Supporting Information

Consecutive Regulation of Catalytic Activities of B(C₆F₅)₃·H₂O: Direct Nucleophilic Substitution of Benzyl Fluorides with Alcohols via Dual Activation

Shi-Jun Wang, Jun-Jia Zhai, Long Wang and Xiang-Ying Tang*

^aSchool of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry

and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan

430074, (China)

Content

1. General Remarks.	1
2. Table S1. Screening the reaction conditions	2
3. General procedure for the preparation of benzyl fluorides	3
4. General procedure for the preparation of N-(arylsulfonyl)acrylamide	4
5. General procedure for the nucleophilic substitution of benzylic fluorides	5
6. Control experiments	6
7. NMR experiments	8
8. Spectroscopic data	19
9. Reference	65

1. General Remarks.

The ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker AV-400 spectrometer with TMS as internal reference in CDCl₃. High resolution mass spectra were recorded using analyses by Bruker Daltonics SolariX 7.0T. Organic solvents were dried by standard methods when necessary. Commercially obtained reagents were used without further purification. Flash column chromatography was performed using 300-400 mesh silica gel. For thin-layer chromatography (TLC), silica gel plates (Huanghai GF254) were used.

2. Table S1. Screening the reaction conditions.

Ph 1 equiv.			B(C ₆ F ₅) ₃ ·H ₂ C additive (5	9 (5 mol%) 5 mol%)	O ^{-Et}
		+ EtOH ⁻ x equiv	solvent (0.2 M) Ph	J
			T, 12 h		1
Entry	equiv (x)	additive	T (°C)	solvent	yield (%)
1	1.5	-	60	THF	37
2	1.5	-	60	dibutyl ether	48
3	1.5	-	60	isopropl ether	28
4	1.5	TMP	60	DCE	N.D.
5	1.5	PMP	60	DCE	N.D.
6	1.5	Ph ₃ P	60	DCE	34
7	1.5	(4-FPh) ₃ P	60	DCE	38
8 ^b	1.5	-	60	dibutyl ether/DCE	17
9 ^c	1.5	-	60	THF/DCE	70
10 ^d	1.5	-	60	THF/DCE	58
11 ^e	1.5	-	60	THF/toluene	39
12 ^f	1.5	-	60	THF/CHCl ₃	26
13	1.5	-	60	THF/DCE	90
14	1.5	-	60	DCE	28
15	1.5	-	25	THF/DCE	<5
16	1.5	-	40	THF/DCE	<5
17	1	-	60	THF/DCE	40
18	2	-	60	THF/DCE	51
19	5	-	60	THF/DCE	35
20 ^g	1.5	-	60	THF/DCE	N.R.
21 ^h	1.5	-	60	THF/DCE	trace
22 ⁱ	1.5	-	60	THF/DCE	N.D.
23 ^j	1.5	-	60	THF/DCE	N.D.
24 ^k	1.5	-	60	THF/DCE	N.D.
25 ¹	1.5	-	60	THF/DCE	79
26 ^m	1.5	-	60	THF/DCE	75

[a] All the reaction was carried out on a 0.2 mmol scale. Entries 13-24, THF/DCE = 1:4. [b] Dibutyl ether/DCE = 1:1. [c] THF/DCE = 1:1. [d]THF/DCE = 4:1. [e]THF/toluene = 1:4. [f] THF/CHCl₃ = 1:4. [g] Without $B(C_6F_5)_3 \cdot H_2O$. [h] TsOH (20 mol%) instead $B(C_6F_5)_3 \cdot H_2O$. [i] PhCOOH (20 mol%) instead $B(C_6F_5)_3 \cdot H_2O$. [j] CH₃COOH (20 mol%) instead $B(C_6F_5)_3 \cdot H_2O$. [k] HFIP (20 mol%) instead $B(C_6F_5)_3 \cdot H_2O$. [l] H₂O (0.05 mL) was added. [m] H₂O (0.1 mL) was added. TMP = 2,2,6,6-tetramethylpiperidine. PMP = 1,2,2,6,6-pentamethylpiperidine.

We began our investigation by examining the reaction of 4-(fluoromethyl)-1,1'-biphenyl (S1) with the ethanol in THF with 5 mol% of $B(C_6F_5)_3$ at 60 °C, and the reaction went on smoothly to give the desired

ether 1 in 37% yields (Table S1, entry 1). While performing the reaction in dibutyl ether and isopropyl ether, corresponding product 1 was obtained in 48% and 28% yields (Table S1, entries 2 and 3). Next, several phosphine or amine Brønsted bases (5 mol%) were used instead of ethers. Using DCE as solvent, the reactions were inhibited in the presence of 2,2,6,6-tetramethylpiperidine (TMP) or 1,2,2,6,6pentamethylpiperidine (PMP) but gave corresponding product 1 in 34% and 38% yields when phosphines were used (Table S1, entries 4-7). Therefore, ethers were selected as the Brønsted base. Considering that the interaction of BCF and ether is too strong, different diluted ethereal solvents were investigated, and it was found that the mixed solvent of THF/DCE (1:4) was the most suitable for the transformation and delivered product 1 in 90% yields (Table S1, entries 8-13). If the reaction was performed in DCE without THF, the yield of 1 decreased to 28%, indicating that THF is crucial to this transformation (Table S1, entry 14). Temperature effect was also evaluated, as conducting the reaction at 25 °C and 40 °C, only trace amount of the product was observed (Table S1, entries 15-16). Increasing or decreasing the amount of EtOH did not benefit the reaction outcomes (Table S1, entries 17-19). It has to be mentioned that, no reaction occurred in the absence of $B(C_6F_5)_3 \cdot H_2O$ (Table S1, entry 20). When the Brønsted acids were used as catalyst, no desired product 1 was obtained (Table S1, entry 21-23). The polymerization of benzyl fluoride was not observed by using hexafluoroisopropanol (HFIP) as catalyst (Table S1, entry 24). Besides, the yield was decreased to 79% and 75% when the H₂O was added (Table S1, entries 25-26), and the 4-biphenylmethanol produced by water insertion of 1 was monitored.

3. General procedure for the preparation of benzyl fluorides

Typical Procedures for the Synthesis of Primary benzylic fluorides.¹

To a stirred solution of the benzylic bromide (5.0 mmol, 1.0 eq.) in anhydrous CH_3CN (0.5 M) was added tetrabutylammonium fluoride trihydrate (10.0 mmol, 2.0 eq.). The reaction mixture was refluxed for 24 h. After completion, the reaction was quenched with water and extracted with EA three times. The combined organic extracts were washed with brine, dried with Na₂SO₄, filtered and concentrated under

vacuum. Column chromatography followed to give pure product. In addition, **S1-S4, S6-S7** are known compounds.¹⁻³

Typical Procedures for the Synthesis of Secondary benzylic fluorides.⁴

To a solution of the alcohol (5.0 mmol, 1.0 eq.) in the dry DCM (0.5 M), DAST (6.0 mmol, 1.2 eq.) was added at 0°C. The reaction was slowly warmed to room temperature and the mixture was stirred for 3 h. Water was added to the reaction mixture, and then a saturated aqueous solution of sodium hydrogencarbonate was added and the mixture was extracted with EA. The combined organic layers were washed with brine and dried with Na₂SO₄. After filtration, the mixture was dried and the residue was purified by silica gel column chromatography to give pure product. In addition, **S8**, **S9** are known compound.^{4,5}

4. General procedure for the preparation of N-(arylsulfonyl)acrylamide.⁶

Amine (6.0 mmol, 1.2 eq.) and Et_3N (10.0 mmol, 2.0 eq.) were added to a flame-dried flask, then 4methylbenzenesulfonyl chloride (5.0 mmol, 1.0 eq.) in dichloromethane was injected by syringe. The mixture was stirred at 0 °C until TLC showed that arylsulfonyl chloride was totally consumed. Water was added to the reaction mixture and extracted with dichloromethane. The combined organic layers were dried over Na₂SO₄, concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give pure product.

5. General procedure for the nucleophilic substitution of benzylic fluorides

$$R^{1} \xrightarrow[l]{I} F + R^{3} X - H \xrightarrow{B(C_{6}F_{5})_{3} \cdot H_{2}O (5 \text{ mol}\%)}_{60 \ ^{\circ}C, \ 12 \ h} R^{1} \xrightarrow[l]{I} X^{-R^{3}}_{R^{3}}$$

To a stirred solution of benzylic fluorides (0.2 mmol, 1.0 eq.) in mixed solvent (THF:DCE = 1:4) were added the nucleophiles (0.3 mmol, 1.5 eq.) and $B(C_6F_5)_3 \cdot H_2O$ (5 mol%). The resulting solution was stirred at 60 °C for 12 h. The reaction was quenched with water and extracted with DCM for three times. The organic phases were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give pure product.

$$R^{1} \xrightarrow{\mu} F + R^{3} \xrightarrow{N} Ts \xrightarrow{B(C_{6}F_{5})_{3} \cdot H_{2}O (5 \text{ mol}\%)}{DCE (0.2M)} R^{1} \xrightarrow{\mu} Ts \xrightarrow{R^{2}} R^{3}$$

To a stirred solution of benzylic fluorides (0.2 mmol, 1.0 eq.) in DCE was added N-(arylsulfonyl)acrylamide (0.4 mmol, 2.0 eq.), followed by the addition of $B(C_6F_5)_3 \cdot H_2O$ (5 mol%) and phosphine catalyst (10 mol%). The resulting solution was stirred for 12 h at 60 °C. The reaction was quenched with water and extracted with DCM for three times. The organic phases were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography.

6. Control experiments

Experiment (a):

To a stirred solution of 4-biphenylmethanol (36.8 mg, 0.2 mmol) in DCE (1 ml) was added $B(C_6F_5)_3 \cdot H_2O$ (5 mol%). The resulting solution was stirred at 60 °C for 12 h. The corresponding ether was obtained in 20% (7.0 mg), and the 4-biphenylmethanol was recovered in 73% (27.1 mg).

Experiment (b):

To a stirred solution of 4-biphenylmethanol (36.8 mg, 0.2 mmol) in mixed solvent (THF:DCE = 1:4, 1.0 mL) was added B(C₆F₅)₃·H₂O (5 mol%). The resulting solution was stirred at 60 °C for 12 h. No reaction was observed.

Experiment (c):

To a stirred solution of benzylic fluorides (37.2 mg, 0.2 mmol, 1.0 eq.) in DCE (1.0 mL) was added the CF₃CH₂OH (1.5 eq.) and B(C₆F₅)₃·H₂O (5 mol%). The resulting solution was stirred at 60 °C for 12 h. The reaction was complex.

Investigations of the influence of water:

Experiment (d):

In glovebox, to a stirred solution of benzylic fluorides (37.2 mg, 0.2 mmol, 1.0 eq.) in mixed anhydrous solvent (THF:DCE = 1:4, 1.0 mL) were added the anhydrous ethanol (1.5 eq.) and $B(C_6F_5)_3$ ·H₂O (5 mol%), the reaction was protected by N₂. The resulting solution was stirred at 60 °C for 12 h. Only trace amount of **1** was observed (TLC).

Experiment (e):

To a stirred solution of benzylic bromide (49.4 mg, 0.2 mmol, 2.0 eq.) in mixed solvent (THF:DCE = 1:4, 1.0 mL) were added ethanol (1.5 eq.) and B(C₆F₅)₃·H₂O (5 mol%). The resulting solution was stirred at 60 °C for 12 h. No product was found.

Experiment (f):

To a stirred solution of 4-biphenylmethanol (36.8 mg, 0.2 mmol, 1.0 eq.) in mixed solvent (THF:DCE = 1:4, 1.0 mL) were added ethanol (1.5 eq.) and B(C₆F₅)₃·H₂O (5 mol%). The resulting solution was stirred at 60 °C for 12 h. No product was found.

7. NMR experiments

0.05 mmol $B(C_6F_5)_3$ ·H₂O was dissolved in CDCl₃. The solution was measured by ¹⁹F NMR the result shows in Figure S1. Subsequently, 1.0 eq. THF was added, the result shows in Figure S2. Last, 1.0 eq. 1-(tert-butyl)-4-(fluoromethyl)benzene was added, the result shows in Figure S3.

Figure S2. ¹⁹ F NMR of B(C₆F₅)₃·H₂O and THF (1:1).

Figure S3. ¹⁹ F NMR of B(C₆F₅)₃·H₂O, THF and1-(tert-butyl)-4-(fluoromethyl)benzene (1:1:1).

Figure S4. Variation in ^{19}F NMR chemical shifts of $B(C_6F_5)_3{}^{\scriptscriptstyle \bullet}H_2O$.

Nucleophilic reaction of aryl fluorides.

a) reaction in single solvent

To a stirred solution of 4-(fluoromethyl)-1,1'-biphenyl (S1) (0.2 mmol) in solvent (1 mL) were added the α -methylbenzyl alcohol (0.3 mmol) and boron catalyst (5 mol%). The resulting solution was stirred at 60 °C. In DCE, S1 disappeared in 5 mins and product 24 was not determined. In THF, product 24 was obtained in 32% yield for 12 h. In mixed solvents, 24 was obtained in 69% yield for 12 h. The reaction solution was concentrated under reduced pressure and dissolved by deuterated chloroform for crude ¹H NMR measurement.

Figure S5. Crude ¹H NMR after reaction.

Figure S6. Detail of crude ¹H NMR after reaction.

Figure S7. *α*-methylbenzyl alcohol with acids. a) *α*-methylbenzyl alcohol (0.05 mmol) in CDCl₃ (0.6 mL); b) *α*-methylbenzyl alcohol (0.05 mmol) and THF (0.05 mmol) in CDCl₃ (0.6 mL); c) *α*-methylbenzyl alcohol (0.05 mmol) and $B(C_6F_5)_3 \cdot H_2O$ (0.05 mmol) in CDCl₃ (0.6 mL); d) *α*-methylbenzyl alcohol (0.05 mmol), THF (0.05 mmol) and $B(C_6F_5)_3 \cdot H_2O$ (0.05 mmol) in CDCl₃ (0.6 mL); e) *α*-methylbenzyl alcohol (0.05 mmol) and TFA (0.05 mmol) in CDCl₃ (0.6 mL).

Figure S8. Variation in ¹H NMR chemical shifts of CH₃ group of α -methylbenzyl alcohol.

Figure S9. Variation in ¹H NMR chemical shifts of CH group of α -methylbenzyl alcohol.

Figure S10.*α***-methylbenzyl alcohol with different acids.** a) *α*-methylbenzyl alcohol (0.05 mmol) in CDCl₃ (0.6 mL); b) *α*-methylbenzyl alcohol (0.05 mmol) and PhCOOH (0.05 mmol) in CDCl₃ (0.6 mL); c) *α*-methylbenzyl alcohol (0.05 mmol) and CH₃COOH (0.05 mmol) in CDCl₃ (0.6 mL); d) *α*-methylbenzyl alcohol (0.05 mmol) and HFIP (0.05 mmol) and B(C₆F₅)₃·H₂O (0.05 mmol) in CDCl₃ (0.6 mL).

Figure S11. Variation in ¹H NMR chemical shifts of CH₃ group of α -methylbenzyl alcohol with different acids.

Figure S12. ¹H NMR titration experiments of α -methylbenzyl alcohol with B(C₆F₅)₃·H₂O. α -methylbenzyl alcohol (0.05 mmol) in CDCl₃ (0.6 mL).

Figure S13. Variation of CH₃ group of α-methylbenzyl alcohol with B(C₆F₅)₃·H₂O.

Figure S14. Variation in ¹H NMR chemical shifts of of 1-(*tert*-butyl)-4-(fluoromethyl)benzene. a) benzyl flouride (0.05 mmol) in CDCl₃ (0.6 mL); b) benzyl flouride (0.05 mmol) and $B(C_6F_5)_3 \cdot H_2O$ (0.05 mmol) in CDCl₃ (0.6 mL); c) benzyl flouride (0.05 mmol) THF (0.05 mmol) and $B(C_6F_5)_3 \cdot H_2O$ (0.05 mmol) in CDCl₃ (0.6 mL); c) benzyl flouride (0.05 mmol) THF (0.05 mmol) and $B(C_6F_5)_3 \cdot H_2O$ (0.05 mmol) in CDCl₃ (0.6 mL); c) benzyl flouride (0.05 mmol) THF (0.05 mmol) and $B(C_6F_5)_3 \cdot H_2O$ (0.05 mmol) in CDCl₃ (0.6 mL); c) benzyl flouride (0.05 mmol) THF (0.05 mmol) and $B(C_6F_5)_3 \cdot H_2O$ (0.05 mmol) in CDCl₃ (0.6 mL); c) benzyl flouride (0.05 mmol) THF (0.05 mmol) and $B(C_6F_5)_3 \cdot H_2O$ (0.05 mmol) in CDCl₃ (0.6 mL).

Figure S15. Variation in ¹H NMR chemical shifts of *tert*-butyl group of 1-(*tert*-butyl)-4-(fluoromethyl)benzene.

Figure S16. ¹⁹**F NMR titration experiments of B(C₆F₅)₃·H₂O.** B(C₆F₅)₃·H₂O (0.03 mmol) in CDCl₃ (0.6 mL). ¹⁹F NMR changes of *othro*-F.

Figure S17. ¹⁹F NMR titration experiments of $B(C_6F_5)_3 \cdot H_2O$. $B(C_6F_5)_3 \cdot H_2O$ (0.03 mmol) in CDCl₃ (0.6 mL). ¹⁹F NMR changes of *para*-F.

Figure S18. ¹⁹F NMR titration experiments of $B(C_6F_5)_3$ ·H₂O. $B(C_6F_5)_3$ ·H₂O (0.03 mmol) in CDCl₃ (0.6 mL). ¹⁹F NMR changes of *meta*-F.

Figure S19. ¹⁹F NMR changes of *para*-F of B(C₆F₅)₃·H₂O.

Figure S20. ¹⁹F NMR changes of *meta*-F of B(C₆F₅)₃·H₂O.

8. Spectroscopic data

4-(Ethoxymethyl)-1,1'-biphenyl (1): colorless oil (38.1 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.27 (t, *J* = 6.8 Hz, 3H), 3.57 (q, *J* = 6.8 Hz, 2H), 4.55 (s, 2H), 7.33 (dd, *J*₁ = *J*₂ = 7.2 Hz, 1H), 7.40-7.45 (m, 4H), 7.56-7.59 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 14.2, 64.8, 71.4, 126.06, 126.12, 126.2, 127.1, 127.7, 136.6, 139.5, 139.9. IR v 3031, 2985, 2925, 2821, 2737, 1487, 1096, 761 cm⁻¹. HRMS (EI) calcd. for C₁₅H₁₆O, ([M]): 212.1201, found: 212.1204.

19

4-(Methoxymethyl)-1,1'-biphenyl (2): orange oil (24.1mg, 61% yield). ¹H NMR

(400 MHz, CDCl₃, TMS) δ 3.41 (s, 3H), 4.50 (s, 2H), 7.34 (dd, $J_1 = J_2 = 7.2$ Hz, 1H), 7.39-7.47 (m, 4H), 7.56-7.59 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 58.2, 74.5, 127.1, 127.2, 127.3, 128.2, 128.8, 137.3, 140.7, 141.0. IR v 3030, 2983, 2925, 2821, 2735, 1487, 1100, 761 cm⁻¹. HRMS (EI) calcd. for C₁₄H₁₄O, ([M]): 198.1045, found: 198.1047. Known compound.⁷

4-(Propoxymethyl)-1,1'-biphenyl (3): colorless oil (37.0 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 0.96 (t, *J* = 7.2 Hz, 3H), 1.61-1.71 (m, 2H), 3.47 (t, *J* = 6.8 Hz, 2H), 4.55 (s, 2H), 7.32-7.36 (m, 1H), 7.40-7.46 (m, 4H), 7.56-7.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 10.7, 23.0, 72.2, 72.6, 127.1, 127.2, 127.3, 128.1, 128.8, 137.8, 140.5, 141.0. IR v 3066, 3029, 2963, 2931, 2855, 1486, 1098, 698 cm⁻¹. HRMS (EI) calcd. for C₁₆H₁₈O, ([M]): 226.1358, found: 226.1364. Known compound.⁸

`0´

21

4-((Tetradecyloxy)methyl)-1,1'-biphenyl (4): white solid (54.7 mg, 72% yield).

m.p. 46-50 °C. ¹H NMR (400 MHz, CDCl₃, TMS) δ 0.88 (t, *J* = 6.4 Hz, 3H), 1.26 (s, 22H), 1.59-1.67 (m, 2H), 3.49 (t, *J* = 6.4 Hz, 2H), 4.53 (s, 2H), 7.30-7.35 (m, 1H), 7.39-7.44 (m, 4H), 7.55-7.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 14.9, 22.8, 26.3, 29.4, 29.6, 29.7, 29.76, 29.87, 32.0, 70.7, 72.6, 127.1, 127.3, 127.4, 128.2, 128.8, 137.8, 140.5, 141.0. IR v 3058, 3033, 2956, 2918, 2849, 2794, 1466, 755 cm⁻¹. HRMS (ESI) calcd. for C₂₇H₄₄NO, ([M + NH₄]⁺): 398.3415, found: 398.3417.

120 110 100 90 f1 (ppm)

4-((Hexadecyloxy)methyl)-1,1'-biphenyl (5): white solid (57.9 mg, 71% yield).

m.p. 55-57 °C. ¹H NMR (400 MHz, CDCl₃, TMS) δ 0.88 (t, *J* = 6.4 Hz, 3H), 1.25 (s, 26H), 1.59-1.67 (m, 2H), 3.50 (t, *J* = 6.8 Hz, 2H), 4.54 (s, 2H), 7.32-7.36 (m, 1H), 7.40-7.46 (m, 4H), 7.56-7.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 13.1, 21.7, 25.2, 28.4, 28.5, 28.6, 28.7, 28.8, 30.9, 69.6, 71.6, 126.06, 126.09, 126.2, 127.0, 127.7, 136.8, 139.4, 140.0. IR v 3034, 2957, 2918, 2849, 2794, 1465, 1116, 755 cm⁻¹. HRMS (EI) calcd. for C₂₉H₄₄O, ([M]): 408.3392, found: 408.3391

4-((Octadecyloxy)methyl)-1,1'-biphenyl (6): white solid (55.8 mg, 64% yield).

m.p. 59-61 °C. ¹H NMR (400 MHz, CDCl₃, TMS) δ 0.88 (t, *J* = 6.4 Hz, 3H), 1.25 (s, 30H), 1.59-1.67 (m, 2H), 3.50 (t, *J* = 6.8 Hz, 2H), 4.54 (s, 2H), 7.32-7.36 (m, 1H), 7.40-7.46 (m, 4H), 7.56-7.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 14.2, 22.7, 26.3, 29.4, 29.5, 29.66, 29.73, 29.8, 32.0, 70.7, 72.6, 127.12, 127.15, 127.23, 128.1, 137.8, 140.5, 141.0. IR v 3034, 2956, 2918, 2849, 2794, 1464, 1117, 755 cm⁻¹. HRMS (EI) calcd. for C₃₁H₄₈O, ([M]): 436.3705, found: 436.3707.

4-(Isobutoxymethyl)-1,1'-biphenyl (7): colorless oil (27.8 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 0.95 (d, *J* = 6.8 Hz, 6H), 1.88-1.99 (m, 1H), 3.27 (d, *J* = 6.8 Hz, 2H), 4.55 (s, 2H), 7.34 (dd, *J*₁ = *J*₂ = 7.2 Hz, 1H), 7.40-7.46 (m, 4H), 7.56-7.61 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 19.5, 28.6, 72.7, 77.4, 127.1, 127.2, 128.0, 128.8, 137.9, 140.4, 141.0. IR v 3057, 3029, 2957, 2928, 2870, 1486, 1096, 761 cm⁻¹. HRMS (EI) calcd. for C₁₇H₂₀O, ([M]): 240.1514, found: 240.1517.

4-((Isopentyloxy)methyl)-1,1'-biphenyl (8): colorless oil (36.0 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 0.91 (d, J = 6.4 Hz, 6H), 1.53 (q, J = 6.4 Hz, 2H), 1.70-1.80 (m, 1H), 3.53 (t, J = 6.4 Hz, 2H), 4.54 (s, 2H), 7.31-7.36 (m, 1H), 7.39-7.45 (m, 4H), 7.56-7.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 22.7, 25.1, 38.7, 69.0, 72.7, 127.1, 127.2, 127.3, 128.0, 128.1, 128.8, 137.8, 140.5, 141.0. IR v 3057, 3029, 2956, 2867, 1487, 1364, 1097, 824 cm⁻¹. HRMS (EI) calcd. for C₁₈H₂₂O, ([M]): 254.1671, found: 254.1672.

4-(((2-Ethylhexyl)oxy)methyl)-1,1'-biphenyl (9): colorless oil (43.2 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 0.86-0.90 (m, 6H), 1.28-1.48 (m, 8H), 1.53-1.59 (m, 1H), 3.38 (d, *J* = 7.0 Hz, 2H), 4.53 (s, 2H), 7.31-7.35 (m, 1H), 7.39-7.45 (m, 4H), 7.56-7.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 11.2, 14.2, 23.2, 24.0, 29.2, 30.6, 39.8, 72.8, 73.3, 127.1, 127.2, 128.0, 128. 8, 138.0, 140.4, 141.1. IR v 3058, 3029, 2959, 2858, 1486, 1461, 1096, 760 cm⁻¹. HRMS (EI) calcd. for C₂₁H₂₈O, ([M]): 296.2140, found: 296.2141.

27

4-(Phenethoxymethyl)-1,1'-biphenyl (10): colorless oil (33.4 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 2.95 (t, *J* = 7.2 Hz, 2H), 3.72 (t, *J* = 7.2 Hz, 2H), 4.56 (s, 2H), 7.19-7.25 (m, 3H), 7.27-7.38 (m, 5H), 7.40-7.45 (m, 2H), 7.54-7.59 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 36.5, 71.4, 72.8, 126.3, 127.16, 127.2, 127.3, 128.1, 128.4, 128.8, 129.0, 137.5, 139.0, 140.6, 141.0. IR v 3059, 3028, 2923, 2857, 1489, 1098, 759, 699 cm⁻¹. HRMS (EI) calcd. for C₂₁H₂₀O, ([M]): 288.1514, found: 288.1515. Known compound.⁹

4-(((4-Nitrobenzyl)oxy)methyl)-1,1'-biphenyl (11): brown oil (35.7 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 4.71 (s, 2H), 4.99 (s, 2H), 7.32-7.37 (m, 1H), 7.42-7.48 (m, 5H), 7.59-7.68 (m, 5H), 7.89 (d, J = 7.6 Hz, 1H), 8.08 (d, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 67.9, 71.9, 123.7, 126.1, 126.26, 126.31, 127.0, 127.2, 127.8, 132.7, 134.1, 135.7, 139.8, 146.3. IR v 3029, 2923, 2850, 1521, 1331, 1073, 757, 723 cm⁻¹. HRMS (EI) calcd. for C₂₀H₁₇NO₃, ([M]): 319.1208, found: 319.1210.

2-(([1,1'-Biphenyl]-4-ylmethoxy)methyl)tetrahydrofuran (12): colorless oil (38.5 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.59-1.69 (m, 1H), 1.82-2.01 (m, 3H), 3.51 (d, *J* = 4.8 Hz, 2H), 3.78 (q, *J* = 7.2 Hz, 1H), 3.90 (q, *J* = 7.2 Hz, 1H), 4.07-4.14 (m, 1H), 4.57-4.66 (m, 2H), 7.33 (dd, *J*₁ = *J*₂ = 7.6 Hz, 1H), 7.43 (dd, *J*₁ = *J*₂ = 7.6 Hz, 4H), 7.58 (dd, *J*₁ = *J*₂ = 7.6 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 25.7, 28.2, 68.4, 72.9, 73.1, 78.0, 127.12, 127.15, 127.3, 128.2, 128.8, 137.4, 140.5, 141.0. IR v 3056, 3029, 2971, 2926, 2861, 1487, 1082, 762 cm⁻¹. HRMS (EI) calcd. for C₁₈H₂₀O₂, ([M]): 268.1463, found: 268.1460. Known compound.⁹

4-((2-Chloroethoxy)methyl)-1,1'-biphenyl (13): colorless oil (32.4 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 3.68 (t, J = 5.6 Hz, 2H), 3.77 (t, J =5.6 Hz, 3H), 4.67 (s, 2H), 7.33-7.37 (m, 1H), 7.42-7.60 (m, 4H), 7.57-7.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 42.9, 70.2, 73.0, 127.1, 127.3, 127.4, 128.2, 128.8, 136.8, 140.9. HRMS (EI) calcd. for C₁₅H₁₅OCl, ([M]): 246.0811, found: 246.0812.

2-([1,1'-Biphenyl]-4-ylmethoxy)ethyl methacrylate (14): colorless oil (40.2 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.97 (s, 3H), 3.75 (t, *J* = 4.8 Hz, 2H), 4.35 (t, *J* = 4.8 Hz, 2H), 4.62 (s, 2H), 5.59 (s, 1H), 6.16 (s, 1H), 7.32-7.36 (m, 1H), 7.40-7.46 (m, 4H), 7.56-7.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 18.4, 64.0, 68.0, 72.9, 125.8, 127.1, 127.25, 127.34, 128.2, 128.8, 136.2, 137.0, 140.8, 140.9, 167.4. IR v 3030, 2955, 2927, 2862, 1910, 1719, 1452, 1296, 1038 cm⁻¹. HRMS (EI) calcd. for C₁₉H₂₀O₃, ([M]): 296.1412, found: 296.1420.

Ethyl 2-(([1,1'-biphenyl]-4-ylmethoxy)methyl)acrylate (15): colorless oil (39.6 mg,

67% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.31 (t, J = 6.8 Hz, 3H), 4.23 (q, J = 6.8 Hz, 2H), 4.28 (s, 2H), 4.63 (s, 2H), 5.95 (s, 1H), 6.34 (s, 1H), 7.34 (dd, $J_1 = J_2 = 7.2$ Hz, 1H), 7.44 (dd, $J_1 = J_2 = 7.2$ Hz, 4H), 7.57-7.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 14.2, 60.8, 68.5, 72.5, 125.8, 127.1, 127.2, 127.3, 128.1, 128.8, 137.1, 137.4, 140.7, 140.9, 165.9. IR v 3030, 2982, 2929, 2860, 1716, 1369, 1271, 1096 cm⁻¹. HRMS (EI) calcd. for C₁₉H₂₀O₃, ([M]): 296.1412, found: 296.1420.

(Z)-4-((hex-3-en-1-yloxy)methyl)-1,1'-biphenyl (16): colorless oil (35.6 mg, 67%

yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 0.97 (t, *J* = 7.6 Hz, 3H), 2.03-2.11 (m, 2H), 2.40 (q, *J* = 6.8 Hz, 2H), 3.51 (t, *J* = 6.8 Hz, 2H), 4.57 (s, 2H), 5.35-5.52 (m, 2H), 7.23-7.36 (m, 1H), 7.40-7.46 (m, 4H), 7.56-7.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 14.3, 20.7, 27.9, 70.2, 72.6, 124.9, 127.1, 127.2, 127.3, 128.1, 128.8, 133.7, 137.6, 140.5, 141.0. IR v 3057, 3009, 2963, 2931, 2856, 1487, 1098, 761 cm⁻¹. HRMS (EI) calcd. for C₁₉H₂₂O, ([M]): 266.1671, found: 266.1673.

4-((Cyclopentyloxy)methyl)-1,1'-biphenyl (17): colorless oil (41.8 mg, 83%

yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.54 (s, 2H), 1.76 (s, 6H), 4.04 (s, 1H), 4.51 (s, 2H), 7.33 (dd, $J_1 = J_2 = 7.2$ Hz, 1H), 7.40-7.45 (m, 4H), 7.55-7.59 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 23.7, 32.4, 70.5, 81.0, 127.13, 127.15, 127.22, 128.1, 128.8, 138.1, 140.4, 141.1. IR v 3056, 3029, 2958, 2869, 1487, 1348, 1090, 760 cm⁻¹. HRMS (EI) calcd. for C₁₈H₂₀O, ([M]): 252.1514, found: 252.1510.

4-((Cyclohexyloxy)methyl)-1,1'-biphenyl (18): colorless oil (41.5 mg, 78% yield).

¹H NMR (400 MHz, CDCl₃, TMS) δ 1.18-1.31 (m, 3H), 1.30-1.42 (m, 2H), 1.53-1.55 (m, 1H), 1.75-1.79 (m, 2H), 1.96-1.99 (m, 2H), 3.34-3.42 (m, 1H), 4.58 (s, 2H), 7.30-7.35 (m, 1H), 7.40-7.45 (m, 4H), 7.55-7.59 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 24.2, 25.9, 32.3, 69.4, 127.13, 127.15, 127.21, 128.0, 128.8, 138.4, 140.3, 141.1. IR v 3057, 3029, 2932, 2855, 2660, 1487, 1450, 1092 cm⁻¹. HRMS (EI) calcd. for C₁₉H₂₂O, ([M]): 266.1671, found: 266.1664. Known compound.⁹

4-(Isopropoxymethyl)-1,1'-biphenyl (19): colorless oil (36.1 mg, 80% yield). ¹H

NMR (400 MHz, CDCl₃, TMS) δ 1.24 (d, J = 6.4 Hz, 6H), 3.67-3.77 (m, 1H), 4.55 (s, 2H), 7.31-7.35 (m, 1H), 7.40-7.45 (m, 4H), 7.55-7.59 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 22.2, 69.8, 71.1, 127.13, 127.17, 127.22, 128.1, 128.8, 138.2, 140.4, 141.1. IR v 3057, 2971, 2929, 2867, 2629, 1126, 1076, 760 cm⁻¹.HRMS (EI) calcd. for C₁₆H₁₈O, ([M]): 226.1358, found: 226. 1360. Known compound.⁸

4-(((4-Methylpentan-2-yl)oxy)methyl)-1,1'-biphenyl (20): colorless oil (47.7 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 0.89 (d, J = 6.8 Hz, 6H), 1.21 (d, J = 7.0 Hz, 3H), 1.55-1.63 (m, 2H), 1.76-1.87 (m, 1H), 3.57-3.66 (m, 1H), 4.48 (d, J = 11.6 Hz, 1H), 4.63 (d, J = 11.6 Hz, 1H), 7.23-7.36 (m, 1H), 7.41-7.46 (m, 4H), 7.55-7.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 20.0, 22.6, 23.1, 24.7, 46.4, 70.0, 73.2, 127.1, 127.2, 128.1, 128.8, 138.2, 140.4, 141.1. IR v 3029, 2959, 2926, 2869, 1488, 1465, 1079, 822 cm⁻¹. HRMS (EI) calcd. for C₁₉H₂₄O, ([M]): 268.1827, found: 268.1834.

4-(((1-(4-Methoxyphenyl)propan-2-yl)oxy)methyl)-1,1'-biphenyl (21): white solid

(35.8 mg, 54% yield). m.p. 44-45 °C. ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.20 (d, *J* = 6.0 Hz, 3H), 2.66 (dd, *J*₁ = 13.6 Hz, *J*₂ = 6.4 Hz, 1H), 2.92 (dd, *J*₁ = 13.6 Hz, *J*₂ = 6.4 Hz, 1H), 3.68-3.76 (m, 1H), 3.79 (s, 3H), 4.49 (d, *J* = 11.6 Hz, 1H), 4.58 (d, *J* = 11.6 Hz, 1H), 6.83 (d, *J* = 8.8 Hz, 2H), 7.13 (d, *J* = 8.4 Hz, 2H), 7.31-7.36 (m, 3H), 7.41-7.46 (m, 2H), 7.54 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 7.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 19.5, 42.3, 55.3, 70.4, 76.4, 113.7, 127.10, 127.11, 127.2, 128.0, 128.8, 130.5, 131.2, 138.0, 140.4, 141.0, 158.0. IR v 3029, 2967, 2857, 2837, 1512, 1247, 1090, 1036 cm⁻¹. HRMS (EI) calcd. for C₂₃H₂₄O, ([M]): 332.1776, found: 332.1778.

4-((Hex-5-en-2-yloxy)methyl)-1,1'-biphenyl (22): colorless oil (35.6 mg, 67% yield). ¹H

NMR (400 MHz, CDCl₃, TMS) δ 1.23 (d, J = 7.0 Hz, 3H), 1.50-1.60 (m, 1H), 1.68-1.78 (m, 1H), 2.08-2.26 (m, 2H), 3.53-3.61 (m, 1H), 4.49 (d, J = 11.6 Hz, 1H), 4.61 (d, J = 11.6 Hz, 1H), 4.95 (d, J = 10.0 Hz, 1H), 5.02 (d, J = 17.2 Hz, 1H), 5.77-5.88 (m, 1H), 7.32-7.36 (m, 1H), 7.41-7.46 (m, 4H), 7.56-7.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 19.6, 29.9, 35.9, 70.1, 74.4, 114.5, 127.12, 127.15, 127.2, 128.1, 128.8, 138.1, 138.7, 140.4, 141.0. IR v 3075, 3030, 2971, 2929, 2859, 1488, 1375, 1134, 1081 cm⁻¹. HRMS (EI) calcd. for C₁₉H₂₂O, ([M]): 266.1671, found: 266.1670.

Methyl 3-([1,1'-biphenyl]-4-ylmethoxy)-2-methylenebutanoate (23): colorless oil (42.8 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.32 (t, J = 7.2 Hz, 3H), 1.38 (d, J = 6.4 Hz, 3H), 4.18-4.30 (m, 2H), 4.43-4.50 (m, 2H), 4.58 (d, J = 11.6 Hz, 1H), 5.98 (s, 1H), 6.34 (s, 1H), 7.34 (dd, $J_1 = J_2 = 7.2$ Hz, 1H), 7.40-7.45 (m, 4H), 7.55-7.59 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 11.2, 22.0, 60.8, 70.6, 73.4, 124.2, 127.1, 127.2, 127.3, 128.1, 128.8, 137.5, 140.6, 141.0, 142.7, 166.4. IR v 3030, 2980, 2932, 2902, 2869, 1714, 1371, 1287, 1096 cm⁻¹. HRMS (ESI) calcd. for C₂₀H₂₆NO₃, ([M+NH₄]⁺): 328.1913, found: 328.1907.

4-((1-Phenylethoxy)methyl)-1,1'-biphenyl (24): colorless oil (39.7 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.50 (d, *J* = 6.4 Hz, 3H), 4.34 (d, *J* = 12.0 Hz, 1H), 4.48 (d, *J* = 12.0 Hz, 1H), 4.54 (q, *J* = 6.4 Hz, 1H), 7.29-7.45 (m, 10H), 7.55-7.59 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 24.3, 70.1, 126.4, 127.1, 127.2, 127.3, 127.6, 128.2, 128.6, 128.8, 137.7, 140.5, 141.0, 143.7. IR v 3059, 3029, 2973, 2927, 2861, 1489, 1095, 761 cm⁻¹. HRMS (EI) calcd. for C₂₁H₂₀O, ([M]): 288.1514, found: 288.1516.

4-((1-(3-Chlorophenyl)propoxy)methyl)-1,1'-biphenyl (25): Colorless oil (33.6

mg, 50% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 0.91 (t, J = 7.2 Hz, 3H), 1.64-1.75 (m, 1H), 1.82-1.93 (m, 1H), 4.23 (t, J = 6.8 Hz, 1H), 4.31 (d, J = 12.0 Hz, 1H), 4.50 (d, J = 12.0 Hz, 1H), 7.21-7.24 (m, 1H), 7.26-7.39 (m, 6H), 7.34 (dd, J_1 = J_2 = 7.6 Hz, 2H), 7.55-7.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 10.3, 31.1, 70.4, 82.4, 125.1, 127.0, 127.1, 127.2, 127.3, 127.7, 128.2, 128.8, 129.8, 134.4, 137.4, 140.6, 141.0, 144.8. IR v 3058, 2967, 2932, 2871, 1485, 1341, 760, 697 cm⁻¹. HRMS (EI) calcd. for C₂₁H₂₁OCl, ([M]): 336.1281, found: 336.1276.

4-((1-(4-Bromophenyl)ethoxy)methyl)-1,1'-biphenyl (26): colorless oil (44.0 mg,

60% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.47 (d, *J* = 6.4 Hz, 3H), 4.33 (d, *J* = 12.0 Hz, 1H), 4.46 (d, *J* = 12.0 Hz, 1H), 4.49 (q, *J* = 6.4 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.32-7.39 (m, 3H), 7.42-7.46 (m, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.55-7.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 24.2, 70.2, 76.7, 121.3, 127.1, 127.2, 127.3, 128.1, 128.2, 128.8, 131.7, 137.4, 140.6, 141.1, 142.8. IR v 3056, 3029, 2975, 2927, 2860, 1486, 1406, 1092, 824 cm⁻¹. HRMS (EI) calcd. for C₂₁H₁₉OBr, ([M]): 366.0619, found: 366.0618.

4-(((4-Phenylbutan-2-yl)oxy)methyl)-1,1'-biphenyl (27): colorless oil (55.6 mg, 88% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.26 (d, *J* = 6.0 Hz, 3H), 1.73-1.82 (m, 1H), 1.90-1.94 (m, 1H), 2.65-2.73 (m, 1H), 2.75-2.83 (m, 1H), 3.53-3.61 (m, 1H), 4.49 (d, *J* = 11.6 Hz, 1H), 4.63 (d, *J* = 11.6 Hz, 1H), 7.17-7.20 (m, 3H), 7.25-7.29 (m, 2H), 7.32-7.37 (m, 1H), 7.42-7.46 (m, 4H), 7.57-7.61 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 19.7, 31.9, 38.5, 70.1, 74.2, 100.0, 125.7, 127.13, 127.18, 127.2, 128.2, 128.4, 128.5, 128.8, 138.1, 141.0, 142.4. IR v 3059, 3028, 2967, 2927, 1453, 1072, 759, 698 cm⁻¹. HRMS (EI) calcd. for C₂₃H₂₄O, ([M]): 316.1827, found: 316.1817.

1-(1,1-Dimethylethyl)-4-(ethoxymethyl)benzene (28): colorless oil (33.0 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.23 (t, *J* = 7.2 Hz, 3H), 1.31 (s, 9H), 3.53 (q, *J* = 7.2 Hz, 2H), 4.47 (s, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 15.3, 31.4, 34.5, 65.7, 72.6, 125.3, 127.6, 135.5, 150.5. IR v 3096, 3058,2966, 2904, 2868, 1465, 1103, 831 cm⁻¹. HRMS (EI) calcd. for C₁₃H₂₀O, ([M]): 192.1514, found: 192.1513.

1-(Ethoxymethyl)-4-ethylbenzene (29): colorless oil (24.3 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.20-1.26 (m, 6H), 2.64 (q, *J* = 7.6 Hz, 2H), 3.52 (q, *J* = 6.8 Hz, 2H), 4.47 (s, 2H), 7.17 (d, *J* = 7.6 Hz, 2H), 7.26 (d, *J* = 7.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 15.3, 15.7, 28.6, 65.6, 72.7, 127.9, 135.8, 143.6. IR v 3093, 3016, 2970, 2931, 2865, 1456, 1102, 818 cm⁻¹. HRMS (EI) calcd. for C₁₁H₁₆O, ([M]): 164.1201, found: 164.1203.

ò

2-(Ethoxymethyl)-1,3-dimethylbenzene (30): orange oil (19.3 mg, 59% yield).

¹H NMR (400 MHz, CDCl₃, TMS) δ 1.24 (t, *J* = 6.8 Hz, 3H), 2.40 (s, 6H), 3.56 (q, *J* = 6.8 Hz, 2H), 4.52 (s, 2H), 7.01 (d, *J* = 7.2 Hz, 2H), 7.06-7.11 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 15.4, 19.6, 65.9, 66.9, 127.9, 128.2, 134.4, 137.9. IR v 3069, 3024, 2973, 2926, 1741, 1094, 770 cm⁻¹. HRMS (EI) calcd. for C₁₁H₁₆O, ([M]):164.1201, found: 164.1204.

100 90 f1 (ppm)

2-Bromo-1-(ethoxymethyl)-4-methylbenzene (31): colorless oil (28.7 mg, 63%

yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.27 (t, *J* = 6.8 Hz, 3H), 2.32 (s, 3H), 3.60 (q, *J* = 6.8 Hz, 2H), 4.54 (s, 2H), 7.11 (d, *J* = 7.6 Hz, 1H), 7.33-7.37 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 15.3, 20.7, 66.1, 71.8, 122.7, 128.2, 129.0, 133.0, 134.8, 139.0. IR v 2974, 2926, 2861, 2797, 1118, 1039, 816 cm⁻¹. HRMS (EI) calcd. For C₁₀H₁₃OBr, ([M]): 228.0150, found: 228.0150.

2-(Ethoxymethyl)naphthalene (32): colorless oil (26.1 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.27 (t, *J* = 6.8 Hz, 3H), 3.58 (q, *J* = 6.8 Hz, 2H), 4.67 (s, 2H), 7.45-7.49 (m, 3H), 7.78-7.84 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 15.3, 65.8, 72.8, 125.8, 126.1, 126.3, 127.7, 127.9, 128.2, 133.0, 133.3, 136.1. IR v 3055, 3022, 2974, 2929, 2862, 1377, 1101, 816 cm⁻¹. HRMS (EI) calcd. for C₁₃H₁₄O, ([M]): 186.1045, found: 186.1048. Known compound.⁷

1-(Ethoxymethyl)naphthalene (33): colorless oil (24.9 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.27 (t, J = 6.8 Hz, 3H), 3.62 (q, J = 6.8 Hz, 2H), 4.95 (s, 2H), 7.40-7.55 (m, 4H), 7.80 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 8.12 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 15.3, 65.9, 71.2, 124.0, 125.2, 125.7, 126.1, 126.3, 128.49, 128.52, 131.8, 133.8, 134.1. IR v 3048, 2974, 2929, 2863, 1511, 1118, 1098, 796 cm⁻¹. HRMS (EI) calcd. for C₁₃H₁₄O, ([M]): 186.1045, found: 186.1048.

4-(1-Ethoxyethyl)-1,1'-biphenyl (34): colorless oil (34.8 mg, 77% yield). ¹H

NMR (400 MHz, CDCl₃, TMS) δ 1.21 (t, *J* = 6.8 Hz, 3H), 1.47 (d, *J* = 6.4 Hz, 3H), 3.39 (q, *J* = 6.8 Hz, 2H), 4.45 (q, *J* = 6.4 Hz, 1H), 7.31-7.45 (m, 5H), 7.55-7.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 15.5, 24.3, 64.0, 77.5, 126.6, 127.1, 127.2, 128.8, 140.3, 141.0, 143.3. IR v 3056, 3029, 2975, 2929, 2779, 1486, 1099, 839 cm⁻¹. HRMS (EI) calcd. for C₁₆H₁₈O, ([M]): 226.1358, found: 226.1366.

(Ethoxymethylene)dibenzene (35): colorless oil (33.1 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.26 (t, *J* = 6.8 Hz, 3H), 3.52 (q, *J* = 6.8 Hz, 2H), 5.35 (s, 1H), 7.20-7.24 (m, 2H), 7.28-7.37 (m, 8H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 15.4, 64.6, 83.5, 127.0, 127.4, 128.4, 142.6. IR v 3085, 3062, 2975, 2867, 2782, 1451, 1097, 700 cm⁻¹. HRMS (EI) calcd. for C₁₅H₁₆O, ([M]): 212.1201, found: 212.1206. Known compound.¹⁰

[1,1'-Biphenyl]-4-ylmethyl acetate (36): colorless oil (31.2 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 2.12 (s, 3H), 5.15 (s, 2H), 7.35 (dd, $J_1 = J_2 = 7.2$ Hz, 1H), 7.42-7.46 (m, 4H), 7.57-7.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 21.1, 66.1, 127.2, 127.4, 127.5, 128.82, 128.84, 134.9, 140.7, 141.3, 171.0. IR v 3057, 3031, 2955, 2891, 1741, 1379, 1364, 1229, 1028 cm⁻¹. HRMS (EI) calcd. for C₁₅H₁₄O₂, ([M]): 226.0994, found: 226.1000. Known compound.¹¹

4-((2,2,2-Trifluoroethoxy)methyl)-1,1'-biphenyl (37): white solid (23.9 mg, 45%

yield). m.p. 40-45 °C. ¹H NMR (400 MHz, CDCl₃, TMS) δ 3.86 (q, J = 8.8 Hz, 2H), 4.73 (s, 2H), 7.34-7.38 (m, 1H), 7.41-7.47 (m, 4H), 7.58-7.62 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 66.1 (q, J = 68.4 Hz), 72.8, 123.1 (q, J = 277.7 Hz), 126.1, 126.37, 126.43, 127.3, 127.8, 134.4, 139.6, 140.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -73.83 (t, J = 8.6 Hz). IR v 2963, 2927, 1736, 1410, 1162, 1077, 967, 762 cm⁻¹. HRMS (EI) calcd. for C₁₅H₁₃OF₃, ([M]): 266.0918, found: 266.0920.

4-((2,2,3,3-Tetrafluoropropoxy)methyl)-1,1'-biphenyl (38): colorless oil (26.2 mg, 44% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 3.86 (t, *J* = 12.0 Hz, 2H), 4.68 (s, 2H), 5.98 (tt, *J*₁ = 53.2 Hz, *J*₂ = 4.8 Hz, 1H), 7.34-7.47 (m, 5H), 7.58-7.62 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 65.9 (t, *J* = 28.6 Hz), 72.9, 108.2 (tt, *J*₁ = 247.9 Hz, *J*₂ = 34.3 Hz), 126.1, 126.36, 126.44, 127.3, 127.8, 134.4, 139.6, 140.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -139.86 (d, *J* = 53.4 Hz, 2F), -125.22 to -125.12 (m, 2F). IR v 3058, 3031, 2927, 2877, 1488, 1203, 1107, 830 cm⁻¹. HRMS (EI) calcd. for C₁₆H₁₄OF₄, ([M]): 298.0981, found: 298.0990.

Ethyl 2-(([1,1'-biphenyl]-4-ylmethyl)thio)propanoate (39): colorless oil (40.8 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.30 (t, J = 7.2 Hz, 3H), 1.41 (d, J = 7.2 Hz, 3H), 3.33 (q, J = 7.2 Hz, 1H), 3.82 (d, J = 13.6 Hz, 1H), 3.92 (d, J = 13.6 Hz, 1H), 4.15-4.23 (m, 2H), 7.31-7.36 (m, 1H), 7.40-7.45 (m, 4H), 7.53-7.59 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 14.3, 16.9, 35.7, 40.4, 61.2, 127.1, 127.26, 127.32, 128.8, 129.5, 136.7, 140.1, 140.8, 173.1. IR v 3659, 3447, 3029, 2932, 2872, 1732, 1486, 1161 cm⁻¹. HRMS (EI) calcd. for C₁₈H₂₀O₂S, ([M]): 300.1184, found: 300.1187.

Ethyl 2-(([1,1'-biphenyl]-4-ylmethyl)thio)acetate (40): colorless oil (40.1 mg,

70% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.29 (t, *J* = 7.2 Hz, 3H), 3.10 (s, 2H), 3.87 (s, 2H), 4.19 (q, *J* = 7.2 Hz, 2H), 7.34 (dd, *J*₁ = *J*₂ = 7.6 Hz, 1H), 7.39-7.45 (m, 4H), 7.54-7.59 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 14.2, 32.3, 36.0, 61.4, 127.1, 127.31, 127.36, 128.8, 129.6, 136.3, 140.2, 140.7, 170.5. IR v 3651, 3445, 2982, 2930, 1732, 1486, 1274, 1127, 842 cm⁻¹. HRMS (EI) calcd. for C₁₇H₁₈O₂S, ([M]): 286.1028, found: 286.1024.

N-([1,1'-biphenyl]-4-ylmethyl)-N,4-dimethylbenzenesulfonamide (41):

white solid (44.9 mg, 64% yield). m.p. 154-158 °C ¹H NMR (400 MHz, CDCl₃, TMS) δ 2.45 (s, 3H), 2.62 (s, 3H), 4.16 (s, 2H), 7.32-7.45 (m, 7H), 7.54-7.59 (m, 4H), 7.74 (d, *J* = 8.0Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 21.6, 34.5, 53.9, 127.1, 127.39, 127.44, 127.6, 128.83, 128.84, 129.8, 134.3, 134.8, 140.6, 140.9, 143.6. IR v 3058, 3031, 2920, 2810, 1452, 1338, 1161, 745 cm⁻¹. HRMS (EI) calcd. for C₂₁H₂₁NO₂S, ([M]): 351.1293, found: 351.1288.

N-([1,1'-biphenyl]-4-ylmethyl)-N-hexyl-4-

methylbenzenesulfonamide (42): colorless oil (36.2 mg, 43% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 0.79 (t, J = 6.8 Hz, 3H), 1.09-1.16 (m, 6H), 1.30-1.40 (m, 2H), 2.43 (s, 3H), 3.11 (t, J = 7.6 Hz, 2H), 4.35 (s, 2H), 7.30-7.37 (m, 5H), 7.43 (dd, $J_1 = J_2 = 7.6$ Hz, 2H), 7.52-7.59 (m, 4H), 7.74 (d, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 14.0, 21.6, 22.5, 26.3, 27.9, 31.3, 48.2, 51.5, 127.1, 127.2, 127.3, 127.4, 128.7, 128.8, 129.7, 135.7, 137.2, 140.6, 140.7, 143.2. IR v 3058, 3030, 2955, 2928, 2859, 1339, 1159, 755 cm⁻¹. HRMS (EI) calcd. for C₂₆H₃₁NO₂S, ([M]): 421.2075, found: 421.2078.

N-([1,1'-biphenyl]-4-ylmethyl)-4-methyl-N-(4-

phenylbutyl)benzenesulfonamide (43): purified by silica gel chromatography (petroleum ether/ethyl acetate 10:1 as the eluent). White solid (33.7 mg, 36% yield). 91-95 °C. ¹H NMR (400 MHz, CDCl₃, TMS) δ 1.35-1.48 (m, 4H) 2.42-2.46 (m, 5H), 3.14 (t, J = 7.2 Hz, 2H), 4.32 (s, 2H), 7.02 (d, J = 7.2 Hz, 2H), 7.11-7.15 (m, 1H), 7.19-7.24 (m, 2H), 7.27-7.36 (m, 5H), 7.35 (dd, $J_1 = J_2 = 7.2$ Hz, 2H), 7.52 (d, J = 7.2 Hz, 2H), 7.57 (d, J = 7.2 Hz, 2H), 7.72 (d, J = 7.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 21.6, 27.5, 28.3, 35.3, 48.0, 51.6, 125.8, 127.1, 127.2, 127.3, 127.4, 128.3, 128.4, 128.7, 128.8, 129.8, 135.62, 137.0, 140.7, 142.0, 143.2. IR v 3084, 3029, 2924, 2872, 1600, 1322, 1151, 738 cm⁻¹. HRMS (EI) calcd. for C₃₀H₃₁NO₂S, ([M]): 469.2075, found: 469.2068.

N-([1,1'-biphenyl]-4-ylmethyl)-4-methyl-N-(prop-2-yn-1-

yl)benzenesulfonamide (44): white solid (29.2 mg, 39% yield). 113-114 °C. ¹H NMR (400 MHz, CDCl₃, TMS) δ 2.03 (s, 1H), 2.45 (s, 3H), 4.00 (s, 2H), 4.40 (s, 2H), 7.35 (dd, $J_1 = J_2 = 8.0$ Hz, 3H), 7.42-7.46 (m, 4H), 7.55-7.59 (m, 4H), 7.82 (d, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 21.6, 35.6, 49.5, 74.2, 76.3, 127.1, 127.5, 127.9, 128.8, 129.3, 129.6, 133.9, 140.6, 141.1, 143.7. IR v 3265, 2963, 2913, 2854, 1598, 1339, 1160, 1094 cm⁻¹. HRMS (EI) calcd. for C₂₃H₂₁NO₂S, ([M]): 375.1293, found: 375.1292.

N-([1,1'-biphenyl]-4-ylmethyl)-N-benzyl-4-methylbenzenesulfonamide

(45): colorless oil (35.0 mg, 41% yield). ¹H NMR (400 MHz, CDCl₃, TMS) δ 2.44 (s, 3H), 4.35 (s, 4H), 7.08-7.12 (m, 4H), 7.20-7.22 (m, 3H), 7.29-7.36 (m, 3H), 7.41-7.44 (m, 4H), 7.54 (d, *J* = 7.2 Hz, 2H), 7.76 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, TMS) δ 21.6, 50.3, 50.7, 127.06, 127.13, 127.3, 127.4, 127.7, 128.5, 128.6, 128.8, 129.1, 129.8, 134.8, 135.7, 137.7, 140.6, 140.7, 143.3. IR v 3059, 3029, 2921, 2855, 1490, 1154, 756, 656 cm⁻¹. HRMS (EI) calcd. for C₂₇H₂₅NO₂S, ([M]): 427.1606, found: 427.1600.

9. Reference.

- Champagne, P. A.; Benhassine, Y.; Desroches, J.; Paquin, J.-F. Friedel-Crafts Reaction of Benzyl Fluorides: Selective Activation of C-F Bonds as Enabled by Hydrogen Bonding. *Angew. Chem. Int. Ed.* 2014, *53*, 13835-13839.
- Nodwell, M. B.; Bagai, A.; Halperin, S. D.; Martin, R. E.; Knust, H.; Britton, R. Direct photocatalytic fluorination of benzylic C–H bonds with N-fluorobenzenesulfonimide. *Chem. Commun.* 2015, *51*, 11783-11786.
- Yin, H.; Sheng, J.; Zhang, K.-F.; Zhang, Z.-Q.; Bian, K.-J.; Wang, X.-S. Nickel-catalyzed monofluoromethylation of (hetero)aryl bromides via reductive cross-coupling. *Chem. Commun.* 2019, 55, 7635-7638.
- Bresciani, S.; O'Hagan, D. Stereospecific benzylic dehydroxyfluorination reactions using Bio's TMSamine additive approach with challenging substrates. *Tetrahedron Lett.* 2010, 51, 5795-5797.
- Zhao, S.; Guo, Y.; Su, Z.; Cao, W.; Wu, C.; Chen, Q.-Y. A Series of Deoxyfluorination Reagents Featuring OCF₂ Functional Groups. Org. Lett. 2020, 22, 8634-8637.
- 6. Lanzi, M.; Cañeque, T.; Marchiò, L.; Maggi, R.; Bigi, F.; Malacria, M.; Maestri, G. Alternative Routes to Tricyclic Cyclohexenes with Trinuclear Palladium Complexes. *ACS Catal.* **2018**, *8*, 144-147.
- Guan, B.-T.; Xiang, S.-K.; Wang, B.-Q.; Sun, Z.-P.; Wang, Y.; Zhao, K.-Q.; Shi, Z.-J. Direct Benzylic Alkylation via Ni-Catalyzed Selective Benzylic sp3 C-O Activation. J. Am. Chem. Soc. 2008, 130, 3268-3269.
- 8. Handlon, A. L.; Guo, Yu. Lanthanide(III) Triflate-Catalyzed Thermal- and Microwave-Assisted Synthesis of Benzyl Ethers from Benzyl Alcohols. *Synlett* **2005**, 1, 111-114.
- Shen, Z.; Sheng, L.; Zhang, X.; Mo, W.; Hu, B.; Sun, N.; Hu, X. Aerobic oxidative deprotection of benzyl-type ethers under atmospheric pressure catalyzed by 2,3-dichloro-5,6-dicyano-1,4benzoquinone (DDQ)/tert-butyl nitrite. *Tetrahedron Lett.* 2013, 54, 1579-1583.
- Davis, P. J.; Harris, L.; Karim, A.; Thompson, A. L.; Gilpin, M.; Moloney, M. G.; Pound, M. J.; Thompson, C. Substituted diaryldiazomethanes and diazofluorenes: structure, reactivity and stability. *Tetrahedron Lett.* 2011, *52*, 1553-1556.
- Chen, J.; Lin, J.-H.; Xiao, J.-C. Dehydroxylation of alcohols for nucleophilic substitution. *Chemical Commun.* 2018, 54, 7034-7037.