt, J = 18.1, 9.0, 4.9 Hz, 4H), 2.28 – 2.20 (m, 3H), 2.18 – 2.12 (m, 2H), 2.11 – 2.02 (m, 3H), 2.00 – 1.94 (m, 1H), 1.86 (tt, J = 11.6, 4.9 Hz, 2H), 1.67 (d, J = 2.9 Hz, 4H), 1.62 (td, J = 14.4, 4.7 Hz, 1H), 1.48 (q, J = 10.9, 7.8 Hz, 1H), 1.40 (s, 3H), 1.36 (tt, J = 5.8, 2.2 Hz, 2H), 1.08 (s, 3H), 0.91 (d, J = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 212.0, 209.1, 208.8, 162.5, 162.4 (C'), 138.0, 129.2, 127.8, 127.8 (C'), 126.8, 125.0, 122.7, 115.6 (d, J = 239.6 Hz), 115.6 (d, J = 239.6 Hz, C') 57.1, 51.9, 49.2, 47.0, 45.9, 45.9 (C'), 45.7, 45.5 (t, J = 21.5 Hz), 45.1, 42.9, 38.8, 36.6, 36.2, 36.0, 36.0 (C'), 35.4, 32.7, 31.7, 31.7 (C'), 28.1, 28.0 (C'), 27.8, 27.8 (C'), 25.3, 22.0, 18.9, 18.9 (C'), 12.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -111.9 – -113.6 (m, 2F). HRMS: calcd for C₃₄H₄₄F₂NO₄⁺ [M+H]⁺, 568.3233, found 568.3241.

2,4-Dimethyl-4-(2,2,2-trifluoroethyl)-4H-benzo[d][1,3]oxazine (3tb)

Colorless oil, 79% yield, ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.26 (m, 1H), 7.21 – 7.11 (m, 2H), 7.06 (dd, J = 7.6, 1.4 Hz, 1H), 2.79 – 2.67 (m, 1H), 2.54 – 2.43 (m, 1H), 2.13 (s, 3H), 1.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.5, 137.8, 129.4, 127.5, 126.8, 125.1 (q, J = 279.1 Hz), 124.8, 122.8, 76.3 (q, J = 2.0 Hz), 44.3 (q, J = 26.9 Hz), 27.1 (q, J = 1.7 Hz), 21.6. ¹⁹F NMR (471 MHz, CDCl₃) δ 60.4 (t, J = 279.1 Hz, 3F). HRMS: calcd for C₁₂H₁₃F₃NO⁺ [M+H]⁺, 244.0944, found 244.0946.

4-Methyl-2-phenyl-4-(2,2,2-trifluoroethyl)-4H-benzo[d][1,3]oxazine (3ab)

Colorless oil, 71% yield, ¹H NMR (500 MHz, Chloroform-*d*) δ 8.19 – 8.14 (m, 2H), 7.50 (dd, J = 8.5, 6.0 Hz, 1H), 7.45 (dd, J = 8.4, 6.6 Hz, 2H), 7.34 (d, J = 3.6 Hz, 2H), 7.23 (ddd, J = 10.9, 5.5, 3.0 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 2.90 – 2.56 (m, 2H), 1.92 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 155.8, 138.4, 132.3, 131.7, 129.5, 128.4, 128.1, 127.1, 125.3 (q, J = 279.2 Hz), 125.7, 122.7, 76.7 (q, J = 2.1 Hz), 43.7 (q, J = 27.1 Hz), 26.4 (q, J = 1.9 Hz). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -59.9 (s, 3F). HRMS: calcd for C₁₇H₁₅F₃NO⁺ [M+H]⁺, 306.1100, found 306.1107.

NMR spectra for compounds

¹H NMR Spectrum of **3ba**

¹³C NMR Spectrum of **3ba**

fl (ppm) -10

-112.53

¹⁹F NMR Spectrum of **3ba**

Me CF₂H

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

¹⁹F NMR Spectrum of 3ca

`CF₂H

Me

213	210 233 233 233 233 233 233 233 233 233 23	882288	282	5
* -		886448	Fo 2 5	6
NO NO		Q0 Q0	10 10 T	-2
ĪĪ	1 MIT Ingeneration	-	∇	2

¹⁹F NMR Spectrum of **3da**

fl (ppm) -10

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

¹H NMR Spectrum of **3ha**

¹³C NMR Spectrum of **3ha**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

<112.641

¹⁹F NMR Spectrum of **3ha**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR Spectrum of **3ja**

¹³C NMR Spectrum of **3ja**

fl (ppm)

¹⁹F NMR Spectrum of **3ja**

9.408	2.439	2.451	2.481	2.526	2.543	2.558	2.576	1097	2.609	2.663	2.696	2. 728
Ξ	Ŧ	Ŧ	Ŧ	Ę	Ę	Ę	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ
1	4	4	-L	Ľ.	Ĺ	Ĵ.	Ż	2	Ľ.	4	4	÷

-100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm) -20 -70 ģ -10 -30 -40 -50 -60 -80 -90

¹H NMR Spectrum of 3ka

¹H NMR Spectrum of **3la**

fl (ppm) 200 190 -10

¹⁹F NMR Spectrum of **3la**

<-112.657

20 10 0 -10 -20 -30 -40 -50 -60 -70 -50 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

fl (ppm) 200 190 -10

112.045 112.664 112.727 113.346

¹H NMR Spectrum of **3na**

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)

¹³C NMR Spectrum of **3na**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR Spectrum of **3na**

100 fl (ppm) 80 70 30 20 210 170 160 150 140 130 120 90 60 50 40 10 ò -10 200 190 180 110

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

¹H NMR Spectrum of **3pa**

3	ð	82	882	233	252
~		10	1.1	~	\sim
e a	54	-	54	-	-
-	-	-	-	-	-

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm) ¹⁹F NMR Spectrum of **3qa**

fl (ppm) -10

¹⁹F NMR Spectrum of **3ra**

12.547	12.578	12.589	12.619	12.636	12.668	12.700	12.710	12.740	12.756	12.788	12.821
7	Ī	Ξ	Ţ	I	1	5	5	1	1	ī	3

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -130 -140 -150 -160 -170 -180 -200 -210 -22 f1 (ppm)

¹H NMR Spectrum of 3sa

fl (ppm) Ó -10

¹H NMR Spectrum of **3ta**

¹³C NMR Spectrum of **3ta**

fl (ppm)

¹⁹F NMR Spectrum of **3ta**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

S46

E112.085

20 10 0 -10 -20 -30 -40 -50 -50 -70 -50 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

S49

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

> -111.867 -112.484 -112.709

¹⁹F NMR Spectrum of **3xa**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

¹⁹F NMR Spectrum of **3ya**

¹H NMR Spectrum of **3za**

EII0.669

¹⁹F NMR Spectrum of **3za**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -130 -140 -150 -160 -170 -180 -200 -210 -22 f1 (ppm)

112 410 112 410 112 441 112 443 112 443 112 443 112 443 112 443 112 443 112 443 112 443 112 443 112 443 112 443 112 443 112 66

¹H NMR Spectrum of **3tb**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -130 -140 -150 -160 -170 -180 -200 -210 -22 f1 (ppm)

¹⁹F NMR Spectrum of **3ab**

----59.875

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)