Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

F. Ding et al.

Supporting Information

Supporting Information

Construction of 1,2-*cis* Rhamnosidic Linkages and Synthesis of Core Tetrasaccharide Repeating Unit of *Streptococcus pneumoniae* Serotype 23F

Jiaming Ao,^{a,†} Xiaoya Zhao,^{a,†} Siai Zhou,^{a,†} Yajing Guo,^a Guoqing Wang,^a Sixian Fang,^a Xuewen Yao,^a Yuhua Liu,^b Akihiro Ishiwata,^{*,c} Katsunori Tanaka,^{c,d} Feiqing Ding,^{*,a} and Hui Cai^{*,a}

^{a.} School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.

^{b.} School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China.

^{c.} RIKEN Cluster for Pioneering Research, Wako, Saitama 3510198, Japan.

^d Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan.

[†]These authors contributed equally to the work.

Density Functional Theory (DFT)

For understanding of mechanism of this β -rhamnosylation, DFT calculations were conducted using the Gaussian 09 program package¹. All the geometries were optimized with the B3LYP² functional and basis set BS1 (BS1 = 6-31G(d)³ for main group elements and Lanl2dz⁴ for Zn and I) in the gas phase. Solvation free energies were calculated using the SMD⁵ solvation model (solvent = diethyl ether) under ω B97XD⁶/BS2 (BS2 = 6-311 + G**³ for main group elements and SDD⁷ for Zn and I). Gibbs free energy present in this paper is the sum of single point energy at ω B97XD⁶/BS2, thermodynamic correction at B3LYP/BS1, and solvation free energy. Frequency analysis was conducted for optimized structure at the same level of theory at default temperature (298.15K) to ensure that the optimized ground state structures have no imaginary frequency, while the optimized transition state structures each has exactly 1 imaginary frequency, with the direction of vibration of the imaginary frequency aligned along the direction of formation or dissociation of the chemical bond of interest. Short intrinsic reaction coordinate scans (IRC) were performed on the optimized TS structures at the same level of theory to ensure that the TS structures correspond to energy maxima along the reaction routes connecting the immediately reacting intermediates and product structures.

To obtain a reliable description of the mechanism of ZnI_2 -catalyzed 1,2-*cis*-rhamnosylation, we proposed the possible mechanism and conducted computational studies. The starting material has two possible isomers as R1 and R1' depending on the orientations of the substituent. Our calculations indicate that R1 is 5.3 kcal/mol more stable than the R1' (see Figure S1 in the Supporting Information). Therefore, in the following discussion, we will only refer to the more stable starting material R1. The model reaction was simplified as the reaction between R1 and methanol.

Figure S1. Transformation of the isomers of the starting material. For the optimized structures, irrelevant hydrogen atoms are omitted for clarity.

Supporting Information

Figure S2. The pathway of the S_N 1-type mechanism via generating glycosyl cations. For the optimized structures, irrelevant hydrogen atoms are omitted for clarity.

Figure S3. Proposed α -selective catalytic cycle of the zinc iodide catalyzed rhamnosylation of alcohol with **R1**. For optimized structures of the important intermediates, and TS along the reaction direction, irrelevant hydrogen atoms are omitted for clarity. The bond lengths are given in Å and the energy of each step is given in kcal/mol.

Number of Imaginary Frequencies: 0 Electronic energy (Hartree): -250.149995354 Charge = 0 Multiplicity = 1 Coordinates of Optimized Structure: C 2.5067 -3.72647 1.13078 H 1.7528 -3.44367 1.89521

11	1.7520	-3.44307	1.0952
Н	2.2601	-4.74441	0.7891

Н 3.492 -3.71984 1.59831

Supporting Information

0	2.55597 -2.81899	0.02671
Н	1.67215 -2.69732	-0.32778

CH₃OH

Number of Imaginary Frequencies: 0 Electronic energy (Hartree): -115.739123457

Coordinates of Optimized Structure:

С	2.5067	-3.72647	1.13078
Н	1.7528	-3.44367	1.89521
Н	2.2601	-4.74441	0.7891
Н	3.492	-3.71984	1.59831
0	2.55597	-2.81899	0.02671
Н	1.67215	-2.69732	-0.32778

Cl₃C-CO-NH₂

Number of Imaginary Frequencies: 0 Electronic energy (Hartree): -1588.05172065 Charge = 0 Multiplicity = 1Coordinates of Optimized Structure: Ν -4.58949 0.76443 -2.17844 Η -4.95901 0.88908 -1.25761 С -4.88794 1.80917 -2.91476 0 -4.07502 2.16332 -3.82815 С -6.17402 2.65726 -2.75491 Cl -7.08576 2.58584 -4.29656 Cl -7.22266 2.04617 -1.42097 Cl -5.69083 4.34496 -2.39339 Η -3.59571 0.66498 -2.12817

Cl₃C-CO-NHZnI₂

Number of Imaginary Frequencies: 0 Electronic energy (Hartree): -1837.73634521 Charge = 0 Multiplicity = 1

Coordinates of Optimized Structure:

Charge = -1	Multiplicity	v = 1
Zn	-2.9056	0.39079 -3.27868
Ι	-2.91694 -	-2.07 -2.32371
Ν	-3.96288	1.79868 -2.13985
Н	-4.04251	2.4081 -1.33562
С	-4.9582	1.73243 -2.98091
0	-4.91545	0.99485 -3.99395
С	-6.29579	2.48391 -2.74397
Cl	-6.96041	3.08822 -4.27739
Cl	-7.43758	1.31018 -2.01537
Cl	-6.1114	3.8791 -1.61668

Supporting Information

I -0.92914 1.37299 -4.72856

R1

Number of Imaginary Frequencies: 0		
Electronic energy (Hartree): -2856.08334030		
Charge = 0 N	Aultiplicity = 1	
Coordinates	of Optimized Structure:	
С	2.41408 -3.07383 -1.7709	
С	3.90172 -3.03757 -1.4625	
С	3.66495 -1.16044 -0.01785	
С	2.18359 -1.03665 -0.36617	
С	1.60159 -2.40486 -0.66552	
Н	4.48749 -3.38018 -2.32727	
Н	2.12152 -4.13315 -1.84835	
Н	3.75165 -1.75372 0.90975	
Н	2.08853 -0.40352 -1.26727	
Н	1.65698 -3.01274 0.26112	
0	1.53294 -0.46587 0.7385	
С	0.58445 0.53726 0.42631	
С	-0.44315 0.60971 1.51214	
С	-1.06135 -0.58732 1.95512	
С	-2.04431 -0.55204 2.90733	
С	-2.47352 0.67818 3.46761	
С	-1.85623 1.88412 3.02587	
С	-0.83512 1.81124 2.0469	
С	-3.4912 0.74867 4.44828	
С	-3.88466 1.95731 4.96718	
С	-3.27351 3.15245 4.52858	
С	-2.28127 3.11472 3.58094	
Н	1.08813 1.51338 0.29786	
Н	0.09169 0.29092 -0.52868	
Н	-0.72626 -1.53127 1.52473	
Н	-2.5165 -1.47324 3.25088	
Н	-0.35881 2.73724 1.71744	
Н	-3.9582 -0.17794 4.78384	
Н	-4.67016 1.99941 5.71982	
Н	-3.5945 4.10558 4.94552	
Н	-1.80583 4.03432 3.23816	
С	4.32169 0.18446 0.15524	
Н	4.25188 0.75912 -0.77788	
Н	3.82272 0.74012 0.95637	
Н	5.38073 0.06727 0.40888	
С	4.01865 -5.26201 -0.44129	
Ν	3.77655 -5.94747 -1.49422	

С	4.12984 -5.88559 0.97095
Cl	5.50025 -5.19136 1.84951
Cl	2.5893 -5.46597 1.79318
Н	3.75479 -6.94702 -1.27173
0	4.13061 -3.96958 -0.33841
Cl	4.29768 -7.65296 0.90758
0	4.38141 -1.8319 -1.06855
0	0.25235 -2.23436 -1.03978
0	2.27386 -2.42238 -2.99848
С	-0.51169 -3.41075 -1.12857
Н	-0.39868 -3.99931 -0.19647
Н	-1.55738 -3.07121 -1.16026
С	1.015 -2.55883 -3.66757
Н	1.24974 -2.39503 -4.72646
Н	0.33554 -1.76395 -3.33701
С	0.2122 -6.19607 -4.35549
С	0.63734 -4.87835 -4.49198
С	0.41075 -3.92511 -3.49001
С	-0.23768 -4.32399 -2.31003
С	-0.65275 -5.65307 -2.18009
С	-0.43861 -6.58403 -3.18657
Н	0.39493 -6.91827 -5.1492
Н	1.15207 -4.56551 -5.40122
Н	-1.14059 -5.96419 -1.25474
Н	-0.75189 -7.6176 -3.05376
Zn	3.33365 -6.12967 -3.62942
Ι	2.94544 -8.70496 -3.59435
Ι	4.45392 -4.44202 -5.21254

R1'

Number of Imaginary Frequencies: 0 Electronic energy (Hartree): -2856.07660730 Charge = 0 Multiplicity = 1 Coordinates of Optimized Structure:

С	-2.42359	0.9917	-2.45777
С	-1.05779	0.61117	-1.88894
С	-0.51704	1.63304	-0.88258
С	-1.6056	2.01621	0.13035
С	-2.8504	2.42818	-0.62629
0	-3.30226	1.36701	-1.40362
С	-2.37548	2.02914	-3.56734
0	-1.1975	-0.62696	-1.22038
0	-0.04015	2.73538	-1.61423
0	-1.23483	3.09664	0.9496

С	0.65573	3.76514 -0.90758	
С	-0.24027	2.8346 1.90011	
С	1.60948	3.25962 0.14282	
С	2.96898	3.19334 -0.17538	
С	3.91061	2.7161 0.72667	
С	3.49199	2.27151 1.97595	
С	2.14278	2.31374 2.30033	
С	1.19203	2.80731 1.40523	
С	-0.04331	-1.43669 -1.26494	
С	-0.09139	-2.43035 -0.14653	
С	-0.22571	-1.95587 1.18265	
С	-0.24849	-2.82677 2.23794	
С	-0.13668	-4.22474 2.02791	
С	-0.00117	-4.70952 0.69505	
С	0.01383	-3.7792 -0.37368	
С	-0.15614	-5.15225 3.09629	
С	-0.04634	-6.49979 2.85874	
С	0.08714	-6.98041 1.53779	
С	0.10856	-6.1041 0.48131	
Н	-2.86687	0.06447 -2.84464	
Н	-0.33403	0.53163 -2.72081	
Н	0.31473	1.14759 -0.34013	
Н	-1.8597	1.12609 0.73762	
Н	-1.93204	1.5912 -4.47094	
Н	-1.77861	2.90684 -3.29965	
Н	-3.3969	2.35272 -3.80049	
Н	1.22621	4.28744 -1.68652	
Н	-0.0638	4.47714 -0.48507	
Н	-0.3432	3.62859 2.65476	
Н	-0.45561	1.88113 2.42142	
Н	3.28951	3.53328 -1.1609	
Н	4.9638	2.68564 0.4537	
Н	4.21282	1.8836 2.69382	
Н	1.80906	1.95388 3.27566	
Н	0.03182	-1.9488 -2.2416	
Н	0.86382	-0.81054 -1.16205	
Н	-0.31563	-0.88064 1.34477	
Н	-0.35391	-2.45867 3.25894	
Н	0.10762	-4.15568 -1.39445	
Н	-0.26136	-4.77395 4.11362	
Н	-0.06316	-7.20384 3.68899	
Н	0.17244	-8.05126 1.36054	
н			
11	0.20974	-6.46998 -0.54096	

Supporting Information

С	-4.91204	3.40679	-0.12235
С	-5.9239	3.52707	1.03277
Cl	-5.14833	4.36558	2.40476
Cl	-6.4501	1.89971	1.53188
Cl	-7.35777	4.46568	0.52418
Н	-2.66314	3.33849	-1.2202
Ν	-5.00079	3.88529	-1.28362
Н	-5.86469	4.40631	-1.42105

Int2a

Number of I	maginary Frequencies: 0	
Electronic energy (Hartree): -1268.44334164		
Charge = 1	Multiplicity = 1	
Coordinates	of Optimized Structure:	
С	-1.75655 1.35965 -3.36335	
С	-0.64566 0.64864 -2.60996	
С	-0.53619 1.09689 -1.14712	
С	-1.8726 0.77312 -0.46202	
С	-2.99963 1.29897 -1.25721	
0	-2.98748 1.5142 -2.48708	
С	-1.47743 2.7328 -3.90923	
0	-0.93768 -0.72092 -2.70057	
0	-0.27237 2.46101 -1.12539	
0	-2.05373 1.31034 0.80597	
С	0.0246 3.05558 0.16043	
С	-1.25414 0.75377 1.84306	
С	0.7952 2.17376 1.10167	
С	2.17095 2.39256 1.22213	
С	2.9549 1.64945 2.09476	
С	2.3623 0.65372 2.86196	
С	1.0038 0.3996 2.72917	
С	0.20808 1.14252 1.85706	
С	0.17493 -1.61265 -2.60376	
С	0.57936 -1.93617 -1.19207	
С	1.91657 -1.73964 -0.77165	
С	2.30187 -2.06475 0.50495	
С	1.371 -2.58384 1.43507	
С	0.0139 -2.75727 1.0293	
С	-0.34542 -2.43737 -0.30097	
С	1.74045 -2.92655 2.75898	
С	0.80658 -3.3949 3.6485	
С	-0.54243 -3.54948 3.25181	
С	-0.92787 -3.24452 1.97055	
Н	-2.14123 0.67904 -4.13106	

Н	0.30373	0.89825	-3.11896
Н	0.25744	0.51316	-0.65518
Н	-1.98833	-0.33882	-0.47842
Н	-0.70907	2.64444	-4.68631
Н	-1.10716	3.40309	-3.12881
Н	-2.37573	3.15363	-4.37273
Н	0.62152	3.93961	-0.08926
Н	-0.91476	3.40089	0.60828
Н	-1.7436	1.09119	2.76587
Н	-1.33775	-0.34914	1.81652
Н	2.62854	3.1828	0.62675
Н	4.01978	1.85447	2.18113
Н	2.9579	0.06565	3.55846
Н	0.54561	-0.4002	3.31466
Н	-0.15327	-2.51674	-3.13175
Н	1.02674	-1.19333	-3.16542
Н	2.64376	-1.33758	-1.47794
Н	3.33448	-1.91981	0.82246
Н	-1.37248	-2.62412	-0.62765
Н	2.78282	-2.81009	3.05696
Н	1.10071	-3.65746	4.6627
Н	-1.27145	-3.92835	3.96538
Н	-1.96234	-3.38498	1.65444
Н	-3.94109	1.54446	-0.75007

Int2b

Number of Imaginary Frequencies: 0 Electronic energy (Hartree): -1268.43543472 Charge = 1 Multiplicity = 1 Coordinates of Optimized Structure: С 2.45343 -3.2385 -1.67468 С 3.90582 -3.10513 -1.22702 С 3.45415 -1.17627 0.08721 С 1.98894 -1.18162 -0.34362 С 1.53356 -2.59799 -0.63602 4.57887 -3.44817 -2.01959 Η Η 2.22977 -4.31629 -1.77414 Η 3.52657 -1.71751 1.04669 Η 1.88792 -0.57411 -1.26159 Η 1.59742 -3.1777 0.30659 0 1.23099 -0.64126 0.71145 С 0.32089 0.37057 0.33254 С -0.64841 0.58899 1.45126 С -1.40266 -0.51589 1.92167

С	-2.31757 -0.35837 2.9274
С	-2.53241 0.91012 3.52403
С	-1.77436 2.02367 3.05919
С	-0.83411 1.82466 2.01797
С	-3.47057 1.10663 4.56482
С	-3.65016 2.3471 5.12506
С	-2.89624 3.44962 4.66713
С	-1.98007 3.28948 3.65726
Н	0.85854 1.30767 0.09324
Н	-0.21991 0.05755 -0.57797
Н	-1.22799 -1.4906 1.46659
Н	-2.89765 -1.20897 3.28715
Н	-0.24882 2.67885 1.6707
Н	-4.04907 0.25056 4.91384
Н	-4.37598 2.48528 5.92478
Н	-3.0446 4.4291 5.11907
Н	-1.39463 4.13747 3.30019
С	3.99639 0.22243 0.23644
Н	3.9247 0.75752 -0.72025
Н	3.42562 0.76762 0.99622
Н	5.04972 0.19557 0.53643
0	4.27171 -1.8313 -0.88651
0	0.18532 -2.53951 -1.05248
0	2.39946 -2.6004 -2.92271
С	-0.44746 -3.78033 -1.21649
Н	-0.14362 -4.46778 -0.40198
Н	-1.52184 -3.58841 -1.07497
С	1.16132 -2.62789 -3.62826
Н	1.43371 -2.3626 -4.65778
Н	0.49469 -1.84279 -3.24835
С	-0.03178 -5.99165 -4.89973
С	0.57017 -4.74582 -4.79527
С	0.46966 -3.96718 -3.63764
С	-0.24721 -4.48176 -2.54525
С	-0.84452 -5.73969 -2.6565
С	-0.7485 -6.4924 -3.81791
Н	0.05906 -6.56847 -5.81821
Н	1.13906 -4.35064 -5.63753
Н	-1.39886 -6.13391 -1.80211
Н	-1.2266 -7.46882 -3.87624

IM1

Number of Imaginary Frequencies: 0 Electronic energy (Hartree): -3106.25316183

Supporting Information

Charge = 0 Multiplicity = 1Coordinates of Optimized Structure: С 2.41408 -3.07383 -1.7709 С 3.90172 -3.03757 -1.4625 С 3.66495 -1.16044 -0.01785 С 2.18359 -1.03665 -0.36617 С 1.60159 -2.40486 -0.66552 Η 4.48749 -3.38018 -2.32727 Η 2.12152 -4.13315 -1.84835 3.75165 -1.75372 0.90975 Η Η 2.08853 -0.40352 -1.26727 Η 1.65698 -3.01274 0.26112 1.53294 -0.46587 0.7385 0 С 0.58445 0.53726 0.42631 С -0.44315 0.60971 1.51214 С -1.06135 -0.58732 1.95512 С -2.04431 -0.55204 2.90733 С -2.47352 0.67818 3.46761 С -1.85623 1.88412 3.02587 С -0.83512 1.81124 2.0469 С -3.4912 0.74867 4.44828 С -3.88466 1.95731 4.96718 С -3.27351 3.15245 4.52858 С -2.28127 3.11472 3.58094 Η 1.08813 1.51338 0.29786 0.09169 0.29092 -0.52868 Η -0.72626 -1.53127 1.52473 Η -2.5165 -1.47324 3.25088 Η -0.35881 2.73724 1.71744 Η Η -3.9582 -0.17794 4.78384 -4.67016 1.99941 5.71982 Η Η -3.5945 4.10558 4.94552Η -1.80583 4.03432 3.23816 С 4.32169 0.18446 0.15524 Η 4.25188 0.75912 -0.77788 3.82272 0.74012 0.95637 Η 5.38073 0.06727 0.40888 Η 4.01865 -5.26201 -0.44129 С Ν 3.77655 -5.94747 -1.49422 С 4.12984 -5.88559 0.97095 Cl 5.50025 -5.19136 1.84951 Cl 2.5893 -5.46597 1.79318 Η 3.75479 -6.94702 -1.27173

O 4.13061 -3.96958 -0.33841

Supporting Information

Cl	4.29768 -7.65296 0.90758
0	4.38141 -1.8319 -1.06855
0	0.25235 -2.23436 -1.03978
0	2.27386 -2.42238 -2.99848
С	-0.51169 -3.41075 -1.12857
Н	-0.39868 -3.99931 -0.19647
Н	-1.55738 -3.07121 -1.16026
С	1.015 -2.55883 -3.66757
Н	1.24974 -2.39503 -4.72646
Н	0.33554 -1.76395 -3.33701
С	0.2122 -6.19607 -4.35549
С	0.63734 -4.87835 -4.49198
С	0.41075 -3.92511 -3.49001
С	-0.23768 -4.32399 -2.31003
С	-0.65275 -5.65307 -2.18009
С	-0.43861 -6.58403 -3.18657
Н	0.39493 -6.91827 -5.1492
Н	1.15207 -4.56551 -5.40122
Н	-1.14059 -5.96419 -1.25474
Н	-0.75189 -7.6176 -3.05376
Zn	3.33365 -6.12967 -3.62942
Ι	2.94544 -8.70496 -3.59435
Ι	4.45392 -4.44202 -5.21254

ΙΜ2α

Number of Imaginary Frequencies: 0 Electronic energy (Hartree): -3106.22216093 Charge = 0 Multiplicity = 1Coordinates of Optimized Structure: С 2.00224 -3.82456 -1.87861 С 3.48605 -3.8045 -1.56943 С 3.30187 -1.68136 -0.4513 С 1.79448 -1.62824 -0.69239 С 1.20103 -3.01906 -0.85464 Η 4.05394 -4.27605 -2.37818 Η 1.65573 -4.86686 -1.93775 3.49146 -2.17828 0.5145 Η Η 1.60598 -1.06689 -1.62454 Η $1.24361 \ -3.53793 \ \ 0.12252$ 0 1.2016 -0.98113 0.40012 С $0.39323 \quad 0.13458 \quad 0.0504$ С -0.48191 0.47552 1.21302 С -1.37701 -0.51009 1.70158 С -2.21656 -0.23273 2.74595

С	-2.21131 1.04407 3.36442
С	-1.31031 2.03677 2.88148
С	-0.45317 1.71517 1.80029
С	-3.06889 1.36427 4.44321
С	-3.03614 2.60907 5.02138
С	-2.14099 3.59158 4.54502
С	-1.29819 3.31027 3.49893
Н	1.02581 0.99369 -0.23835
Н	-0.22367 -0.12911 -0.82589
Н	-1.37606 -1.49112 1.22549
Н	-2.90721 -0.98933 3.12002
Н	0.23818 2.47671 1.43354
Н	-3.75742 0.60132 4.80794
Н	-3.70045 2.84338 5.85149
Н	-2.12223 4.57506 5.01162
Н	-0.60493 4.06455 3.12532
С	3.95558 -0.32505 -0.47925
Н	3.77196 0.19145 -1.43326
Н	3.54094 0.2901 0.32705
Н	5.03746 -0.41806 -0.33364
0	3.93913 -2.4899 -1.47362
0	-0.14178 -2.83755 -1.23788
0	1.94128 -3.22472 -3.17072
С	-0.92916 -3.9992 -1.29263
Н	-0.70202 -4.64858 -0.4252
Н	-1.96641 -3.65752 -1.16235
С	0.654 -3.18361 -3.84183
Н	0.91522 -3.00491 -4.89126
Н	0.09284 -2.31639 -3.47942
С	-0.82974 -6.53078 -4.78791
С	-0.12605 -5.33523 -4.80974
С	-0.12422 -4.46225 -3.71646
С	-0.83751 -4.82457 -2.5613
С	-1.53525 -6.0337 -2.5466
С	-1.54269 -6.88037 -3.64615
Н	-0.82014 -7.18635 -5.65626
Н	0.43911 -5.05621 -5.69923
Н	-2.08624 -6.31239 -1.64623
Н	-2.09879 -7.81542 -3.60859
Zn	3.62611 -1.74374 -3.64374
Ι	2.13475 0.2785 -4.30624
Ν	5.72573 -1.48224 -3.78754
Н	6.58518 -0.96029 -3.65611
С	5.79824 -2.71578 -4.18661

Supporting Information

0	4.73292 -3.38664 -4.3627
С	7.11639 -3.49195 -4.35724
Cl	7.06677 -4.49703 -5.816
Cl	8.53712 -2.41073 -4.43978
Cl	7.25454 -4.52983 -2.89848
Ι	3.96628 -5.05114 0.19398

IM3a

Number of Imaginary Frequencies: 0		
Electronic energy (Hartree): -3221.99142600		
Charge $= 0 M$	ultiplicity = 1	
Coordinates of	f Optimized Structure:	
С	2.05445 -3.49381 -1.93521	
С	3.52761 -3.51402 -1.56036	
С	3.32714 -1.60704 -0.1569	
С	1.86027 -1.43259 -0.533	
С	1.22689 -2.7718 -0.86968	
Н	4.14624 -3.89978 -2.37732	
Н	1.70591 -4.52501 -2.08648	
Н	3.38844 -2.24241 0.7458	
Н	1.81294 -0.78134 -1.4267	
Н	1.22682 -3.39469 0.04587	
0	1.195 -0.85464 0.55681	
С	0.43448 0.29881 0.24428	
С	-0.49962 0.58896 1.37536	
С	-1.38765 -0.42788 1.80958	
С	-2.28034 -0.18893 2.81928	
С	-2.34125 1.07881 3.45284	
С	-1.44997 2.10359 3.02171	
С	-0.53466 1.82096 1.97843	
С	-3.25421 1.35906 4.49671	
С	-3.28505 2.59689 5.08969	
С	-2.40073 3.61195 4.66337	
С	-1.50414 3.36917 3.65291	
Н	1.10085 1.16069 0.05627	
Н	-0.13912 0.11331 -0.68061	
Н	-1.33293 -1.40282 1.32496	
Н	-2.96209 -0.97166 3.15381	
Н	0.15237 2.6065 1.65681	
Н	-3.93382 0.57065 4.82183	
Н	-3.99259 2.80035 5.89172	
Н	-2.43408 4.59006 5.14035	
Н	-0.81859 4.14881 3.31933	
С	4.01531 -0.28916 0.08781	

Н	3.79002 0.4262 -0.71392
Н	3.66166 0.13615 1.03288
Н	5.10137 -0.42155 0.13368
0	4.01982 -2.29211 -1.21211
0	-0.09964 -2.51689 -1.26381
0	2.00122 -2.80521 -3.19295
С	-0.93153 -3.64085 -1.39939
Н	-0.75981 -4.34058 -0.55909
Н	-1.95744 -3.2612 -1.28443
С	0.70392 -2.70716 -3.8574
Н	0.96449 -2.47509 -4.89757
Н	0.1664 -1.85872 -3.42561
С	-0.77581 -5.97583 -5.02646
С	-0.06439 -4.78592 -4.96535
С	-0.08673 -3.98048 -3.82123
С	-0.82507 -4.40288 -2.70388
С	-1.53003 -5.60534 -2.77446
С	-1.51684 -6.38526 -3.92274
Н	-0.74945 -6.58136 -5.93
Н	0.52598 -4.45913 -5.82289
Н	-2.10082 -5.93285 -1.90349
Н	-2.07817 -7.31755 -3.95139
Zn	3.62564 -1.91209 -4.31755
Ι	3.31634 -2.88817 -6.71504
Ν	3.62454 0.01739 -3.80657
Н	2.90935 0.66601 -4.12218
С	4.64752 0.58413 -3.18454
0	5.65426 0.01783 -2.74718
С	4.6066 2.14465 -3.02486
Cl	4.99933 2.84585 -4.62679
Cl	2.96369 2.69899 -2.5306
Cl	5.77751 2.7037 -1.82759
Ι	3.8513 -5.09168 0.02032
С	6.54562 -2.52908 -4.59815
Н	7.48777 -2.81296 -4.11648
Н	6.2626 -3.28831 -5.33243
0	5.5079 -2.45841 -3.61763
Н	6.66712 -1.56191 -5.10657
Н	5.68266 -1.6451 -3.06219

IM4a

Number of Imaginary Frequencies: 0 Electronic energy (Hartree): -3472.15586611 Charge = 0 Multiplicity = 1

Supporting Information

Coordinates of Optimized Structure:

С	2.36749 -3.57341 -1.45767
С	3.719 -3.78418 -0.79351
С	3.36073 -2.03974 0.78075
С	2.12199 -1.57513 0.02189
С	1.39933 -2.76526 -0.5851
Н	4.47201 -4.19585 -1.47977
Н	1.95469 -4.55755 -1.71154
Н	3.05108 -2.74806 1.57187
Н	2.44465 -0.89933 -0.79089
Н	1.02392 -3.40488 0.23865
0	1.28073 -0.91043 0.92013
С	0.87751 0.38218 0.48067
С	-0.18029 0.89944 1.39947
С	-1.32613 0.10242 1.6487
С	-2.33224 0.56118 2.45535
С	-2.25573 1.84362 3.05606
С	-1.10792 2.65052 2.80846
С	-0.08182 2.14208 1.97438
С	-3.27934 2.34764 3.89306
С	-3.17299 3.59301 4.46099
С	-2.03494 4.39217 4.21634
С	-1.02625 3.92981 3.40834
Н	1.74626 1.0623 0.44293
Н	0.48001 0.30412 -0.5477
Н	-1.38237 -0.88444 1.18892
Н	-3.21227 -0.05287 2.64964
Н	0.80082 2.75854 1.79061
Н	-4.15532 1.72577 4.08017
Н	-3.96684 3.96927 5.10406
Н	-1.96031 5.37816 4.67194
Н	-0.14494 4.54183 3.21395
С	4.14739 -0.90351 1.37673
Н	4.42266 -0.18074 0.59876
Н	3.53527 -0.39412 2.12769
Н	5.05904 -1.2761 1.85807
0	4.2391 -2.76356 -0.10855
0	0.32553 -2.25781 -1.33426
0	2.63885 -2.87711 -2.67249
С	-0.6968 -3.16226 -1.67729
Н	-1.06226 -3.67887 -0.77031
Н	-1.52127 -2.52704 -2.0336
С	1.57306 -2.83713 -3.67532
Н	2.11269 -2.79259 -4.63208

Supporting Information

Н	1.02246 -1.90192 -3.53007
С	0.12762 -6.18896 -4.64489
С	0.91879 -5.04787 -4.60093
С	0.67985 -4.03685 -3.66752
С	-0.35706 -4.19467 -2.73146
С	-1.13389 -5.35104 -2.7748
С	-0.90693 -6.33724 -3.72821
Н	0.32346 -6.96127 -5.38564
Н	1.74354 -4.92822 -5.30483
Н	-1.93055 -5.48107 -2.04075
Н	-1.52941 -7.23001 -3.74242
Zn	4.1844 -1.47669 -3.38951
0	5.12797 -0.64895 -1.78875
Н	4.7087 0.23861 -1.64568
С	6.49018 -0.76378 -1.39786
Н	6.58561 -0.61103 -0.31583
Н	6.81168 -1.78159 -1.6408
Ν	2.95664 0.06532 -3.75579
Н	2.37965 0.10341 -4.59165
С	2.69435 1.0124 -2.86985
0	3.29068 1.20991 -1.80255
С	1.48873 1.96124 -3.19767
Cl	0.00666 0.95187 -3.41199
Cl	1.20027 3.12651 -1.90377
Cl	1.82791 2.83144 -4.72501
Ι	5.62826 -3.04302 -4.82281
Н	7.12031 -0.04663 -1.93712
Ι	7.41562 -4.89064 -1.03465
Zn	6.37094 -5.75514 1.12899
Ι	3.45328 -5.62797 0.63478
Ι	6.65029 -6.68773 3.47311

Rha TSβ

Number of Imaginary Frequencies: 1 (-182.29cm⁻¹) Electronic energy (Hartree): -3472.14635687 Charge = 0 Multiplicity = 1 Coordinates of Optimized Structure: С 2.66166 -3.71994 -1.88712 С 4.10355 -3.53421 -1.48275 С 3.51792 -2.05487 0.37246 С 2.32397 -1.60804 -0.48459 С 1.64464 -2.83073 -1.10552 Η 4.81874 -4.27318 -1.83911 2.50129 -4.76781 -1.58864 Η

Н	3.16188 -2.69352 1.18602
Н	2.66901 -0.91978 -1.26815
Н	1.25616 -3.43251 -0.27469
0	1.45653 -0.95333 0.41846
С	0.75089 0.17947 -0.1181
С	-0.23655 0.67452 0.90684
С	-1.10011 -0.24423 1.56524
С	-2.04543 0.19923 2.45885
С	-2.19258 1.58457 2.74468
С	-1.32392 2.51583 2.08887
С	-0.35048 2.02132 1.17907
С	-3.1647 2.07579 3.65622
С	-3.27515 3.42539 3.90883
С	-2.41529 4.34647 3.26133
С	-1.46161 3.90103 2.37297
Н	1.46514 0.97333 -0.37824
Н	0.237 -0.12708 -1.03783
Н	-0.98913 -1.30618 1.36774
Н	-2.69708 -0.51077 2.96264
Н	0.3108 2.73392 0.6894
Н	-3.82242 1.36656 4.15311
Н	-4.02318 3.78931 4.60775
Н	-2.51171 5.40853 3.46937
Н	-0.80061 4.60659 1.87491
С	4.38158 -0.92274 0.89058
Н	4.76317 -0.30677 0.07009
Н	3.76689 -0.29753 1.54327
Н	5.22026 -1.31587 1.47173
0	4.43223 -2.96068 -0.38998
0	0.59829 -2.42044 -1.96369
0	2.5409 -3.6359 -3.30386
С	-0.58002 -3.2427 -1.92197
Н	-1.10662 -3.07751 -0.97244
Н	-1.20964 -2.84073 -2.72423
С	1.36628 -4.30084 -3.94705
Н	1.80024 -4.84312 -4.78801
Н	0.7492 -3.48138 -4.32111
С	0.05848 -7.50278 -2.39237
С	0.78141 -6.60606 -3.18011
С	0.59036 -5.22257 -3.05625
С	-0.33368 -4.72827 -2.10789
С	-1.04206 -5.63764 -1.3174
С	-0.85806 -7.01426 -1.4611
Н	0.22473 -8.57076 -2.49036

Н	1.50773 -6.98045 -3.89648
Н	-1.73887 -5.26471 -0.57101
Н	-1.41115 -7.70275 -0.82971
Zn	3.64429 -2.35896 -4.58913
0	4.91347 -2.25473 -2.93992
Н	4.76444 -1.11017 -2.71323
С	6.32779 -2.55064 -3.03259
Н	6.7703 -2.52862 -2.03208
Н	6.45921 -3.53979 -3.47702
Ν	3.2048 -0.33885 -4.45797
Н	2.65854 0.11896 -5.18175
С	3.78482 0.47851 -3.62384
0	4.53582 0.11109 -2.65658
С	3.66109 2.02886 -3.76187
Cl	2.34655 2.5137 -4.89142
Cl	3.33755 2.75299 -2.15573
Cl	5.23498 2.62004 -4.3963
Ι	2.55868 -5.90989 1.41017
Ι	4.07512 -3.40476 -6.91607
Zn	3.29636 -7.95192 -0.20648
Ι	4.96445 -7.16587 -2.18683
Ι	2.32156 -10.37093 -0.01566
Н	6.81221 -1.79967 -3.66372

ΙΜ5β

Number of Imaginary Frequencies: 0 Electronic energy (Hartree): -3222.00737665 Charge = 0 Multiplicity = 1Coordinates of Optimized Structure: С 2.56792 -2.94571 -1.90777 С 4.01337 -2.5187 -1.66184 С 3.4666 -0.47362 -0.66757 С 1.96874 -0.73349 -0.79284 С 1.68935 -2.22786 -0.88262 Η 2.48827 -4.03776 -1.75664 Η 3.80247 -0.88754 0.30483 Η 1.60983 -0.23223 -1.71084 Η 1.96672 -2.65691 0.10517 0 1.35009 -0.21157 0.3523 С 0.15498 0.51915 0.12465 С -0.67276 0.48743 1.37036С -1.11494 -0.7689 1.85851 С -1.8844 -0.84571 2.98726 С -2.25631 0.32521 3.69612

С	-1.81282	1.59028 3.21321
С	-1.01592	1.63352 2.04221
С	-3.05069	0.2785 4.86574
С	-3.38979	1.43021 5.53145
С	-2.94777	2.68357 5.05505
С	-2.17744	2.76005 3.92139
Н	0.39616	1.55895 -0.16284
Н	-0.40076	0.05714 -0.70742
Н	-0.82743	-1.66868 1.31375
Н	-2.22807	-1.81111 3.36041
Н	-0.6711	2.60355 1.67757
Н	-3.38957	-0.69224 5.22905
Н	-4.00169	1.38176 6.43064
Н	-3.22101	3.5905 5.59184
Н	-1.83229	3.72495 3.54838
С	3.80139	0.99267 -0.75459
Н	3.49319	1.39109 -1.73015
Н	3.27622	1.53968 0.03595
Н	4.87889	1.15357 -0.64022
0	4.15134	-1.13992 -1.72101
0	0.31065	-2.38287 -1.09053
0	2.32993	-2.64724 -3.27097
С	-0.17636	-3.70509 -1.18419
Н	0.51899	-4.40668 -0.68685
Н	-1.10925	-3.73377 -0.60132
С	0.98995	-2.40271 -3.7593
Н	1.17044	-2.08283 -4.79259
Н	0.56546	-1.55758 -3.20899
С	-1.06191	-5.27044 -5.09971
С	-0.2307	-4.16485 -4.99221
С	0.08593	-3.60138 -3.75186
С	-0.46019	-4.17156 -2.59117
С	-1.3012	-5.27786 -2.71074
С	-1.59783	-5.83314 -3.9476
Н	-1.28362	-5.69269 -6.07761
Н	0.20262	-3.72354 -5.89121
Н	-1.72767	-5.71471 -1.80589
Н	-2.25128	-6.70145 -4.00996
Н	4.35887	-2.88852 -0.67105
Ι	3.59465	-2.70177 -6.69694
0	6.31904	-5.53795 -2.67782
С	6.44819	-5.62839 -3.98561
С	7.62763	-6.53876 -4.34742
Cl	9.11555	-5.67932 -3.83781

Supporting Information

Cl	7.69817 -6.84079 -6.09788
Cl	7.47554 -8.07918 -3.48465
Zn	3.68892 -4.06179 -4.45904
Ν	5.70999 -4.98976 -4.80097
Н	5.91928 -5.15566 -5.785
Ι	2.77343 -6.37141 -3.46032
0	4.81986 -3.09577 -2.67164
С	6.08625 -2.44068 -2.86055
Н	6.60853 -3.00068 -3.63894
Н	5.9341 -1.41112 -3.18893
Н	6.65928 -2.46079 -1.92405
Н	5.56274 -4.94517 -2.47627

ΙΜ6β

Number of Imaginary Frequencies: 0 Electronic energy (Hartree): -1633.96981786 Charge = 0 Multiplicity = 1Coordinates of Optimized Structure: С 1.81112 -4.12096 -1.88092 С 3.27827 -4.11303 -1.4412 С 3.08746 -1.99687 -0.33979 С 1.59407 -1.8696 -0.70154 С 0.96534 -3.25486 -0.92674 Η 1.46113 -5.15902 -1.87728 Η 3.16266 -2.52026 0.62737 Η 1.50354 -1.28475 -1.62621 Η 0.91623 -3.76968 0.04924 0.97162 -1.2082 0.38741 0 С -0.03078 -0.24674 0.02963 С -0.48628 0.46753 1.2765 С -0.90954 -0.28256 2.40897 С -1.35929 0.34964 3.54341 С -1.42038 1.76886 3.61685 С -0.9959 2.53192 2.48132 С -0.52828 1.8445 1.32833 С -1.88306 2.45468 4.77139 С -1.9249 3.83126 4.80475 С -1.50418 4.58609 3.6822 С -1.0502 3.95008 2.54784Η 0.37931 0.47326 -0.69238 -0.86975 -0.76337 -0.45449Η Η -0.85949 -1.36666 2.36769 Η -1.67763 -0.23223 4.40553 -0.19925 2.43055 0.47225 Η

Н	-2.20495 1.87282 5.63209
Н	-2.28113 4.34427 5.69399
Н	-1.5414 5.67143 3.71997
Н	-0.72677 4.52727 1.68469
С	3.7938 -0.65438 -0.25469
Н	3.75625 -0.13957 -1.22054
Н	3.30083 -0.03427 0.49811
Н	4.84056 -0.7926 0.0353
0	3.77202 -2.79007 -1.33478
0	-0.3493 -3.03873 -1.41762
0	1.8062 -3.62629 -3.21737
С	-1.22317 -4.15574 -1.45807
Н	-1.17055 -4.70756 -0.50552
Н	-2.22598 -3.71595 -1.51562
С	0.54208 -3.63307 -3.96712
Н	0.86415 -3.55662 -5.00609
Н	-0.00831 -2.7332 -3.70008
С	-0.90847 -7.07339 -4.6547
С	-0.19693 -5.88098 -4.76167
С	-0.25989 -4.89595 -3.76289
С	-1.04301 -5.13681 -2.61492
С	-1.74447 -6.34602 -2.5134
С	-1.68978 -7.30558 -3.52209
Н	-0.84802 -7.81562 -5.44522
Н	0.42666 -5.70048 -5.63343
Н	-2.3463 -6.53607 -1.62635
Н	-2.24728 -8.2325 -3.41849
Н	3.38985 -4.63877 -0.47799
Ι	2.87591 -0.43034 -4.58371
Zn	3.69396 -2.97929 -4.14799
Ι	3.95614 -4.74609 -6.23012
0	4.01712 -4.73614 -2.44791
С	5.30206 -5.23358 -2.05053
Н	5.76254 -5.63205 -2.95475
Н	5.92317 -4.43674 -1.63179
Н	5.17553 -6.03828 -1.31652

β-product

Number of Imaginary Frequencies: 0 Electronic energy (Hartree): -1383.79708842 Charge = 0 Multiplicity = 1 Coordinates of Optimized Structure: C 2.53404 -3.08543 -1.6388 C 3.97613 -3.00565 -1.12571

С	3.6076	-0.98207	0.01094
С	2.11913	-0.99134	-0.34364
С	1.63808	-2.40854	-0.6024
Н	2.28051	-4.158	-1.72638
Н	3.71304	-1.50086	0.98708
Н	1.97547	-0.39663	-1.26388
Н	1.70703	-2.9713	0.35272
0	1.40677	-0.43889	0.73726
С	0.47058	0.56209	0.39717
С	-0.56099	0.65533	1.47802
С	-1.27063	-0.51782	1.84106
С	-2.24989	-0.47243	2.79589
С	-2.57757	0.74508	3.44605
С	-1.86297	1.92572	3.09124
С	-0.85375	1.84266	2.09992
С	-3.58668	0.82633	4.43452
С	-3.87609	2.02009	5.04791
С	-3.16521	3.18911	4.69934
С	-2.18162	3.14094	3.74296
Н	0.97579	1.53618	0.25471
Н	-0.01791	0.30067	-0.55759
Н	-1.00951	-1.451	1.34192
Н	-2.79753	-1.37409	3.07292
Н	-0.30342	2.74796	1.83451
Н	-4.13161	-0.08025	4.70022
Н	-4.65519	2.0701	5.80683
Н	-3.40072	4.13046	5.19324
Н	-1.62849	4.04019	3.46949
С	4.14718	0.42264	0.11538
Н	4.0437	0.93493	-0.85089
Н	3.59604	0.98379	0.87835
Н	5.20939	0.40695	0.38308
0	4.3655	-1.66427	-0.96722
0	0.28194	-2.32607	-0.98937
0	2.46497	-2.45272	-2.89053
С	-0.38647	-3.54979	-1.1318
Н	-0.09793	-4.23458	-0.30983
Н	-1.45374	-3.32445	-0.98401
С	1.21547	-2.46567	-3.57511
Н	1.47356	-2.21643	-4.61262
Н	0.56943	-1.66413	-3.19423
С	-0.05799	-5.82171	-4.78735
С	0.57129	-4.58749	-4.70605
С	0.49751	-3.79078	-3.55896

C	-0.2182 -4.27503 -2.4523
С	-0.84431 -5.52054 -2.54041
С	-0.77605 -6.29087 -3.69239
Н	0.01158 -6.41362 -5.69806
Н	1.13993 -4.21595 -5.55949
Н	-1.39932 -5.89041 -1.67562
Н	-1.27635 -7.25699 -3.73264
Н	3.98947 -3.50838 -0.13635
0	4.90837 -3.68599 -1.87455
С	5.20141 -3.19769 -3.17194
Н	6.18967 -3.59373 -3.4276
Н	4.4656 -3.54533 -3.90813
Н	5.23331 -2.10266 -3.19027

ΙΜ2β

Number of Imaginary Frequencies: 0 Electronic energy (Hartree): -3106.22026149 Charge = 0 Multiplicity = 1 Coordinates of Optimized Structure: С 2.86104 -2.90362 -1.80808 С 4.28754 -2.46994 -1.46843 С 3.62223 -1.4127 0.60435 С 2.32161 -1.1031 -0.12533 С 1.82009 -2.36948 -0.78963 Η 5.02658 -3.15989 -1.88033 Η 2.94291 -3.99849 -1.71201 Η 3.35132 -2.02221 1.47993 2.47593 -0.32101 -0.89128 Η 1.69154 -3.12134 0.01334 Η 0 1.42337 -0.66478 0.85835 С 0.6041 0.42311 0.46094 С -0.52469 0.5753 1.43171 С -1.2254 -0.57538 1.87167 С -2.30388 -0.45977 2.70719 С -2.75183 0.81079 3.14698 С -2.04982 1.97229 2.71157 С -0.932 1.81591 1.85613 С -3.86791 0.96425 4.0035 С -4.27366 2.21019 4.4114 С -3.57715 3.36124 3.98141 С -2.49044 3.24353 3.15158 Η 1.20412 1.35052 0.41274 Η 0.21073 0.23035 -0.55047 -0.87381 -1.55343 1.54586 Η

Н	-2.83849 -1.34747 3.04713
Н	-0.39318 2.70871 1.53146
Н	-4.40111 0.07145 4.33184
Н	-5.13455 2.3159 5.06931
Н	-3.90763 4.34455 4.31178
Н	-1.9493 4.12894 2.81655
С	4.37384 -0.18333 1.05522
Н	4.66328 0.4503 0.20771
Н	3.72536 0.40102 1.7191
Н	5.2783 -0.46299 1.60597
0	4.50572 -2.26508 -0.16797
0	0.58725 -2.10858 -1.40504
0	2.49109 -2.59955 -3.13291
С	-0.35443 -3.16275 -1.35019
Н	-0.73461 -3.27576 -0.31913
Н	-1.19537 -2.81639 -1.96794
С	1.4166 -3.39144 -3.73106
Н	1.79964 -3.71423 -4.7105
Н	0.58603 -2.69522 -3.89553
С	1.12493 -6.99862 -2.6328
С	1.48877 -5.85093 -3.32819
С	1.0027 -4.59897 -2.9503
С	0.1613 -4.49441 -1.82962
С	-0.18612 -5.64912 -1.13235
С	0.27744 -6.89751 -1.53624
Н	1.51346 -7.96603 -2.94436
Н	2.17467 -5.91965 -4.17323
Н	-0.82844 -5.56675 -0.25476
Н	-0.00812 -7.78794 -0.979
Ι	5.00817 -0.57695 -2.71266
0	4.5827 -4.52621 -3.61483
С	4.69627 -4.44795 -4.8342
С	5.09867 -5.75587 -5.60899
Cl	5.55263 -7.04742 -4.49083
Cl	6.45292 -5.43789 -6.73434
Cl	3.65731 -6.28284 -6.5609
Zn	3.58958 -1.77889 -4.81498
Ν	4.44917 -3.37902 -5.58254
Н	4.59508 -3.49369 -6.58106
Ι	2.12795 -0.11336 -6.12906

ΙΜ3β

Number of Imaginary Frequencies: 0 Electronic energy (Hartree): -3221.97759374

Supporting Information

Charge = 0 Multiplicity = 1 Coordinates of Optimized Structure:

С	3.12339 -2.67498 -1.71605
С	4.52181 -2.11233 -1.75453
С	4.15377 -1.17631 0.44636
С	2.8108 -0.72378 -0.11225
С	2.11931 -1.8522 -0.86341
Н	5.22528 -2.72128 -2.32742
Н	3.30785 -3.6568 -1.23884
Н	3.96762 -1.98007 1.17821
Н	2.97013 0.12357 -0.80085
Н	1.70726 -2.52302 -0.08782
0	2.03812 -0.32993 0.99133
С	1.12349 0.72973 0.75539
С	-0.17757 0.46909 1.45443
С	-0.71232 -0.84252 1.49725
С	-1.93577 -1.0792 2.06757
С	-2.7015 -0.0231 2.62065
С	-2.16719 1.29727 2.58659
С	-0.89484 1.50511 2.0015
С	-3.97135 -0.23489 3.20815
С	-4.68376 0.81226 3.73676
С	-4.15435 2.12138 3.70374
С	-2.92389 2.35672 3.14295
Н	1.56074 1.68111 1.10458
Н	0.94432 0.8238 -0.32576
Н	-0.1261 -1.66507 1.08735
Н	-2.3381 -2.0928 2.11353
Н	-0.48735 2.5185 1.98528
Н	-4.37408 -1.24805 3.23177
Н	-5.66105 0.63842 4.18398
Н	-4.72768 2.94486 4.1261
Н	-2.51042 3.3653 3.11366
С	4.93123 -0.05008 1.07826
Н	5.11771 0.74152 0.33968
Н	4.35915 0.37095 1.9113
Н	5.89582 -0.409 1.4529
0	5.0127 -1.75399 -0.57402
0	1.1033 -1.27282 -1.6247
0	2.6187 -2.92241 -3.01403
С	0.04318 -2.09689 -2.1325
Н	-0.89149 -1.59565 -1.8463
Н	0.10539 -2.06908 -3.23039
С	1.92928 -4.18116 -3.1701

Н	2.67825 -4.98213 -3.23309
Н	1.42643 -4.09218 -4.1454
С	0.02331 -6.09071 -0.52814
С	0.94814 -5.74548 -1.50865
С	0.94577 -4.47182 -2.07543
С	0.02388 -3.51004 -1.62313
С	-0.89024 -3.86882 -0.63355
С	-0.90379 -5.15155 -0.09355
Н	0.03628 -7.09059 -0.09859
Н	1.69757 -6.46659 -1.8349
Н	-1.60432 -3.12113 -0.28507
Н	-1.63023 -5.41044 0.67471
Ι	4.60832 -0.23808 -3.27799
0	5.18685 -4.04948 -3.96551
С	4.89842 -4.16114 -5.16385
С	5.44898 -5.44383 -5.87332
Cl	7.07353 -5.83447 -5.2802
Cl	5.49806 -5.3146 -7.65555
Cl	4.31269 -6.76325 -5.41488
Zn	3.07096 -1.9445 -4.88334
Ν	4.10357 -3.3543 -5.83543
Н	3.9775 -3.56419 -6.8206
Ι	1.00179 -0.87536 -5.99214
0	4.51168 -5.50659 -1.72902
С	5.60318 -5.78466 -0.88897
Н	5.21043 -6.20814 0.04239
Н	6.29537 -6.51799 -1.33115
Н	6.18041 -4.87934 -0.63288
Н	4.86587 -5.19091 -2.58403

Rha TSα

Number of Imaginary Frequencies: 1 (-182.29 cm⁻¹) Electronic energy (Hartree): -3221.97493435 Charge = 0 Multiplicity = 1 Coordinates of Optimized Structure: С 2.7304 -3.17663 -1.80277 С 4.10749 -2.69762 -1.41189 С 3.29679 -1.6673 0.62933 С $2.03275 \ -1.32228 \ -0.17206$ С 1.57417 -2.57262 -0.9231 Η 4.89855 -2.69537 -2.15365 Η 2.7598 -4.25823 -1.63114 Η 3.10664 -2.53198 1.27546 2.26927 -0.51926 -0.88463 Η

Н	1.30662 -3.31761 -0.15974
0	1.06556 -0.91661 0.774
С	0.21631 0.16356 0.34162
С	-0.74848 0.49774 1.44925
С	-1.50596 -0.53429 2.06983
С	-2.41984 -0.241 3.05349
С	-2.64081 1.09986 3.4732
С	-1.88271 2.14511 2.853
С	-0.93797 1.80402 1.84746
С	-3.58135 1.43853 4.48207
С	-3.76616 2.74982 4.8615
С	-3.01632 3.7837 4.24844
С	-2.0959 3.48715 3.26764
Н	0.82944 1.04002 0.09037
Н	-0.3147 -0.14556 -0.56707
Н	-1.34115 -1.56342 1.76431
Н	-2.99142 -1.03708 3.52524
Н	-0.35996 2.60251 1.3862
Н	-4.15576 0.64296 4.95099
Н	-4.48948 2.99672 5.63384
Н	-3.17143 4.81427 4.55574
Н	-1.51988 4.27925 2.79501
С	3.88449 -0.51332 1.41532
Н	4.13836 0.31551 0.74762
Н	3.14396 -0.1745 2.14363
Н	4.78782 -0.82899 1.94514
0	4.36213 -2.08724 -0.31559
0	0.45601 -2.26766 -1.7229
0	2.57421 -2.93719 -3.19149
С	-0.54997 -3.28259 -1.79316
Н	-1.09367 -3.32952 -0.8384
Н	-1.24734 -2.91365 -2.55352
С	1.54329 -3.72185 -3.90212
Н	2.04793 -4.09387 -4.7957
Н	0.7854 -3.00091 -4.21
С	0.80262 -7.27593 -2.77472
С	1.36388 -6.17672 -3.42574
С	0.94783 -4.87083 -3.13328
С	-0.04424 -4.66861 -2.14837
С	-0.58855 -5.77694 -1.49201
С	-0.18051 -7.07458 -1.80683
Н	1.13421 -8.28029 -3.02126
Н	2.13376 -6.32912 -4.17795
Н	-1.34629 -5.62207 -0.72728

Н	-0.62281 -7.92138 -1.28966
Ι	4.67375 0.27956 -3.12684
0	5.61204 -4.0416 -3.52552
С	5.4616 -4.0472 -4.76605
С	6.14076 -5.27849 -5.49094
Cl	7.86732 -5.35537 -5.01354
Cl	6.03961 -5.23625 -7.28913
Cl	5.29167 -6.77369 -4.9104
Zn	3.67683 -1.59453 -4.77665
N	4.79791 -3.16163 -5.4718
Н	4.81042 -3.31758 -6.47478
Ι	1.82029 -0.97734 -6.5852
0	4.94092 -4.71323 -1.07228
С	6.13462 -4.71018 -0.28415
Н	5.86666 -4.38056 0.72254
Н	6.54908 -5.72352 -0.22866
Н	6.88919 -4.03285 -0.70043
Н	5.21248 -4.78776 -2.0232

ΙΜ5α

Number of Imaginary Frequencies: 0 Electronic energy (Hartree): -3222.01214127 Charge = 0 Multiplicity = 1Coordinates of Optimized Structure: С 2.90975 -3.60969 -0.83767 С 4.41203 -3.43749 -0.80303 С 4.46239 -2.42711 1.33276 С 3.24121 -1.66439 0.79437 С 2.23266 -2.60118 0.13417 4.71354 -2.44465 -1.20079 Η 2.70236 -4.64937 -0.54974 Η Η 4.17271 -2.82756 2.31556 Η 3.57317 -0.93067 0.04031 Η 1.70457 - 3.13838 0.938020 2.69718 -0.98546 1.897 С 2.10348 0.28263 1.64966С 0.60399 0.21618 1.6121С -0.07656 -0.4698 2.65006 С -1.44534 -0.55225 2.65521 С -2.21344 0.04228 1.62177 С -1.53457 0.72897 0.57196 С -0.11922 0.79823 0.59959 С -3.62645 -0.03626 1.5895 С -4.3355 0.52959 0.55957

С	-3.66219 1.19639 -0.48778
С	-2.29322 1.29445 -0.48173
Н	2.42883 0.9286 2.47943
Н	2.49635 0.71946 0.71694
Н	0.5102 -0.93776 3.44038
Н	-1.966 -1.07571 3.45856
Н	0.39686 1.30194 -0.22226
Н	-4.1403 -0.55572 2.39938
Н	-5.42208 0.46219 0.5436
Н	-4.23415 1.63184 -1.3051
Н	-1.7657 1.79596 -1.29343
С	5.66367 -1.51751 1.46731
Н	5.99379 -1.16466 0.47937
Н	5.40706 -0.64034 2.07413
Н	6.49661 -2.04577 1.94479
0	4.78854 -3.57177 0.53943
0	1.29943 -1.83253 -0.61211
0	2.45902 -3.38978 -2.17509
С	-0.05575 -2.28733 -0.50195
Н	-0.45081 -1.92457 0.45705
Н	-0.59814 -1.76624 -1.30342
С	1.28111 -4.12677 -2.61025
Н	1.64361 -4.98112 -3.19984
Н	0.75642 -3.44877 -3.29995
С	-0.80524 -6.5333 -0.58863
С	0.08437 -5.98703 -1.50627
С	0.36274 -4.61908 -1.52981
С	-0.25195 -3.77861 -0.58035
С	-1.11931 -4.34656 0.35331
С	-1.41186 -5.70584 0.34651
Н	-1.01113 -7.60163 -0.59953
Н	0.57334 -6.63656 -2.2328
Н	-1.5788 -3.69555 1.09876
Н	-2.1023 -6.11643 1.08081
Ι	4.32925 0.22734 -2.45607
0	4.28619 -3.74014 -4.26772
С	3.71321 -2.87757 -5.07376
С	4.3795 -2.93805 -6.4592
Cl	6.08392 -2.46316 -6.25787
Cl	3.59365 -1.83884 -7.61509
Cl	4.27054 -4.60914 -7.07409
Zn	2.13431 -1.22178 -2.79249
Ν	2.76054 -2.10032 -4.74075
Н	2.43705 -1.50088 -5.50039

Supporting Information

Ι	-0.14098 -0.22366 -3.68332
0	4.97595 -4.43298 -1.57179
С	6.34932 -4.20592 -1.84143
Н	6.93401 -4.2067 -0.91247
Н	6.68342 -5.01732 -2.49278
Н	6.48537 -3.24385 -2.36281
Н	3.86795 -3.72664 -3.37356

IM6a

Number of Imaginary Frequencies: 0 Electronic energy (Hartree):-1633.97136819 Charge = 0 Multiplicity = 1Coordinates of Optimized Structure: С 1.95581 -3.67701 -1.9216 С 3.46026 -3.62771 -1.67249 С 3.30238 -1.4759 -0.66219 С 1.77963 -1.46005 -0.78069 С 1.2112 -2.86942 -0.86471 Η 3.98957 -4.13524 -2.50175 Η 1.62049 -4.72633 -1.93505 Η 3.57712 -1.95281 0.28984 1.50551 -0.921 -1.70432 Η Η 1.33757 -3.36157 0.12091 0 1.26471 -0.80555 0.3505 С 0.36502 0.25186 0.06123 С -0.41814 0.5623 1.29744 С -1.0981 -0.49601 1.95187 С -1.84862 -0.25704 3.07083 С -1.9669 1.05293 3.60146 С -1.28674 2.12127 2.9485 С -0.51321 1.83728 1.79555 С -2.73498 1.33359 4.75614 С -2.82764 2.61302 5.24516 С -2.1533 3.67159 4.59881 С -1.40036 3.42945 3.47681 0.91407 1.14194 -0.29709 Η Η -0.31486 -0.06017 -0.75014 Η -0.99908 -1.50169 1.54351 Η -2.37005 -1.07212 3.57427 Η 0.0132 2.65685 1.3017 Η -3.25291 0.51138 5.25135 Η -3.42208 2.81703 6.13426 Η -2.23366 4.68257 4.99493 -0.87772 4.24313 2.9727 Η

С	3.91439 -0.10212 -0.74543
Н	3.64589 0.39947 -1.686
Н	3.54673 0.50495 0.08971
Н	5.00722 -0.16713 -0.67449
0	3.8256 -4.16296 -0.44324
0	3.86811 -2.28345 -1.72746
0	-0.16261 -2.73468 -1.15934
0	1.80209 -3.11252 -3.20826
С	-0.91482 -3.91911 -1.1574
Н	-0.62218 -4.54788 -0.29282
Н	-1.95345 -3.60678 -0.9741
С	0.49317 -3.12798 -3.82356
Н	0.70689 -2.98361 -4.88975
Н	-0.07409 -2.26175 -3.46582
С	-0.93154 -6.54547 -4.58628
С	-0.27037 -5.32907 -4.68304
С	-0.24023 -4.42213 -3.61838
С	-0.87212 -4.7714 -2.41261
С	-1.52732 -6.00129 -2.32416
С	-1.56938 -6.88127 -3.39687
Н	-0.9455 -7.22775 -5.43379
Н	0.24223 -5.06131 -5.60733
Н	-2.01681 -6.27004 -1.38571
Н	-2.09073 -7.83218 -3.29997
С	3.74607 -5.56634 -0.3786
Н	4.2889 -5.87621 0.51869
Н	2.70576 -5.92117 -0.29931
Н	4.21124 -6.0348 -1.26088
Ι	1.99991 0.39389 -4.40488
Zn	3.46698 -1.78469 -3.98859
Ι	4.23336 -3.6414 -5.73406

α -product

Number of Imaginary Frequencies: 0 Electronic energy (Hartree): -1383.80526067 Charge = 0 Multiplicity = 1 Coordinates of Optimized Structure: С 1.67925 -3.92656 -2.06202 С 3.15689 -3.97852 -1.68373 С 3.03155 -1.82931 -0.58317 С 1.50655 -1.73368 -0.79535 С 0.87541 -3.11638 -1.03214 Η 3.74091 -4.46064 -2.47715 1.30256 -4.95065 -2.14034 Η

Н	3.21178 -2.37237 0.34933
Н	1.30824 -1.10627 -1.67388
Н	0.8674 -3.66782 -0.07975
0	0.98482 -1.13062 0.38002
С	-0.0803 -0.19717 0.15941
С	-0.53749 0.34956 1.48829
С	-0.8029 -0.53833 2.56765
С	-1.26705 -0.06358 3.77111
С	-1.5014 1.32498 3.97098
С	-1.2351 2.22627 2.88987
С	-0.74638 1.70117 1.66279
С	-1.98619 1.84891 5.19896
С	-2.19919 3.20107 5.35432
С	-1.93499 4.0928 4.28567
С	-1.46337 3.61543 3.08272
Н	0.26281 0.61921 -0.4922
Н	-0.90578 -0.70771 -0.35309
Н	-0.61894 -1.59925 2.42857
Н	-1.46381 -0.75011 4.59165
Н	-0.53809 2.39251 0.84831
Н	-2.18788 1.16183 6.01767
Н	-2.57132 3.58937 6.2986
Н	-2.10685 5.15747 4.4193
Н	-1.26015 4.2981 2.26078
С	3.71524 -0.47448 -0.52733
Н	3.54965 0.09728 -1.44592
Н	3.30068 0.0902 0.31195
Н	4.79164 -0.597 -0.3727
0	3.297 -4.63029 -0.46902
0	3.64871 -2.61778 -1.65345
0	-0.45997 -2.87937 -1.46976
0	1.67555 -3.30204 -3.34614
С	-1.31079 -4.00591 -1.58935
Н	-1.19484 -4.66089 -0.71052
Н	-2.3258 -3.59294 -1.54527
С	0.41116 -3.23307 -4.08013
Н	0.72523 -3.0633 -5.1108
Н	-0.13966 -2.35941 -3.73463
С	-1.12247 -6.55629 -5.09773
С	-0.38827 -5.37308 -5.08892
С	-0.40897 -4.49971 -3.9896
С	-1.17703 -4.84861 -2.85862
С	-1.90382 -6.04715 -2.87538
С	-1.88823 -6.89403 -3.98124

Н	-1.09272 -7.20948 -5.96503
Н	0.21838 -5.10912 -5.95131
Н	-2.49362 -6.31973 -2.00178
Н	-2.46405 -7.81548 -3.96656
С	4.64067 -5.00702 -0.16217
Н	4.60554 -5.51307 0.8042
Н	5.03266 -5.69421 -0.92346
Н	5.2945 -4.12997 -0.0976

	NaphO 707 2d	H CCI ₃ + BnO BnO	BnO _{OMe}	4A MS	e dd	no _{OMe}	
Entry	Promotor	Time	[M]	Solvent	Temp.	Yield (%) ^b	α : β^{c}
1	ZnI_2	12 h	0.01	Et ₂ O	r.t.	95	1:6
2	ZnBr ₂	12 h	0.01	Et ₂ O	r.t.	87	1:3
3	$ZnCl_2$	12 h	0.01	Et_2O	r.t.	94	1:2
4	Zn(OTf) ₂	12 h	0.01	Et ₂ O	r.t.	73	1:1
5	Cu(OTf) ₂	12 h	0.01	Et ₂ O	r.t.	63	1:1
6	FeCl ₃	12 h	0.01	Et ₂ O	r.t.	40	1:1
7	AuCl ₃	12 h	0.01	Et ₂ O	r.t.	51	1:1
8	TMSOTf	12 h	0.01	Et ₂ O	r.t.	47	1:1
9	$B(C_6F_5)_3$	12 h	0.01	Et_2O	r.t.	43	1:3
10	TfOH	12 h	0.01	Et_2O	r.t.	65	1:1
11	ZnI_2	12 h	0.01	Toluene	r.t.	64	3:1
12	ZnI_2	12 h	0.01	DCM	r.t.	98	2:1
13	ZnI_2	12 h	0.01	MeCN	r.t.	89	3:1
14	ZnI_2	12 h	0.01	THF	r.t.	64	1:1
15	ZnI_2	12 h	0.01	1,4-dioxane	r.t.	74	1:3
16	ZnI_2	12 h	0.01	Et ₂ O	– 20 °C	54	1:3
17	ZnI_2	12 h	0.01	Et ₂ O	−5 °C	89	1:10
18	ZnI_2	12 h	0.01	Et ₂ O	0 °C	72	1:10
19	ZnI_2	20 min	0.01	Et ₂ O	60 °C	65	1:5
20	ZnI_2	24 h	0.01	Et ₂ O	−5 °C	91	1:11
21	ZnI_2	24 h	0.005	Et ₂ O	−5 °C	61	1:8
22	ZnI_2	24 h	0.02	Et ₂ O	−5 °C	73	1:12
23	ZnI_2	24 h	0.08	Et ₂ O	- 5 °C	55	1:10

 Table S1: Optimization of Glycosylation under Various Conditions.

^aReaction conditions: donor **2d** (1.5 equiv.), acceptor **3a** (1.0 equiv.), promotor (0.5 equiv.), MS 4Å (100 mg/mL); ^bCombined yield of the anomeric mixture of the corresponding glycoside; ^cDetermined by the integration ratio obtained from ¹H-NMR of crude mixture.

Supporting Information

General experimental

All reactions sensitive to air and/or moisture were carried out under a nitrogen or argon atmosphere with anhydrous solvents. Substrates of glycosylations were dried by azeotropic removal with toluene. Column chromatography was performed on silica gel, 300–400 mesh). Reactions were monitored by thin-layer chromatography (TLC) on glassplates coated with silica gel 60 F254, 0.2 mm thickness and compounds were detected by examination under UV light and by charring with 10% sulfuric acid in MeOH. Solvents were removed under reduced pressure at <40 °C. CH₂Cl₂ was freshly distilled from calcium hydride under nitrogen prior to use. Molecular sieves (4 Å) were activated in an oil bath at 170 °C for 2–3 h under reduced pressure prior to application. All experiments were performed using standard Schlenk techniques under an argon atmosphere. The ¹H NMR and ¹³C NMR spectra were recorded on Bruker spectrometers at 400, 500 or 600 MHz. The ¹H NMR spectra were referenced to CDCl₃ at 7.26 ppm, MeOD at 3.31 ppm and C₆D₆ at 7.15 ppm, and the ¹³C NMR spectra were referenced to CDCl₃ at 77.0 ppm, MeOD at 47.67 ppm, and C₆D₆ at 128.01 ppm or a native scale. Assignments were made by standard 2D experiments. Abbreviations are: s, singlet; d, doublet; t, triplet; q, quartet; brs, broad singlet. Optical rotations were measured with 'Insmark IP-digi300/1' polarimeter. High Resolution Mass Spectra (HRMS) were recorded on Shimadzu (LCMS-IT-TOF). All other reagents were purchased from Adamas-Beta Co. or Bidepharm Co.

Synthetic procedures.

Scheme S1. Synthesis of rhamnosyltrichloroacetimidate donor 2a.

Scheme S4. Synthesis of rhamnosyltrichloroacetimidate donor 2d.

Scheme S5. Synthesis of rhamnosyltrichloroacetimidate donor 2e.

Scheme S6. Synthesis of rhamnosyltrichloroacetimidate donor 2f.

Scheme S7. Synthesis of rhamnosyltrichloroacetimidate donor 2g.

Scheme S8. Synthesis of rhamnosyltrichloroacetimidate donor 2h.

Scheme S9. Synthesis of rhamnosyltrichloroacetimidate donor 2i.

Tolyl 2,3-O-dibenzyl-4-O-(2-naphthylmethyl)-1-thio-α-L-rhamnopyranoside (S2):

To a magnetically stirred solution of $S1^8$ (400 mg, 1.0 mmol) in anhydrous DMF (5 mL) was added sodium hydride (60% dispersion in oil, 270 mg, 4.0 mmol, 4.0 equiv.) in small portions at 0 °C. After 15 min, benzyl bromide (360 µL, 3.0 mmol, 3.0 equiv.) was added dropwise for 1 min and stirred at room temperature. Complete consumption of starting materials was observed after 2 h, followed by

dropwise addition of MeOH and ice-water to quench excess reagents. The reaction mixture was extracted with DCM (2 × 30 mL), washed with water (30 mL) and brine (30 mL), dried over Na₂SO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 100:1) afforded the title compound **S2** (573.5 mg, 98% yield) as a coloreless oil. TLC (hexane–EtOAc, 5:1): $R_f = 0.72$; $[\alpha]_D^{21} = -65.1$ (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.79–7.04 (m, 21H, ArH), 5.45 (d, 1H, J = 1.6 Hz, C1^{Rha}-H), 5.10 (d, 1H, J = 11.1 Hz, O<u>CH₂Ph</u>), 4.80 (d, 1H, J = 11.2 Hz, O<u>CH₂Ph</u>), 4.70 (d, 1H, J = 12.4 Hz, O<u>CH₂Ph</u>), 4.62 (d, 1H, J = 12.3 Hz, O<u>CH₂Ph</u>), 4.59 (s, 2H, O<u>CH₂Ph</u>), 4.23–4.19 (m, 1H, C5^{Rha}-H), 4.00 (dd, 1H, J = 1.7, 3.1 Hz, C2^{Rha}-H), 3.89 (dd, 1H, J = 3.0, 9.3 Hz, C3^{Rha}-H), 3.75 (t, 1H, J = 9.3 Hz, C4^{Rha}-H), 2.27 (s, 3H, <u>Me</u> of Tol), 1.37 (d, 3H, J = 6.2 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 138.5, 138.1, 137.7, 136.3, 133.5, 133.2, 132.2, 131.0, 130.0, 128.6, 128.2, 128.2, 128.1, 128.0, 127.9, 127.8, 126.7, 126.3, 126.2, 126.0, 86.3 (C1^{Rha}), 80.8, 80.2, 77.6, 77.3, 77.0, 76.7, 75.6, 72.3, 72.2, 69.5, 21.3, 18.2; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₃₈H₃₈O₄SNa, 613.2389; found, 613.2389.

2,3-O-dibenzyl-4-O-(2-naphthylmethyl)-α-L-rhamnopyranosyltrichloroacetimidate (2a):

To a magnetically stirred solution of **S2** (573.5 mg, 1.0 mmol) in acetone–H₂O (20:1, 21 mL) was added NBS (531 mg, 3.0 mmol, 3 equiv.) in small portions at 0 °C. Starting materials were consumed at the same temperature after 2 h. The reaction mixture was dissolved in CH₂Cl₂ (50 mL), washed with saturated aq. Na₂S₂O₃ (20 mL) and brine (20 mL), dried over Na₂SO₄, and concentrated in vacuo. The following purification by flash chromatography on silica gel (eluent:

hexane–EtOAc, 5:1) afforded the mixture of isomers **S3** (449 mg, 96% yield) as a white solid. TLC (hexane–EtOAc, 4:1): $R_f = 0.27$. To a magnetically stirred solution of **S3** (136 mg, 0.29 mmol) and CCl₃CN (234 μL, 2.32 mmol, 8 equiv.) in anhydrous CH₂Cl₂ (5.8 mL), DBU (17 μL, 0.12 mmol, 0.4 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (eluent: hexane–EtOAc, 20:1) to afford compound **2a** (50 mg, 28% yield) as a white powder. TLC (hexane–EtOAc, 4:1): $R_f = 0.71$; $[\alpha]_D^{21} = -41.5$ (c = 1.0, CHCl₃); ¹H NMR (C₆D₆, 400 MHz): δ 8.44 (s, 1H, N<u>H</u>), 7.72–7.06 (m, 17H, ArH), 6.66 (d, 1H, J = 2.0 Hz, Cl^{Rha}-H), 5.09 (d, 1H, J = 11.4 Hz, O<u>CH₂Ph</u>), 4.67 (d, 1H, J = 11.5 Hz, O<u>CH₂Ph</u>), 4.61 (s, 2H, O<u>CH₂Ph</u>), 4.50 (s, 2H, O<u>CH₂Ph</u>), 4.28–4.22 (m, 1H, C5^{Rha}-H), 4.12 (dd, 1H, J = 3.1, 9.4 Hz, C3^{Rha}-H), 4.00 (t, 1H, J = 9.5 Hz, C4^{Rha}-H), 4.00–3.99 (m, 1H, C2^{Rha}-H), 1.39 (d, 3H, J = 6.3 Hz, C6^{Rha}-H); ¹³C NMR (C₆D₆, 100 MHz): δ 160.4, 138.5, 138.3, 136.4, 133.6, 133.1, 128.3, 127.9, 127.8, 127.7, 127.5, 126.5, 126.1, 125.9,

125.7, 96.5 (C1^{Rha}), 91.3, 80.0, 79.4, 75.3, 74.3, 72.8, 72.0, 71.5, 31.3, 30.1, 29.9, 18.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₃H₃₂Cl₃NO₅Na, 650.1244; found, 650.1240.

Tolyl 2,3-O-(phenylmethylene)-4-O-(2-naphthylmethyl)-1-thio-α/β-L-rhamnopyranoside (S4α,β):

S1⁸ (500 mg, 1.26 mmol) was dissolved in anhydrous acetonitrile (10 mL). After 10 min, benzaldehyde dimethyl acetal (568 μ L, 3.79 mmol, 3.0 equiv.) and *p*-Toluenesulfonic acid monohydrate (12 mg, 0.06 mmol, 0.05 equiv.) was added and stirred at room temperature overnight. The reaction mixture was concentrated under vacuum. The reaction mixture was dissolved in EtOAc (40 mL), washed with saturated aqueous NaHCO₃ (20 mL) and brine (20 mL), dried over Na₂SO₄,

and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 100:1) afforded the title compound **S4a**,**\beta** (601.7 mg, 98% yield) as a coloreless oil. TLC (hexane–EtOAc, 5:1): $R_f = 0.73$; α : $\beta = 0.6:0.4$; ¹H NMR (C₆D₆, 400 MHz): δ 7.76–6.81 (m, 16H, ArH), 6.01 (s, 1H, C1^{Rhaβ}-H_and ArCH), 5.93 (s, 0.4H, ArCH), 5.71 (s, 0.4H, C1^{Rhaα}-H), 5.06 (d, 0.4H, J = 11.6 Hz, OCH₂Ph), 5.03 (d, 0.6H, J = 11.7 Hz, OCH₂Ph), 4.78 (d, 0.4H, J = 12.0 Hz, OCH₂Ph), 4.70 (d, 0.6H, J = 12.1 Hz, OCH₂Ph), 4.57 (dd, 0.4H, J = 5.4, 7.2 Hz, C3^{Rhaβ}-H), 4.51–4.39 (m, 2H, C5^{Rhaβ}-H, C5^{Rhaα}-H, C3^{Rhaα}-H and C2^{Rhaβ}-H), 4.25 (dd, 0.6H, J = 0.8, 6.3 Hz, C3^{Rhaα}-H), 3.57–3.49 (m, 1H, C4^{Rhaα}-H and C4^{Rhaβ}-H), 1.98 (s, 3H, Me of Tol), 1.39 (d, 1.2H, J = 6.2 Hz, C6^{Rhaβ}-H), 1.29 (d, 1.8H, J = 6.2 Hz, C6^{Rhaα}-H); ¹³C NMR (C₆D₆, 100 MHz): δ 139.2, 137.8, 137.5, 136.0, 135.9, 133.5, 133.3, 133.2, 132.7, 132.7, 130.0, 129.9, 129.8, 129.8, 129.1, 129.0, 128.3, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 126.9, 126.8, 126.8, 126.5, 126.1, 126.0, 125.8, 125.8, 125.7, 103.9 (C1^{Rhaβ}), 103.1 (C1^{Rhaα}), 84.7, 84.1, 81.7, 79.5, 79.0, 78.1, 78.1, 76.5, 72.7, 72.4, 66.2, 65.9, 20.6, 17.8, 17.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₁H₃₀O₄SNa, 521.1762; found, 521.1769.

2,3-O-(phenylmethylene)-4-O-(2-naphthylmethyl)-α-L-rhamnopyranosyltrichloroacetimidate (2b):

To a magnetically stirred solution of $S4\alpha$, β (400 mg, 0.82 mmol) in acetone–H₂O (20:1, 15 mL) was added NBS (440 mg, 2.5 mmol, 3 equiv.) in small portions at 0 °C. Starting materials were consumed at the same temperature after 2 h. The reaction mixture was dissolved in CH₂Cl₂ (50 mL), washed with saturated aq. Na₂S₂O₃ (20 mL) and brine (20 mL), dried over Na₂SO₄, and concentrated in vacuo. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 10:1) afforded the mixture of isomers S5 (223 mg, 71% yield) as a white solid.

TLC (hexane–EtOAc, 4:1): $R_f = 0.35$. To a magnetically stirred solution of **S5** (77 mg, 0.20 mmol) and CCl₃CN (165 µL, 1.63 mmol, 8 equiv.) in anhydrous CH₂Cl₂ (4 mL), DBU (12 µL, 0.08 mmol, 0.4 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (eluent: hexane–EtOAc, 10:1) to afford compound **2b** (100 mg, 94% yield) as a white powder. TLC (hexane–EtOAc, 10:1): $R_f = 0.64$; *exo:endo* = 0.3:0.7; ¹H NMR (C₆D₆, 400 MHz): δ 8.55 (s, 0.3H, N<u>H</u>), 8.51 (s, 0.7H, N<u>H</u>), 7.72–7.12 (m, 11H, ArH), 6.90 (s, 0.3H, Cl^{Rha}-H), 6.83 (s, 0.7H, Cl^{Rha}-H), 5.97 (s, 0.7H, Ar<u>CH</u>), 5.72 (s, 0.3H, Ar<u>CH</u>), 5.03 (d, 0.7H, *J* = 12.2 Hz, O<u>CH₂</u>Ph), 4.99 (d, 0.3H, *J* = 12.9 Hz, O<u>CH₂Ph</u>), 4.75 (d, 0.7H, *J* = 11.9 Hz, O<u>CH₂Ph</u>), 4.65 (d, 0.3H, *J* = 12.0 Hz, O<u>CH₂Ph</u>), 4.60 (dd, 0.7H, *J* = 5.5, 7.3 Hz, C3^{Rha}-H), 4.40 (t, 0.3H, *J* = 6.6 Hz, C4^{Rha}-H), 4.21 (d, 0.7H, *J* = 5.6 Hz, C2^{Rha}-H), 4.19–4.13 (m, 1.3H, C5^{Rha}-H, C5^{Rha}-H and C2^{Rha}-H), 3.52–3.43 (m, 1H, C3^{Rha}-H and C4^{Rha}-H), 1.42 (d, 2.1H, *J* = 6.2 Hz, C6^{Rha}-H), 1.31 (d, 0.9H, *J* = 6.2 Hz, C6^{Rha}-H), 1.32 (d, 0.9H, *J* = 6.2 Hz, C6^{Rha}-H), 1.31 (d, 0.9H, *J* = 6.2 Hz, C6^{Rha}-H), 1.28.3, 128.3, 128.1, 127.9, 127.7, 127.5, 127.0, 126.8, 126.7, 126.6, 126.5, 126.4, 126.1, 126.1, 125.9, 125.7, 104.9, 104.1, 103.1, 95.4 (Cl^{Rha}), 95.0 (Cl^{Rha}), 91.3, 91.2, 80.5, 79.5, 78.0, 77.0, 76.9, 76.6, 74.5, 73.1, 72.8, 72.5, 72.0, 70.7, 67.8, 67.6, 46.3, 31.3, 31.2, 30.1, 29.9, 22.8, 19.9, 17.8, 17.7; HRMS (ESI-TOF) *m*/z: [M + Na]⁺ calcd for C₂₆H₂₄Cl₃NO₅Na, 558.0618; found, 558.0610.

Supporting Information

Tolyl 2,3-O-[1,1,3,3-tetrakis(1-methylethyl)-1,3-disiloxanediyl]-4-O-(2-naphthylmethyl)-1-thio- α -L-rhamnopyranoside (S6):

To a magnetically stirred solution of $S1^8$ (100 mg, 0.25 mmol) in anhydrous DMF (2.5 mL) was added 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane (242 μ L, 0.76 mmol, 3 equiv.) and imidazole (103 mg, 1.52 mmol, 6 equiv.) in small portions. Starting materials were consumed at 50 °C after 30 min. The reaction mixture was quenched by saturated aqueous NaHCO₃ (10 mL) at 0 °C. The reaction mixture was extracted with EtOAc (2 × 20 mL), washed with H₂O (20 mL) and brine (20 mL), dried over Na₂SO₄, and concentrated in vacuo. The following purification by flash

chromatography on silica gel (eluent: hexane–EtOAc, 100:1) afforded compound **S6** (153 mg, 95% yield) as a coloreless oil. TLC (hexane–EtOAc, 50:1): $R_{\rm f} = 0.80$; $[\alpha]_{\rm D}^{21} = -84.5$ (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.81–7.06 (m, 11H, ArH), 5.38 (d, 1H, J = 1.6 Hz, C1^{Rha}-H), 5.15 (d, 1H, J = 11.1 Hz, O<u>CH₂</u>Ph), 4.80 (d, 1H, J = 11.2 Hz, O<u>CH₂</u>Ph), 4.52 (dd, 1H, J = 1.7, 3.2 Hz, C2^{Rha}-H),), 4.40 (dd, 1H, J = 3.1, 9.0 Hz, C3^{Rha}-H), 4.26–4.19 (m, 1H, C5^{Rha}-H), 3.54 (t, 1H, J = 9.3 Hz, C4^{Rha}-H), 2.28 (s, 3H, <u>Me</u> of Tol), 1.33 (d, 3H, J = 6.2 Hz, C6^{Rha}-H), 1.63–1.00 (m, 24H, CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 137.5, 136.3, 133.4, 133.1, 131.9, 130.9, 129.9, 128.2, 128.0, 127.8, 126.7, 126.3, 126.1, 125.9, 88.7 (C1^{Rha}), 81.7, 77.5, 77.2, 76.9, 76.0, 75.4, 74.2, 69.1, 21.2, 18.2, 17.9, 17.7, 17.6, 17.5, 17.4, 17.2, 17.2, 14.6, 13.8, 13.2, 12.8; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₃₆H₅₂O₅SSi₂Na, 675.2972; found, 675.2981.

2,3-*O*-[1,1,3,3-tetrakis(1-methylethyl)-1,3-disiloxanediyl]-4-*O*-(2-naphthylmethyl)-α-L-rhamnopyranosyl-trichloroacetimidate (2c):

To a magnetically stirred solution of **S6** (153 mg, 0.24 mmol) in acetone–H₂O (20:1, 5.7 mL) was added NBS (128 mg, 0.72 mmol, 3 equiv.) in small portions at 0 °C. Starting materials were consumed at the same temperature after 2 h. The reaction mixture was dissolved in CH₂Cl₂ (50 mL), washed with saturated aq. Na₂S₂O₃ (20 mL) and brine (20 mL), dried over Na₂SO₄, and concentrated in vacuo. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 10:1) afforded the mixture of isomers **S7** (102 mg, 80% yield) as a white solid.

TLC (hexane–EtOAc, 10:1): $R_{\rm f} = 0.20$. To a magnetically stirred solution of **S7** (143 mg, 0.27 mmol) and CCl₃CN (218 µL, 2.15 mmol, 8 equiv.) in anhydrous CH₂Cl₂ (5.4 mL), DBU (16 µL, 0.11 mmol, 0.4 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (eluent: hexane–EtOAc, 50:1) to afford compound **2c** (169 mg, 93% yield) as a coloreless oil. TLC (hexane–EtOAc, 10:1): $R_{\rm f} = 0.70$; $[\alpha]_{\rm D}^{21} = -32.8$ (c = 1.0, CHCl₃); ¹H NMR (C₆D₆, 400 MHz): δ 8.16 (s, 1H, N<u>H</u>), 7.65–6.94 (m, 7H, ArH), 6.36 (s, 1H, C1^{Rha}-H), 5.10 (d, 1H, J = 11.4 Hz, O<u>CH₂Ph</u>), 4.65 (d, 1H, J = 11.4 Hz, O<u>CH₂Ph</u>), 4.54–4.50 (m, 2H, C2^{Rha}-H and C3^{Rha}-H), 4.14–4.07 (m, 1H, C5^{Rha}-H), 3.61 (t, 1H, J = 8.9 Hz, C4^{Rha}-H), 1.21 (d, 3H, J = 6.2 Hz, C6^{Rha}-H), 1.05–0.88 (m, 24H, CH₃); ¹³C NMR (C₆D₆, 100 MHz): δ 160.3, 136.5, 133.6, 133.2, 127.9, 127.7, 127.5, 126.5, 126.4, 126.1, 126.0, 126.0, 125.7, 98.9 (C1^{Rha}), 91.2, 81.2, 81.0, 75.9, 75.4, 71.1, 71.0, 46.4, 18.2, 17.5, 17.4, 17.3, 17.3, 17.2, 17.1, 17.0, 14.4, 13.8, 13.0, 12.9, 12.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₁H₄₆Cl₃NO₆Si₂Na, 712.1827; found, 712.1821.

Tolyl 2,3-O-(o-xylylene)-4-O-(2-naphthylmethyl)-1-thio-α-L-rhamnopyranoside (S8):

To a magnetically stirred solution of **S1**⁸ (100 mg, 0.25 mmol) in anhydrous DMF (5 mL) was added sodium hydride (60% dispersion in oil, 50 mg, 1.26 mmol, 5.0 equiv.) in small portions at 0 °C. After 30 min, 1,2-bis(bromomethyl)benzene (67 mg, 0.25 mmol, 1.0 equiv.) was added and stirred at room temperature. Complete consumption of starting materials was observed after 2 h, followed by dropwise addition of MeOH and ice-water to quench excess reagents. The reaction mixture was extracted with DCM (2 × 30 mL), washed with water (30 mL) and brine (30 mL), dried over Na₂SO₄, and

Supporting Information

concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 20:1) afforded the title compound **S8** (96 mg, 76% yield) as a coloreless oil. TLC (hexane–EtOAc, 4:1): $R_f = 0.85$; $[\alpha]_D^{21} = -4.2$ (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.80–6.96 (m, 15H, ArH), 5.45 (d, 1H, J = 1.6 Hz, C1^{Rha}-H), 5.16 (d, 1H, J = 10.9 Hz, O<u>CH₂Ph</u>), 4.87 (d, 1H, J = 12.6 Hz, O<u>CH₂Ph</u>), 4.85 (d, 1H, J = 11.1 Hz, O<u>CH₂Ph</u>), 4.78 (d, 1H, J = 12.5 Hz, O<u>CH₂Ph</u>), 4.76 (d, 1H, J = 12.0 Hz, O<u>CH₂Ph</u>), 4.72 (d, 1H, J = 12.0 Hz, O<u>CH₂Ph</u>), 4.25–4.18 (m, 1H, C5^{Rha}-H), 4.05 (dd, 1H, J = 1.8, 3.1 Hz, C2^{Rha}-H),), 3.97 (dd, 1H, J = 3.1, 9.3 Hz, C3^{Rha}-H), 3.81 (t, 1H, J = 9.4 Hz, C4^{Rha}-H), 2.26 (s, 3H, <u>Me</u> of Tol), 1.40 (d, 3H, J = 6.2 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.6, 136.2, 135.9, 135.5, 133.5, 133.4, 133.3, 133.2, 133.1, 132.1, 130.8, 129.9, 128.4, 128.3, 128.2, 128.1, 128.1, 127.8, 127.8, 127.0, 126.7, 126.6, 126.2, 126.2, 126.2, 126.1, 126.1, 126.0, 125.9, 86.4 (C1^{Rha}), 80.8, 80.2, 77.5, 77.2, 76.9, 76.6, 75.6, 72.4, 72.3, 69.6, 21.2, 18.2; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₂H₃₂O₄SNa, 535.1919; found, 535.1912.

2,3-O-(o-xylylene)-4-O-(2-naphthylmethyl)-a-L-rhamnopyranosyltrichloroacetimidate (2d):

To a magnetically stirred solution of **S8** (139 mg, 0.28 mmol) in acetone–H₂O (20:1, 5.2 mL) was added NBS (149 mg, 0.84 mmol, 3 equiv.) in small portions at 0 °C. Starting materials were consumed at the same temperature after 2 h. The reaction mixture was dissolved in CH₂Cl₂ (50 mL), washed with saturated aq. Na₂S₂O₃ (20 mL) and brine (20 mL), dried over Na₂SO₄, and concentrated in vacuo. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 10:1) afforded the mixture of isomers **S9** (66 mg, 60% yield) as a white solid. TLC (hexane–EtOAc,

4:1): $R_{\rm f} = 0.20$. To a magnetically stirred solution of **S9** (400 mg, 1.02 mmol) and CCl₃CN (824 µL, 8.15 mmol, 8 equiv.) in anhydrous CH₂Cl₂ (20 mL), DBU (61 µL, 0.41 mmol, 0.4 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (preconditioned with Et₃N; eluent: hexane–EtOAc, 50:1) to afford compound **2d** (535 mg, 98% yield) as a coloreless oil. TLC (hexane–EtOAc, 4:1): $R_{\rm f} = 0.62$; $[\alpha]_{\rm D}^{21} = +26.2$ (c = 1.0, CHCl₃); ¹H NMR (C₆D₆, 400 MHz): δ 8.36 (s, 1H, N<u>H</u>), 7.84–6.83 (m, 11H, ArH), 6.53 (d, 1H, J = 2.0 Hz, C1^{Rha}-H), 5.60 (d, 1H, J = 12.8 Hz, O<u>CH₂Ph</u>), 5.27 (d, 1H, J = 14.6 Hz, O<u>CH₂Ph</u>), 5.19 (d, 1H, J = 11.4 Hz, O<u>CH₂Ph</u>), 4.76 (d, 1H, J = 11.5 Hz, O<u>CH₂Ph</u>), 4.45 (d, 1H, J = 12.9 Hz, O<u>CH₂Ph</u>), 4.37 (d, 1H, J = 14.6 Hz, O<u>CH₂Ph</u>), 4.37–4.34 (m, 1H, C5^{Rha}-H), 4.29 (dd, 1H, J = 6.2, 9.4 Hz, C3^{Rha}-H), 4.13 (t, 1H, J = 2.5 Hz, C4^{Rha}-H), 3.98 (t, 1H, J = 9.4 Hz, C4^{Rha}-H), 1.46 (d, 3H, J = 6.2 Hz, C6^{Rha}-H); ¹³C NMR (C₆D₆, 100 MHz): δ 159.9, 139.3, 136.5, 134.0, 133.6, 133.2, 130.6, 126.6, 126.2, 126.0, 125.7, 97.4 (C1^{Rha}), 91.2, 80.5, 78.6, 75.2, 72.6, 71.8, 70.8, 69.3, 59.7, 20.2, 18.2, 13.9; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₂₇H₂₆Cl₃NO₅Na, 572.0774; found, 572.0785.

Tolyl 3,4-*O*-(2,3-dimethoxybutane-2,3-diyl)-1-thio-α/β-L-rhamnopyranoside (S11α,β):

To a magnetically stirred solution of $S10^9$ (500 mg, 1.85 mmol) in methanol (5.9 mL) were added 2,3butanedione (178 µL, 2.03 mmol, 1.1 equiv.), trimethylorthoformate (607 µL, 5.55 mmol, 3.0 equiv.) and camphorsulfonic acid (64 mg, 0.28 mmol, 0.15 equiv.). The reaction mixture was stirred under reflux for 8 h. After quenching with triethylamine (3 mL) and concentrated under reduced pressure. The

obtained residue was diluted with EtOAc (20 mL) and washed with saturated aqueous NaHCO₃ (2 x 10 mL) and brine (10 mL), dried over Na₂SO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 10:1) afforded the title compound **S11** α , β (516.2 mg, 73% yield) as a coloreless oil. TLC (hexane–EtOAc, 2:1): $R_{\rm f} = 0.70$; α : $\beta = 1:0.88$; ¹H NMR (C₆D₆, 400 MHz): δ 7.50 (d, 2H, J = 8.1 Hz, ArH), 7.35 (d, 2H, J = 8.1 Hz, ArH), 6.87 (d, 2H, J = 8.4 Hz, ArH), 6.80 (d, 2H, J = 8.4 Hz, ArH), 5.70 (t, 1H, J = 0.8 Hz, C1^{Rhaα}-H), 4.63 (t, 1H, J = 1.0 Hz, C1^{Rhaβ}-H), 4.53–4.49 (m, 1H, C5^{Rhaα}-H), 4.30–4.25 (m, 2H, C2^{Rhaα}-H and C3^{Rhaα}-H), 4.07 (t, 1H, J = 9.6 Hz, C4^{Rhaα}-H), 4.06–4.04 (m, 1H, C2^{Rhaβ}-H), 3.91 (t, 1H, J = 9.7 Hz, C4^{Rhaβ}-H), 3.56 (dd, 1H, J = 3.1, 10.0 Hz, C3^{Rhaβ}-H), 3.28–3.24 (m, 1H, C5^{Rhaβ}-H), 3.04 (s, 3H, OMe), 3.01 (s, 6H, OMe), 2.99 (s, 3H, OMe), 2.53–2.49 (m, 2H, C2^{Rhaα}-OH and C2^{Rhaβ}-OH), 2.02 (s, 3H, <u>Me</u> of Tol), 1.98

(s, 3H, <u>Me</u> of Tol), 1.33 (d, 3H, J = 6.1 Hz, C6^{Rhaa}-H), 1.32 (d, 3H, J = 6.7 Hz, C6^{Rhaβ}-H), 1.31 (s, 3H, CH₃), 1.30 (s, 3H, CH₃); ¹³C NMR (C₆D₆, 100 MHz): δ 137.0, 136.6, 132.6, 132.1, 131.3, 130.9, 129.7, 129.5, 127.9, 127.8, 127.7, 127.6, 127.5, 100.3, 100.2, 99.8, 99.7, 88.4 (C1^{Rhaa}), 87.6 (C1^{Rhaβ}), 74.4, 71.5, 71.4, 71.3, 69.1, 68.8, 68.0, 67.8, 47.4, 47.3, 47.1, 47.0, 20.6, 17.7, 17.6, 17.6, 16.9, 16.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₉H₂₈O₆SNa, 407.1504; found, 407.1511.

Tolyl 3,4-O-(2,3-dimethoxybutane-2,3-diyl)-2-O-benzyl-1-thio-α/β-L-rhamnopyranoside (S12α,β):

To a magnetically stirred solution of **S11** α , β (516.2 mg, 1.34 mmol) in anhydrous DMF (6.7 mL) was added sodium hydride (60% dispersion in oil, 107 mg, 2.69 mmol, 2.0 equiv.) in small portions at 0 °C. After 5 min, benzyl bromide (239 µL, 2.01 mmol, 1.5 equiv.) was added dropwise for 1 min and stirred at room temperature. Complete consumption of starting materials was observed after 3 h, followed by

dropwise addition of MeOH and ice-water to quench excess reagents. The reaction mixture was extracted with DCM (2×20 mL), washed with water (20 mL) and brine (20 mL), dried over Na₂SO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 100:1) afforded the title compound $S12\alpha\beta$ (510.3) mg, 80% yield) as a coloreless oil. TLC (hexane–EtOAc, 10:1): $R_f = 0.50$; $[\alpha]_D^{21} = -188.8$ (c = 1.0, CHCl₃); (α) ¹H NMR (CDCl₃, 400 MHz): δ 7.42–7.07 (m, 9H, ArH), 5.37 (d, 1H, J = 1.4 Hz, C1^{Rha}-H), 4.87 (d, 1H, J = 12.1 Hz, OCH₂Ph), 4.68 (d, 1H, J = 12.1 Hz, OCH₂Ph), 4.25–4.21 (m, 1H, C5^{Rha}-H), 4.00 (dd, 1H, J = 2.9, 10.2 Hz, C3^{Rha}-H), 3.93 (dd, 1H, J = 1.4, 2.9 Hz, C3^{Rha}-H), 3.93 (dd, 1H, J = 1.4, 3.9 Hz, C3^{Rha}-H), 3.93 (dd, 1H, J = 1.4, 3.9 Hz, C3^{Rha}-H), 3.93 (dd, 1H, J = 1.4, 3.9 Hz, C3^{Rha}-H), 3.93 (dd, 1H, J = 1.4, 3.9 Hz, C3^{Rha}-H), 3.9 C2^{Rha}-H), 3.90 (t, 1H, J = 9.7 Hz, C4^{Rha}-H), 3.30 (s, 3H, OMe), 3.28 (s, 3H, OMe), 2.31 (s, 3H, Me of Tol), 1.35 (s, 3H, CH₃), 1.32 (s, 3H, CH₃), 1.28 (d, 3H, J = 6.2 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 138.5, 137.4, 131.8, 131.0, 129.8, 128.2, 128.0, 127.5, 99.9, 99.6, 87.6 (C1^{Rha}), 77.7, 77.4, 77.1, 76.8, 72.9, 69.4, 69.0, 68.1, 48.0, 47.7, 21.1, 21.1, 17.9, 17.8, 16.6; [α]_D²¹ = -77.7 (c = 1.0, CHCl₃); (β) ¹H NMR (CDCl₃, 400 MHz): δ 7.55–7.08 (m, 9H, ArH), 5.03 (d, 1H, J = 11.4 Hz, OCH₂Ph), 4.79 (d, 1H, J = 11.3 Hz, OCH₂Ph), 4.75 (d, 1H, J = 1.3 Hz, C1^{Rha}-H), 3.97 (dd, 1H, J = 1.4, 2.8 Hz, C2^{Rha}-H), 3.94 (t, 1H, J = 9.9 Hz, C4^{Rha}-H), 3.73 (dd, 1H, J = 2.4, 9.8 Hz, C3^{Rha}-H), 3.48–3.42 (m, 1H, C5^{Rha}-H), 3.27 (s, 3H, OMe), 3.25 (s, 3H, OMe), 2.32 (s, 3H, Me of Tol), 1.34 (d, 3H, J = 6.2 Hz, C6^{Rha}-H), 1.33 (s, 3H, CH₃), 1.30 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 100 MHz): 8138.5, 137.32, 131.74, 129.60, 128.84, 128.01, 127.50, 99.77, 99.55, 88.36 (C1^{Rha}), 77.57, 77.35, 77.03, 76.72, 74.92, 74.60, 72.94, 68.4, 48.0, 47.7, 21.1, 17.8, 17.8, 16.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₆H₃₄O₆SNa, 497.1974; found, 497.1971.

3,4-O-(2,3-dimethoxybutane-2,3-diyl)-2-O-benzyl-α-L-rhamnopyranosyltrichloroacetimidate (2g):

To a magnetically stirred solution of $S12\alpha,\beta$ (131 mg, 0.28 mmol) in acetone–H₂O (20:1, 5.2 mL) was added NBS (147 mg, 0.83 mmol, 3 equiv.) in small portions at 0 °C. Starting materials were consumed at the same temperature after 2 h. The reaction mixture was dissolved in CH₂Cl₂ (30 mL), washed with saturated aq. Na₂S₂O₃ (15 mL) and brine (15 mL), dried over Na₂SO₄, and concentrated in vacuo. The following purification by flash chromatography on silica gel (eluent:

hexane–EtOAc, 5:1) afforded the mixture of isomers **S13** (91 mg, 89% yield) as a white solid. TLC (hexane–EtOAc, 4:1): $R_f = 0.30$. To a magnetically stirred solution of **S13** (129 mg, 0.35 mmol) and CCl₃CN (282 µL, 2.80 mmol, 8 equiv.) in anhydrous CH₂Cl₂ (7.0 mL), DBU (21 µL, 0.14 mmol, 0.4 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (preconditioned with Et₃N; eluent: hexane–EtOAc, 50:1) to afford compound **2g** (167 mg, 93% yield) as a coloreless oil. TLC (hexane–EtOAc, 5:1): $R_f = 0.80$; $[\alpha]_D^{21} = -77.7$ (*c* = 1.0, CHCl₃); ¹H NMR (C₆D₆, 400 MHz): δ 8.23 (s, 1H, NH), 7.26–6.42 (m, 5H, Ar<u>H</u>), 6.41 (d, 1H, *J* = 1.2 Hz, C1^{Rha}-H), 4.69 (d, 1H, *J* = 11.9 Hz, O<u>CH</u>₂Ph), 4.40 (d, 1H, *J* = 11.8 Hz, O<u>CH</u>₂Ph), 4.16 (dd, 1H, *J* = 2.9, 9.9 Hz, C3^{Rha}-H), 4.10–4.04 (m, 1H, C5^{Rha}-H), 4.02 (t, 1H, *J* = 9.8 Hz, C4^{Rha}-H), 3.80 (dd, 1H, *J* = 1.8, 3.0 Hz, C2^{Rha}-H), 2.89 (s, 3H, OMe), 2.84 (s, 3H, OMe), 1.18 (d, 3H, *J* = 5.9 Hz, C6^{Rha}-H), 1.17 (s, 3H, CH₃), 1.10 (s, 3H, CH₃); ¹³C NMR (C₆D₆, 100 MHz): δ 160.1, 138.7, 128.2,

128.1, 127.9, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 99.8, 99.6, 97.5 (C1^{Rha}), 75.1, 73.4, 70.5, 68.9, 68.4, 47.2, 47.1, 46.4, 17.7, 17.6, 16.7, 12.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₂₈Cl₃NO₇Na, 534.0829; found, 534.0836.

Tolyl 2-*O*-benzyl-1-thio- α/β -L-rhamnopyranoside (S14 α,β):

and brine (15 mL), dried over Na₂SO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 3:1) afforded the title compound **S14***a*,**β** (308.9 mg, 80% yield) as a coloreless oil. TLC (hexane–EtOAc, 1:1): $R_f = 0.50$; $[\alpha]_D^{21} = -160.0$ (c = 1.0, CHCl₃); (α) ¹H NMR (CDCl₃, 400 MHz): δ 7.33–7.09 (m, 9H, ArH), 5.48 (d, 1H, J = 1.3 Hz, C1^{Rha}-H), 4.69 (d, 1H, J = 11.7 Hz, O<u>CH₂</u>Ph), 4.48 (d, 1H, J = 11.7 Hz, O<u>CH₂</u>Ph), 4.13–4.08 (m, 1H, C5^{Rha}-H), 3.97 (dd, 1H, J = 1.4, 3.7 Hz, C2^{Rha}-H), 3.78–3.75 (m, 1H, C3^{Rha}-H), 3.51 (t, 1H, J = 9.4 Hz, C4^{Rha}-H), 3.17 (s, 1H, OH), 2.85 (d, 1H, J = 9.2 Hz, OH), 2.32 (s, 3H, <u>Me</u> of Tol), 1.31 (d, 3H, J = 6.2 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.8, 137.4, 132.2, 130.5, 129.9, 128.6, 128.1, 128.0, 85.5 (C1^{Rha}), 79.6, 74.1, 72.3, 72.0, 69.2, 68.5, 21.2, 21.1, 17.6, 14.2; $[\alpha]_D^{21} = +125.2$ (c = 1.0, CHCl₃); (β) ¹H NMR (CDCl₃, 400 MHz): δ 7.45–7.11 (m, 9H, ArH), 5.06 (d, 1H, J = 11.5 Hz, O<u>CH₂Ph), 4.74 (d, 1H, J = 1.2 Hz, C1^{Rha}-H), 4.70 (d, 1H, J = 11.5 Hz, O<u>CH₂Ph), 4.03 (dd, 1H, J = 1.4, 3.2 Hz, C2^{Rha}-H), 3.27–3.22 (m, 1H, C5^{Rha}-H), 2.34 (s, 3H, <u>Me</u> of Tol), 1.36 (d, 3H, J = 6.1 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.9, 137.7, 131.6, 131.2, 129.8, 128.7, 128.3, 128.2, 88.1 (C1^{Rha}), 80.8, 76.5, 76.3, 75.3, 73.6, 21.1, 17.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₀H₂₄O₄SNa, 383.1293; found, 383.1299.</u></u>

Tolyl 3,4-*O*-(o-xylylene)-2-*O*-benzyl-1-thio-α/β-L-rhamnopyranoside (S15α,β):

To a magnetically stirred solution of $\$14a, \beta$ (200 mg, 0.55 mmol) in anhydrous DMF (11 mL) was added sodium hydride (60% dispersion in oil, 110 mg, 12.1 mmol, 5.0 equiv.) in small portions at 0 °C. After 30 min, 1,2-bis(bromomethyl)benzene (146 mg, 0.55 mmol, 1.0 equiv.) was added and stirred at room temperature. Complete consumption of starting materials was observed after 2 h, followed by dropwise addition of MeOH and ice-water to quench excess reagents. The reaction

mixture was extracted with DCM (2 × 30 mL), washed with water (30 mL) and brine (30 mL), dried over Na₂SO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 50:1) afforded the title compound **S15a**,**\beta** (89 mg, 35% yield) as a coloreless oil. TLC (hexane–EtOAc, 10:1): $R_{\rm f}$ = 0.60; α : β = 0.8:0.2; ¹H NMR (CDCl₃, 400 MHz): δ 7.81–7.04 (m, 13H, ArH), 5.45 (d, 0.8H, *J* = 1.6 Hz, C1^{Rhaα}-H), 5.20 (s, 0.2H, OCH₂Ph), 5.13 (d, 0.8H, *J* = 11.2 Hz, OCH₂Ph), 5.09 (d, 0.4H, *J* = 11.6 Hz, OCH₂Ph), 4.92 (d, 0.2H, *J* = 11.5 Hz, OCH₂Ph), 4.84 (d, 0.2H, *J* = 11.2 Hz, OCH₂Ph), 4.83 (d, 0.8H, *J* = 11.6 Hz, OCH₂Ph), 4.80 (d, 0.2H, *J* = 12.8 Hz, OCH₂Ph), 4.75 (s, 1.6H, OCH₂Ph), 4.73 (d, 0.8H, *J* = 12.5 Hz, OCH₂Ph), 4.68 (s, 0.2H, C1^{Rhaα}-H), 4.04 (d, 0.8H, *J* = 12.4 Hz, OCH₂Ph), 4.24–4.19 (m, 0.8H, C5^{Rhaα}-H), 4.16 (d, 0.2H, *J* = 3.5 Hz, C2^{Rhaβ}-H), 4.04–4.03 (m, 0.8H, C2^{Rhaα}-H), 3.95 (dd, 0.8H, *J* = 3.1, 9.3 Hz, C3^{Rhaα}-H), 3.79 (t, 0.2H, *J* = 8.8 Hz, C4^{Rhaβ}-H), 3.77 (t, 0.8H, *J* = 9.2 Hz, C4^{Rhaα}-H), 3.62 (dd, 0.2H, *J* = 2.9, 9.44 Hz, C3^{Rhaβ}-H), 3.40–3.34 (m, 0.2H, C5^{Rhaβ}-H), 2.29 (s, 3H, Me of Tol), 1.41 (d, 0.6H, *J* = 6.1 Hz, C6^{Rhaβ}-H), 1.38 (d, 2.4H, *J* = 6.2 Hz, C6^{Rhaβ}-H), ¹³C NMR (CDCl₃, 100 MHz): δ 138.5, 138.0, 137.6, 137.4, 136.2, 136.0, 135.9, 135.7, 133.4, 133.4, 133.4, 133.1, 132.1, 131.5, 130.9, 129.9, 129.7, 128.5, 128.3, 128.3, 128.3, 128.2, 128.2, 128.1, 128.1, 128.0, 128.0, 127.9, 127.8, 127.8, 127.7, 126.9, 126.6, 126.4, 126.3, 126.2, 126.2, 126.1, 126.1, 126.1, 126.0, 125.9, 125.7, 88.1 (C1^{Rhaβ}), 86.2 (C1^{Rhaα}), 84.2, 80.7, 80.2, 77.9, 77.5, 77.2, 76.8, 76.6, 76.4, 75.7, 75.6, 75.3, 72.6, 72.2, 72.2, 69.5, 21.2, 18.4, 18.1; HRMS (ESI-TOF) m/z; [M + Na]+ calcd for C₂₈H₃₀O₄SNa, 485.1762; found, 485.1773.

Supporting Information

$\label{eq:constraint} \textbf{3,4-O-(o-xylylene)-2-O-benzyl-} \alpha-\textbf{L-rhamnopyranosyltrichloroacetimidate} \ \textbf{(2e):}$

To a magnetically stirred solution of $S15a,\beta$ (89 mg, 0.19 mmol) in acetone–H₂O (20:1, 3.5 mL) was added NBS (102 mg, 0.58 mmol, 3 equiv.) in small portions at 0 °C. Starting materials were consumed at the same temperature after 2 h. The reaction mixture was dissolved in CH₂Cl₂ (30 mL), washed with saturated aq. Na₂S₂O₃ (15 mL) and brine (15 mL), dried over Na₂SO₄, and concentrated in vacuo. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 2:1) afforded the mixture of isomers **S16** (65 mg, 95% yield) as a white solid.

TLC (hexane–EtOAc, 4:1): $R_f = 0.30$. To a magnetically stirred solution of **S16** (65 mg, 0.18 mmol) and CCl₃CN (148 µL, 1.46 mmol, 8 equiv.) in anhydrous CH₂Cl₂ (3.7 mL), DBU (11 µL, 0.07 mmol, 0.4 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (preconditioned with Et₃N; eluent: hexane–EtOAc, 50:1) to afford compound **2e** (81 mg, 88% yield) as a coloreless oil. TLC (hexane–EtOAc, 4:1): $R_f = 0.85$; $[\alpha]_D^{21} = +24.7$ (c = 1.0, CHCl₃); ¹H NMR (C₆D₆, 400 MHz): δ 8.40 (s, 1H, NH), 7.74–7.10 (m, 9H, ArH), 6.65 (d, 1H, J = 1.9 Hz, C1^{Rha}-H), 5.13 (d, 1H, J = 11.4 Hz, O<u>CH₂Ph</u>), 4.71 (d, 1H, J = 11.5 Hz, O<u>CH₂Ph</u>), 4.66 (s, 2H, O<u>CH₂Ph</u>), 4.64 (s, 2H, O<u>CH₂Ph</u>), 4.27–4.23 (m, 1H, C5^{Rha}-H), 4.17 (dd, 1H, J = 3.2, 9.5 Hz, C3^{Rha}-H), 4.03 (t, 1H, J = 9.4 Hz, C4^{Rha}-H), 4.00 (dd, 1H, J = 2.0, 3.0 Hz, C2^{Rha}-H), 1.41 (d, 3H, J = 6.2 Hz, C6^{Rha}-H); ¹³C NMR (C₆D₆, 100 MHz): δ 160.3, 138.4, 136.5, 135.9, 133.6, 133.5, 133.2, 133.1, 128.3, 127.9, 127.7, 127.5, 126.8, 126.4, 126.0, 126.0, 125.9, 125.8, 125.7, 96.4 (C1^{Rha}), 80.1, 79.1, 75.4, 74.5, 72.8, 72.2, 71.5, 46.4, 18.1, 11.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₃H₂₄Cl₃NO₅Na, 522.0618; found, 522.0624.

$Tolyl \ 3, 4-O-[1,1,3,3-tetrakis (1-methylethyl)-1, 3-disiloxanediyl] -2-O-benzyl-1-thio-\alpha/\beta-L-rhamnopyranoside \ (S17\alpha,\beta):$

To a magnetically stirred solution of $S14\alpha,\beta$ (116 mg, 0.32 mmol) in anhydrous DMF (3.2 mL) was added 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane (308 µL, 0.96 mmol, 3 equiv.) and imidazole (131 mg, 1.92 mmol, 6 equiv.) in small portions. Starting materials were consumed at 50 °C after 30 min. The reaction mixture was quenched by saturated aqueous NaHCO₃ (10 mL) at 0 °C. The reaction mixture was extracted with EtOAc (2 × 20 mL), washed with H₂O (20 mL) and brine (20

mL), dried over Na₂SO₄, and concentrated in vacuo. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 100:1) afforded the mixture of isomers **S17***a*,**β** (170 mg, 88% yield) as a coloreless oil. TLC (hexane–EtOAc, 10:1): $R_{\rm f} = 0.85$; α : $\beta = 0.8:0.2$; ¹H NMR (CDCl₃, 400 MHz): δ 7.49–7.07 (m, 9H, ArH), 5.37 (d, 0.8H, J = 1.4 Hz, C1^{Rhaα}-H), 5.09 (d, 0.2H, J = 11.2 Hz, O<u>CH₂Ph</u>), 4.84 (d, 0.8H, J = 12.3 Hz, O<u>CH₂Ph</u>), 4.82 (d, 0.2H, J = 11.3 Hz, O<u>CH₂Ph</u>), 4.72 (d, 0.2H, J = 1.2 Hz, C1^{Rhaβ}-H), 4.71 (d, 0.8H, J = 12.3 Hz, O<u>CH₂Ph</u>), 4.12–4.04 (m, 0.8H, C5^{Rhaα}-H), 4.03 (d, 0.2H, J = 2.7 Hz, C2^{Rhaβ}-H), 4.00 (dd, 0.8H, J = 3.2, 8.9 Hz, C3^{Rhaα}-H), 3.93 (dd, 0.8H, J = 1.6, 3.2 Hz, C2^{Rhaα}-H), 3.86 (t, 0.2H, J = 8.9 Hz, C4^{Rhaβ}-H), 3.85 (t, 0.8H, J = 9.0 Hz, C4^{Rhaα}-H), 3.75 (dd, 0.2H, J = 3.1, 8.9 Hz, C3^{Rhaβ}-H), 3.31–3.24 (m, 0.2H, C5^{Rhaβ}-H), 2.31 (s, 3H, <u>Me</u> of Tol), 1.39 (d, 0.6H, J = 6.2 Hz, C6^{Rhaβ}-H), 1.34 (d, 2.4H, J = 6.2 Hz, C6^{Rhaα}-H), 1.12–0.99 (m, 24H, CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 138.6, 138.5, 137.4, 137.1, 132.2, 131.8, 131.3, 131.0, 129.8, 129.6, 128.5, 128.3, 128.1, 127.7, 127.5, 127.5, 88.2 (C1^{Rhaβ}), 87.5 (C1^{Rhaα}), 80.6, 80.0, 79.3, 77.4, 77.1, 77.0, 76.8, 75.9, 75.8, 75.4, 75.3, 73.6, 70.2, 21.1, 18.1, 17.7, 17.7, 17.7, 17.5, 17.4, 17.4, 17.4, 17.4, 17.3, 17.3, 17.3, 12.9, 12.9, 12.8, 12.7, 12.4, 12.3, 12.2; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₂H₅₀O₅SSi₂Na, 625.2815; found, 625.2820.

3,4-O-[1,1,3,3-tetrakis(1-methylethyl)-1,3-disiloxanediyl]-2-O-benzyl-α-L-rhamnopyranosyltrichloroacetimidate (2f):

To a magnetically stirred solution of $\$17\alpha, \beta$ (169 mg, 0.28 mmol) in acetone-H₂O (20:1, 5.2 mL) was added NBS (149 mg, 0.84 mmol, 3 equiv.) in small portions at 0 °C. Starting materials were consumed at the same temperature after 2 h. The reaction mixture was dissolved in CH₂Cl₂ (30 mL), washed with saturated aq. Na₂S₂O₃ (15 mL) and brine (15 mL), dried over Na₂SO₄, and

concentrated in vacuo. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 10:1) afforded the mixture of isomers **S18** (106 mg, 78% yield) as a white solid. TLC (hexane–EtOAc, 4:1): $R_f = 0.30$. To a magnetically stirred solution of **S18** (106 mg, 0.30 mmol) and CCl₃CN (241 µL, 2.39 mmol, 8 equiv.) in anhydrous CH₂Cl₂ (6.0 mL), DBU (18 µL, 0.12 mmol, 0.4 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (preconditioned with Et₃N; eluent: hexane–EtOAc, 50:1) to afford compound **2f** (109 mg, 57% yield) as a coloreless oil. TLC (hexane–EtOAc, 10:1): $R_f = 0.80$; $[\alpha]_D^{21} = -56.0$ (c = 1.0, CHCl₃); ¹H NMR (C₆D₆, 400 MHz): δ 8.22 (s, 1H, NH), 7.18–6.84 (m, 5H, ArH), 6.41 (d, 1H, J = 1.8 Hz, C1^{Rha}-H), 4.60 (d, 1H, J = 12.0 Hz, O<u>CH2</u>Ph), 4.40 (d, 1H, J = 12.0 Hz, O<u>CH2</u>Ph), 4.17 (dd, 1H, J = 3.2, 8.6 Hz, C3^{Rha}-H), 3.96 (t, 1H, J = 9.0 Hz, C4^{Rha}-H), 3.95–3.92 (m, 1H, C5^{Rha}-H), 3.78 (dd, 1H, J = 1.9, 3.3 Hz, C2^{Rha}-H), 1.23 (d, 3H, J = 5.8 Hz, C6^{Rha}-H), 1.00–0.81 (m, 24H, CH₃); ¹³C NMR (C₆D₆, 100 MHz): δ 160.1, 138.5, 128.2, 128.1, 127.9, 127.8, 127.9, 127.6, 127.5, 127.4, 97.0 (C1^{Rha}), 77.4, 75.5, 74.8, 73.9, 72.2, 17.9, 17.5, 17.3, 17.3, 17.3, 17.3, 17.2, 17.1, 12.9, 12.9, 12.5, 12.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₇H₄₄Cl₃NO₆Si₂Na, 662.1670; found, 662.1665.

$Tolyl \ 3, 4-O-(2, 3-dimethoxy but an e-2, 3-diyl) - 2-O-(2-naphthyl methyl) - 1-thio- \alpha/\beta - L-rhamnopy ranoside \ (S19\alpha, \beta):$

To a magnetically stirred solution of $S11\alpha,\beta$ (200 mg, 0.5 mmol) in anhydrous DMF (2.5 mL) was added sodium hydride (60% dispersion in oil, 40 mg, 1.0 mmol, 2.0 equiv.) in small portions at 0 °C. After 15 min, 2-(bromomethyl)naphthalene (166 mg, 0.75 mmol, 1.5 equiv.) was added and stirred at room temperature. Complete consumption of starting materials was observed after 3 h, followed by

dropwise addition of MeOH and ice-water to quench excess reagents. The reaction mixture was extracted with DCM (2×20 mL), washed with water (20 mL) and brine (20 mL), dried over Na₂SO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 100:1) afforded the title compound $S19\alpha$, β (248.8) mg, 97% yield) as a coloreless oil. TLC (hexane–EtOAc, 10:1): $R_{\rm f} = 0.45$; $[\alpha]_{\rm D}^{21} = -178.4$ (c = 1.0, CHCl₃); (α) ¹H NMR (CDCl₃, 400 MHz): δ 7.87–7.01 (m, 11H, ArH), 5.38 (t, 1H, J = 1.6 Hz, C1^{Rha}-H), 5.00 (d, 1H, J = 12.2 Hz, OCH₂Ph), 4.85 (d, 1H, J = 12.5 Hz, OCH₂Ph), 4.25–4.21 (m, 1H, C5^{Rha}-H), 4.00 (dd, 1H, J = 2.8, 10.2 Hz, C3^{Rha}-H), 3.98 (dd, 1H, J = 1.4, 2.9 Hz, C3^{Rha}-H), 3.98 (dd, 1H, J = 1.4, 3.9 Hz, C3^{Rha}-H), 3.98 (dd, 1H, J = 1.4, 3.9 Hz, C3^{Rha}-H), 3.98 (dd, 1H, J = 1.4, 3.9 Hz, C3^{Rha}-H), 3.9 Hz, 3 C2^{Rha}-H), 3.94 (t, 1H, J = 9.6 Hz, C4^{Rha}-H), 3.30 (s, 6H, OMe), 2.29 (s, 3H, Me of Tol), 1.40 (s, 3H, CH₃), 1.34 (s, 3H, CH₃), 1.29 (d, 3H, J = 6.3 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.4, 136.0, 133.3, 133.0, 131.8, 130.9, 129.8, 128.0, 127.9, 127.7, 126.7, 126.1, 126.0, 125.8, 100.0, 99.7, 87.7 (C1^{Rha}), 77.8, 77.4, 77.3, 77.1, 76.7, 73.0, 69.3, 69.1, 68.2, 48.0, 47.8, 21.1, 17.9, 17.9, 16.6; $[\alpha]_{D}^{^{21}} = -12.6$ (*c* = 1.0, CHCl₃); (**β**) ¹H NMR (CDCl₃, 400 MHz): δ 7.96–7.08 (m, 11H, ArH), 5.16 (d, 1H, J = 11.4 Hz, OCH₂Ph), 4.99 (d, 1H, J = 11.6 Hz, OCH₂Ph), 4.77 (d, 1H, J = 1.3 Hz, C1^{Rha}-H), 4.03 (dd, 1H, J = 1.3, 2.8 Hz, C2^{Rha}-H), 3.99 (t, 1H, J = 9.8 Hz, C4^{Rha}-H), 3.75 (dd, 1H, J = 2.8, 10.16 Hz, C3^{Rha}-H), 3.49–3.42 (m, 1H, C5^{Rha}-H), 3.30 (s, 3H, OMe), 3.26 (s, 3H, OMe), 2.32 (s, 3H, Me of Tol), 1.37 (s, 3H, CH₃), 1.34 (d, 3H, J = 6.1 Hz, C6^{Rha}-H), 1.32 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 137.4, 136.0, 133.3, 133.1, 131.8, 131.7, 129.6, 128.0, 127.7, 127.4, 127.0, 125.7, 125.6, 99.8, 99.6, 88.4 (C1^{Rha}), 77.7, 77.4, 77.2, 77.0, 76.7, 74.9, 74.8, 72.9, 68.4, 48.0, 47.7, 29.7, 21.1, 17.9, 17.8, 16.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₀H₃₆O₆SNa, 547.2130; found, 547.2138.

Tolyl 2-*O*-(2-naphthylmethyl)-1-thio-α/β-L-rhamnopyranoside (S20α,β):

To a magnetically stirred solution of **S19** α , β (248.8 mg, 0.49 mmol) in CH₂Cl₂ (1.2 mL) were added trifluoroacetic acid / water (247 µL, 10:1, v/v) at room temperature and reaction mixture was stirred for 1 h. The reaction mixture was quenched with saturated aqueous NaHCO₃ (5 mL) and extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layer was washed with saturated aqueous NaHCO₃ (15 mL)

and brine (15 mL), dried over Na₂SO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 3:1) afforded the title compound **S20a**, β (175.5 mg, 91% yield) as a white powder. TLC (hexane–EtOAc, 2:1): $R_{\rm f} = 0.40$; (α) [α]²¹_D = -47.2 (c = 1.0, CHCl₃); ¹H NMR (CD₂Cl₂, 400 MHz): δ 7.82–7.05 (m, 11H, ArH),

5.48 (d, 1H, J = 1.2 Hz, C1^{Rha}-H), 4.84 (d, 1H, J = 11.7 Hz, O<u>CH</u>₂Ph), 4.63 (d, 1H, J = 11.7 Hz, O<u>CH</u>₂Ph), 4.15–4.08 (m, 1H, C5^{Rha}-H), 4.02 (dd, 1H, J = 1.3, 3.6 Hz, C2^{Rha}-H), 3.76 (dd, 1H, J = 3.6, 9.6 Hz, C3^{Rha}-H), 3.53 (t, 1H, J = 9.4 Hz, C4^{Rha}-H), 2.72 (s, 1H, OH), 2.58 (s, 1H, OH), 2.31 (s, 3H, <u>Me</u> of Tol), 1.32 (d, 3H, J = 6.1 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.8, 134.6, 133.2, 133.2, 132.3, 130.4, 129.9, 128.6, 128.0, 127.8, 127.1, 126.4, 126.2, 125.8, 85.6 (C1^{Rha}), 79.6, 77.4, 77.1, 76.8, 74.3, 72.5, 72.0, 69.1, 21.2, 17.5, 0.0; (**β**) $[\alpha]_D^{21} = +71.7$ (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.88–7.13 (m, 11H, ArH), 5.25 (d, 1H, J = 11.6 Hz, O<u>CH</u>₂Ph), 4.86 (d, 1H, J = 11.7 Hz, O<u>CH</u>₂Ph), 4.79 (d, 1H, J = 1.1 Hz, C1^{Rha}-H), 4.11 (dd, 1H, J = 1.1, 3.4 Hz, C2^{Rha}-H), 3.49 (t, 1H, J = 9.2 Hz, C4^{Rha}-H), 3.47–3.43 (m, 1H, C3^{Rha}-H), 3.29–3.26 (m, 1H, C5^{Rha}-H), 2.34 (s, 3H, <u>Me</u> of Tol), 2.29 (s, 1H, OH), 2.12 (s, 1H, OH), 1.38 (d, 3H, J = 6.1 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.7, 135.2, 133.3, 133.2, 131.7, 131.2, 129.8, 128.6, 128.1, 127.8, 127.3, 126.3, 126.2, 126.1, 88.1 (C1^{Rha}), 80.7, 77.4, 77.0, 76.7, 76.6, 76.3, 75.3, 73.7, 31.5, 30.2, 21.1, 17.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₄H₂₆O₄SNa, 433.1449; found, 433.1441.

Tolyl 3,4-O-(o-xylylene)-2-O-(2-naphthylmethyl)-1-thio- α/β -L-rhamnopyranoside (S21 α,β):

To a magnetically stirred solution of **S20** α , β (175.5 mg, 0.44 mmol) in anhydrous DMF (8.8 mL) was added sodium hydride (60% dispersion in oil, 89 mg, 2.20 mmol, 5.0 equiv.) in small portions at 0 °C. After 30 min, 1,2-bis(bromomethyl)benzene (232 mg, 0.88 mmol, 2.0 equiv.) was added and stirred at room temperature. Complete consumption of starting materials was observed after 2 h, followed by dropwise addition of MeOH and ice-water to quench excess reagents. The reaction mixture was

extracted with DCM (2 × 30 mL), washed with water (30 mL) and brine (30 mL), dried over Na₂SO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane-EtOAc, 100:1) afforded the title compound S21a, β (122 mg, 56% yield) as a coloreless oil. TLC (hexane-EtOAc, 4:1): $R_f = 0.30$; $\alpha:\beta = 0.8:0.2$ ¹H NMR $(\text{CDCl}_3, 400 \text{ MHz}): \delta 7.81-6.97 \text{ (m, 15H, ArH)}, 5.44 \text{ (d, 0.8H, } J = 1.6 \text{ Hz}, \text{C1}^{\text{Rha}\alpha}-\text{H}), 5.21 \text{ (d, 0.2H, } J = 11.7 \text{ Hz}, \text{O}_{\text{CH}_2}\text{Ph}),$ 5.16 (d, 0.8H, J = 11.2 Hz, OCH₂Ph), 5.11 (d, 0.2H, J = 11.1 Hz, OCH₂Ph), 5.10 (d, 0.2H, J = 11.7 Hz, OCH₂Ph), 4.88 (d, 0.8H, J = 12.6 Hz, OCH₂Ph), 4.87 (d, 0.2H, J = 11.4 Hz, OCH₂Ph), 4.86 (d, 0.8H, J = 11.4 Hz, OCH₂Ph), 4.83 (d, 0.8H, J = 10.4 Hz, OCH₂Ph), 4.83 (d, 0.8H, 0.8H10.0 Hz, OCH_2Ph), 4.79 (d, 0.2H, J = 12.5 Hz, OCH_2Ph), 4.77 (d, 0.8H, J = 11.8 Hz, OCH_2Ph), 4.76 (d, 0.8H, J = 11.6 Hz, J =OCH₂Ph), 4.73 (d, 0.2H, J = 12.0 Hz, OCH₂Ph), 4.69 (d, 0.2H, J = 1.1 Hz, C1^{Rha\beta}-H), 4.24–4.17 (m, 1H, C5^{Rha\alpha}-H and C2^{Rha\beta}-H) H), 4.06 (dd, 0.8H, J = 1.7, 3.1 Hz, C2^{Rha\alpha}-H), 3.97 (dd, 0.8H, J = 3.1, 9.3 Hz, C3^{Rha\alpha}-H), 3.84 (t, 0.2H, J = 9.3 Hz, C4^{Rha\beta}-H), 3.81 (t, 0.8H, J = 9.3 Hz, C4^{Rha α}-H), 3.63 (dd, 0.2H, J = 2.9, 12.6 Hz, C3^{Rha β}-H), 3.40–3.37 (m, 0.2H, C5^{Rha β}-H), 2.29 (s, 0.6H, C) = 0.00 <u>Me</u> of Tol), 2.27 (s, 2.4H, <u>Me</u> of Tol), 1.42 (d, 0.6H, J = 6.1 Hz, C6^{Rhaβ}-H), 1.40 (d, 2.4H, J = 6.2 Hz, C6^{Rhaα}-H); ¹³C NMR (CDCl₃, 100 MHz): 8 137.6, 136.2, 135.93, 135.85, 135.4, 133.42, 133.38, 133.34, 133.27, 133.19, 133.15, 133.1, 133.0, 132.1, 131.6, 130.8, 129.9, 129.7, 128.3, 128.24, 128.20, 128.18, 128.09, 128.07, 128.04, 128.01, 127.78, 127.75, 127.1, 127.0, 126.9, 126.7, 126.61, 126.58, 126.4, 126.18, 126.16, 126.10, 126.08, 126.05, 125.9, 125.8, 125.7, 88.1 (C1^{Rhaβ}), 86.4 (C1^{Rhaα}), 84.3, 80.8, 80.2, 77.8, 77.5, 77.4, 77.2, 76.8, 76.5, 76.4, 75.7, 75.6, 75.3, 72.7, 72.4, 72.3, 69.6, 60.5, 34.6, 31.6, 31.5, 30.3, 30.2, 29.8, 21.2, 21.1, 18.4, 18.1, 14.3; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₃₂H₃₂O₄SNa, 535.1919; found, 535.1924.

3,4-*O*-(o-xylylene)-2-*O*-(2-naphthylmethyl)-α-L-rhamnopyranosyltrichloroacetimidate (2h):

To a magnetically stirred solution of $S21\alpha,\beta$ (104 mg, 0.20 mmol) in acetone–H₂O (20:1, 3.7 mL) was added NBS (108 mg, 0.61 mmol, 3 equiv.) in small portions at 0 °C. Starting materials were consumed at the same temperature after 2 h. The reaction mixture was dissolved in CH₂Cl₂ (30 mL), washed with saturated aq. Na₂S₂O₃ (15 mL) and brine (15 mL), dried over Na₂SO₄, and concentrated in vacuo. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 5:1) afforded the mixture of isomers **S22** (69 mg, 83% yield) as a white solid. TLC (hexane–EtOAc,

4:1): $R_f = 0.25$. To a magnetically stirred solution of **S22** (112 mg, 0.28 mmol) and CCl₃CN (223 µL, 2.20 mmol, 8 equiv.) in anhydrous CH₂Cl₂ (5.5 mL), DBU (16 µL, 0.11 mmol, 0.4 equiv.) was added dropwise at 0 °C, and the reaction mixture was

stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (preconditioned with Et₃N; eluent: hexane–EtOAc, 50:1) to afford compound **2h** (145 mg, 96% yield) as a coloreless oil. TLC (hexane–EtOAc, 5:1): $R_f = 0.55$; $[\alpha]_D^{21} = +5.5$ (c = 1.0, CHCl₃); ¹H NMR (C₆D₆, 400 MHz): δ 8.40 (s, 1H, NH), 7.80–7.15 (m, 11H, Ar<u>H</u>), 6.72 (d, 1H, J = 1.9 Hz, C1^{Rha}-H), 5.17 (d, 1H, J = 11.4 Hz, O<u>CH₂Ph</u>), 4.82 (d, 1H, J = 12.3 Hz, O<u>CH₂Ph</u>), 4.77 (d, 1H, J = 12.4 Hz, O<u>CH₂Ph</u>), 4.75 (d, 1H, J = 11.5 Hz, O<u>CH₂Ph</u>), 4.66 (d, 1H, J = 11.9 Hz, O<u>CH₂Ph</u>), 4.63 (d, 1H, J = 12.0 Hz, O<u>CH₂Ph</u>), 4.30–4.25 (m, 1H, C5^{Rha}-H), 4.20 (dd, 1H, J = 3.1, 9.5 Hz, C3^{Rha}-H), 4.10 (t, 1H, J = 9.7 Hz, C4^{Rha}-H), 4.08 (dd, 1H, J = 2.8, 3.8 Hz, C2^{Rha}-H), 1.44 (d, 3H, J = 6.2 Hz, C6^{Rha}-H); ¹³C NMR (C₆D₆, 100 MHz): δ 160.4, 136.4, 135.9, 135.8, 133.6, 133.52, 133.45, 133.3, 133.19, 133.16, 127.9, 127.7, 127.5, 126.8, 126.5, 126.1, 126.01, 125.99, 125.96, 125.9, 125.8, 125.7, 96.4 (C1^{Rha}), 91.2, 80.2, 79.2, 75.39, 74.36, 72. 8, 72.2, 71.6, 18.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₇H₂₆Cl₃NO₅Na, 572.0774; found, 572.0784.

Tolyl 3,4-O-(2,3-dimethoxybutane-2,3-diyl)-2-O-(2-cyanobenzyl)-1-thio-α-L-rhamnopyranoside (S23):

To a magnetically stirred solution of **S11** α , β (200 mg, 0.5 mmol) in anhydrous DMF (2.5 mL) was added sodium hydride (60% dispersion in oil, 40 mg, 1.0 mmol, 2.0 equiv.) in small portions at 0 °C. After 15 min, 2-cyanobenzyl bromide (148 mg, 0.75 mmol, 1.5 equiv.) was added and stirred at room temperature. Complete consumption of starting materials was observed after 3 h, followed by dropwise addition of MeOH and ice-water to quench excess reagents. The reaction mixture was extracted with DCM (2 × 20 mL), washed with water (20 mL) and brine (20 mL), dried over

Na₂SO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 100:1) afforded the title compound **S23** (232.8 mg, 96% yield) as a coloreless oil. TLC (hexane–EtOAc, 10:1): $R_f = 0.50$; $[\alpha]_D^{21} = -20.9$ (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.82–7.10 (m, 8H, ArH), 5.45 (d, 1H, J = 1.3 Hz, C1^{Rha}-H), 5.04 (d, 1H, J = 13.1 Hz, O<u>CH₂</u>Ph), 4.93 (d, 1H, J = 13.2 Hz, O<u>CH₂</u>Ph), 4.31–4.24 (m, 1H, C5^{Rha}-H), 4.05 (dd, 1H, J = 2.8, 10.1 Hz, C3^{Rha}-H), 4.01 (dd, 1H, J = 1.4, 2.8 Hz, C2^{Rha}-H), 3.90 (t, 1H, J = 9.8 Hz, C4^{Rha}-H), 3.31 (s, 3H, OMe), 3.27 (s, 3H, OMe), 2.32 (s, 3H, <u>Me</u> of Tol), 1.32 (s, 6H, CH₃), 1.29 (d, 3H, J = 6.2 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 142.6, 137.7, 132.8, 132.4, 132.1, 130.6, 129.9, 129.0, 127.8, 117.4, 110.9, 99.9, 99.7, 87.6 (C1^{Rha}), 79.2, 77.4, 77.1, 76.7, 70.8, 69.4, 69.0, 68.1, 48.1, 47.7, 31.5, 21.1, 17.8, 17.7, 16.6; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₇H₃₃NO₆SNa, 522.1926; found, 522.1933.

Tolyl 2-O-(2-cyanobenzyl)-1-thio-α-L-rhamnopyranoside (S24):

To a magnetically stirred solution of **S23** (232.8 mg, 0.48 mmol) in CH_2Cl_2 (1.1 mL) were added trifluoroacetic acid / water (243 µL, 10:1, v/v) at room temperature and reaction mixture was stirred for 1 h. The reaction mixture was quenched with saturated aqueous NaHCO₃ (5 mL) and extracted with CH_2Cl_2 (3 x 10 mL). The combined organic layer was washed with saturated aqueous NaHCO₃ (15 mL) and brine (15 mL), dried over Na₂SO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 2:1) afforded the title

compound **S24** (156.3 mg, 88% yield) as a white powder. TLC (hexane–EtOAc, 2:1): $R_f = 0.35$; $[\alpha]_D^{21} = -81.4$ (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.65–7.11 (m, 8H, ArH), 5.54 (d, 1H, J = 1.3 Hz, C1^{Rha}-H), 4.80 (s, 2H, O<u>CH₂</u>Ph), 4.18–4.09 (m, 1H, C5^{Rha}-H), 4.06 (dd, 1H, J = 1.4, 3.5 Hz, C2^{Rha}-H), 3.87–3.82 (m, 1H, C3^{Rha}-H), 3.60 (t, 1H, J = 9.9 Hz, C4^{Rha}-H), 3.28 (t, 1H, J = 3.2 Hz, OH), 3.17 (t, 1H, J = 9.1 Hz, OH), 2.33 (s, 3H, <u>Me</u> of Tol), 1.32 (d, 3H, J = 6.2 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 171.3, 141.2, 137.8, 133.1, 133.0, 132.2, 130.1, 129.9, 129.0, 128.5, 1181, 111.4, 85.3 (C1^{Rha}), 80.6, 77.4, 77.1, 76.8, 73.9, 72.4, 70.2, 69.3, 60.5, 21.1, 21.1, 17.5, 14.2; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₂₃NO₄SNa, 408.1245; found, 408.1253.

Supporting Information

Tolyl 3,4-O-(o-xylylene)-2-O-(2-cyanobenzyl)-1-thio-α-L-rhamnopyranoside (S25):

To a magnetically stirred solution of **S24** (155 mg, 0.42 mmol) in anhydrous DMF (8.3 mL) was added sodium hydride (60% dispersion in oil, 137 mg, 2.08 mmol, 5.0 equiv.) in small portions at 0 °C. After 30 min, 1,2-bis(bromomethyl)benzene (220 mg, 0.83 mmol, 2.0 equiv.) was added and stirred at room temperature. Complete consumption of starting materials was observed after 2 h, followed by dropwise addition of MeOH and ice-water to quench excess reagents. The reaction mixture was extracted with DCM (2×30 mL), washed with water (30 mL) and brine (30 mL), dried

over Na₂SO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 100:1) afforded the title compound **S25** (144 mg, 73% yield) as a coloreless oil. TLC (hexane–EtOAc, 10:1): $R_{\rm f} = 0.45$; ¹H NMR (CDCl₃, 400 MHz): δ 7.56–7.09 (m, 12H, ArH), 5.46 (d, 1H, J = 1.52 Hz, C1^{Rha}-H), 5.17 (d, 1H, J = 13.5 Hz, O<u>CH₂Ph</u>), 5.07 (d, 1H, J = 14.3 Hz, O<u>CH₂Ph</u>), 5.01 (d, 1H, J = 14.4 Hz, O<u>CH₂Ph</u>), 4.92 (d, 1H, J = 13.5 Hz, O<u>CH₂Ph</u>), 4.88 (d, 2H, J = 2.2 Hz, O<u>CH₂Ph</u>), 4.17–4.11 (m, 1H, C5^{Rha}-H), 4.10 (dd, 1H, J = 1.4, 3.0 Hz, C2^{Rha}-H), 3.85 (dd, 1H, J = 3.0, 9.3 Hz, C3^{Rha}-H), 3.64 (t, 1H, J = 9.3 Hz, C4^{Rha}-H), 2.31 (s, 3H, <u>Me</u> of Tol), 1.37 (d, 3H, J = 6.2 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 142.3, 137.7, 137.0, 136.9, 132.8, 132.4, 132.0, 130.6, 130.5, 129.9, 129.1, 128.6, 128.0, 127.9, 127.8, 117.4, 110.8, 86.8 (C1^{Rha}), 80.9, 80.2, 79.5, 77.4, 77.1, 76.8, 73.5, 72.4, 70.9, 68.8, 21.1, 17.5; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₂₉H₂₉NO₄SNa, 510.1715; found, 510.1726.

3,4-O-(o-xylylene)-2-O-(2-cyanobenzyl)-α-L-rhamnopyranosyltrichloroacetimidate (2i):

To a magnetically stirred solution of **S25** (125 mg, 0.26 mmol) in acetone–H₂O (20:1, 4.8 mL) was added NBS (136 mg, 0.77 mmol, 3 equiv.) in small portions at 0 °C. Starting materials were consumed at the same temperature after 2 h. The reaction mixture was dissolved in CH₂Cl₂ (30 mL), washed with saturated aq. Na₂S₂O₃ (15 mL) and brine (15 mL), dried over Na₂SO₄, and concentrated in vacuo. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 5:1) afforded the mixture of isomers **S26** (59 mg, 60% yield) as a white solid. TLC (hexane–EtOAc,

4:1): $R_{\rm f} = 0.30$. To a magnetically stirred solution of **S26** (59 mg, 0.15 mmol) and CCl₃CN (124 μL, 1.23 mmol, 8 equiv.) in anhydrous CH₂Cl₂ (3.1 mL), DBU (9 μL, 0.06 mmol, 0.4 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (preconditioned with Et₃N; eluent: hexane–EtOAc, 50:1) to afford compound **2i** (57 mg, 70% yield) as a coloreless oil. TLC (hexane–EtOAc, 5:1): $R_{\rm f} = 0.70$; $[\alpha]_{\rm D}^{21} = -51.2$ (*c* = 1.0, CHCl₃); ¹H NMR (C₆D₆, 400 MHz): δ 8.14 (s, 1H, NH), 7.45–6.32 (m, 8H, ArH), 6.30 (d, 1H, *J* = 2.0 Hz, C1^{Rha}-H), 4.84 (d, 1H, *J* = 11.4 Hz, OCH₂Ph), 4.79 (d, 1H, *J* = 12.9 Hz, OCH₂Ph), 4.45 (d, 1H, *J* = 11.2 Hz, OCH₂Ph), 4.43 (s, 1H, OCH₂Ph), 4.42 (s, 1H, OCH₂Ph), 4.38 (d, 1H, *J* = 13.0 Hz, OCH₂Ph), 4.01–3.93 (m, 1H, C5^{Rha}-H), 3.90 (dd, 1H, *J* = 3.0, 9.1 Hz, C3^{Rha}-H), 3.71 (t, 1H, *J* = 9.4 Hz, C4^{Rha}-H), 3.65 (t, 1H, *J* = 2.5 Hz, C2^{Rha}-H), 1.12 (d, 3H, *J* = 6.2 Hz, C6^{Rha}-H); ¹³C NMR (C₆D₆, 100 MHz): δ 159.2, 141.1, 135.5, 134.8, 132.7, 132.7, 132.4, 132.3, 131.4, 131.3, 127.5, 127.3, 127.1, 126.9, 126.6, 126.4, 125.7, 125.5, 125.3, 125.2, 125.1, 124.9, 123.5, 116.3, 110.5, 95.6 (C1^{Rha}), 90.4, 79.2, 78.6, 75.1, 74.6, 71.9, 70.7, 70.3, 17.2; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₂₄H₂₃Cl₃N₂O₅Na, 547.0570; found, 547.0573.

Tolyl 3,4-O-(2,3-dimethoxybutane-2,3-diyl)-2-O-methyl-1-thio-α-L-rhamnopyranoside (S27):

To a magnetically stirred solution of **S11** α , β (240 mg, 0.62 mmol) in anhydrous DMF (3.1 mL) was added sodium hydride (60% dispersion in oil, 50 mg, 1.25 mmol, 2.0 equiv.) in small portions at 0 °C. After 15 min, iodomethane (48 µL, 0.94 mmol, 1.5 equiv.) was added and stirred at room temperature. Complete consumption of starting materials was observed after 3 h, followed by dropwise addition of

MeOH and ice-water to quench excess reagents. The reaction mixture was extracted with DCM (2×20 mL), washed with water (20 mL) and brine (20 mL), dried over Na₂SO₄, and concentrated under vacuum. The following purification by flash

Supporting Information

chromatography on silica gel (eluent: hexane–EtOAc, 100:1) afforded the title compound **S27** (207.0 mg, 83% yield) as a coloreless oil. TLC (hexane–EtOAc, 10:1): $R_f = 0.45$; $[\alpha]_D^{21} = -34.7$ (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.35 (d, 2H, J = 8.1 Hz, ArH), 7.11 (d, 2H, J = 8.0 Hz, ArH), 5.48 (d, 1H, J = 1.4 Hz, C1^{Rha}-H), 4.26–4.22 (m, 1H, C5^{Rha}-H), 3.97 (dd, 1H, J = 3.0, 10.0 Hz, C3^{Rha}-H), 3.77 (t, 1H, J = 9.8 Hz, C4^{Rha}-H), 3.72 (dd, 1H, J = 1.4, 3.8 Hz, C2^{Rha}-H), 3.47 (s, 3H, OMe), 3.31 (s, 3H, OMe), 3.26 (s, 3H, OMe), 2.33 (s, 3H, <u>Me</u> of Tol), 1.34 (s, 3H, CH₃), 1.31 (s, 3H, CH₃), 1.28 (d, 3H, J = 6.2 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.5, 131.8, 131.0, 129.8, 100.0, 99.6, 85.9 (C1^{Rha}), 80.4, 77.4, 77.1, 76.7, 68.9, 68.8, 67.9, 58.4, 48.0, 47.7, 21.1, 17.9, 17.8, 16.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₀H₃₀O₆SNa, 421.1661; found, 421.1655.

Tolyl 2-*O*-methyl-1-thio-α/β-L-rhamnopyranoside (S28α,β):

To a magnetically stirred solution of **S27** (207.0 mg, 0.52 mmol) in CH_2Cl_2 (1.2 mL) were added trifluoroacetic acid / water (265 µL, 10:1, v/v) at room temperature and reaction mixture was stirred for 1 h. The reaction mixture was quenched with saturated aqueous NaHCO₃ (5 mL) and extracted with CH_2Cl_2 (3 x 10 mL). The combined organic layer was washed with saturated aqueous NaHCO₃ (15 mL) and brine

(15 mL), dried over MgSO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 2:1) afforded the title compound **S28a,** β (156.3 mg, 88% yield) as a white powder. TLC (hexane–EtOAc, 2:1): $R_f = 0.30$; (α) [α]_D²¹ = -164.7 (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.36 (d, 2H, J = 8.1 Hz, ArH), 7.12 (d, 2H, J = 7.9 Hz, ArH), 5.53 (s, 1H, C1^{Rha}-H), 4.17–4.10 (m, 1H, C5^{Rha}-H), 3.78–3.74 (m, 2H, C3^{Rha}-H and C2^{Rha}-H), 3.47 (t, 1H, J = 9.4 Hz, C4^{Rha}-H), 3.44 (s, 3H, OMe), 3.12 (s, 1H, OH), 2.94 (d, 1H, J = 11.2 Hz, OH), 2.33 (s, 3H, <u>Me</u> of Tol), 1.32 (d, 3H, J = 6.2 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.7, 132.0, 130.6, 129.9, 84.5 (C1^{Rha}), 81.8, 77.4, 77.1, 76.8, 74.1, 72.0, 69.0, 58.1, 21.1, 17.5; (β) ¹H NMR (CDCl₃, 400 MHz): δ 7.42 (d, 2H, J = 8.2 Hz, Ar<u>H</u>), 7.12 (d, 2H, J = 7.8 Hz, Ar<u>H</u>), 4.72 (d, 1H, J = 1.1 Hz, C1^{Rha}-H), 3.79 (dd, 1H, J = 1.2, 3.5 Hz, C2^{Rha}-H), 3.74 (s, 3H, OMe), 3.49–3.44 (m, 2H, C3^{Rha}-H and C4^{Rha}-H), 3.28–3.21 (m, 1H, C5^{Rha}-H), 2.34 (s, 3H, <u>Me</u> of Tol), 1.37 (d, 3H, J = 6.1 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 131.8, 129.7, 87.8 (C1^{Rha}), 82.5, 77.3, 77.0, 76.7, 76.1, 75.5, 73.8, 62.9, 21.1, 17.8; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C1₄H₂₀O₄SNa, 307.0980; found, 307.0995.

Tolyl 3,4-O-(o-xylylene)-2-O-methyl-1-thio-α-L-rhamnopyranoside (S29):

To a magnetically stirred solution of $S28\alpha,\beta$ (127 mg, 0.45 mmol) in anhydrous DMF (8.9 mL) was added sodium hydride (60% dispersion in oil, 89 mg, 2.23 mmol, 5.0 equiv.) in small portions at 0 °C. After 30 min, 1,2-bis(bromomethyl)benzene (235 mg, 0.89 mmol, 2.0 equiv.) was added and stirred at room temperature. Complete consumption of starting materials was observed after 2 h, followed by dropwise addition of MeOH and ice-water to quench excess reagents. The reaction mixture was

extracted with DCM (2 × 30 mL), washed with water (30 mL) and brine (30 mL), dried over Na₂SO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 100:1) afforded the title compound **S29** (133 mg, 77% yield) as a coloreless oil. TLC (hexane–EtOAc, 10:1): $R_f = 0.45$; ¹H NMR (CDCl₃, 400 MHz): δ 7.83–7.05 (m, 8H, ArH), 5.48 (d, 1H, J = 1.6 Hz, C1^{Rha}-H), 5.14 (d, 1H, J = 11.2 Hz, O<u>CH₂Ph</u>), 4.89 (s, 2H, O<u>CH₂Ph</u>), 4.83 (d, 1H, J = 11.1 Hz, O<u>CH₂Ph</u>), 4.23–4.19 (m, 1H, C5^{Rha}-H), 3.94 (dd, 1H, J = 3.1, 9.4 Hz, C3^{Rha}-H), 3.77 (dd, 1H, J = 1.8, 3.2 Hz, C2^{Rha}-H), 3.68 (t, 1H, J = 9.4 Hz, C4^{Rha}-H), 3.47 (s, 3H, OMe), 2.29 (s, 3H, <u>Me</u> of Tol), 1.36 (d, 3H, J = 6.2 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.6, 136.1, 135.7, 133.4, 133.1, 131.8, 129.9, 128.3, 128.2, 128.1, 128.0, 127.8, 127.7, 126.9, 126.6, 126.2, 126.1, 126.1, 126.0, 125.9, 85.3 (C1^{Rha}), 80.7, 80.1, 79.8, 77.5, 77.2, 76.8, 75.6, 72.5, 69.2, 58.5, 21.2, 18.0; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₂₂H₂₆O₄SNa, 409.1449; found, 409.1458.

Supporting Information

$\label{eq:constraint} \textbf{3,4-O-(o-xylylene)-2-O-methyl-} \textbf{\alpha-L-rhamnopyranosyltrichloroacetimidate} \ \textbf{(2j):}$

To a magnetically stirred solution of **S29** (137 mg, 0.35 mmol) in acetone–H₂O (20:1, 6.5 mL) was added NBS (189 mg, 1.06 mmol, 3 equiv.) in small portions at 0 °C. Starting materials were consumed at the same temperature after 2 h. The reaction mixture was dissolved in CH₂Cl₂ (30 mL), washed with saturated aq. Na₂S₂O₃ (15 mL) and brine (15 mL), dried over Na₂SO₄, and concentrated in vacuo. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 5:1) afforded the mixture of isomers **S30** (70 mg, 70% yield) as a white solid. TLC

(hexane–EtOAc, 4:1): $R_f = 0.30$. To a magnetically stirred solution of **S30** (70 mg, 0.25 mmol) and CCl₃CN (201 μL, 1.99 mmol, 8 equiv.) in anhydrous CH₂Cl₂ (5.0 mL), DBU (15 μL, 0.10 mmol, 0.4 equiv.) was added dropwise at 0 °C, and the reaction mixture was stirred at the same temperature for 3 h, after which complete consumption of starting materials was observed. The reaction mixture was concentrated and purified by flash chromatography on silica gel (preconditioned with Et₃N; eluent: hexane–EtOAc, 50:1) to afford compound **2i** (98 mg, 93% yield) as a coloreless oil. TLC (hexane–EtOAc, 5:1): $R_f = 0.75$; $[\alpha]_D^{21} = -2.8$ (c = 1.0, CHCl₃); ¹H NMR (C₆D₆, 400 MHz): δ 8.12 (s, 1H, NH), 7.44–6.86 (m, 4H, ArH), 6.30 (d, 1H, J = 2.0 Hz, C1^{Rha}-H), 4.85 (d, 1H, J = 11.4 Hz, O<u>CH₂Ph</u>), 4.44 (d, 1H, J = 10.5 Hz, O<u>CH₂Ph</u>), 4.43 (s, 2H, O<u>CH₂Ph</u>), 3.99–3.91 (m, 1H, C5^{Rha}-H), 3.87 (dd, 1H, J = 3.0, 9.4 Hz, C3^{Rha}-H), 3.69 (t, 1H, J = 9.5 Hz, C4^{Rha}-H), 3.39 (dd, 1H, J = 2.1, 3.1 Hz, C2^{Rha}-H), 3.04 (s, 3H, OMe), 1.11 (d, 3H, J = 6.2 Hz, C6^{Rha}-H); ¹³C NMR (C₆D₆, 100 MHz): δ 160.3, 136.4, 136.0, 133.6, 133.5, 133.22, 133.16, 128.2, 127.9, 127.7, 127.5, 126.8, 126.5, 126.3, 126.10, 126.05, 126.01, 125.96, 125.9, 125.9, 125.83, 125.67, 125.5, 96.0 (C1^{Rha}), 80.0, 79.3, 76.8, 76.7, 75.4, 72.2, 71.5, 71.4, 58.8, 18.1, 18.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₇H₂₀Cl₃NO₅Na, 446.0305; found, 446.0314.

Preparation of a ZnI₂ solution (1.0 M in Et₂O).¹⁰ In the flame-dried, argon-flushed schlenk flask with a rubber septum, the desired mass of ZnI₂ (e.g., 310 mg, 1 mmol) was added, capped with argon balloon, and added with a desired amount of dry Et_2O (1 mL) to make a 1.0 M solution.

General Glycosylation Procedure (Method A). The glycosyl donor 2 (1.5 equiv.) and alcohol acceptor 3 (1.0 equiv.) were combined in a flask, coevaporated with toluene (3×3 mL), and dissolved in Et₂O to maintain a concentration of 0.01 M (based on the donor). Powdered freshly activated molecular sieves (100 mg/mL solvent) were added, and the mixture was stirred for 30 min at ambient temperature. A solution of ZnI₂ in Et₂O (0.50 equiv., 0.1 M solution in Et₂O) was added to the mixture, and stirring was continued until TLC indicated disappearance of the glycosyl donor (12–48 h). The reaction was quenched by the addition of Et₃N and diluted with EtOAc, then filtered through a pad of Celite®. The filtrate was concentrated under reduced pressure to give a residue, following purified by flash chromatography or simple preparative thin-layer chromatography on silica gel (EtOAc–hexane or EtOAc–toluene or acetone–toluene or acetonitrile-toluene elution) to the desired products.

General Method B of Deprotection of TBS. To a solution of starting material (1 mmol) in anhydrous THF (5 mL/ 0.1mmol), TBAF (1M in THF, 4 equiv.) was added at the same temperature. The reaction mixture was stirred at room temperature for 3 h. The mixtue was diluted with EtOAc (5 mL), washed with saturated aqueous NaHCO₃ and brine, dried with Na₂SO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel afforded the desired product.

General Method C of Reductive Ring-Opening Reaction of the 4,6-*O***-Acetal with BH**³ • **Et**₂**O**.¹¹ To a solution of BH₃ • Et₂O (8 equiv.) in anhydrous DCM (8 mL/mmol) was added starting material (1 mmol) and Et₃SiH (10 equiv.) in anhydrous DCM (10 mL/mmol) at 0 °C and the reaction mixture was stirred at room temperature for 15-20 minutes. The reaction was quenched by the addition of saturated aqueous NaHCO₃, extracted with ethyl acetate (3 ×), washed with brine, dried with Na₂SO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel afforded the desired product.

Supporting Information

General Method D of global deprotection. To a magnetically stirred solution of fully protected oligasaccaride (20 mg) in EtOH (2 mL) was added Pd/C (10 wt%, 20 mg), and then the mixture was stirred under H_2 at room temperature for 48 h, after which complete consumption of starting materials was observed. The reaction mixture was filtered through a short Celite® pad, washed with methanol, and evaporated in vacuo, followed by flash chromatography on silica gel (eluent: 1:2 MeOH–CHCl₃, 1:2) to give the desired product.

General Procedure E of NAP Group Removal. DDQ (1.5 mmol) was added slowly to a stirring solution of the NAP protected compound (1.0 mmol) in a mixture of CH_2Cl_2 (5 mL/mmol) and distilled water (5 mL/mmol) and the resulting reaction mixture was stirred at room temperature for 12 h. The reaction mixture was diluted with EtOAc, washed with saturated aqueous $Na_2S_2O_3$, H_2O and brine, dried with Na_2SO_4 , and concentrated under vacuum. The following purification by flash chromatography on silica gel afforded the desired product.

Methyl 2,3-di-*O*-benzyl-4-*O*-(2-naphthylmethyl)- β -L-rhamnopyranosyl-(1 \rightarrow 6)-2,3,4-*tri-O*-benzyl- α -D-glucopyranoside (4a):

Following the general procedure of method A using trichloroacetimidate **2a** (42 mg, 0.068 mmol) and methyl 2,3,4-*tri-O*-benzyl- α -D-glucopyranoside **3a** (21 mg, 0.045 mmol) in Et₂O (5.0 mL) at room temperature for 12 h afforded **4a** (16.8 mg, 40% yield of mixture isomers) as a colourless oil (eluent: EtOAc–toluene, 1:15; R_f = 0.30). ¹H NMR (CDCl₃, 500 MHz): δ

7.75–7.14 (m, 32H, ArH), 5.02 (d, 1H, J = 11.0 Hz, O<u>CH</u>₂Ph), 4.90 (d, 1H, J = 12.3 Hz, O<u>CH</u>₂Ph), 4.89 (d, 1H, J = 10.8 Hz, O<u>CH</u>₂Ph), 4.80 (d, 1H, J = 12.4 Hz, O<u>CH</u>₂Ph), 4.79 (d, 1H, J = 10.8 Hz, O<u>CH</u>₂Ph), 4.73 (d, 1H, J = 11.1 Hz, O<u>CH</u>₂Ph), 4.71 (d, 1H, J = 10.1 Hz, O<u>CH</u>₂Ph), 4.69 (d, 1H, J = 14.7 Hz, O<u>CH</u>₂Ph), 4.68 (d, 1H, J = 10.7 Hz, O<u>CH</u>₂Ph), 4.59 (d, 1H, J = 12.2 Hz, O<u>CH</u>₂Ph), 4.54 (s, 1H, C1^{Glc}-H), 4.68 (d, 1H, J = 11.9 Hz, O<u>CH</u>₂Ph), 4.40 (d, 1H, J = 12.1 Hz, O<u>CH</u>₂Ph), 4.37 (s, 1H, C1^{Rha}-H), 4.20 (d, 1H, J = 10.7 Hz, C6^{Glc}-H), 3.91 (t, 2H, J = 8.6 Hz, C3^{Glc}-H and C3^{Rha}-H), 3.67 (d, 1H, J = 10.0 Hz, C5^{Glc}-H), 3.60– 3.55 (m, 3H, C4^{Rha}-H, C4^{Glc}-H, and C6^{Glc}-H), 3.41 (d, 2H, J = 9.3 Hz, C2^{Glc}-H and C2^{Rha}-H), 3.28 (s, 3H, OMe), 3.28–3.26 (m, 1H, C5^{Rha}-H), 1.29 (d, 3H, J = 6.1 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 138.9, 138.8, 138.4, 138.2, 138.2, 133.3, 133.0, 128.5, 128.4, 128.3, 128.2, 128.13, 128.07, 127.9, 127.7, 127.7, 127.62, 127.57, 127.4, 126.7, 126.1, 126.0, 125.8, 101.4 (C1^{Rha}), 98.3 (C1^{Glc}), 82.0, 81.9, 80.3, 79.9, 77.8, 77.3, 77.0, 76.8, 75.7, 75.5, 75.2, 74.3, 74.1, 73.5, 72.0, 71.3, 70.0, 67.3, 55.2, 29.7, 18.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₅₉H₆₂O₁₀Na, 953.4241; found, 953.4253.

Methyl 2,3-*O*-benzylidene-4-*O*-(2-naphthylmethyl)- β -L-rhamnopyranosyl-(1 \rightarrow 6)-2,3,4-*tri-O*-benzyl- α -D-glucopyranoside (4b):

Following the general procedure of method A using trichloroacetimidate **2b** (50 mg, 0.10 mmol) and methyl 2,3,4-tri-*O*-benzyl- α -D-glucopyranoside **3a** (30 mg, 0.06 mmol) in Et₂O (6.0 mL) at room temperature for 12 h afforded **4b** (40.0 mg, 75% yield of mixture isomers) as a colourless oil (eluent: DCM–Et₂O, 100:1; R_f = 0.45). $[\alpha]_D^{21} = +0.7$ (*c* = 1.0, CHCl₃); ¹H NMR (C₆D₆, 400 MHz): δ 7.74 (s, 1H, ArH), 7.65–7.05 (m, 26H, ArH), 6.33 (s, 1H, ArCH),

5.08 (d, 1H, J = 12.1 Hz, O<u>CH</u>₂Ph), 5.00 (d, 1H, J = 11.2 Hz, O<u>CH</u>₂Ph), 4.99 (d, 1H, J = 11.4 Hz, O<u>CH</u>₂Ph), 4.82 (d, 1H, J = 12.1 Hz, O<u>CH</u>₂Ph), 4.80 (d, 1H, J = 11.2 Hz, O<u>CH</u>₂Ph), 4.79 (d, 1H, J = 12.6 Hz, O<u>CH</u>₂Ph), 4.76 (d, 1H, J = 2.8 Hz, C1^{Rha}-H), 4.58 (d, 1H, J = 3.4 Hz, C1^{Glc}-H), 4.45 (d, 1H, J = 11.9 Hz, O<u>CH</u>₂Ph), 4.38–4.33 (m, 2H, C3^{Rha}-H and C4^{Glc}-H), 4.24 (d, 1H, J = 9.2 Hz, O<u>CH</u>₂Ph), 4.22–4.17 (m, 2H, C2^{Rha}-H and C6^{Glc}-H), 3.93–3.85 (m, 2H, C4^{Rha}-H and C3^{Glc}-H), 3.81 (d, 1H, J = 8.9 Hz, C5^{Glc}-H), 3.78–3.74 (m, 1H, C6^{Glc}-H), 3.52–3.48 (m, 2H, C2^{Glc}-H and C5^{Rha}-H), 3.14 (s, 3H, OMe), 1.45 (d, 3H, J = 6.1 Hz, C6^{Rha}-H); ¹³C NMR (C₆D₆, 100 MHz): δ 139.5, 139.1, 138.91, 138.88, 136.1, 133.5, 133.2, 129.0, 128.3, 128.24, 128.21, 128.19, 128.17, 128.13, 128.10, 128.07, 128.05, 128.0, 127.9, 127.82, 127.76, 127.70, 127.6, 127.53, 127.46, 127.4, 127.3, 127.1, 126.8, 126.7, 126.0, 125.8, 104.6, 98.8 (C1^{Rha}), 98.1 (C1^{Glc}), 81.9, 80.9, 80.5, 78.8, 78.1, 75.2, 74.8, 72.6, 72.3, 70.5, 70.2, 67.3, 54.6, 29.9, 19.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₅₂H₅₄O₁₀Na, 861.3615; found, 861.3628.

Methyl 2,3-O-[1,1,3,3-tetrakis(1-methylethyl)-1,3-disiloxanediyl]-4-O-(2-naphthylmethyl)- α -L-rhamnopyranosyl-(1 \rightarrow 6)-2,3,4-*tri*-O-benzyl- α -D-glucopyranoside (4c):

Following the general procedure of method A using trichloroacetimidate **2c** (22 mg, 0.03 mmol) and methyl 2,3,4-tri-*O*-benzyl- α -D-glucopyranoside **3a** (10 mg, 0.02 mmol) in Et₂O (2.0 mL) at room temperature for 12 h afforded **4c** (18.9 mg, 90% yield of mixture isomers) as a colourless oil (eluent: EtOAc–toluene, 1:15; $R_f = 0.25$). $[\alpha]_D^{21} = -29.2$ (c = 0.1, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): δ 7.76–7.70 (m, 4H, ArH), 7.43–7.38 (m, 3H, ArH), 7.29–7.15 (m, 15H, ArH), 5.05 (d, 1H, J = 13.9 Hz, O<u>CH₂Ph</u>), 4.89 (d, 1H, J = 13.6 Hz, O<u>CH₂Ph</u>), 4.78 (d, 1H, J = 13.6 Hz, O<u>CH₂Ph</u>), 4.72 (d, 1H, J = 13.7 Hz, O<u>CH₂Ph</u>), 4.71 (d,

1H, J = 15.1 Hz, O<u>CH</u>₂Ph), 4.69 (d, 1H, J = 14.1 Hz, O<u>CH</u>₂Ph), 4.67 (d, 1H, J = 1.9 Hz, C1^{Rha}-H), 4.57 (d, 1H, J = 15.1 Hz, O<u>CH</u>₂Ph), 4.45 (d, 1H, J = 4.5 Hz, C1^{Glc}-H), 4.44 (d, 1H, J = 13.9 Hz, O<u>CH</u>₂Ph), 4.25 (dd, 1H, J = 4.0, 11.4 Hz, C3^{Rha}-H), 4.20–4.19 (m, 1H, C2^{Rha}-H), 3.89 (t, 1H, J = 11.6 Hz, C3^{Glc}-H), 3.80 (d, 1H, J = 12.0 Hz, C6^{Glc}-H), 3.70–3.65 (m, 2H, C5^{Rha}-H and C5^{Glc}-H), 3.43–3.39 (m, 2H, C2^{Glc}-H and C6^{Glc}-H), 3.37 (t, 1H, J = 11.7 Hz, C4^{Rha}-H), 3.28 (t, 1H, J = 11.5 Hz, C4^{Glc}-H), 3.26 (s, 3H, OMe), 1.19 (d, 3H, J = 7.8 Hz, C6^{Rha}-H), 1.18 (s, 3H, CH₃), 1.05–1.00 (m, 21H, CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 138.7, 138.14, 138.09, 136.3, 133.3, 133.0, 128.47, 128.45, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.69, 127.67, 126.7, 126.2, 126.0, 125.8, 100.3 (C1^{Rha}), 97.8 (C1^{Glc}), 82.1, 81.5, 80.1, 78.3, 77.3, 77.0, 76.7, 75.8, 75.6, 75.4, 75.1, 73.4, 72.7, 70.1, 67.6, 66.2, 54.9, 29.7, 18.1, 17.7, 17.6, 17.5, 17.4, 17.2, 17.1, 14.5, 13.7, 13.1, 12.6; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₅₇H₇₆O₁₁Si₂Na, 1015.4824; found, 1015.4813.

Methyl 2,3-*O*-(o-xylylene)-4-*O*-(2-naphthylmethyl)- β -L-rhamnopyranosyl-(1 \rightarrow 6)-2,3,4-*tri-O*-benzyl- α -D-glucopyranoside (4d):

Following the general procedure of method A using trichloroacetimidate **2d** (24 mg, 0.05 mmol) and methyl 2,3,4-tri-*O*-benzyl- α -D-glucopyranoside **3a** (14 mg, 0.03 mmol) in Et₂O (3.0 mL) at room temperature for 12 h afforded **4d** (26.2 mg, 95% yield of mixture isomers) as a colourless oil (eluent: EtOAc–hexane, 1:4; R_f = 0.28). $[\alpha]_D^{21} = +26.2$ (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.78–6.99 (m, 26H, ArH), 5.53 (d, 1H, J = 12.8 Hz, OCH₂Ph),

5.34 (d, 1H, J = 14.5 Hz, O<u>CH</u>₂Ph), 5.05 (d, 1H, J = 11.2 Hz, O<u>CH</u>₂Ph), 4.89 (d, 1H, J = 10.8 Hz, O<u>CH</u>₂Ph), 4.80 (d, 1H, J = 10.4 Hz, O<u>CH</u>₂Ph), 4.79 (d, 1H, J = 9.7 Hz, O<u>CH</u>₂Ph), 4.76 (d, 1H, J = 11.0 Hz, O<u>CH</u>₂Ph), 4.73 (d, 1H, J = 9.7 Hz, O<u>CH</u>₂Ph), 4.71 (d, 1H, J = 12.1 Hz, O<u>CH</u>₂Ph), 4.70 (d, 1H, J = 14.2 Hz, O<u>CH</u>₂Ph), 4.57 (d, 1H, J = 12.1 Hz, O<u>CH</u>₂Ph), 4.47 (d, 1H, J = 3.5 Hz, C1^{Glc}-H), 4.41 (s, 1H, C1^{Rha}-H), 4.34 (d, 1H, J = 12.8 Hz, O<u>CH</u>₂Ph), 4.13 (dd, 1H, J = 4.0, 12.1 Hz, C6^{Glc}-H), 3.90 (t, 2H, J = 9.0 Hz, C3^{Glc}-H and C2^{Rha}-H), 3.71 (t, 1H, J = 9.4 Hz, C4^{Rha}-H), 3.65–3.61 (m, 3H, C6^{Glc}-H, C5^{Glc}-H and C3^{Rha}-H), 3.53 (t, 1H, J = 9.2 Hz, C4^{Glc}-H), 3.40 (dd, 1H, J = 3.6, 9.6 Hz, C2^{Glc}-H), 3.33–3.27 (m, 1H, C5^{Rha}-H), 3.26 (s, 3H, OMe), 1.33 (d, 3H, J = 6.1 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 138.8, 138.4, 138.2, 137.7, 136.7, 135.9, 133.3, 133.1, 131.5, 128.48, 128.46, 128.4, 128.32, 128.25, 128.2, 128.1, 128.0, 127.93, 127.89, 127.8, 127.7, 126.9, 126.3, 126.1, 125.9, 100.3 (C1^{Rha}), 98.1 (C1^{Glc}), 82.0, 80.1, 79.1, 77.8, 77.4, 77.0, 76.7, 76.0, 75.3, 74.9, 73.5, 73.5, 71.8, 70.2, 67.1, 67.1, 55.2, 29.7, 18.2; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₅₃H₅₆O₁₀Na, 875.3771; found, 875.3760.

$Methyl \ 3, 4-O-(o-xylylene)-2-O-benzyl-\alpha-L-rhamnopyranosyl-(1 \rightarrow 6)-2, 3, 4-tri-O-benzyl-\alpha-D-glucopyranoside \ (4e):$

Following the general procedure of method A using trichloroacetimidate **2e** (38 mg, 0.08 mmol) and methyl 2,3,4-tri-*O*-benzyl- α -D-glucopyranoside **3a** (23.5 mg, 0.05 mmol) in Et₂O (5.1 mL) at room temperature for 12 h afforded **4e** (24.6 mg, 60% yield of mixture isomers) as a colourless oil (eluent: EtOAc–hexane, 1:3; R_f = 0.40). [α]_D²¹ = +47.4 (*c* = 0.2, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.30–7.04 (m, 24H, ArH), 4.99 (d, 1H, *J* = 13.6 Hz, O<u>CH₂Ph</u>), 4.97 (d, 1H, *J* = 11.3 Hz, O<u>CH₂Ph</u>), 4.96 (d, 1H, *J* = 13.6 Hz, O<u>CH₂Ph</u>), 4.89 (d, 1H, *J* = 10.8

Hz, O<u>CH</u>₂Ph), 4.86 (d, 1H, J = 13.6 Hz, O<u>CH</u>₂Ph), 4.74 (d, 1H, J = 10.9 Hz, O<u>CH</u>₂Ph), 4.71 (d, 1H, J = 10.8 Hz, O<u>CH</u>₂Ph), 4.70 (d, 1H, J = 12.1 Hz, O<u>CH</u>₂Ph), 4.65 (d, 1H, J = 12.2 Hz, O<u>CH</u>₂Ph), 4.60 (d, 1H, J = 1.7 Hz, C1^{Rha}-H), 4.58 (d, 1H, J = 12.1 Hz, O<u>CH</u>₂Ph), 4.53 (d, 1H, J = 12.2 Hz, O<u>CH</u>₂Ph), 4.46 (d, 1H, J = 3.5 Hz, C1^{Glc}-H), 4.35 (d, 1H, J = 11.0 Hz, O<u>CH</u>₂Ph), 3.88 (t, 1H, J = 9.0 Hz, C3^{Glc}-H), 3.74 (dd, 1H, J = 1.9, 10.9 Hz, C6^{Glc}-H), 3.70 (dd, 1H, J = 3.2, 8.8 Hz, C4^{Rha}-H), 3.67–3.65 (m, 1H, C2^{Rha}-H), 3.62–3.59 (m, 1H, C5^{Glc}-H), 3.57–3.50 (m, 2H, C5^{Rha}-H and C3^{Rha}-H), 3.42–3.36 (m, 2H, C2^{Glc}-H and C6^{Glc}-H), 3.29 (t, 1H, J = 8.8 Hz, C4^{Glc}-H), 3.18 (s, 3H, OMe), 1.24 (d, 3H, J = 5.9 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 138.7, 138.5, 138.1, 137.2, 137.0, 130.2, 129.2, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.72, 127.67, 127.4, 98.8 (C1^{Rha}), 97.8 (C1^{Glc}), 82.0, 81.0, 80.0, 79.4, 77.9, 77.3, 77.2, 77.0, 76.7, 75.8, 75.0, 73.5, 73.4, 73.4, 72.6, 70.0, 67.7, 66.0, 55.0, 29.7, 17.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₄₉H₅₄O₁₀Na, 825.3615; found, 825.3603.

Methyl 3,4-*O*-(o-xylylene)-2-*O*-(2-naphthylmethyl)- β -L-rhamnopyranosyl-(1 \rightarrow 6)-2,3,4-*tri-O*-benzyl- α -D-glucopyranoside (4h):

Following the general procedure of method A using trichloroacetimidate **2h** (27.8 mg, 0.05 mmol) and methyl 2,3,4-tri-*O*-benzyl- α -D-glucopyranoside **3a** (15.6 mg, 0.03 mmol) in Et₂O (3.4 mL) at room temperature for 12 h afforded **4h** (21.0 mg, 73% yield of mixture isomers) as a colourless oil (eluent: EtOAc–toluene, 1:10; R_f = 0.50). ¹H NMR (CDCl₃, 400 MHz): δ 7.74–7.11 (m, 26H, ArH), 5.06 (d, 1H, *J* = 10.3 Hz, O<u>CH</u>₂Ph), 5.01

(d, 1H, J = 14.8 Hz, O<u>CH</u>₂Ph), 4.98 (d, 2H, J = 12.6 Hz, O<u>CH</u>₂Ph), 4.97 (d, 2H, J = 13.8 Hz, O<u>CH</u>₂Ph), 4.92 (d, 1H, J = 11.7 Hz, O<u>CH</u>₂Ph), 4.85 (d, 1H, J = 10.9 Hz, O<u>CH</u>₂Ph), 4.79 (d, 1H, J = 10.1 Hz, O<u>CH</u>₂Ph), 4.76 (d, 1H, J = 11.6 Hz, O<u>CH</u>₂Ph), 4.75 (d, 1H, J = 10.4 Hz, O<u>CH</u>₂Ph), 4.61 (d, 1H, J = 12.0 Hz, O<u>CH</u>₂Ph), 4.56 (d, 1H, J = 3.3 Hz, C1^{Glc}-H), 4.47 (s, 1H, C1^{Rha}-H), 4.25 (dd, 1H, J = 3.0, 11.32 Hz, C6^{Glc}-H), 4.00–3.95 (m, 2H, C3^{Glc}-H and C2^{Rha}-H), 3.74–3.65 (m, 3H, C5^{Glc}-H, C4^{Glc}-H and C6^{Glc}-H), 3.58 (t, 1H, J = 9.2 Hz, C4^{Rha}-H), 3.49–3.43 (m, 2H, C3^{Rha}-H and C2^{Glc}-H), 3.33 (s, 3H, OMe), 3.30–3.25 (m, 1H, C5^{Rha}-H), 1.37 (d, 3H, J = 6.1 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 138.9, 138.4, 138.2, 137.1, 137.0, 136.5, 133.2, 132.9, 130.2, 129.5, 128.5, 128.44, 128.40, 128.37, 128.3, 128.2, 128.2, 128.11, 128.07, 128.01, 127.96, 127.94, 127.9, 127.69, 127.65, 127.62, 127.57, 126.4, 126.3, 125.7, 125.5, 101.2 (C1^{Rha}), 98.3 (C1^{Glc}), 81.9, 81.4, 80.2, 80.0, 77.8, 77.4, 77.3, 77.0, 76.8, 76.7, 75.8, 75.2, 74.6, 73.5, 73.2, 72.1, 71.9, 70.2, 67.1, 55.2, 29.7, 17.7, 0.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₅₃H₅₆O₁₀Na, 875.3771; found, 875.3785.

Methyl 3,4-*O*-(o-xylylene)-2-*O*-(2-cyanobenzyl)- β -L-rhamnopyranosyl-(1 \rightarrow 6)-2,3,4-*tri-O*-benzyl- α -D-glucopyranoside (4i):

Following the general procedure of method A using trichloroacetimidate **2i** (34 mg, 0.06 mmol) and methyl 2,3,4-tri-*O*-benzyl- α -D-glucopyranoside **3a** (20 mg, 0.04 mmol) in Et₂O (4.3 mL) at room temperature for 12 h afforded **4i** (20.1 mg, 56% yield of mixture isomers) as a colourless oil (eluent: EtOAc–toluene, 1:10; R_f = 0.40). ¹H NMR (CDCl₃, 400 MHz): δ 7.66 (d, 1H, *J* = 7.8 Hz, ArH), 7.46–7.11 (m, 22H, ArH), 5.12 (d, 1H, *J* = 14.0 Hz, O<u>CH₂Ph</u>), 5.08 (d, 1H, *J* = 13.7 Hz, O<u>CH₂Ph</u>), 5.03 (d, 1H, *J* = 14.0 Hz, O<u>CH₂Ph</u>), 4.98 (d, 2H, *J* = 14.2

Hz, O<u>CH</u>₂Ph), 4.94 (d, 1H, J = 10.7 Hz, O<u>CH</u>₂Ph), 4.91 (d, 1H, J = 13.3 Hz, O<u>CH</u>₂Ph), 4.80 (d, 1H, J = 11.0 Hz, O<u>CH</u>₂Ph), 4.78 (d, 1H, J = 12.1 Hz, O<u>CH</u>₂Ph), 4.67 (d, 1H, J = 12.1 Hz, O<u>CH</u>₂Ph), 4.64 (d, 1H, J = 10.1 Hz, O<u>CH</u>₂Ph), 4.63 (d, 1H, J = 10.1 Hz, O<u>CH</u>₂Ph), 4.62 (d, 1H, J = 2.3 Hz, C1^{Glc}-H), 4.50 (s, 1H, C1^{Rha}-H), 4.23 (dd, 1H, J = 3.1, 11.0 Hz, C6^{Glc}-H), 3.97 (d, 1H, J = 2.6 Hz, C2^{Rha}-H), 3.93 (t, 1H, J = 9.3 Hz, C3^{Glc}-H), 3.72–3.69 (m, 1H, C5^{Glc}-H), 3.65 (dd, 1H, J = 2.0, 11.0 Hz, C6^{Glc}-H), 3.58–3.51 (m, 4H, C4^{Glc}-H, C3^{Rha}-H, C4^{Rha}-H and C2^{Glc}-H), 3.33 (s, 3H, OMe), 3.33–3.26 (m, 1H, C5^{Rha}-H), 1.37 (d, 3H, J = 6.1 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.3, 139.2, 138.5, 138.4, 137.0, 136.8, 132.6, 132.1, 130.4, 129.5, 128.4, 128.3, 128.3, 128.17, 128.15, 128.0, 127.9, 127.8, 127.6, 127.5, 127.2, 117.3, 110.0, 100.6 (C1^{Rha}), 98.2 (C1^{Glc}), 81.8, 81.1,

Supporting Information

80.04, 79.99, 78.5, 77.6, 77.4, 77.2, 77.0, 76.7, 75.6, 75.0, 73.4, 73.1, 72.1, 72.0, 71.8, 70.0, 67.0, 55.2, 29.7, 17.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₅₀H₅₃NO₁₀Na, 850.3567; found, 850.3554.

Cyclopentyl 2,3-*O*-(o-xylylene)-4-*O*-(2-naphthylmethyl)-β-L-rhamnopyranoside (5b):

Following the general procedure of method A using trichloroacetimidate **2d** (32 mg, 0.06 mmol) and cyclopentanol **3b** (3.3 mg, 0.04 mmol) in Et₂O (4.0 mL) at -5 °C for 24 h afforded **5b** (17.6 mg, 96% yield of mixture isomers) as a colourless oil (eluent: EtOAc–toluene, 1:15; $R_f = 0.55$). $[\alpha]_D^{21} = +48.0 \ (c = 1.0, CHCl_3)$; ¹H NMR (CDCl₃, 400 MHz): δ 7.85–7.10 (m, 11H, ArH), 5.63 (d, 1H, J = 12.7 Hz, OCH₂Ph), 5.44 (d, 1H, J = 14.6 Hz, OCH₂Ph), 5.13 (d, 1H, J = 11.2 Hz,

O<u>CH</u>₂Ph), 4.84 (d, 1H, J = 11.2 Hz, O<u>CH</u>₂Ph), 4.75 (d, 1H, J = 14.6 Hz, O<u>CH</u>₂Ph), 4.42 (s, 1H, C1^{Rha}-H), 4.41 (d, 1H, J = 12.7 Hz, O<u>CH</u>₂Ph), 4.31–4.27 (m, 1H, C1-H of cyclopentyl), 3.85 (d, 1H, J = 2.7 Hz, C2^{Rha}-H), 3.80 (t, 1H, J = 9.4 Hz, C4^{Rha}-H), 3.70 (dd, 1H, J = 2.7, 9.6 Hz, C3^{Rha}-H), 3.39–3.32 (m, 1H, C5^{Rha}-H), 1.84–1.48 (m, 8H, cyclopentyl), 1.41 (d, 3H, J = 6.1 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.7, 136.9, 135.9, 133.3, 133.0, 131.4, 128.4, 128.1, 127.9, 127.7, 127.6, 126.9, 126.3, 126.0, 125.8, 98.8 (C1^{Rha}), 80.2, 79.1, 77.6, 77.3, 77.2, 77.0, 76.7, 74.9, 73.4, 71.6, 67.1, 33.3, 32.0, 23.4, 23.3, 18.2; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₀H₃₄O₅Na, 497.2304; found, 497.2316.

$Cyclohexyl \ 2, 3-O\ (o\ xylylene)-4-O\ (2-naphthylmethyl)-\beta\ L-rhamnopyranoside\ (5c):$

Following the general procedure of method A using trichloroacetimidate **2d** (32 mg, 0.06 mmol) and cyclohexanol **3c** (3.9 mg, 0.04 mmol) in Et₂O (4.0 mL) at -5 °C for 24 h afforded **5c** (17.0 mg, 90% yield of mixture isomers) as a colourless oil (eluent: EtOAc–toluene, 1:15; R_f = 0.55). $[\alpha]_{D}^{21} = +92.1$ (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.85–7.11 (m, 11H, ArH), 5.64 (d, 1H, J = 12.7 Hz, O<u>CH₂Ph</u>), 5.46 (d, 1H, J = 14.6 Hz, O<u>CH₂Ph</u>), 5.13 (d, 1H, J = 11.2 Hz,

O<u>CH</u>₂Ph), 4.84 (d, 1H, J = 11.2 Hz, O<u>CH</u>₂Ph), 4.79 (d, 1H, J = 14.7 Hz, O<u>CH</u>₂Ph), 4.50 (s, 1H, C1^{Rha}-H), 4.42 (d, 1H, J = 12.7 Hz, O<u>CH</u>₂Ph), 3.87 (d, 1H, J = 2.6 Hz, C2^{Rha}-H), 3.81 (t, 1H, J = 9.4 Hz, C4^{Rha}-H), 3.70 (dd, 1H, J = 2.7, 9.6 Hz, C3^{Rha}-H), 3.67–3.62 (m, 1H, C1-H of cyclohexyl), 3.38–3.31 (m, 1H, C5^{Rha}-H), 1.94–1.44 (m, 8H, cyclohexyl), 1.40 (d, 3H, J = 6.1 Hz, C6^{Rha}-H), 1.31–1.22 (m, 2H, cyclohexyl); ¹³C NMR (CDCl₃, 100 MHz): δ 137.7, 137.0, 135.9, 133.3, 133.0, 131.4, 128.3, 128.1, 127.9, 127.7, 127.6, 126.9, 126.3, 126.0, 125.8, 98.0 (C1^{Rha}), 79.1, 77.8, 77.3, 77.1, 77.0, 76.7, 76.2, 74.9, 73.4, 71.5, 67.1, 33.3, 31.6, 25.6, 23.9, 23.8, 18.2; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₁H₃₆O₅Na, 511.2460; found, 511.2472.

n-Butyl 2,3-*O*-(o-xylylene)-4-*O*-(2-naphthylmethyl)-β-L-rhamnopyranoside (5d):

Following the general procedure of method A using trichloroacetimidate **2d** (32 mg, 0.06 mmol) and *n*-butanol **3d** (2.9 mg, 0.04 mmol) in Et₂O (4.0 mL) at -5 °C for 24 h afforded **5d** (9.3 mg, 52% yield of mixture isomers) as a colourless oil (eluent: EtOAc–toluene, 1:15; R_f = 0.55). [α]_D²¹ = -74.4 (c = 0.2, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.86–7.12 (m, 11H, ArH), 5.63 (d, 1H, J = 12.8 Hz, O<u>CH₂Ph</u>), 5.49 (d, 1H, J = 14.4 Hz, O<u>CH₂Ph</u>), 5.13 (d, 1H, J

= 11.2 Hz, O<u>CH</u>₂Ph), 4.85 (d, 1H, J = 11.2 Hz, O<u>CH</u>₂Ph), 4.77 (d, 1H, J = 14.4 Hz, O<u>CH</u>₂Ph), 4.45 (d, 1H, J = 12.9 Hz, O<u>CH</u>₂Ph), 4.37 (s, 1H, C1^{Rha}-H), 3.92 (d, 1H, J = 2.8 Hz, C2^{Rha}-H), 3.90–3.86 (m, 1H, O<u>CH</u>₂ of butyl), 3.80 (t, 1H, J = 9.3 Hz, C4^{Rha}-H), 3.70 (dd, 1H, J = 2.7, 9.6 Hz, C3^{Rha}-H), 3.49–3.42 (m, 1H, O<u>CH</u>₂ of butyl), 3.40–3.34 (m, 1H, C5^{Rha}-H), 1.63–1.56 (m, 2H, CH₂<u>CH</u>₂CH₂ of butyl), 1.41 (d, 3H, J = 6.1 Hz, C6^{Rha}-H), 1.40–1.36 (m, 2H, <u>CH</u>₂CH₃ of butyl), 0.92 (t, 3H, J = 7.4 Hz, CH₂<u>CH</u>₃ of butyl); ¹³C NMR (CDCl₃, 100 MHz): δ 137.8, 136.5, 135.9, 133.3, 133.0, 131.0, 128.7, 128.1, 128.0, 127.9, 127.8, 127.6, 126.8, 126.3, 126.0, 125.8, 100.2 (C1^{Rha}), 79.5, 77.4, 77.3, 77.2, 77.0, 76.7, 76.6, 74.9, 73.3, 71.6, 69.3, 67.4, 31.6, 29.6, 19.2, 18.1, 13.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₉H₃₄O₅Na, 485.2304; found, 485.2321.

Supporting Information

n-Hexyl 2,3-*O*-(o-xylylene)-4-*O*-(2-naphthylmethyl)-β-L-rhamnopyranoside (5e):

Following the general procedure of method A using trichloroacetimidate **2d** (32 mg, 0.06 mmol) and *n*-hexanol **3e** (3.9 mg, 0.04 mmol) in Et₂O (4.0 mL) at -5 °C for 24 h afforded **5e** (15.6 mg, 82% yield of mixture isomers) as a colourless oil (eluent: EtOAc–toluene, 1:15; R_f = 0.55). [α]_D²¹ = +63.9 (*c* = 0.5, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.85–7.11 (m, 11H, ArH), 5.62 (d, 1H, *J* = 12.9 Hz, OCH₂Ph), 5.49 (d, 1H, *J* = 14.4 Hz, OCH₂Ph), 5.13 (d,

1H, J = 11.2 Hz, O<u>CH</u>₂Ph), 4.85 (d, 1H, J = 11.2 Hz, O<u>CH</u>₂Ph), 4.77 (d, 1H, J = 14.4 Hz, O<u>CH</u>₂Ph), 4.45 (d, 1H, J = 13.0 Hz, O<u>CH</u>₂Ph), 4.37 (s, 1H, C1^{Rha}-H), 3.91 (d, 1H, J = 2.6 Hz, C2^{Rha}-H), 3.90–3.85 (m, 1H, O<u>CH</u>₂ of hexyl), 3.80 (t, 1H, J = 9.3 Hz, C4^{Rha}-H), 3.70 (dd, 1H, J = 2.7, 9.6 Hz, C3^{Rha}-H), 3.45–3.41 (m, 1H, O<u>CH</u>₂ of hexyl), 3.39–3.33 (m, 1H, C5^{Rha}-H), 1.64–1.57 (m, 2H, CH₂ of hexyl), 1.41 (d, 3H, J = 6.1 Hz, C6^{Rha}-H), 1.36–1.26 (m, 6H, CH₂ of hexyl), 0.88 (t, 3H, J = 6.3 Hz, CH₂<u>CH</u>₃ of hexyl); ¹³C NMR (CDCl₃, 100 MHz): δ 137.8, 136.5, 135.9, 133.3, 133.0, 131.0, 128.7, 128.08, 128.06, 127.9, 127.8, 127.6, 126.8, 126.3, 126.0, 125.8, 100.2 (C1^{Rha}), 79.6, 77.4, 77.3, 77.2, 77.0, 76.7, 74.9, 73.3, 71.6, 69.7, 67.4, 31.6, 29.7, 29.5, 25.6, 22.5, 18.1; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₃₁H₃₈O₅Na, 513.2617; found, 513.2625.

3-Pentyl 2,3-O-(o-xylylene)-4-O-(2-naphthylmethyl)-β-L-rhamnopyranoside (5f):

Following the general procedure of method A using trichloroacetimidate **2d** (32 mg, 0.06 mmol) and 3-pentanol **3f** (3.4 mg, 0.04 mmol) in Et₂O (4.0 mL) at -5 °C for 24 h afforded **5f** (14.9 mg, 82% yield of mixture isomers) as a colourless oil (eluent: EtOAc–hexane, 1:4; R_f = 0.60). [α]_D²¹ = +48.2 (c = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.85–7.10 (m, 11H, ArH), 5.64 (d, 1H, J = 12.6 Hz, O<u>CH₂Ph</u>), 5.45 (d, 1H, J = 14.7 Hz, O<u>CH₂Ph</u>), 5.13 (d, 1H, J = 11.2 Hz, O<u>CH₂Ph</u>), 4.85 (d, 1H, J = 11.2 Hz, O<u>CH₂Ph</u>), 4.79 (d, 1H, J = 14.8 Hz, O<u>CH₂Ph</u>),

4.42 (s, 1H, C1^{Rha}-H), 4.40 (d, 1H, J = 11.3 Hz, O<u>CH</u>₂Ph), 3.89 (d, 1H, J = 2.7 Hz, C2^{Rha}-H), 3.82 (t, 1H, J = 9.4 Hz, C4^{Rha}-H), 3.68 (dd, 1H, J = 2.8, 9.7 Hz, C3^{Rha}-H), 3.53–3.47 (m, 1H, <u>CH</u>CH₂), 3.37–3.30 (m, 1H, C5^{Rha}-H), 1.66–1.25 (m, 4H, CH<u>CH</u>₂CH₃), 1.40 (d, 3H, J = 6.2 Hz, C6^{Rha}-H), 0.92 (t, 3H, J = 7.4 Hz, CHCH₂<u>CH</u>₃), 0.84 (t, 3H, J = 7.4 Hz, CHCH₂<u>CH</u>₃); ¹³C NMR (CDCl₃, 100 MHz): δ 137.7, 137.0, 135.9, 133.3, 133.0, 131.6, 128.2, 128.1, 128.1, 127.9, 127.7, 127.6, 126.9, 126.3, 126.0, 125.8, 99.5 (C1^{Rha}), 81.6, 79.1, 77.8, 77.3, 77.2, 77.0, 76.7, 74.83, 73.5, 71.5, 67.0, 29.7, 26.9, 25.5, 18.2, 9.5, 9.3; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₃₀H₃₆O₅Na, 499.2460; found, 499.2481.

3-Azidopropyl 2,3-O-(o-xylylene)-4-O-(2-naphthylmethyl)-β-L-rhamnopyranoside (5g):

Following the general procedure of method A using trichloroacetimidate **2d** (32 mg, 0.06 mmol) and 3-azidopropanol **3g** (3.9 mg, 0.04 mmol) in Et₂O (4.0 mL) at -5 °C for 24 h afforded **5g** (13.1 mg, 70% yield of mixture isomers) as a colourless oil (eluent: EtOAc-toluene, 1:15; $R_f = 0.55$). $[\alpha]_D^{21} = -7.3$ (c = 0.5, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.85–7.13 (m, 11H, ArH), 5.60 (d, 1H, J = 13.2 Hz, O<u>CH₂Ph</u>), 5.52 (d, 1H, J = 14.2 Hz, O<u>CH₂Ph</u>),

5.13 (d, 1H, J = 11.2 Hz, O<u>CH</u>₂Ph), 4.85 (d, 1H, J = 11.2 Hz, O<u>CH</u>₂Ph), 4.75 (d, 1H, J = 14.2 Hz, O<u>CH</u>₂Ph), 4.47 (d, 1H, J = 13.2 Hz, O<u>CH</u>₂Ph), 4.38 (s, 1H, C1^{Rha}-H), 3.98–3.95 (m, 1H, O<u>CH</u>₂), 3.93 (d, 1H, J = 2.5 Hz, C2^{Rha}-H), 3.79 (t, 1H, J = 9.4 Hz, C4^{Rha}-H), 3.71 (dd, 1H, J = 2.7, 9.6 Hz, C3^{Rha}-H), 3.57–3.53 (m, 1H, O<u>CH</u>₂), 3.43–3.35 (m, 3H, OCH₂<u>CH</u>₂ and C5^{Rha}-H), 1.97–1.83 (m, 2H, <u>CH</u>₂N₃), 1.41 (d, 3H, J = 6.2 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.9, 136.1, 135.8, 133.2, 133.0, 130.7, 128.9, 128.1, 127.9, 127.9, 127.6, 126.9, 126.3, 126.0, 125.9, 100.4 (C1^{Rha}), 79.8, 77.4, 77.29, 77.26, 77.0, 76.7, 76.2, 75.0, 73.2, 71.7, 67.6, 66.3, 48.4, 29.6, 29.1, 18.1; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₂₈H₃₁N₃O₅Na, 512.2161; found, 512.2144.

Supporting Information

5-(*N*-Benzyloxycarbonylamino) pentyl 2,3-*O*-(o-xylylene)-4-*O*-(2-naphthylmethyl)-β-L-rhamnopyranoside (5h):

Following the general procedure of method A using trichloroacetimidate **2d** (32 mg, 0.06 mmol) and 5-(*N*-benzyloxycarbonylamino) pentanol **3h** (9.3 mg, 0.04 mmol) in Et₂O (4.0 mL) at -5 °C for 24 h afforded **5h** (14.8 mg, 60% yield of mixture isomers) as a colourless oil (eluent: EtOAc–toluene, 1:15; $R_f = 0.55$). $[\alpha]_D^{21} = +118.6$ (*c* = 0.5, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.85–7.11 (m, 16H, ArH), 5.60 (d, 1H, *J* =

13.6 Hz, OCH₂Ph), 5.49 (d, 1H, J = 14.4 Hz, OCH₂Ph), 5.13 (d, 1H, J = 11.1 Hz, OCH₂Ph), 5.10 (d, 2H, J = 10.8 Hz, OCH₂Ph), 4.84 (d, 1H, J = 10.0 Hz, OCH₂Ph), 4.76 (s, 1H, NH), 4.74 (d, 2H, J = 14.4 Hz, OCH₂Ph), 4.45 (d, 1H, J = 13.1 Hz, OCH₂Ph), 4.35 (s, 1H, C1^{Rha}-H), 3.91 (t, 1H, J = 2.7 Hz, C2^{Rha}-H), 3.90–3.84 (m, 1H, OCH₂), 3.79 (t, 1H, J = 9.3 Hz, C4^{Rha}-H), 3.69 (dd, 1H, J = 2.7, 9.4 Hz, C3^{Rha}-H), 3.45–3.32 (m, 2H, OCH₂ and C5^{Rha}-H), 3.22–3.17 (m, 2H, CH₂), 1.66–1.49 (m, 6H, CH₂), 1.40 (d, 3H, J = 6.1 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.9, 136.6, 136.3, 135.8, 133.3, 130.8, 128.8, 128.5, 128.1, 128.1, 127.9, 127.8, 127.6, 126.8, 126.3, 126.0, 125.8, 100.2 (C1^{Rha}), 79.7, 77.4, 77.3, 77.2, 77.0, 76.9, 76.7, 76.4, 75.0, 73.2, 71.6, 69.2, 67.5, 66.5, 29.6, 29.1, 23.2, 18.1; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₃₈H₄₃NO₇Na, 648.2937; found, 648.2926.

(L)-Menthyl 2,3-O-(o-xylylene)-4-O-(2-naphthylmethyl)-β-L-rhamnopyranoside (5i):

Following the general procedure of method A using trichloroacetimidate **2d** (30 mg, 0.05 mmol) and (L)-menthol **3i** (5.7 mg, 0.04 mmol) in Et₂O (3.6 mL) at $-5 \,^{\circ}$ C for 24 h afforded **5i** (14.6 mg, 73% yield of mixture isomers) as a colourless oil (eluent: EtOAc–hexane, 1:6; R_f = 0.70). [α]_D²¹ = +5.8 (*c* = 0.3, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.86–7.09 (m, 11H, ArH), 5.63 (d, 1H, *J* = 12.7 Hz, O<u>CH₂Ph</u>), 5.45 (d, 1H, *J* = 14.6 Hz, O<u>CH₂Ph</u>), 5.13 (d, 1H, *J* = 11.2 Hz, O<u>CH₂Ph</u>), 4.84 (d, 1H, *J* = 11.2 Hz, O<u>CH₂Ph</u>), 4.77 (d, 1H, *J* = 14.7 Hz, O<u>CH₂Ph</u>), 4.43 (d, 1H, *J* = 12.7

Hz, O<u>CH</u>₂Ph), 4.40 (s, 1H, C1^{Rha}-H), 3.90 (d, 1H, J = 2.7 Hz, C2^{Rha}-H), 3.81 (t, 1H, J = 9.4 Hz, C4^{Rha}-H), 3.68 (dd, 1H, J = 2.7, 9.7 Hz, C3^{Rha}-H), 3.39–3.24 (m, 2H, C5^{Rha}-H and C1-H of menthyl), 2.21–1.57 (m, 7H, menthyl), 1.41 (d, 3H, J = 6.1 Hz, C6^{Rha}-H), 1.35–0.68 (m, 11H, menthyl); ¹³C NMR (CDCl₃, 100 MHz): δ 137.8, 137.0, 136.0, 133.3, 133.1, 131.4, 128.4, 128.2, 128.1, 127.9, 127.8, 127.7, 126.9, 126.3, 126.1, 125.9, 101.6 (C1^{Rha}), 81.6, 79.3, 74.9, 73.5, 71.5, 67.2, 48.3, 43.0, 34.4, 31.7, 29.7, 25.9, 23.3, 22.2, 21.0, 18.4, 16.3; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₃₅H₄₄O₅Na, 567.3086; found, 567.3090.

Admantyl 2,3-O-(o-xylylene)-4-O-(2-naphthylmethyl)-β-L-rhamnopyranoside (5j):

Following the general procedure of method A using trichloroacetimidate **2d** (30 mg, 0.05 mmol) and 1-admantanol **3j** (7.6 mg, 0.04 mmol) in Et₂O (3.6 mL) at -5 °C for 24 h afforded **5j** (11.8 mg, 60% yield of mixture isomers) as a colourless oil (eluent: acetonitrile–toluene, 1:15; R_f = 0.35). ¹H NMR (CDCl₃, 400 MHz): δ 7.85–7.10 (m, 11H, ArH), 5.66 (d, 1H, *J* = 12.5 Hz, O<u>CH₂Ph</u>), 5.42 (d, 1H, *J* = 14.9 Hz, O<u>CH₂Ph</u>), 5.13 (d, 1H, *J* = 11.2 Hz, O<u>CH₂Ph</u>), 4.84 (d, 1H,

 $J = 11.2 \text{ Hz}, \text{ OCH}_{2}\text{Ph}, 4.80 \text{ (d, 1H, } J = 15.1 \text{ Hz}, \text{ OCH}_{2}\text{Ph}, 4.68 \text{ (s, 1H, } \text{C1}^{\text{Rha}}\text{-H}, 4.39 \text{ (d, 1H, } J = 12.5 \text{ Hz}, \text{ OCH}_{2}\text{Ph}, 3.79 \text{ (t, 1H, } J = 9.3 \text{ Hz}, \text{C4}^{\text{Rha}}\text{-H}, 3.76 \text{ (d, 1H, } J = 2.8 \text{ Hz}, \text{C2}^{\text{Rha}}\text{-H}, 3.70 \text{ (dd, 1H, } J = 2.7, 9.6 \text{ Hz}, \text{C3}^{\text{Rha}}\text{-H}, 3.37\text{-}3.30 \text{ (m, 1H, } \text{C5}^{\text{Rha}}\text{-H}, 2.14\text{-}1.24 \text{ (m, 15H, adamantyl)}, 1.38 \text{ (d, 3H, } J = 6.1 \text{ Hz}, \text{C6}^{\text{Rha}}\text{-H}); {}^{13}\text{C} \text{ NMR} \text{ (CDCl}_3, 100 \text{ MHz}): \delta 137.5, 136.0, 133.3, 133.1, 131.9, 128.2, 128.1, 128.0, 127.9, 127.7, 126.8, 126.3, 126.0, 125.9, 93.1 (C1^{\text{Rha}}), 78.8, 77.3, 77.2, 77.0, 76.7, 74.8, 74.5, 71.2, 66.8, 42.5, 36.3, 30.7, 29.7, 18.5; \text{HRMS} \text{ (ESI-TOF) } m/z: [M + \text{Na}]^+ \text{ calcd for } \text{C}_{35}\text{H}_{40}\text{O}_5\text{Na}, 563.2773; \text{ found, } 563.2782.$

Benzyl 2,3-O-(o-xylylene)-4-O-(2-naphthylmethyl)-β-L-rhamnopyranoside (5k):

Following the general procedure of method A using trichloroacetimidate 2d (32 mg, 0.06 mmol) and benzyl alcohol 3k (4.2 mg, 0.04 mmol) in Et₂O (4.0 mL) at -5 °C for 24 h afforded 5k (18.6 mg, 97% yield of mixture isomers) as a colourless oil (eluent: EtOAc–

toluene, 1:15; $R_f = 0.55$). $[\alpha]_D^{21} = +100.8$ (c = 0.5, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.85–7.13 (m, 16H, ArH), 5.60 (d, 1H, J = 13.1 Hz, O<u>CH₂Ph</u>), 5.54 (d, 1H, J = 14.2 Hz, O<u>CH₂Ph</u>), 5.13 (d, 1H, J = 11.2 Hz, O<u>CH₂Ph</u>), 4.93 (d, 1H, J = 11.1 Hz, O<u>CH₂Ph</u>), 4.85 (d, 1H, J = 11.2 Hz, O<u>CH₂Ph</u>), 4.80 (d, 1H, J = 14.3 Hz, O<u>CH₂Ph</u>), 4.60 (d, 1H, J = 12.2 Hz, O<u>CH₂Ph</u>), 4.46 (d, 1H, J = 13.2 Hz, O<u>CH₂Ph</u>), 4.40 (s, 1H, C1^{Rha}-H), 3.93 (d, 1H, J = 2.7 Hz, C2^{Rha}-H), 3.81 (t, 1H, J = 9.3 Hz, C4^{Rha}-H), 3.67 (dd, 1H, J = 2.8, 9.6 Hz, C3^{Rha}-H), 3.37–3.33 (m, 1H, C5^{Rha}-H), 1.45 (d, 3H, J = 6.1 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 137.9, 137.3, 136.1, 135.9, 133.3, 133.0, 130.6, 129.0, 128.3, 128.1, 128.03, 128.0, 127.9, 127.9, 127.7, 127.6, 126.8, 126.2, 126.0, 125.8, 98.5 (C1^{Rha}), 80.0, 77.5, 77.3, 77.2, 77.0, 76.7, 76.3, 75.0, 73.2, 71.7, 70.2, 67.7, 29.7, 18.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₂H₃₂O₅Na, 519.2147; found, 519.2141.

N-9-Fluorenylmethyloxycarbonyl-*O*-[2,3-*O*-(o-xylylene)-4-*O*-(2-naphthylmethyl)-β-L-rhamnopyranosyl]-L-serine tert-Butyl Ester (5l):

Following the general procedure of method A using trichloroacetimidate **2d** (32 mg, 0.06 mmol) and *N*-Fmoc-L-serine tert-butyl ester **3l** (15 mg, 0.04 mmol) in Et₂O (4.0 mL) at – 5 °C for 24 h afforded **5l** (10.5 mg, 35% yield of mixture isomers) as a colourless oil (eluent: acetonitrile–toluene, 1:15; $R_f = 0.40$). $[\alpha]_D^{21} = -21.5$ (c = 0.1, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.87–7.26 (m, 19H, ArH), 5.91 (d, 1H, J = 8.9 Hz, NH), 5.61 (d, 1H,

 $J = 12.9 \text{ Hz}, \text{ OCH}_2\text{Ph}), 5.47 \text{ (d, 1H, } J = 14.4 \text{ Hz}, \text{ OCH}_2\text{Ph}), 5.13 \text{ (d, 1H, } J = 11.2 \text{ Hz}, \text{ OCH}_2\text{Ph}), 4.85 \text{ (d, 1H, } J = 11.2 \text{ Hz}, \text{ OCH}_2\text{Ph}), 4.72 \text{ (d, 1H, } J = 14.5 \text{ Hz}, \text{ OCH}_2\text{Ph}), 4.43 \text{ (d, 1H, } J = 12.9 \text{ Hz}, \text{ OCH}_2\text{Ph}), 4.43 \text{ (m, 2H, CH}_2), 4.37 \text{ (s, 1H, } C1^{\text{Rha}}\text{-H}), 4.24 \text{ (t, 1H, } J = 14.4 \text{ Hz}, \text{CH}_2), 4.11 \text{ (dd, 1H, } J = 2.5, 10.0 \text{ Hz}, \text{CH}_2), 3.99 \text{ (dd, 1H, } J = 3.3, 9.9 \text{ Hz}, \text{CH}_2), 3.87 \text{ (d, 1H, } J = 2.7 \text{ Hz}, \text{ C2}^{\text{Rha}}\text{-H}), 3.80 \text{ (t, 1H, } J = 9.4 \text{ Hz}, \text{C4}^{\text{Rha}}\text{-H}), 3.79-3.68 \text{ (m, 2H, CH}_2 \text{ and C3}^{\text{Rha}}\text{-H}), 3.39-3.35 \text{ (m, 1H, C5}^{\text{Rha}}\text{-H}), 1.43 \text{ (s, 9H, CH}_3), 1.40 \text{ (d, 3H, } J = 6.1 \text{ Hz}, \text{C6}^{\text{Rha}}\text{-H}); {}^{13}\text{C} \text{ NMR} \text{ (CDCl}_3, 100 \text{ MHz}): \delta 169.0, 144.0, 141.3, 137.7, 136.3, 135.7, 133.1, 131.2, 128.6, 128.3, 128.2, 128.0, 127.9, 127.7, 127.1, 127.0, 126.3, 126.1, 126.0, 125.3, 120.0, 100.6 \text{ (C1}^{\text{Rha}}), 82.2, 79.2, 77.3, 77.2, 77.0, 77.0, 76.7, 76.5, 75.03, 73.4, 71.9, 70.7, 68.0, 67.5, 67.2, 54.9, 47.2, 31.6, 29.7, 28.1, 25.6, 22.7, 18.1, 14.1, 0.0; \text{HRMS} \text{(ESI-TOF) } m/z: [M + Na]^+ \text{ calcd for C}_{47}\text{H}_{49}\text{NO}_9\text{Na}, 794.3305; found, 794.3313.$

N-tert-Butoxycarbonyl-*O*-[2,3-*O*-(o-xylylene)-4-*O*-(2-naphthylmethyl)-β-L-rhamnopyranosyl]-L-serine Benzyl Ester (5m):

Following the general procedure of method A using trichloroacetimidate **2d** (33 mg, 0.06 mmol) and *N*-Boc-L-serine benzyl ester **3m** (11.8 mg, 0.04 mmol) in Et₂O (4.0 mL) at – 5 °C for 24 h afforded **5m** (13.6 mg, 50% yield of mixture isomers) as a colourless oil (eluent: acetonitrile–toluene, 1:12; $R_f = 0.55$). $[\alpha]_D^{21} = +32.0$ (c = 0.4, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.86–7.05 (m, 16H, ArH), 5.64 (d, 1H, J = 9.2 Hz, NH), 5.55 (d, 1H,

 $J = 12.6 \text{ Hz}, \text{ OCH}_2\text{Ph}, 5.35 \text{ (d, 1H, } J = 12.1 \text{ Hz}, \text{ OCH}_2\text{Ph}, 5.33 \text{ (d, 2H, } J = 14.7 \text{ Hz}, \text{ OCH}_2\text{Ph}, 5.10 \text{ (d, 1H, } J = 11.2 \text{ Hz}, \text{ OCH}_2\text{Ph}, 4.96 \text{ (d, 2H, } J = 12.1 \text{ Hz}, \text{ OCH}_2\text{Ph}, 4.82 \text{ (d, 1H, } J = 11.2 \text{ Hz}, \text{ OCH}_2\text{Ph}, 4.56-4.51 \text{ (m, 2H, OCH}_2\text{Ph} \text{ and CH}, 4.13-4.08 \text{ (m, 1H, CH}_2), 4.06 \text{ (s, 1H, C1}^{\text{Rha}}\text{-H}, 3.92 \text{ (dd, 1H, } J = 3.0, 9.9 \text{ Hz}, \text{CH}_2), 3.72 \text{ (t, 1H, } J = 9.4 \text{ Hz}, \text{C4}^{\text{Rha}}\text{-H}, 3.47 \text{ (dd, 1H, } J = 2.8, 9.7 \text{ Hz}, \text{C3}^{\text{Rha}}\text{-H}, 3.35 \text{ (t, 1H, } J = 2.7 \text{ Hz}, \text{C2}^{\text{Rha}}\text{-H}), 3.29-3.23 \text{ (m, 1H, C5}^{\text{Rha}}\text{-H}), 1.45 \text{ (s, 9H, CH}_3), 1.38 \text{ (d, 3H, } J = 6.1 \text{ Hz}, \text{C6}^{\text{Rha}}\text{-H}); {}^{13}\text{C} \text{ NMR} \text{ (CDCl}_3, 100 \text{ MHz}): \delta 170.2, 155.5, 137.5, 136.8, 135.7, 133.3, 133.1, 131.8, 128.5, 128.4, 128.3, 128.2, 127.9, 127.9, 127.7, 127.0, 126.3, 126.1, 126.0, 100.8 (\text{C1}^{\text{Rha}}, 79.9, 78.5, 77.3, 77.2, 77.0, 76.8, 76.7, 76.6, 75.0, 73.5, 71.8, 70.8, 67.0, 66.9, 54.0, 29.7, 28.4, 18.0, 0.0; HRMS (ESI-TOF)$ *m*/*z*: [M + Na]⁺ calcd for C₄₀H₄₅NO₉Na, 706.2992; found, 706.2994.

$3-O-[2, 3-O-(o-xylylene)-4-O-(2-naphthylmethyl)-\beta-L-rhamnopyranosyl] diosgenin~(5n):$

Following the general procedure of method A using trichloroacetimidate 2d (32 mg, 0.06 mmol) and diosgenin 3n (16.0 mg, 0.04 mmol) in Et₂O (4.0 mL)

Supporting Information

at $-5 \,^{\circ}$ C for 24 h afforded **5n** (16.8 mg, 54% yield of mixture isomers) as a colourless oil (eluent: acetonitrile–toluene, 1:50; R_f = 0.65). [α]²¹_D = -105.6 (c = 0.5, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.85–7.12 (m, 11H, ArH), 5.63 (d, 1H, J = 12.9 Hz, O<u>CH₂Ph</u>), 5.49 (d, 1H, J = 14.5 Hz, O<u>CH₂Ph</u>), 5.34 (d, 1H, J = 5.4 Hz, C1-H of diosgenin), 5.13 (d, 2H, J = 11.2 Hz, O<u>CH₂Ph</u>), 4.84 (d, 1H, J = 11.2 Hz, O<u>CH₂Ph</u>), 4.79 (d, 1H, J = 14.6 Hz, O<u>CH₂Ph</u>), 4.50 (s, 1H, C1^{Rha}-H), 4.44 (d, 2H, J = 12.9 Hz, O<u>CH₂Ph</u>), 4.43–4.37 (m, 1H, diosgenin), 3.87 (t, 1H, J = 2.6 Hz, C2^{Rha}-H), 3.80 (t, 1H, J = 9.3 Hz, C4^{Rha}-H), 3.69 (dd, 1H, J = 2.6, 9.6 Hz, C3^{Rha}-H), 3.56–3.31 (m, 4H, diosgenin and C5^{Rha}-H), 2.04–0.96 (m, 39H, diosgenin and C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 140.9, 137.8, 136.7, 135.9, 133.2, 133.0, 131.1, 128.6, 128.1, 128.0, 127.9, 127.7, 127.6, 126.9, 126.3, 126.0, 125.8, 121.4, 109.2, 98.2 (C1^{Rha}), 80.8, 79.5, 78.0, 77.3, 77.0, 76.7, 74.9, 73.3, 71.5, 67.3, 66.8, 62.1, 56.5, 50.0, 41.6, 40.2, 40.0, 39.7, 37.0, 36.8, 32.0, 31.8, 31.4, 31.3, 30.3, 28.8, 28.0, 20.8, 19.4, 18.2, 17.1, 16.2, 14.5; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₅₂H₆₆O₇Na, 825.4706; found, 825.4715.

2,3-O-(o-xylylene)-4-O-(2-naphthylmethyl)- β -L-rhamnopyranosyl-(1 \rightarrow 6)-1,2:3,4-di-O-isopropylidene- α -D-galactopyranose (50):

Following the general procedure of method A using trichloroacetimidate **2d** (34 mg, 0.06 mmol) and 1,2:3,4-di-*O*-isopropylidene- α -D-galactopyranose **3o** (10.7 mg, 0.04 mmol) in Et₂O (4.0 mL) at -5 °C for 24 h afforded **5o** (23.2 mg, 87% yield of mixture isomers) as a colourless oil (eluent: EtOAc–hexane, 1:3; R_f = 0.40). $[\alpha]_D^{21} = -74.7$ (*c* = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.86–7.11 (m, 11H, ArH), 5.60 (d, 1H, *J* = 13.1 Hz, O<u>CH₂Ph</u>), 5.51 (d, 1H, *J* = 12.5 Hz, O<u>CH₂Ph</u>), 5.49 (d, 1H, *J* = 1.8 Hz, C1^{Gal1}-H), 5.13 (d, 2H, *J* =

11.2 Hz, O<u>CH</u>₂Ph), 4.85 (d, 1H, J = 11.2 Hz, O<u>CH</u>₂Ph), 4.78 (d, 2H, J = 14.4 Hz, O<u>CH</u>₂Ph), 4.60 (dd, 1H, J = 2.4, 8.0 Hz, C3^{Gal}-H), 4.46 (d, 1H, J = 13.0 Hz, O<u>CH</u>₂Ph), 4.45 (s, 1H, C1^{Rha}-H), 4.34–4.29 (m, 2H, C4^{Gal}-H and C2^{Gal}-H), 4.15–4.05 (m, 1H, C5^{Gal}-H), 3.98 (d, 1H, J = 2.7 Hz, C2^{Rha}-H), 3.92–3.88 (m, 1H, C6^{Gal}-H), 3.81–3.75 (m, 2H, C4^{Rha}-H and C6^{Gal}-H), 3.70 (dd, 1H, J = 2.7, 9.6 Hz, C3^{Rha}-H), 3.41–3.34 (m, 1H, C5^{Rha}-H), 1.52 (s, 3H, CH₃), 1.43 (s, 3H, CH₃), 1.40 (d, 3H, J = 6.1 Hz, C6^{Rha}-H), 1.33 (s, 3H, CH₃), 1.32 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 137.9, 136.3, 135.8, 133.3, 133.1, 130.9, 128.9, 128.2, 128.1, 128.0, 127.9, 127.7, 127.0, 126.3, 126.1, 125.9, 109.1, 108.6, 100.6 (C1^{Rha}), 96.3 (C1^{Gal}), 79.8, 77.4, 77.1, 76.7, 76.3, 75.1, 73.3, 71.8, 70.8, 70.6, 70.5, 67.6, 67.5, 65.5, 60.4, 29.7, 26.2, 26.0, 24.9, 24.4, 21.1, 18.2, 14.2; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₃₇H₄₄O₁₀Na, 671.2832; found, 671.2838.

2,3-*O*-(o-xylylene)-4-*O*-(2-naphthylmethyl)- β -L-rhamnopyranosyl-(1 \rightarrow 3)-1,2:5,6-di-*O*-isopropylidene- α -D-glucofuranose (5p):

Following the general procedure of method A using trichloroacetimidate **2d** (33 mg, 0.06 mmol) and 1,2:5,6-di-*O*-isopropylidene- α -D-glucofuranose **3p** (10.4 mg, 0.04 mmol) in Et₂O (4.0 mL) at -5 °C for 24 h afforded **5p** (9.8 mg, 38% yield of mixture isomers) as a colourless oil (eluent: acetonitrile–toluene, 1:12; $R_f = 0.50$). $[\alpha]_D^{21} = +32.0$ (c = 0.4, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.86–7.11 (m, 11H, ArH), 5.93 (d, 1H, J = 3.6 Hz, C1^{Glc}-H), 5.59 (d, 1H, J = 13.1 Hz, O<u>CH₂Ph</u>), 5.50 (d, 1H, J = 14.2 Hz, O<u>CH₂Ph</u>), 5.13 (d, 2H, J = 11.2 Hz, O<u>CH₂Ph</u>), 4.86 (d, 1H, J = 11.2 Hz, O<u>CH₂Ph</u>), 4.83 (d, 1H, J = 3.6 Hz, C2^{Glc}-H),

4.73 (d, 1H, J = 14.3 Hz, O<u>CH</u>₂Ph), 4.56 (s, 1H, C1^{Rha}-H), 4.45 (d, 1H, J = 13.1 Hz, O<u>CH</u>₂Ph), 4.18 (d, 1H, J = 2.7 Hz, C3^{Glc}-H), 4.13–4.04 (m, 3H, C5^{Glc}-H, C6^{Glc}-H and C4^{Glc}-H), 3.98–3.94 (m, 2H, C6^{Glc}-H and C2^{Rha}-H), 3.79 (t, 1H, J = 9.3 Hz, C4^{Rha}-H), 3.70 (dd, 1H, J = 2.7, 9.6 Hz, C3^{Rha}-H), 3.42–3.39 (m, 1H, C5^{Rha}-H), 1.49 (s, 3H, CH₃), 1.43 (d, 3H, J = 6.2 Hz, C6^{Rha}-H), 1.37 (s, 3H, CH₃), 1.30 (s, 3H, CH₃), 1.18 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 137.9, 136.0, 135.1, 133.3, 133.1, 130. 9, 128. 8, 128.3, 128.2, 128.1, 127.9, 127.7, 127.0, 126.3, 126.1, 126.0, 111.8, 109.1, 105.5 (C1^{Glc}), 101.8 (C1^{Rha}), 84.1, 83.0, 81.1, 79.6, 77.3, 77.2, 77.0, 76.7, 76.4, 75.0, 73.5, 72.7, 71.9, 67.6, 29.7, 26.8, 26.2, 25.3, 18.2, 0.0; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₃₇H₄₄O₁₀Na, 671.2832; found, 671.2835.

 $Methyl \ 2, 3-O-(o-xylylene)-4-O-(2-naphthylmethyl)-\beta-L-rhamnopyranosyl-(1\rightarrow 4)-2, 3, 6-tri-O-benzyl-\alpha-D-glucopyranoside (5q):$

Following the general procedure of method A using trichloroacetimidate **2d** (33 mg, 0.06 mmol) and methyl 2,3,6-*tri-O*-benzyl- α -D-glucopyranoside **3q** (18.6 mg, 0.04 mmol) in Et₂O (5.0 mL) at -5 °C for 24 h afforded **5q** (16.6 mg, 48% yield of mixture isomers) as a colourless oil (eluent: acetone–toluene, 1:12; R_f = 0.55). ¹H NMR (CDCl₃, 400 MHz): δ 7.84–6.97 (m, 26H, ArH), 5.47 (d, 1H, *J* = 13.8 Hz, O<u>CH₂Ph</u>), 5.45 (d, 1H, *J* = 13.4 Hz, OCH₂Ph), 5.07 (d, 1H, *J* = 11.3 Hz, OCH₂Ph), 4.91 (d, 1H, *J* = 11.4 Hz, OCH₂Ph), 4.79 (d,

1H, J = 11.3 Hz, O<u>CH</u>₂Ph), 4.71 (d, 1H, J = 12.1 Hz, O<u>CH</u>₂Ph), 4.65 (d, 1H, J = 14.2 Hz, O<u>CH</u>₂Ph), 4.64 (d, 1H, J = 3.4 Hz, C1^{Glc}-H), 4.62 (d, 1H, J = 12.2 Hz, O<u>CH</u>₂Ph), 4.61 (d, 1H, J = 11.8 Hz, O<u>CH</u>₂Ph), 4.60 (s, 1H, C1^{Rha}-H), 4.53 (d, 1H, J = 11.9 Hz, O<u>CH</u>₂Ph), 4.30 (d, 1H, J = 13.5 Hz, O<u>CH</u>₂Ph), 4.29 (d, 1H, J = 11.4 Hz, O<u>CH</u>₂Ph), 3.88–3.62 (m, 6H, C3^{Glc}-H, C6^{Glc}-H, C6^{Glc}-H, C6^{Glc}-H C4^{Glc}-H and C4^{Rha}-H), 3.53–3.49 (m, 2H, C2^{Glc}-H and C2^{Rha}-H), 3.40 (s, 3H, OMe), 3.35 (dd, 1H, J = 2.7, 9.6 Hz, C3^{Rha}-H), 3.25–3.18 (m, 1H, C5^{Rha}-H), 1.28 (d, 3H, J = 6.0 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 138.7, 138.39, 138.37, 138.0, 135.88, 135.86, 133.3, 133.1, 130.3, 129.3, 128.5, 128.4, 128.2, 128.14, 128.09, 128.00, 127.95, 127.9, 127.7, 127.6, 127.5, 127.4, 127.3, 127.0, 126.4, 126.1, 125.9, 101.6 (C1^{Rha}), 98.0 (C1^{Glc}), 81.8, 80.6, 80.1, 77.5, 77.4, 77.0, 76.7, 75.7, 75.5, 75.0, 73.3, 73.1, 73.0, 71.6, 69.6, 69.0, 67.9, 55.3, 18.1; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₅₃H₅₆O₁₀Na, 875.3771; found, 875.3785.

Benzyl 2,3-O-(o-xylylene)-4-O-(2-naphthylmethyl)- β -L-rhamnopyranosyl-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-glucopyranoside (5r):

Following the general procedure of method A using trichloroacetimidate **2d** (51 mg, 0.09 mmol) and benzyl 2,3,6-tri-*O*-benzyl- β -D-glucopyranoside **3r** (33 mg, 0.06 mmol) in Et₂O (6.0 mL) at -5 °C for 24 h afforded **5r** (16.8 mg, 30% yield of mixture isomers) as a colourless oil (eluent: acetone–toluene, 1:20; R_f = 0.60). [α]_D²¹ = +27.8 (*c* = 0.2, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.85–6.95 (m, 31H, ArH), 5.46 (d, 1H, *J* = 13.8 Hz, OCH₂Ph), 5.44 (d, 1H, *J* = 13.4 Hz, OCH₂Ph), 5.07 (d, 1H, *J* = 11.2 Hz, OCH₂Ph), 4.98–

4.91 (m, 2H, O<u>CH</u>₂Ph), 4.83 (d, 1H, J = 11.9 Hz, O<u>CH</u>₂Ph), 4.80 (d, 1H, J = 11.9 Hz, O<u>CH</u>₂Ph), 4.72 (d, 1H, J = 11.9 Hz, O<u>CH</u>₂Ph), 4.68 (d, 1H, J = 11.9 Hz, O<u>CH</u>₂Ph), 4.66 (d, 1H, J = 12.4 Hz, O<u>CH</u>₂Ph), 4.62 (d, 1H, J = 13.4 Hz, O<u>CH</u>₂Ph), 4.59 (d, 1H, J = 11.1 Hz, O<u>CH</u>₂Ph), 4.54 (s, 1H, C1^{Rha}-H), 4.49 (d, 1H, J = 7.4 Hz, C1^{Glc}-H), 4.31 (d, 1H, J = 13.0 Hz, O<u>CH</u>₂Ph), 4.28 (d, 1H, J = 11.0 Hz, O<u>CH</u>₂Ph), 3.04 (dd, 1H, J = 1.72, 11.0 Hz, C4^{Glc}-H), 3.79–3.43 (m, 7H, C3^{Glc}-H, C4^{Rha}-H, C6^{Glc}-H, C5^{Glc}-H, C2^{Rha}-H and C2^{Glc}-H), 3.34 (dd, 1H, J = 2.7, 9.60 Hz, C3^{Rha}-H), 3.23–3.19 (m, 1H, C5^{Rha}-H), 1.30 (d, 3H, J = 6.1 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 138.9, 138.4, 137.4, 135.8, 135.7, 133.3, 128.6, 128.4, 128.39, 128.36, 128.3, 128.2, 128.1, 128.0, 127.8, 127.7, 127.5, 127.5, 127.4, 127.0, 126.4, 126.1, 125.9, 102.1 (C1^{Glc}), 101.3 (C1^{Rha}), 84.4, 84.1, 82.3, 81.8, 80.6, 77.4, 77.2, 77.0, 76.7, 75.5, 75.0, 74.7, 74.5, 73.7, 73.3, 72.9, 71.6, 71.2, 71.0, 70.3, 69.8, 68.0, 18.1, 0.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₅₉H₆₀O₁₀Na, 951.4084; found, 951.4088.

Benzyl 2,3-*O*-(o-xylylene)-4-*O*-(2-naphthylmethyl)-β-L-rhamnopyranosyl-(1→2)-3,4,6-tri-*O*-benzyl-β-D-glucopyranoside (5s):

Following the general procedure of method A using trichloroacetimidate **2d** (51 mg, 0.09 mmol) and benzyl 3,4,6-tri-*O*-benzyl- β -D-glucopyranoside **3s** (33 mg, 0.06 mmol) in Et₂O (6.0 mL) at -5 °C for 24 h afforded **5s** (31.4 mg, 55% yield of mixture isomers) as a colourless oil (eluent: acetone–toluene, 1:20; R_f = 0.55). [α]_D²¹ = -3.7 (*c* = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.86–7.12 (m, 31H, ArH), 5.54 (d, 1H, *J* = 13.1 Hz, O<u>CH</u>₂Ph), 5.40 (d, 1H, *J* = 14.2 Hz, O<u>CH</u>₂Ph), 5.29 (d, 1H, *J* = 10.3 Hz,

O<u>CH</u>₂Ph), 5.12 (d, 1H, *J* = 11.2 Hz, O<u>CH</u>₂Ph), 4.86 (d, 1H, *J* = 11.4 Hz, O<u>CH</u>₂Ph), 4.83 (d, 2H, *J* = 11.8 Hz, O<u>CH</u>₂Ph), 4.77 (d, 1H, *J* = 0.8 Hz, C1^{Rha}-H), 4.69 (d, 1H, *J* = 10.3 Hz, O<u>CH</u>₂Ph), 4.67 (d, 1H, *J* = 14.3 Hz, O<u>CH</u>₂Ph), 4.60 (d, 1H, *J* = 12.2 Hz, O<u>CH</u>₂Ph), 4.53 (d, 1H, *J* = 12.3 Hz, O<u>CH</u>₂Ph), 4.49 (d, 1H, *J* = 10.9 Hz, O<u>CH</u>₂Ph), 4.38 (d, 1H, *J* = 12.1 Hz, O<u>CH</u>₂Ph), 4.36 (d, 1H, *J* = 7.9 Hz, C1^{Glc}-H), 3.81–3.64 (m, 6H, C2^{Glc}-H, C6^{Glc}-H, C2^{Rha}-H, C4^{Rha}-H, C3^{Glc}-H and C6^{Glc}-H), 3.59–3.53 (m, 2H, C5^{Glc}-H and C3^{Rha}-H), 3.49–3.37 (m, 1H, C4^{Glc}-H), 3.33–3.29 (m, 1H, C5^{Rha}-H), 1.39 (d, 3H, *J* = 6.0 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 139.0, 138.4, 138.3, 138.2, 137.0, 136.6, 136.1, 133.4, 133.1, 130.9, 128.9, 128.8, 128.4, 128.4, 128.3, 128.1, 128.0, 128.0, 128.0, 127.9, 127.8, 127.7, 127.6, 127.6, 127.5, 126.8, 126.3, 126.1, 125.9, 102.1 (C1^{Glc}), 100.5 (C1^{Rha}), 83.5, 80.8, 80.0, 77.7, 77.4, 77.0, 76.7, 75.2, 75.1, 75.0, 75.0, 73.5, 73.1, 71.7, 71.3, 69.2, 67.5, 18.3; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₅₉H₆₀O₁₀Na, 951.4084; found, 951.4093.

Allyl 2,3-O-(o-xylylene)-4-O-(2-naphthylmethyl)- β -L-rhamnopyranosyl-(1 \rightarrow 2)-4,6-O-benzylidene-3-O-benzyl- α -D-glucopyranoside (5t):

Following the general procedure of method A using trichloroacetimidate **2d** (34 mg, 0.06 mmol) and Allyl 4,6-*O*-benzylidene-3-*O*-benzyl- β -D-glucopyranoside **3t** (16.3 mg, 0.04 mmol) in Et₂O (4.0 mL) at -5 °C for 24 h afforded **5t** (21 mg, 65% yield of mixture isomers) as a colourless oil (eluent: acetone–toluene, 1:12; R_f = 0.50). [α]_D²¹ = +53.8 (*c* = 0.5, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.85–7.07 (m, 20H, ArH), 6.49 (d, 1H, *J* = 7.6 Hz, Ar<u>CH</u>), 5.93–5.84 (m, 1H, <u>CH</u>=CH₂), 5.58 (d, 1H, *J* = 12.8 Hz, O<u>CH</u>₂Ph), 5.40 (s, 1H, Ar<u>CH</u>), 5.34 (d, 1H, *J*

= 14.6 Hz, O<u>CH</u>₂Ph), 5.28 (dd, 1H, J = 1.7, 17.2 Hz, <u>CH</u>₂CH=CH₂), 5.20 (dd, 1H, J = 1.6, 10.2 Hz, <u>CH</u>₂CH=CH₂), 5.10 (d, 1H, J = 11.2 Hz, O<u>CH</u>₂Ph), 4.98 (d, 1H, J = 12.3 Hz, O<u>CH</u>₂Ph), 4.82 (d, 1H, J = 11.2 Hz, O<u>CH</u>₂Ph), 4.79 (s, 1H, C1^{Rha}-H), 4.75 (d, 1H, J = 14.6 Hz, O<u>CH</u>₂Ph), 4.74 (d, 1H, J = 12.3 Hz, O<u>CH</u>₂Ph), 4.63 (d, 1H, J = 3.8 Hz, C1^{Glc}-H), 4.33 (d, 1H, J = 12.8 Hz, O<u>CH</u>₂Ph), 4.24–4.19 (m, 1H, C6^{Glc}-H), 4.15 (t, 1H, J = 6.9 Hz, C3^{Glc}-H), 4.14–4.09 (m, 1H, CH=<u>CH</u>₂), 4.00–3.97 (m, 1H, CH=<u>CH</u>₂), 3.94 (d, 1H, J = 2.9 Hz, C2^{Rha}-H), 3.87–3.82 (m, 1H, C5^{Glc}-H), 3.77 (t, 1H, J = 9.4 Hz, C4^{Rha}-H), 3.65 (t, 1H, J = 10.3 Hz, C6^{Glc}-H), 3.61–3.57 (m, 2H, C2^{Glc}-H and C4^{Glc}-H), 3.53 (t, 1H, J = 9.4 Hz, C3^{Rha}-H), 3.33–3.30 (m, 1H, C5^{Rha}-H), 1.39 (d, 3H, J = 6.1 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 138.7, 137.7, 137.1, 136.8, 135.9, 133.6, 133.3, 133.1, 131.3, 129.2, 128.4, 128.3, 128.3, 128.2, 128.0, 127.8, 127.7, 127.6, 126.9, 126.3, 126.2, 126.0, 125.9, 118.5, 101.9, 101.8 (C1^{Rha}), 97.1 (C1^{Glc}), 81.3, 79.1, 78.9, 78.4, 77.4, 77.24, 77.15, 77.1, 77.0, 76.7, 74.9, 74.0, 73.4, 71.8, 69.1, 68.6, 67.1, 62.1, 29.7, 18.3, 0.0; HRMS (ESI-TOF) m/z; [M + Na]⁺ calcd for C4₈H₅₀O₁₀Na, 809.3302; found, 809.3311.

Methyl 2,3-O-(o-xylylene)-4-O-(2-naphthylmethyl)-β-L-rhamnopyranosyl-(1→6)-2,3,4-*tri-O*-benzoyl-α-Dglucopyranoside (5u):

Following the general procedure of method A using trichloroacetimidate **2d** (68.9 mg, 0.13 mmol) and methyl 2,3,4-*tri-O*-benzoyl- α -D-glucopyranoside **3u** (42.3 mg, 0.08 mmol) in Et₂O (8.3 mL) at -5 °C for 24 h afforded **5u** (55.7 mg, 82% yield of mixture isomers) as a colourless oil (eluent: EtOAc–toluene, 1:10; R_f = 0.45). $[\alpha]_D^{21}$ = +84.5 (*c* = 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz): δ 7.98–6.99 (m, 26H, ArH), 6.14 (t, 1H, *J* = 9.8 Hz, C3^{Glc}-H), 5.56–5.52 (m, 2H, C4^{Glc}-H and C6^{Glc}-H), 5.33 (d, 1H, *J* = 14.6 Hz, O<u>CH₂Ph</u>), 5.23–5.19 (m,

2H, C2^{Glc}-H and C1^{Glc}-H), 5.10 (d, 1H, J = 11.2 Hz, O<u>CH</u>₂Ph), 4.81 (d, 1H, J = 11.2 Hz, O<u>CH</u>₂Ph), 4.65 (d, 1H, J = 14.7 Hz, O<u>CH</u>₂Ph), 4.42 (s, 1H, C1^{Rha}-H), 4.35 (d, 1H, J = 12.7 Hz, C5^{Glc}-H), 4.25–4.21 (m, 1H, C6^{Glc}-H), 4.12 (dd, 1H, J = 4.7, 11.5 Hz, C3^{Rha}-H), 3.79–3.73 (m, 2H, C4^{Rha}-H and C2^{Rha}-H), 3.47 (s, 3H, OMe), 3.33 (t, 1H, J = 7.4 Hz, C5^{Rha}-H), 1.35 (d, 3H, J = 6.1 Hz, C6^{Rha}-H); ¹³C NMR (CDCl₃, 151 MHz): δ 165.8, 165.3, 137.4, 136.9, 135.9, 133.34, 133.28, 133.1, 133.0, 131.5, 129.9, 129.7, 129.3, 129.11, 129.08, 128.43, 128.41, 128.36, 128.3, 128.2, 128.1, 127.9, 127.69, 127.67, 126.9, 126.3, 126.1, 125.9, 100.3 (C1^{Rha}), 96.9 (C1^{Glc}), 78.7, 77.3, 77.1, 77.0, 76.8, 74.9, 73.5, 72.2, 71.7, 70.5, 68.5, 68.3, 67.0, 55.6, 29.7, 18.0; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₅₃H₅₀O₁₃Na, 917.3149; found, 917.3164.

Acetyl 2,3-*O*-(o-xylylene)-4-*O*-(2-naphthylmethyl)- β -L-rhamnopyranosyl-(1 \rightarrow 6)-2,3,4-*tri-O*-acetyl- β -D-glucopyranoside (5v):

Following the general procedure of method A using trichloroacetimidate **2d** (69.0 mg, 0.13 mmol) and acetyl 2,3,4-*tri-O*-acetyl- β -D-glucopyranoside **3v** (29.4 mg, 0.08 mmol) in Et₂O (8 mL) at -5 °C for 24 h afforded **5v** (43.8 mg, 78% yield of mixture isomers) as a colourless oil (eluent: EtOAc–hexane, 1:2; R_f = 0.30). [α]_D²¹ = +54.5 (*c* = 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 7.85–7.20 (m, 11H, ArH), 5.67 (d, 1H, *J* = 8.2 Hz, C1^{Glc}-H), 5.61 (d, 1H, *J* = 13.0 Hz, OCH₂Ph), 5.47 (d, 1H, *J* = 14.4 Hz, OCH₂Ph), 5.23 (t, 1H,

 $J = 9.4 \text{ Hz}, \text{ C3}^{\text{Glc}}\text{-H}, 5.16-5.05 \text{ (m, 3H, C4}^{\text{Glc}}\text{-H, O}_{2}^{\text{CH}_{2}}\text{Ph and C2}^{\text{Glc}}\text{-H}, 4.83 \text{ (d, 1H, } J = 11.1 \text{ Hz}, O_{2}^{\text{CH}_{2}}\text{Ph}, 4.79 \text{ (d, 1H, } J = 14.6 \text{ Hz}, O_{2}^{\text{CH}_{2}}\text{Ph}, 4.46 \text{ (d, 1H, } J = 13.1 \text{ Hz}, O_{2}^{\text{CH}_{2}}\text{Ph}, 4.40 \text{ (s, 1H, C1}^{\text{Rha}}\text{-H}, 3.97 \text{ (dd, 1H, } J = 3.7, 11.9 \text{ Hz}, C6^{\text{Glc}}\text{-H}, 3.94 \text{ (d, 1H, } J = 2.6 \text{ Hz}, C2^{\text{Rha}}\text{-H}, 3.80-3.68 \text{ (m, 4H, C5}^{\text{Glc}}\text{-H}, C4^{\text{Rha}}\text{-H}, C3^{\text{Rha}}\text{-H} \text{ and C6}^{\text{Glc}}\text{-H}, 3.36-3.32 \text{ (m, 1H, C5}^{\text{Rha}}\text{-H}), 2.07 \text{ (s, 3H, Me)}, 2.02 \text{ (s, 3H, Me)}, 2.01 \text{ (s, 3H, Me)}, 1.94 \text{ (s, 3H, Me)}, 1.39 \text{ (d, 3H, } J = 6.1 \text{ Hz}, C6^{\text{Rha}}\text{-H}); {}^{13}\text{C} \text{ NMR} \text{ (CDCl}_3, 100 \text{ MHz}): \delta 170.2, 169.3, 169.0, 137.8, 136.4, 135.9, 133.3, 133.1, 130.9, 129.1, 128.2, 128.2, 127.9, 127.9, 127.7, 126.9, 126.3, 126.1, 125.9, 100.3 \text{ (C1}^{\text{Rha}}), 91.8 \text{ (C1}^{\text{Glc}}), 79.6, 77.4, 77.2, 77.0, 76.7, 76.0, 75.0, 73.7, 73.2, 73.0, 71.8, 70.4, 68.6, 67.5, 66.9, 20.8, 20.6, 20.6, 18.1; HRMS (ESI-TOF) <math>m/z$: [M + Na]⁺ calcd for C₃₉H₄₄O₁₄Na, 759.2629; found, 759.2645.

Following the general procedure of method A using trichloroacetimidate 2d (51 mg, 0.09 mmol) and 4-methoxyphenyl 2,3,6-

tri-*O*-benzyl- β -D-galactopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-*O*-benzyl- β -Dglucopyranoside **3w** (25.5 mg, 0.03 mmol) in Et₂O (3.0 mL) at -5 °C for 24 h afforded **5w** (39.0 mg, 70% yield of mixture isomers) as a colourless cil (cluent: contour toluono 1:15; $\mathbf{P} = 0.45$) $[\mathbf{r}_{1}]^{21} = \pm 10.7$ ($\mathbf{c} = 0.5$

OBnOBnOBn $^{1}J_{C-H} = 163 \text{ Hz}$ oil (eluent: acetone-toluene, 1:15; $R_f = 0.45$). $[\alpha]_D^{21} = +19.7$ (c = 0.5,
CHCl₃); ^{1}H NMR (CDCl₃, 400 MHz): δ 7.85–6.80 (m, 45H, ArH), 5.60 (d,
1H, J = 12.6 Hz, OCH₂Ph), 5.36 (d, 1H, J = 15.0 Hz, OCH₂Ph), 5.11 (d,
1H, J = 11.2 Hz, OCH₂Ph), 5.03 (d, 1H, J = 11.0 Hz, OCH₂Ph), 4.97 (d, 1H, J = 11.2 Hz, OCH₂Ph), 4.93 (d, 1H, J = 10.9 Hz,

 $\begin{array}{l} \text{OCH}_{2}\text{Ph}, \text{4.90} (\text{d}, 1\text{H}, J = 13.1 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.83} (\text{d}, 1\text{H}, J = 10.9 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.82} (\text{d}, 1\text{H}, J = 5.3 \text{ Hz}, \text{C1}^{\text{Glc}}\text{-}\text{H}), \text{4.78} (\text{d}, 1\text{H}, J = 11.0 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.76} (\text{d}, 1\text{H}, J = 11.0 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.76} (\text{d}, 1\text{H}, J = 11.0 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.75} (\text{d}, 1\text{H}, J = 11.3 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.62} (\text{d}, 1\text{H}, J = 15.0 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.54} (\text{d}, 1\text{H}, J = 13.1 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.42} (\text{d}, 1\text{H}, J = 11.9 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.38} (\text{d}, 1\text{H}, J = 5.0 \text{ Hz}, \text{C1}^{\text{Gal}}\text{-}\text{H}), \text{4.35} (\text{s}, 1\text{ H}, \text{C1}^{\text{Rha}}\text{-}\text{H}), \text{4.33} (\text{d}, 1\text{ H}, J = 12.5 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.32} (\text{d}, 1\text{ H}, J = 11.8 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.28} (\text{d}, 1\text{ H}, J = 11.9 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.19} (\text{d}, 1\text{ H}, J = 11.8 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.28} (\text{d}, 1\text{ H}, J = 11.9 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.37} (\text{d}, 1\text{ H}, J = 11.9 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.38} (\text{d}, 1\text{ H}, J = 11.9 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.19} (\text{d}, 1\text{ H}, J = 11.8 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.28} (\text{d}, 1\text{ H}, J = 11.9 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.19} (\text{d}, 1\text{ H}, J = 11.8 \text{ Hz}, \text{OCH}_{2}\text{Ph}), \text{4.28} (\text{d}, 1\text{ H}, J = 9.3 \text{ Hz}, \text{C4}^{\text{Rha}}\text{-}\text{H}), 3.79-3.70 (\text{m}, 8\text{H}, \text{C5}^{\text{Glc}}\text{-}\text{H}, \text{C2}^{\text{Gal}}\text{-}\text{H}, \frac{\text{Me}}{\text{of}} \text{OMP} \text{and} \text{C2}^{\text{Rha}}\text{-}\text{H}), 3.64-3.62 (\text{m}, 1\text{ H}, \text{C2}^{\text{Glc}}\text{-}\text{H}), 3.53 (\text{dd}, 1\text{ H}, J = 2.8 \text{ Hz}, 9.6 \text{ Hz}, \text{C3}^{\text{Rha}}\text{-}\text{H}), 3.46-3.42 (\text{m}, 1\text{ H}, \text{C4}^{\text{Glc}}\text{-}\text{H}), 3.33-3.22 (\text{m}, 5\text{ H}, \text{C5}^{\text{Gal}}\text{-}\text{H}, \text{C3}^{\text{Glc}}\text{-}\text{H} \text{and} \text{C5}^{\text{Rha}}\text{-}\text{H}), 1.38 (\text{d}, 3\text{H}, J = 6.2 \text{ Hz}, \text{C6}^{\text{Rha}}\text{-}\text{H}); ^{13}\text{C} \text{NMR} (\text{CDCl}_{3}, 100 \text{ MHz}): \delta 155.3, 151.7, 139.1, 138.9, 138.8, 138.5, 138.4, 137.4, 137.3, 136.8, 135.9, 133.3, 133.1, 131.7, 128.6, 128.3, 128.18, 128.15, 128.12, 128.07, 127.9, 127.8, 127.8, 127.74, 127.69$

N-Benzyl-*N*-benzyloxycarbonyl-5-aminopentyl-2,3-di-*O*-benzyl-4,6-*O*-benzylidene-α-D-glucopyranoside (8):

Following the general procedure of method A using trichloroacetimidate **6** (1.32 g, 2.23 mmol) and acceptor **7** (487 mg, 1.49 mmol) in Et_2O (150.0 mL) at room temperature for 48 h afforded **8** (977 mg, 87% yield) as a colourless oil (eluent:

EtOAc-hexane, 1:15; R_f = 0.30).¹H NMR (CDCl₃, 400 MHz): δ 7.50-7.14 (m, 25H, ArH), 5.55 (s, 1H, ArCH), 5.16 (d, 2H, J

= 3.6 Hz, O<u>CH</u>₂Ph), 4.91 (d, 1H, J = 11.2 Hz, O<u>CH</u>₂Ph), 4.82 (d, 1H, J = 11.3 Hz, O<u>CH</u>₂Ph), 4.81 (d, 1H, J = 12.2 Hz, O<u>CH</u>₂Ph), 4.69 (s, 1H, C1^{Glc}-H), 4.65 (d, 1H, J = 12.3 Hz, O<u>CH</u>₂Ph), 4.48 (d, 2H, J = 5.4 Hz, O<u>CH</u>₂Ph), 4.25–4.22 (m, 1H, C6^{Glc}-H), 4.03 (t, 1H, J = 9.2 Hz, C3^{Glc}-H), 3.83–3.80 (m, 1H, C5^{Glc}-H), 3.69 (t, 1H, J = 10.3 Hz, C6^{Glc}-H), 3.60 (t, 1H, J = 9.4 Hz, C4^{Glc}-H), 3.54 (dd, 1H, J = 3.8, 9.3 Hz, C2^{Glc}-H), 3.36 (s, 1H, CH₂), 3.25 (s, 1H, CH₂), 3.20 (s, 1H, CH₂), 1.57–1.24 (m, 7H, CH₂); ¹³C NMR (CDCl₃, 100 MHz): δ 138.9, 138.3, 137.9, 137.4, 128.9, 128.5, 128.4, 128.4, 128.3, 128.2, 128.0, 127.87, 127.85, 127.6, 127.3, 126.0, 101.2 (Ar<u>CH</u>), 98.1 (C1^{Glc}), 82.3, 79.5, 78.6, 77.3, 77.0, 76.7, 75.3, 73.5, 69.1, 67.2, 62.5, 29.2, 23.4; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₄₇H₅₁NO₈Na, 780.3512; found, 780.3524.

N-Benzyl-N-benzyloxycarbonyl-5-aminopentyl-2,3,6-tri-O-benzyl-α-D-glucopyranoside (9):

Following the general procedure of method C of reductive ring-opening reaction of 4,6-*O*-acetal with BH₃ • Et₂O: To a solution of BH₃ • Et₂O (1.3 mL, 10.56 mmol) in anhydrous DCM (10.5 mL) was added compound **8** (1.0 g, 1.32 mmol) and Et₃SiH (2.1 mL, 13.19 mmol) in anhydrous DCM (13.2 mL) at 0 °C and the reaction mixture was

stirred at room temperature for 15 minutes. The reaction was quenched by the addition of saturated aqueous NaHCO₃, extracted with ethyl acetate (3 ×50 mL), washed with brine, dried with Na₂SO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 5:1) afforded the title compound **9** (529 mg, 53% yield) as a coloreless oil. TLC (hexane–EtOAc, 4:1): $R_f = 0.30$. ¹H NMR (CDCl₃, 400 MHz): δ 7.37–7.15 (m, 25H, ArH), 5.16 (d, 2H, J = 11.6 Hz, O<u>CH₂Ph</u>), 4.99 (d, 1H, J = 11.4 Hz, O<u>CH₂Ph</u>), 4.75–4.71 (m, 3H, O<u>CH₂Ph</u> and C1^{Glc}-H), 4.61 (d, 1H, J = 12.0 Hz, O<u>CH₂Ph</u>), 4.57 (d, 1H, J = 12.2 Hz, O<u>CH₂Ph</u>), 4.52 (d, 1H, J = 12.2 Hz, O<u>CH₂Ph</u>), 4.48 (d, 2H, J = 6.5 Hz, O<u>CH₂Ph</u>), 3.78 (t, 1H, J = 9.1 Hz, C3^{Glc}-H), 3.74–3.57 (m, 4H, C5^{Glc}-H, C6^{Glc}-H and C4^{Glc}-H), 3.51 (dd, 1H, J = 3.6, 9.5 Hz, C2^{Glc}-H), 3.35–3.19 (m, 3H, CH₂), 1.63–1.22 (m, 7H, CH₂); ¹³C NMR (CDCl₃, 100 MHz): δ 139.0, 138.3, 138.1, 137.9, 128.6, 128.53, 128.47, 128.44, 128.41, 128.36, 128.0, 127.9, 127.91, 127.85, 127.8, 127.64, 127.61, 127.56, 127.3, 97.0 (C1^{Glc}), 81.6, 79.8, 77.4, 77.3, 77.1, 76.7, 75.4, 73.6, 72.9, 71.0, 70.1, 69.6, 68.0, 67.2, 31.5, 30.2, 29.7, 29.1; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₄₇H₅₃NO₈Na, 782.3669; found, 782.3661.

 $\label{eq:started} N-Benzyl-N-benzyloxycarbonyl-5-aminopentyl 2,3-O-(o-xylylene)-4-O-(2-naphthylmethyl)-\beta-L-rhamnopyranosyl-(1 \rightarrow 4)-2,3,6-tri-O-benzyl-\alpha-D-glucopyranoside (10):$

Following the general procedure of method A using trichloroacetimidate **2d** (229 mg, 0.42 mmol) and compound **9** (210 mg, 0.28 mmol) in Et₂O (27.7 mL) at – 5 °C for 48 h afforded **10** (160 mg, 50% yield of mixture isomers) as a colourless oil (eluent: EtOAc–toluene, 1:4; $R_f = 0.45$). ¹H NMR (CDCl₃, 400 MHz): δ 7.80 (s, 1H, ArH), 7.68–6.80 (m, 36H, ArH), 5.44 (d, 1H, J = 13.6 Hz, O<u>CH₂Ph</u>), 5.34

(d, 1H, J = 13.5 Hz, O<u>CH</u>₂Ph), 5.23–5.16 (m, 2H, O<u>CH</u>₂Ph), 5.13 (d, 1H, J = 11.6 Hz, O<u>CH</u>₂Ph), 4.94 (d, 1H, J = 11.7 Hz, O<u>CH</u>₂Ph), 4.85 (s, 1H, C1^{Glc}-H), 4.75 (s, 1H, C1^{Rha}-H), 4.72 (d, 1H, J = 11.6 Hz, O<u>CH</u>₂Ph), 4.66 (d, 2H, J = 11.3 Hz, O<u>CH</u>₂Ph), 4.58 (d, 1H, J = 12.2 Hz, O<u>CH</u>₂Ph), 4.49–4.40 (m, 3H, O<u>CH</u>₂Ph), 4.38 (d, 1H, J = 11.7 Hz, O<u>CH</u>₂Ph), 4.30 (d, 1H, J = 10.7 Hz, O<u>CH</u>₂Ph), 4.23 (d, 1H, J = 13.6 Hz, O<u>CH</u>₂Ph), 4.21–4.16 (m, 3H, C5^{Glc}-H, C3^{Glc}-H and C6^{Glc}-H), 4.01–3.97 (m, 1H, C6^{Glc}-H), 3.90–3.85 (m, 1H, C4^{Glc}-H), 3.77 (t, 1H, J = 9.2 Hz, C4^{Rha}-H), 3.71–3.70 (m, 1H, CH₂), 3.59 (d, 1H, J = 2.8 Hz, C2^{Rha}-H), 3.55 (dd, 1H, J = 3.5, 9.6 Hz, C2^{Glc}-H), 3.47 (dd, 1H, J = 2.7, 9.4 Hz, C3^{Rha}-H), 3.24–3.17 (m, 3H, C5^{Rha}-H and CH₂), 3.04 (s, 1H, CH₂), 1.49–1.09 (m, 9H, CH₂ and C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 139.5, 139.1, 138.9, 138.7, 138.5, 136.8, 133.6, 133.2, 128.4, 128.3, 128.3, 128.2, 128.1, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 127.1, 126.5, 126.3, 125.9, 125.6, 101.1 (C1^{Rha}), 96.5 (C1^{Glc}), 82.2, 81.0, 78.1, 75.3, 74.7, 73.1, 72.8, 72.2, 71.6, 70.7, 70.0, 67.8, 29.1, 23.4, 18.2; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₇₂H₇₇NO₁₂Na, 1170.5343; found, 1170.5351.

Supporting Information

N-Benzyl-*N*-benzyloxycarbonyl-5-aminopentyl 2,3-*O*-(o-xylylene)- β -L-rhamnopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl- α -D-glucopyranoside (11):

Following the general procedure of method E of NAP group removal: To a magnetically stirred solution of DDQ (52 mg, 1.5 mmol) was added slowly to a stirring solution of the NAP protected compound **10** (174 mg, 1.0 mmol) in a mixture of CH₂Cl₂ (0.55 mL) and distilled water (55 μ L) and the resulting reaction mixture was stirred at room temperature for 12 h. The reaction mixture was diluted with EtOAc (20 mL), washed with saturated aqueous Na₂S₂O₃,

H₂O and brine, dried with Na₂SO₄ and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 2:1) afforded the title compound **11** (55 mg, 55% yield) as a coloreless oil. TLC (hexane–EtOAc, 2:1): $R_f = 0.45$. ¹H NMR (CDCl₃, 400 MHz): δ 7.37–6.93 (m, 29H, ArH), 5.43 (d, 1H, J = 13.7 Hz, O<u>CH</u>₂Ph), 5.37 (d, 1H, J = 13.6 Hz, O<u>CH</u>₂Ph), 5.18 (d, 2H, J = 11.2 Hz, O<u>CH</u>₂Ph), 4.94 (d, 1H, J = 15.4 Hz, O<u>CH</u>₂Ph), 4.75 (s, 1H, C1^{Glc}-H), 4.67–4.48 (m, 8H, O<u>CH</u>₂Ph and C1^{Rha}-H), 4.29 (d, 1H, J = 13.8 Hz, O<u>CH</u>₂Ph), 4.26 (d, 1H, J = 12.9 Hz, O<u>CH</u>₂Ph), 3.85–3.77 (m, 4H, C6^{Glc}-H, C3^{Glc}-H and C4^{Glc}-H), 3.74–3.69 (m, 1H, C5^{Glc}-H), 3.69 (t, 1H, J = 9.4 Hz, C4^{Rha}-H), 3.60 (s, 1H, CH₂), 3.56 (t, 1H, J = 1.3 Hz, C2^{Rha}-H), 3.50 (dd, 1H, J = 3.6, 9.5 Hz, C2^{Glc}-H), 3.35–3.19 (m, 3H, CH₂), 3.17–3.12 (m, 1H, C5^{Rha}-H), 3.03 (dd, 1H, J = 2.9, 9.7 Hz, C3^{Rha}-H), 2.29 (s, 1H, OH), 1.58–1.25 (m, 9H, CH₂ and C6^{Rha}-H); ¹³C NMR (CDCl₃, 100 MHz): δ 138.7, 138.5, 138.1, 138.0, 129.6, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 128.0, 127.9, 127.9, 127.5, 127.44, 127.35, 127.3, 101.9 (C1^{Rha}), 96.4 (C1^{Glc}), 81.9, 80.2, 77.4, 77.1, 76.7, 75.4, 73.3, 72.8, 72.1, 69.9, 69.5, 68.9, 68.0, 67.2, 29.7, 29.1, 25.6, 23.4, 20.9, 20.7, 17.7, 0.0; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₆₁H₆₉NO₁₂Na, 1030.4717; found, 1030.4710.

Tolyl 2,3,4-tri-*O*-benzyl- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ -3-*O*-tert-butyldimethylsilyl-4,6-*O*-(phenylmethylene)- β -D-galacopyranoside (14):

Compound 12^{12} (570 mg, 1.17 mmol) and compound 13^{13} (1.1657 g, 2.68 mmol) were combined in a flask, coevaporated with toluene (3 × 3 mL), and dissolved in anhydrous CH₂Cl₂ to maintain a concentration of 0.01 M (based on the donor). Powdered freshly activated molecular sieves (100 mg/mL solvent) were added, and the mixture was stirred for 30 min at -40 °C. A solution of TMSOTf in anhydrous CH₂Cl₂ was added to the mixture and stirred at -40 °C for 2 h. The reaction was quenched by the addition of Et₃N and diluted with EtOAc, then filtered through a

pad of Celite® and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane–EtOAc, 2:1) afforded the title compound **14** (696 mg, 78% yield with uncertain by-product) as a coloreless oil. TLC (hexane–EtOAc, 4:1): $R_f = 0.30$; ¹H NMR (CDCl₃, 400 MHz): δ 7.47–6.95 (m, 9H, ArH), 5.35 (s, 1H, Ar<u>CH</u>), 5.30 (dd, 1H, J = 1.8, 3.2 Hz, C2^{Rha}-H), 5.18 (d, 1H, J = 1.7 Hz, C1^{Rha}-H), 5.17 (dd, 1H, J = 3.5, 10.2 Hz, C3^{Rha}-H), 5.00 (t, 1H, J = 10.0 Hz, C4^{Rha}-H), 4.60–4.54 (m, 1H, C5^{Rha}-H), 4.51 (d, 1H, J = 9.5 Hz, C1^{Gal}-H), 4.24 (dd, 1H, J = 1.6, 12.4 Hz, C6^{Gal}-H), 4.00 (t, 1H, J = 9.0 Hz, C4^{Gal}-H), 3.98 (d, 1H, J = 3.4 Hz, C2^{Gal}-H), 3.90 (dd, 1H, J = 1.7, 12.4 Hz, C6^{Gal}-H), 3.84 (dd, 1H, J = 3.4, 8.8 Hz, C3^{Gal}-H), 3.36 (s, 1H, C5^{Gal}-H), 2.23 (s, 3H, Me of Tol), 2.02 (s, 3H, Me of OAc), 1.99 (s, 3H, Me of OAc), 1.90 (s, 3H, Me of OAc), 1.12 (d, 3H, J = 6.2 Hz, C6^{Rha}-H), 0.76 (s, 9H, Me of TBS), 0.00 (s, 6H, Me of TBS); ¹³C NMR (CDCl₃, 100 MHz): δ 132.9, 132.7, 129.9, 129.7, 129.5, 129.2, 128.9, 128.1, 126.2, 100.8 (ArCH), 98.8 (C1^{Rha}), 86.2 (C1^{Gal}), 76.7, 76.4, 74.8, 70.8, 69.73, 69.71, 69.5, 69.3, 67.4, 25.7, 21.2, 21.1, 20.9, 20.9, 20.8, 20.7, 20.6, 18.1, 17.7, 17.2, -3.8; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₃₈H₅₂O₁₂SSiNa, 783.2846; found, 783.2838.

Supporting Information

 $N-\text{Benzyl-}N-\text{benzyl-}\alpha-\text{L-rhamnopyranosyl-}(1\rightarrow 2)-3-O-t-\text{butyldimethyl-silyl-}4, 6-O-(\text{phenylmethylene})-\beta-D-galacopyranosyl-}(1\rightarrow 4)-2, 3-O-(o-xylylene)-\beta-L-rhamnopyranosyl-}(1\rightarrow 4)-2, 3, 6-tri-O-benzyl-\alpha-D-glucopyranoside (16):$

Compound **14** (17.4 mg, 0.023 mmol) and compound **11** (15.4 mg, 0.015 mmol) were dissolved in anhydrous MeCN/CH₂Cl₂ (3:1, 1.3 mL). Powdered freshly activated molecular sieves (100 mg/mL solvent) were added, and the mixture was stirred for 1 h at -40 °C. NIS (3.4 mg, 0.015 mmol) was added to the mixture and stirred for 30 min at -40 °C. Then a solution of TfOH (0.4 μ L, 0.005 mmol) in anhydrous CH₂Cl₂ was added to the mixture and stirred at -40 °C for 16 h. The reaction was diluted

with EtOAc, then filtered through a pad of Celite® and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: hexane-EtOAc, 1:1) afforded the title compound 15 (17.5 mg, 70% yield) as a coloreless oil. TLC (toluene–acetonitrile, 6:1): $R_f = 0.50$; To a magnetically stirred solution of NaOMe (0.22 mg, 0.004 mmol) was added to compound 15 (34 mg, 0.02 mmol) in anhydrous MeOH (0.55 mL) at 0 °C and stirred at room temperature for 30 min. After complete consumption of starting material, the reaction mixture was neutralized with Amberlite 120 H⁺ resin, filtered and concentrated under vacuum to afforded the intermediate. To a magnetically stirred solution of the intermediate in anhydrous DMF (1 mL) was added sodium hydride (60% dispersion in oil, 3 mg, 0.12 mmol, 6.0 equiv.) in small portions at 0 °C. After 15 min, benzyl bromide (10 µL, 0.08 mmol, 4.0 equiv.) was added dropwise for 30 s and stirred at room temperature. Complete consumption of starting materials was observed after 2 h, followed by dropwise addition of MeOH and ice-water to quench excess reagents. The reaction mixture was extracted with DCM (2×10 mL), washed with water (20 mL) and brine (20 mL), dried over Na₂SO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: toluene–acetonitrile, 6:1) afforded the title compound 16 (22.8 mg, 62% yield) as a coloreless oil; $R_f = 0.45$; ¹H NMR $(C_6D_6, 600 \text{ MHz})$: δ 7.61–6.96 (m, 49H, ArH), 5.67 (d, 1H, J = 12.6 Hz, OCH₂Ph), 5.56 (d, 1H, J = 1.7 Hz, C1^{Glc1}-H), 5.37 (d, 1H), 1H, J = 14.6 Hz, OCH₂Ph), 5.22 (s, 1H, ArCH), 5.17–5.11 (m, 3H, OCH₂Ph), 5.01 (d, 1H, J = 11.6 Hz, OCH₂Ph), 4.90 (d, 1H, I), 4 J = 11.2 Hz, OCH₂Ph), 4.85 (d, 1H, J = 7.7 Hz, C1^{Gal3}-H), 4.80 (d, 1H, J = 2.9 Hz, C1^{Rha4}-H), 4.79 (d, 1H, J = 11.6 Hz, OCH₂Ph), 4.76 (s, 1H, C1^{Rha2}-H), 4.75 (d, 1H, J = 11.8 Hz, OCH₂Ph), 4.73 (s, 2H, OCH₂Ph), 4.61–4.56 (m, 4H, C5^{Rha2}-H and OCH_2Ph), 4.50 (d, 1H, J = 12.1 Hz, OCH_2Ph), 4.49 (d, 1H, J = 11.2 Hz, OCH_2Ph), 4.43 (s, 1H, CH₂), 4.38–4.35 (m, 3H, 2H₂), 4.50 (d, 1H, J = 12.1 Hz, OCH_2Ph), 4.49 (d, 1H, J = 11.2 Hz, OCH_2Ph), 4.49 (d, 1H, J = 12.1 Hz OCH_2Ph), 4.31 (dd, 1H, J = 2.8, 9.4 Hz, $C3^{Glc1}$ -H), 4.29 (d, 1H, J = 10.3 Hz, OCH_2Ph), 4.26–4.21 (m, 3H, $C4^{Gal3}$ -H, $C4^{Rha4}$ -H and C2^{Glc1}-H), 4.12–4.10 (m, 3H, C3^{Rha2}-H, C5^{Gal3}-H and C5^{Glc1}-H), 3.93–3.84 (m, 4H, C4^{Rha2}-H, C6-H and C4^{Glc1}-H), 3.75 (dd, 1H, J = 2.8, 10.3 Hz, C3^{Gal3}-H), 3.73 (dd, 1H, J = 1.6, 7.3 Hz, C3^{Rha4}-H), 3.63–3.62 (m, 3H, C2^{Gal3}-H, C6-H and C2^{Rha4}-H), 3.48 (dd, 1H, J = 3.5, 9.6 Hz, C2^{Rha2}-H), 3.38–3.34 (m, 1H, C5^{Rha4}-H), 3.12–2.95 (m, 4H, C6-H and CH₂), 1.59 (d, 3H, J = 6.1 Hz, C6^{Rha4}-H), 1.41–1.12 (m, 9H, CH₂ and C6^{Rha2}-H), 0.88 (s, 9H, CH₃ of TBS), 0.08 (s, 3H, CH₃ of TBS), 0.00 (s, 3H, CH₃ of TBS); ¹³C NMR (C₆D₆, 151 MHz): δ 139.5, 139.4, 139.3, 139.2, 139.1, 138.8, 138.6, 138.4, 128.6, 128.4, 128.4, 128.3, 128.21, 128.17, 128.1, 128.0, 127.9, 127.7, 127.5, 127.4, 127.4, 127.4, 127.31, 127.29, 127.23, 127.17, 127.0, 126.4, 101.9 (C1^{Gal3}), 101.2 (ArCH), 100.7 (C1^{Rha4}), 99.4 (C1^{Glc1}), 96.5 (C1^{Rha2}), 81.6, 81.5, 81.0, 81.0, 77.2, 76.5, 75.9, 75.6, 75.1, 74.7, 73.4, 73.1, 72.4, 72.2, 72.1, 71.7, 70.7, 70.3, 68.9, 68.1, 67.7, 66.9, 65.8, 29.8, 29.8, 29.1, 25.8, 23.3, 18.5, 18.1, 18.0, -4.2, -4.2; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₁₀₇H₁₂₅NO₂₁SiNa, 1810.8411; found, 1810.8418.

5-aminopentyl α -L-rhamnopyranosyl- $(1\rightarrow 2)$ - β -D-galacopyranosyl- $(1\rightarrow 4)$ - β -L-rhamnopyranosyl- $(1\rightarrow 4)$ - α -D-glucopyranoside (1b):

Following the general procedure of method B of deprotection of TBS: To a solution of starting material **16** (15.8 mg, 0.004 mmol) in anhydrous THF (1 mL), TBAF (35 μ L, 0.035 mmol, 1M in THF, 4 equiv.) was added at the same temperature. The reaction mixture was stirred at room temperature for

Supporting Information

3 h. The mixtue was diluted with EtOAc (5 mL), washed with saturated aqueous NaHCO₃ and brine, dried with Na₂SO₄, and concentrated under vacuum. The following purification by flash chromatography on silica gel (eluent: acetonitrile–toluene, 1:6) afforded the intermediate **17** (11.3 mg, 76% yield) as a coloreless oil; $R_f = 0.50$. Following the general procedure of Method D of global deprotection: To a magnetically stirred solution of fully protected compound **17** (11.3 mg) in EtOH (2 mL) was added Pd/C (10 wt%, 20 mg), and then the mixture was stirred under H₂ at room temperature for 48 h, after which complete consumption of starting materials was observed. The reaction mixture was filtered through a short Celite® pad, washed with methanol, and evaporated in vacuo, followed by flash chromatography on silica gel (eluent: H₂O–acetonitrile, 1:3) to afforded the desired product **1b** (3.6 mg, 75% yield) as a white soild. TLC (acetonitrile–H₂O, 3:1): $R_f = 0.40$. ¹H NMR (CD₃OD, 400 MHz): δ 5.60 (d, 1H, *J* = 8.6 Hz, C1-H), 5.16 (s, 1H, C1-H), 4.96–4.62 (m, 4H, C1-H and C1-H), 4.33–4.08 (m, 6H), 3.99–3.40 (m, 27H), 3.09–2.83 (m, 5H), 2.42 (d, 2H, *J* = 2.8 Hz), 2.11–2.01 (m, 3H), 1.79–1.70 (m, 2H), 1.54–1.44 (m, 3H), 1.28–1.24 (m, 2H), 0.96–0.90 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz): δ 101.9, 101.7, 101.1, 98.7, 78.6, 78.4, 76.8, 73.6, 72.2, 72.0, 71.8, 71.2, 70.9, 67.2, 66.6, 66.4, 61.8, 60.1, 42.1, 39.2, 31.7, 29.3, 28.4, 26.8, 25.1, 22.8, 22.3, 21.6, 16.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₉H₅₃NO₁₉Na, 719.3212; found, 719.3267.

References:

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O". Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.
- 2 (a) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B., 1988, 37, 785–789; (b) A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
- 3 P. C. Hariharan, J. A. Pople, Theor. Chem. Acc., 1973, 28, 213–222.
- 4 M. Dolg, U. Wedig, H. Stoll and H. Preuss, J. Chem. Phys., 1987, 86, 866–872.
- 5 A. V. Marenich, C. J. Cramer and D. G, Truhlar, J. Phys. Chem. B, 2009, 113, 6378–6396.
- 6 J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615–6620.
- 7 P. Fuentealba, H. Preuss, H. Stoll and L. V. Szentpaly, Chem. Phys. Lett., 1982, 89, 418-422.
- 8 D. Pal and B. Mukhopadhyay, J. Org. Chem., 2021, 86, 13, 8683–8694.
- 9 I. Cumpstey, A. J. Fairbanks and A. J. Redgrave. Tetrahedron, 2004, 60, 41, 9061–9074.
- 10 S. Zhou, X. Zhong, A. Guo, Q. Xiao, J. Ao, W. Zhu, H. Cai, A. Ishiwata, Y. Ito, X. Liu, F. Ding. Org. Lett. 2021, 23, 6841–6845.
- 11 K. Tanaka, K. Fukase. *Synlett*, **2007**, *1*, 164–166.
- 12 D. J. Keith, S. D. Townsend. J. Am. Chem. Soc. 2019, 141, 32, 12939–12945.
- 13 C. Li, B. Yu, M. Liu, Y. Hui. *Carbohydrate Research*, **1998**, *306*, 189–195.

NMR spectra of all new compounds

¹H NMR, 400 MHz, CDCl₃

¹³C NMR, 100 MHz, CDCl₃

4490 6497 6497 6497 6497 6496 6496 6496 6496	3200	7532 6581 6129 9834 6139 9834 6139 9834 6139 9834 6139 9834 6139 9834 6139 9834 6139 9834 6139 9834 6139 983 9139 9139 9139 9139 9139 9139 91	2713
	-86.		-21.

-18.2022

 1 H NMR, 400 MHz, C₆D₆

¹³C NMR, 100 MHz, C₆D₆

¹H NMR, 400 MHz, CDCl₃

¹³C NMR, 100 MHz, CDCl₃

 1 H NMR, 400 MHz, C₆D₆

¹³C NMR, 100 MHz, C₆D₆

¹H NMR, 400 MHz, CDCl₃

¹³C NMR, 100 MHz, CDCl₃

137, 4977 136, 2830 136, 2830 138, 4195 138, 1288 138, 1288 128, 1289 1287, 1999 1287, 1999 1287, 1999 1287, 1999 1287, 1998 1287, 1998 1287, 1998 1287, 1998 1287, 1998 1287, 1998 1287, 1988 1287, 1988 1286, 0791 1255, 8904		211.1458 11.15.151 11.15.151 11.15.151 11.15.151 11.15.151 11.15.151 11.15.151 11.15.151 11.15.151 11.15.151 11.15.151 11.15.151 11.15 11.
---	--	--

 1 H NMR, 400 MHz, C₆D₆

¹³C NMR, 100 MHz, C₆D₆

F. Ding et al.

¹H NMR, 400 MHz, CDCl₃

137, 6227 135, 9627 135, 9624 135, 9624 135, 9624 131, 4002 131, 4002 131, 4002 131, 4002 132, 1324 1324, 1325 1324, 1325 1328, 1328 1328, 1328 1328, 1328 1328, 2540 1328, 2540 1328, 2546 1326, 5255 1326, 5265 1326, 52655 1326, 52655 1326, 5265555 1326,	86. 3956 80. 1963 80. 1943 80. 1141 71. 2021 71. 2021 8965 8145 72. 4045 8960 80. 4159 90. 4159 90. 4159 90. 4159	-21.2179 -18.1989
--	--	----------------------

¹H NMR, 400 MHz, C₆D₆

¹H NMR, 400 MHz, C₆D₆

¹³C NMR, 100 MHz, C₆D₆

-138.5128	131.8092 130.0537 139.7537 138.777 138.777 127.5016	< 99.6166		77. 724 77. 8653 76. 7495 76. 7495 76. 7495 76. 7495 76. 7399 60. 0281	<17, 9708	21. 1067 21. 0658 21. 0658 21. 0658
-----------	--	--------------	--	---	-----------	--

 1 H NMR, 400 MHz, C₆D₆

		71, 1417 77, 1238 76, 1624 77, 1238 76, 1633 77, 1238 77, 1238 77, 1238 77, 1238 769, 1673		$<^{21.1531}_{21.0911}$	-17.5472	
--	--	---	--	-------------------------	----------	--

 (37, 9229) (37, 6605) (131, 5922) (131, 5922) (131, 1242) (131, 1242) (121, 1242) (123, 2132) (123, 2132) 	600 B				-21, 1373	-17.8549
---	-------	--	--	--	-----------	----------

 1 H NMR, 400 MHz, C₆D₆

L 138, 5683 L 138, 5683 137, 138, 4718 137, 138, 4718 137, 138, 4718 137, 138, 4718 137, 138, 4015 137, 138, 4015 137, 138, 4015 138, 6683 137, 138, 4015 138, 6683 137, 138, 4015 138, 6683 137, 138, 4015 138, 6683 138, 6683 1	811, 10 10, 10, 10 10, 10 1	21. 1166 118. 70091 118. 70091 118. 70091 118. 70091 118. 70091 119. 70091 119. 7193 119. 7193 1
--	--	--

¹H NMR, 400 MHz, C₆D₆

¹³C NMR, 100 MHz, C₆D₆

	34, 6068 31, 6068 31, 5005 30, 2954 30, 2429 29, 7978	$< \frac{21.1745}{21.1250}$ $< \frac{18.4079}{18.1389}$ -14.2893
--	--	--

¹H NMR, 400 MHz, C₆D₆

117.7 7070 117.7 7070 116.6 1980 116.6 1980 111.7 2000 111.7 2000 111.7 2000 111.7 2000 111.7 2000 111.7 2000 111.7 2000 111.7 2000 111.7 2000 111.7 2000 111.8 2000 111.8 2000 111.8 2000 111.7 2000 111.7 2000 111.8 2000 111.8 2000 111.8 2000 111.8 2000 111.8 2000 111.8 2000 111.8 2000 111.8 2000 111.8 2000 111.8 2000 111.9 2000 111.8 2000 2000 2000 <th>98145, 000 111202, 000 111200, 000 111200</th> <th></th>	98145, 000 111202, 000 111200, 000 111200	
---	--	--

¹³C NMR, 100 MHz, CDCl3

137, 2617 1367, 25617 1355, 1365, 1365 1333, 37257 1331, 36555 1331, 36555 1331, 36555 1331, 36555 1332, 35675 1332, 35675 1337, 75366 1326, 1332 1256, 1337 1256, 1357 1256, 1357 1257 1257 1257 1257 1257 1257 1257 12	86. 2775 89. 6774 80. 0884 779. 88. 0884 779. 88.239 776. 68296 776. 68296 776. 68296 776. 68296 776. 58296 776. 58296 777. 58296 776. 58296 776. 58296 777. 58296 777. 58296 776. 58296 777. 57297 777. 57297 7777. 57297 7777. 57297 7777. 57297 7777. 57297 777777 777777777777777777777777777	58.5182	21.1574 18.0210
Charles Contraction	1 VIIII	1	

¹H NMR, 400 MHz, C₆D₆

COSY, 500 MHz, CDCl₃

F. Ding et al.

¹Ј_{С-Н} =162 Нz

¹H NMR, 400 MHz, C₆D₆

Rha

COSY, 400 MHz, C₆D₆

F. Ding et al.

Supporting Information

¹H NMR, 500 MHz, CDCl₃

COSY, 500 MHz, CDCl₃

F. Ding et al.

¹H NMR, 400 MHz, CDCl₃

139, 84 138, 68 138, 68 138	- 191.23	82,09 81,117 773,10 777,17 7777,17 7777,17 7777,17 7777,17 7777,17 7777,17 7777,17 77777,17 7		29, 71	-24.75	
--	----------	---	--	--------	--------	--

COSY, 400 MHz, CDCl₃

HSQC, 400 MHz, CDCl₃

F. Ding et al.

¹H NMR, 400 MHz, CDCl₃

108, 9468 109, 2000 101, 2000 100, 2		81. 9145 81. 3895 80. 0369 80. 0369 71. 2805 71. 2805 71. 2805 71. 2805 71. 2805 71. 2805 71. 2805 71. 2805 71. 2805 71. 1808 72. 1808 73. 1808 74. 1808 77. 1708 77.			-17.7296	0.0176
--	--	---	--	--	----------	--------

COSY, 400 MHz, CDCl₃

¹J_{С-Н} =157 Hz Rha

¹H NMR, 400 MHz, CDCl₃

¹³C NMR, 100 MHz, CDCl₃

Supporting Information

HSQC, 400 MHz, CDCl₃

COSY, 400 MHz, CDCl₃

¹H NMR, 400 MHz, CDCl₃

HSQC, 400 MHz, CDCl₃

¹H NMR, 400 MHz, CDCl₃

¹³C NMR, 100 MHz, CDCl₃

137, 8208 136, 5281 136, 5281 136, 5685 133, 2546 133, 2546 133, 2546 133, 2546 132, 2546 132, 2546 132, 2546 122, 6723 128, 6

77, 4001 77, 4001 77, 4001 77, 2877 77, 2877 77, 2877 77, 2877 77, 2878 77, 2861 77, 2661 6534 6534 6534 6534 231.5826 231.5826 231.6179 255.6148 255.6148 255.624 25.6148

- 100. 2354

S120

HSQC, 400 MHz, CDCl₃

¹³C NMR, 125MHz, CDCl₃

[137, 9055
[137, 9055
[136, 0880
[135, 7004]
[133, 2446
[133, 2446
[133, 6335
[130, 6335
[130, 6335
[130, 6335
[130, 6335
[120, 8880
[120, 8880
[120, 8350
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 8373
[126, 83

79, 8065 777, 2896 777, 2896 76, 9687 76, 9687 76, 9687 77, 2636 76, 9687 77, 2959 9799 67, 6158 66, 2491

HSQC, 500 MHz, CDCl₃

¹H NMR, 400 MHz, CDCl₃

COSY, 400 MHz, CDCl₃

HSQC, 400 MHz, CDCl₃

¹H NMR, 400 MHz, CDCl₃

HSQC, 400 MHz, CDCl₃

¹H NMR, 400 MHz, CDCl₃

-29, 7139 25, 9888 24, 9140 21, 9140 -18, 1657 -18, 1657-14, 2134

<<109.0924 <108.5567 -100.5789 -96.2595

¹³C NMR, 100 MHz, CDCl₃

[137, 9179 [136, 2551 [136, 2551 [135, 2561 [135, 2561 [135, 2563] [136, 2003 [136, 2013 [136, 2013 [127, 9502 [127, 9502 [126, 9548 [126, 9548 [126, 9539] [126, 9298

HSQC, 400 MHz, CDCl₃

¹H NMR, 400 MHz, CDCl₃

f1 (ppm)

COSY, 400 MHz, CDCl₃

¹H NMR, 400 MHz, CDCl₃

S146

COSY, 400 MHz, CDCl₃

HSQC, 400 MHz, CDCl₃

Supporting Information

F. Ding et al.

¹H NMR, 400 MHz, CDCl₃

(1999, 0401) (1987, 578, 578, 578, 578, 578, 578, 578, 5	-102.1357	83, 5286 89, 709 81, 719 81, 719 81, 717 81, 7	- 18. 3261
---	-----------	---	------------

COSY, 400 MHz, CDCl3

HSQC, 400 MHz, CDCl3

COSY, 400 MHz, CDCl3

HSQC, 400 MHz, CDCl3

¹H NMR, 600 MHz, CDCl₃

COSY, 600 MHz, CDCl3

HSQC, 600 MHz, CDCl3

COSY, 400 MHz, CDCl3

HSQC, 400 MHz, CDCl3

¹H NMR, 400 MHz, CDCl₃

COSY, 400 MHz, CDCl3

COSY, 400 MHz, CDCl3

HSQC, 400 MHz, CDCl3

3658 3451 3458 3451 33258 3258	11788 11494	6263 5638 3163 33000 2839
		17 - T

COSY, 400 MHz, CDCl3

HSQC, 400 MHz, CDCl3

COSY, 400 MHz, CDCl₃

HSQC, 400 MHz, CDCl₃

COSY, 400 MHz, CDCl₃

HSQC, 400 MHz, CDCl₃

COSY, 400 MHz, CDCl₃

HSQC, 400 MHz, CDCl₃

 1 H NMR, 600 MHz, C₆D₆

¹³C NMR, 151 MHz, C₆D₆

COSY, 600 MHz, C₆D₆

HSQC, 600 MHz, C₆D₆

¹H NMR, 400 MHz, CD₃OD

¹³C NMR, 100 MHz, CD₃OD

