## Supporting Information

# Visible Light-mediated Syntheses of Unsymmetrical Methylene-bridged bis-Heterocycles via an Alkoxy Radical Relay Reaction 

Ting-Ting Yuan, ${ }^{\ddagger}$ Jing Chen, ${ }^{\ddagger}$ Le Nhan Pham, Sayan Paul, Lorenzo V. White, Jialong
Li, Ping Lan, Michelle L. Coote, Martin G. Banwell,* and Yu-Tao He*
I. General Methods and Materials ..... S2
II. Procedures for the Synthesis of Substrates 1a-1w and 2a-2r ..... S3
III. Optimization of the Reaction Conditions ..... S5
IV. General Procedure for the Synthesis of Compounds 3a-w, 4a-g and 5a-k ..... S8
V. Radical Trapping Experiment Using TEMPO ..... S9
VI. Stern-Volmer Quenching Experiments ..... S10
VII. Quantum Yield Measurements ..... S12
VIII. Synthetic Applications ..... S16
IX. Computational Studies ..... S18
X. The Cytotoxic Effects of Methylene-bridged bis-Heterocycles on Certain Cancer ..... S25
Cell Lines
XI. Compound Characterization and Related Data ..... S31
XII X-ray Crystallographic Data for Compounds 3r, 3s, 4e' and 5e ..... S57
XIII. References ..... S61
Appendix ICopies of Relevant ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ - and ${ }^{19} \mathrm{~F}$-NMR Spectra
Appendix II
Data from DFT Calculations

## I. General Methods and Materials.

Unless otherwise specified, proton ( $\left.{ }^{1} \mathrm{H}\right)$ and proton-decoupled carbon $\left[{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right]$ NMR spectra were recorded at room temperature in base-filtered $\mathrm{CDCl}_{3}$ on a spectrometer operating at 500 MHz or 300 MHz for proton and 126 MHz or 75 MHz for carbon nuclei. For ${ }^{1} \mathrm{H}$ NMR spectra, signals arising from the residual protio-forms of the solvent were used as the internal standards. ${ }^{1} \mathrm{H}$ NMR data are recorded as follows: chemical shift ( $\delta$ ) [multiplicity, coupling constant(s) $J(\mathrm{~Hz})$, relative integral] where multiplicity is defined as: $\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quartet; $\mathrm{m}=$ multiplet or combinations of the above. The signal due to residual $\mathrm{CHCl}_{3}$ appearing at $\delta_{\mathrm{H}} 7.26$ and the central resonance of the $\mathrm{CDCl}_{3}$ "triplet" appearing at $\delta_{\mathrm{C}} 77.0$ were used to reference ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, respectively. Infrared spectra were recorded, as thin films or solids, on a Nicolet iS50 FT-IR spectrometer fitted with a Smart iTX sampling module and only major absorptions are reported (in $\mathrm{cm}^{-1}$ ). High-resolution ESI mass spectra were recorded on a time-of-flight instrument. Melting points were measured on an automated melting point system and are uncorrected. Analytical thin layer chromatography (TLC) was performed with silica gel $\mathrm{GF}_{254}$ plates. Eluted plates were visualized using a 254 nm UV lamp and/or by treatment with a suitable dip followed by heating. These dips included phosphomolybdic acid: ceric sulfate: sulfuric acid (conc.): water ( $37.5 \mathrm{~g}: 7.5 \mathrm{~g}: 37.5 \mathrm{~g}: 720 \mathrm{~mL}$ ) or potassium permanganate : potassium carbonate : 5\% sodium hydroxide aqueous solution : water ( $3 \mathrm{~g}: 20 \mathrm{~g}: 5 \mathrm{~mL}: 300 \mathrm{~mL}$ ). For column chromatography, 200-300 mesh silica gel was employed. Reagents and inorganic salts as well as dried solvents were generally available from commercial sources and used as supplied. Unless indicated otherwise, reactions were performed under a nitrogen atmosphere.

## II. Procedures for the Synthesis of Substrates 1a-1w and 2a-2r

General procedure for the synthesis of $\boldsymbol{\beta}, \gamma$-unsaturated oximes 1a-w

(1) In a slight modification of a literature procedure, ${ }^{[1]}$ the relevant allyl bromide ( 20 mmol , 2.0 equiv.) was added to a magnetically stirred solution of the relevant aldehyde ( 10 mmol , 1.0 equiv.) in anhydrous THF ( 40 mL ) followed by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ ( 40 mL ). Portions of activated zinc dust ( $20 \mathrm{mmol}, 2.0$ equiv.) were then added slowly while the reaction mixture was maintained at $0{ }^{\circ} \mathrm{C}$. The ensuing mixture was warmed to room temperature and stirred overnight. Thereafter, the THF layer was separated from the aqueous one which was extracted with diethyl ether ( $3 \times 50 \mathrm{~mL}$ ). The combined organic phases were washed with water $(1 \times 50 \mathrm{~mL})$ and brine $(1 \times 50 \mathrm{~mL})$ before being dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue thus obtained was used without purification in the next step.
(2) Jones reagent (2.0-4.0 equiv.) was added dropwise to a magnetically stirred solution of the relevant crude homoallylic alcohol ( 1.0 equiv.) in diethyl ether ( 0.1 M ) maintained at $0{ }^{\circ} \mathrm{C}$. The ensuing mixture was warmed to room temperature and then stirred for 1 h before being quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ ( 30 mL of a saturated aqueous solution) and the ensuing mixture extracted with diethyl ether $(3 \times 50 \mathrm{~mL})$. The combined organic phases were then washed with water $(1 \times 50 \mathrm{~mL})$ and brine $(1 \times 50 \mathrm{~mL})$ before being dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue thus obtained was used without purification in the next step.
(3) Sodium acetate ( 7.0 equiv.) was added to a magnetically stirred solution of the relevant hydroxylamine hydrochloride ( 5.0 equiv.) in ethanol ( 0.1 M ) maintained at room temperature. An ethanolic solution of the relevant $\beta, \gamma$-unsaturated ketone ( 1.0 equiv.), obtained as described above, was then added to the reaction mixture which was stirred overnight before being concentrated under reduced pressure. The resulting mixture was extracted with ethyl acetate ( $3 \times 50 \mathrm{~mL}$ ) and the combined organic phases washed with water $(1 \times 50 \mathrm{~mL})$ and brine $(1 \times 50 \mathrm{~mL})$ before being dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and
concentrated under reduced pressure. The residue thus obtained was purified by column chromatography ( $10: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution) to afford the relevant $\beta, \gamma$-unsaturated oxime $\mathbf{1 a},{ }^{[1]} \mathbf{1 b},{ }^{[1]} \mathbf{1 c},{ }^{[1]} \mathbf{1},{ }^{[1]} \mathbf{1 f},{ }^{[1]} \mathbf{1 g},{ }^{[2]} \mathbf{1 h},{ }^{[3]} \mathbf{1 i},{ }^{[1]} \mathbf{1},{ }^{[1]} \mathbf{1 m},{ }^{[1]} \mathbf{1 n},{ }^{[1]} \mathbf{1 p},{ }^{[1]}$ $\mathbf{1 q},{ }^{[1]} \mathbf{1} \mathbf{r},{ }^{[1]} \mathbf{1 s},{ }^{[1]} \mathbf{1 t},{ }^{[1]} \mathbf{1} \mathbf{u},{ }^{[1]}$ and $\mathbf{1 w} .{ }^{[1]}$ The spectral data obtained on these $\beta, \gamma$-unsaturated oximes were in accord with the assigned structures and matched those reported in the literature.

## General procedure for the synthesis of $\boldsymbol{N}$-heteroarenium salts 2a-r



Following a protocol reported by Hong, ${ }^{[4]}$ a solution of the relevant pyridine $N$-oxide (5 mmol ) and trimethyloxonium tetrafluoroborate ( 6 mmol , 1.2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}$ ) was stirred for 16 h while being maintained at room temperature under a nitrogen atmosphere. The resulting mixture was concentrated under reduced pressure and the solid thus obtained was recrystallized (twice) from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and diethyl ether ( 60 mL ) stored at $-20{ }^{\circ} \mathbf{C}$. Compounds $\mathbf{2 a},{ }^{[5]} \mathbf{2 c},{ }^{[6]} \mathbf{2 d},{ }^{[6]} \mathbf{2 e},{ }^{[7]} \mathbf{2 f},{ }^{[5]} \mathbf{2 g},{ }^{[5]} \mathbf{2 h},{ }^{[5]} \mathbf{2} \mathbf{i},{ }^{[8]} \mathbf{2} \mathbf{j},{ }^{[8]} \mathbf{2 k},{ }^{[5]} \mathbf{2 1},{ }^{[9]} \mathbf{2 m},{ }^{[8]}$ $\mathbf{2 n},{ }^{[8]} \mathbf{2 0},{ }^{[8]} \mathbf{2 p},{ }^{[8]} \mathbf{2 q}{ }^{[10]}$ and $\mathbf{2 r}{ }^{[9]}$ were thus obtained and the spectral data obtained on each of them were in accord with the assigned structure and matched those reported in the literature.

## III. Optimization of the Reaction Conditions

Table S1. Screening of solvents. ${ }^{[a]}$

[a] Reactions were performed using a mixture of 1a ( 0.1 mmol ), 2a ( 0.2 $\mathrm{mmol})$, in solvent $(1.0 \mathrm{~mL})$ at room temperature under irradiation with 40W Kessil blue LED ( $25 \%$ intensity, 456 nm ) for 16 h . [b] Yields of isolated products are given. $\mathrm{HFIP}=1,1,1,3,3,3-$ Hexafluoro-2-propanol

Table S2. Screening of photocatalysts. ${ }^{[a]}$

|  <br> 1a |  |  <br> 3a |
| :---: | :---: | :---: |
| Entry | Photocatalyst | Yield (\%) ${ }^{[\mathrm{b}]}$ |
| 1 | $\operatorname{Ir}(\mathrm{dFppy})_{3}$ | 49 |
| 2 | fac- $\operatorname{Ir}(\mathrm{ppy})_{3}$ | 46 |
| 3 | Eosin Y | 48 |
| 4 | P1 | 24 |
| 5 | P2 | 52 |
| 6 | P3 | 37 |
| 7 | P4 | 36 |
| 8 | DPA | 50 |
| 9 | 1,4-Dicyanobenzene | 49 |
| 10 | $\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 50 |
| 11 | $\left[\mathrm{Ru}(\mathrm{bpz})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$ | 52 |
| 12 | $\left[\operatorname{Ir}\left\{\mathrm{dFCF}_{3} \mathrm{ppy}\right\}_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}$ | 55 |
| $13{ }^{[\mathrm{c}]}$ | $\left[\operatorname{Ir}\left\{\mathrm{dFCF}_{3} \mathrm{ppy}\right\}_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}$ | 0 |
| $14^{[d]}$ | - | 0 |
|  |   |  |

[a] Reactions were performed using a mixture of $\mathbf{1 a}(0.1 \mathrm{mmol})$, 2a ( 0.2 $\mathrm{mmol})$, in DCM $(1.0 \mathrm{~mL})$ at room temperature under irradiation with 40W Kessil blue LED ( $25 \%$ intensity, 456 nm ) for 16 h . [b] Yields of isolated products are given. [c] The reaction was carried out in the dark. [d] Without photocatalyst.

Table S3. Screening of oxidants. ${ }^{[a]}$


| Entry | Oxidant | Yield (\%) ${ }^{[b]}$ |
| :---: | :---: | :---: |
| 1 | - | 55 |
| 2 | $\mathrm{Cu}(\mathrm{OTf})_{2}$ | 39 |
| 3 | $\mathrm{Cu}(\mathrm{OAc})_{2}$ | 64 |
| 4 | $\mathrm{Cu}(\mathrm{EH})_{2}$ | 65 |
| 5 | $\mathrm{Cu}(\mathrm{TMHD})_{2}$ | 63 |
| 6 | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ | 68 |
| 7 | $\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ | 51 |
| 8 | $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ | 70 |
| 9 | $\mathrm{PhI}(\mathrm{OAc})_{2}$ | 47 |
| 10 | TBHP | trace |
| 11 | $\mathrm{BI}-\mathrm{OH}$ | 73 |
| 12 | $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ | 83 |
| $13^{[\mathrm{cc]}}$ | $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ | 89 |

[a] Reactions were performed using a mixture of $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.2$ $\mathrm{mmol})$, oxidant ( 0.12 mmol ), in DCM $(1.0 \mathrm{~mL})$ at room temperature under irradiation with 40W Kessil blue LED ( $25 \%$ intensity, 456 nm ) for 16 h . [b] Yields of isolated products are given. [c] $\mathbf{2 a}(0.25 \mathrm{mmol})$ was used.

Table S4. Screening of bases. ${ }^{[a]}$

[a] Reactions were performed using a mixture of $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}$ $(0.25 \mathrm{mmol})$, oxidant $(0.12 \mathrm{mmol})$, in $\mathrm{DCM}(1.0 \mathrm{~mL})$ at room temperature under irradiation with 40W Kessil blue LED ( $25 \%$ intensity, 456nm) for 16 h . [b] Yields of isolated products are given.

## IV. General Procedure for the Synthesis of Compounds 3a-w, 4a-g and 5ak



An oven-dried reaction tube equipped with a magnetic stirring bar was charged with the relevant $\beta, \gamma$-unsaturated oxime $\mathbf{1}(0.1 \mathrm{mmol})$, the relevant $N$-methoxyheteroarenium salt $\mathbf{2}$ ( 0.25 mmol$)$, $\left[\mathrm{Ir}\left\{\mathrm{dFCF}_{3} \mathrm{ppy}\right\}_{2}(\right.$ bpy $\left.)\right] \mathrm{PF}_{6}(2.0 \mathrm{mg}, 2 \mathrm{~mol} \%)$, and $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(32.2 \mathrm{mg}$, $0.12 \mathrm{mmol})$. The tube was evacuated and backfilled with nitrogen three times. DCM ( 1.0 mL ) was then added to the reaction mixture via syringe and the resulting solution stirred at room temperature for 16 h while being irradiated, throughout this time, with two Kessil blue LED lamps ( $456 \mathrm{~nm}, 40 \mathrm{~W}, 25 \%$ intensity). The reaction mixture was then extracted with ethyl acetate $(3 \times 25 \mathrm{~mL})$ and the combined organic phases washed with water $(1 \times 30 \mathrm{~mL})$ and brine $(1 \times 30 \mathrm{~mL})$ before being dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue thus obtained was purified by column chromatography (petroleum
ether/ethyl acetate elution) to afford the relevant product 3a-w, 4a-g and 5a-k.

## V. Radical Trapping Experiment Using TEMPO



An oven-dried reaction tube equipped with a magnetic stirring bar was charged with $\beta, \gamma$-unsaturated oxime $\mathbf{1 a}(18.9 \mathrm{mg}, 0.1 \mathrm{mmol}), N$-methoxyquinolinium salt $\mathbf{2 a}(65.3 \mathrm{mg}, 0.25$ mmol), TEMPO ( $31.2 \mathrm{mg}, 0.2 \mathrm{mmol}$ ), $\left[\operatorname{Ir}\left\{\mathrm{dFCF}_{3} p p y\right\}_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}(2 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(32.2 \mathrm{mg}, 0.12 \mathrm{mmol})$. The tube was evacuated and backfilled with nitrogen three times. DCM ( 1.0 mL ) was then added to the reaction mixture via syringe and the resulting solution stirred at room temperature for 16 h while being irradiated with two Kessil blue LED lamps ( $456 \mathrm{~nm}, 40 \mathrm{~W}, 25 \%$ intensity). The ensuing mixture was then extracted with ethyl acetate $(3 \times 25 \mathrm{~mL})$ and the combined organic phases washed with water $(1 \times 30$ $\mathrm{mL})$ and brine $(1 \times 30 \mathrm{~mL})$ before being dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue thus obtained was purified by column chromatography ( $6: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution) to afford the TEMPO trapping product $\mathbf{1 2}$ ( 20.7 mg , $60 \%$ ). No evidence for the formation of pyridine $\mathbf{3 a}$ was obtained.

## VI. Stern-Volmer Quenching Experiments



Figure S1. Quenching of the $\left.\left[\operatorname{Ir}\left(\mathrm{dF}_{\left(\mathrm{CF}_{3}\right)}\right) \mathrm{ppy}\right)_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}$ emission $(0.015 \mathrm{mM}$ in DCM$)$ in the presence of increasin g amounts of oxime (1a). Excitation wavelength : 380 nm , Bandwidth : Ex 3.0 nm , Em 3.0 nm .


Figure S2. Quenching of the $\left[\operatorname{Ir}\left(\mathrm{dF}_{( }\left(\mathrm{CF}_{3}\right) \text { ppy }\right)_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}$ emission $(0.015 \mathrm{mM}$ in DCM$)$ in the presence of increasing amounts of N-methoxyquinolinium salt (2a). Excitation wavelength : 380 nm , Bandwidth : Ex 3.0 nm , Em 3.0 nm


Figure S3. Quenching of the $\left[\operatorname{Ir}\left(\mathrm{dF}_{( }\left(\mathrm{CF}_{3}\right) \mathrm{ppy}_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}\right.$ emission $(0.015 \mathrm{mM}$ in DCM$)$ in the presence of increasin g amounts of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Excitation wavelength : 380 nm , Bandwidth : Ex 3.0 nm , Em 3.0 nm


Figure S4. Stern-Volmer quenching plot of $\left[\operatorname{Ir}\left(\mathrm{dF}_{\left(\mathrm{CF}_{3}\right)}\right) \text { ppy }\right)_{2}($ bpy $\left.)\right] \mathrm{PF}_{6}$ with $\mathbf{1 a}$, 2a, and $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

## VII. Quantum Yield Measurements

## Determination of the light intensity at $456 \mathbf{n m}$.

A Kessil LED lamp ( $\lambda_{\max }=456 \mathrm{~nm}$ ) was used at $25 \%$ intensity for the measurement of quantum yield. So, following the procedure of Yoon, ${ }^{[11]}$ the photon flux of the LED ( $\lambda_{\max }=$ 456 nm ) was determined by standard ferrioxalate actinometry. Specifically, a 0.15 M solution of ferrioxalate was prepared by dissolving potassium ferrioxalate hydrate ( 0.737 g ) in $\mathrm{H}_{2} \mathrm{SO}_{4}$ ( 10 mL of a 0.05 M solution) while a buffered solution of 1,10 -phenanthroline was prepared by dissolving 1,10-phenanthroline ( 5.0 mg ) and sodium acetate ( 1.13 g ) in $\mathrm{H}_{2} \mathrm{SO}_{4}(5.0 \mathrm{~mL}$ of a 0.5 M solution). Both solutions were stored in the dark. To determine the photon flux of the LED, the ferrioxalate solution ( 2.0 mL ) was placed in a cuvette and irradiated for 90 seconds at $\lambda_{\max }=456 \mathrm{~nm}$. After irradiation, the phenanthroline solution $(0.35 \mathrm{~mL})$ was added to the cuvette and the resulting mixture was allowed to stir in the dark for 1 h so as to permit the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the resulting solution was measured at 510 nm . A non-irradiated sample was also prepared and the absorbance at 510 nm was measured. Conversion was calculated using eq 1

|  | Non-irrad | Irrad 01 | Irrad 02 | Irrad 03 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}_{510 \mathrm{~nm}}$ | 0.516 | 1.442 | 1.435 | 1.427 |
|  | Average $\mathrm{A}_{510 \mathrm{~nm}}$ of <br> irradiation samples | 1.435 |  |  |
| mol of $\mathrm{Fe} e^{2+}=\frac{V \cdot \Delta A_{510 \mathrm{~nm}}}{l \cdot \epsilon}=\frac{(0.00235 \mathrm{~L}) \cdot(0.919)}{(1.00 \mathrm{~cm}) \cdot\left(11,100 \frac{\mathrm{~L}}{\mathrm{~mol}} \cdot \mathrm{~cm}\right)}=1.95 \times 10^{-7} \mathrm{~mol} \quad$ (1) |  |  |  |  |

V is the total volume $(0.00235 \mathrm{~L})$ of the solution after addition of phenanthroline, $\Delta \mathrm{A}$ is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, 1 is the path length $(1.00 \mathrm{~cm})$, and $\varepsilon$ is the molar absorptivity of the ferrioxalate actinometer at $510 \mathrm{~nm}\left(11,100 \mathrm{Lmol}^{-1} \mathrm{~cm}^{-1}\right) \cdot{ }^{[12]}$ The photon flux was calculated using eq 2:

$$
\begin{equation*}
\text { Photon flux }=\frac{\text { mol of } \mathrm{Fe}^{2+}}{\emptyset \cdot t \cdot f}=\frac{1.95 \times 10^{-7} \mathrm{~mol}}{(0.84) \cdot(90 \mathrm{~s}) \cdot(0.989)}=2.61 \times 10^{-9} \mathrm{einstein} / \mathrm{s} \tag{2}
\end{equation*}
$$

where $\Phi$ is the quantum yield for the ferrioxalate actinometer $(0.84 \text { at } \lambda=456 \mathrm{~nm})^{[13]}$, t is the irradiation time ( 90 s ), and f is the fraction of light absorbed at 456 nm by the ferrioxalate actinometer. This value is calculated using eq 3 where $\mathrm{A}_{456 \mathrm{~nm}}$ is the absorbance of the ferrioxalate solution at 456 nm . An absorption spectrum gave an $\mathrm{A}_{456 \mathrm{~nm}}$ value of 1.959, indicating that the fraction of absorbed light (f) is 0.989 .

$$
\begin{equation*}
\mathrm{f}=1-10^{-A_{456 \mathrm{~nm}}} \tag{3}
\end{equation*}
$$

The photon flux was thus calculated to be $2.61 \times 10^{-9}$ Einsteins s ${ }^{-1}$ (average of three experiments).


Figure S5. Absorption spectra of three irradiation experiments and non-irradiation experiment.


Figure S6. Absorption spectra of 0.002 M solution of $\left[\operatorname{Ir}\left\{\mathrm{dFCF}_{3} p p y\right\}_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}$ in DCM .

## Determination of the reaction quantum yield.



The reaction mixture was stirred and irradiated by Kessil LED ( $\lambda \max =456 \mathrm{~nm}$ ) for 900 s . The yield of product 3a was determined, by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using dibromomethane as an internal standard, to be $18 \%\left(0.036 \times 10^{-3} \mathrm{~mol}\right.$ of $\left.\mathbf{3 a}\right)$. The reaction quantum yield $(\Phi)$ was determined using eq 4 where the photon flux is $2.61 \times 10^{-9}$ Einsteins $\mathrm{s}^{-1}$ (determined by actinometry as described above), t is the reaction time ( 900 s ) and f is the fraction of incident light absorbed by the catalyst, determined using eq 3 . An absorption spectrum of the catalyst $(0.002 \mathrm{M})$ gave an absorbance value of 0.881 at 456 nm (Figure S6), indicating that the fraction of light absorbed by the photocatalyst (f) is 0.8685 .

$$
\begin{gathered}
\Phi=\frac{\text { mol of product }}{\text { flux } \cdot \mathrm{t} \cdot \mathrm{f}} \\
\Phi=\frac{0.036 \times 10^{-3} \mathrm{~mol}}{2.61 \times 10^{-9} \text { einstein }^{-1} \cdot 900 \mathrm{~s} \cdot 0.8685}=17.7
\end{gathered}
$$

The reaction quantum yield ( $\Phi$ ) was calculated to be 17.7

## VIII. Synthetic Applications

## Gram-scale reaction



An oven-dried reaction tube equipped with a magnetic stirring bar was charged with the $\beta$, $\gamma$-unsaturated oxime 1a $(1.00 \mathrm{~g})$, $N$-methoxyquinolinium salt 2a (3.45 g), $\left[\mathrm{Ir}\left\{\mathrm{dFCF}_{3} \mathrm{ppy}\right\}_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}(106 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ( $1.70 \mathrm{~g}, 1.2$ equiv.). The tube was evacuated and backfilled with nitrogen three times. DCM ( 50 mL ) was then added to the reaction mixture via syringe and the resulting solution stirred at room temperature for 16 h while being irradiated by two Kessil blue LEDs ( $456 \mathrm{~nm}, 40 \mathrm{~W}, 25 \%$ intensity). The resulting mixture was then extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$ and the combined organic phases washed with water $(1 \times 50 \mathrm{~mL})$ and brine $(1 \times 50 \mathrm{~mL})$ before being dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue thus obtained was purified by column chromatography ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution) to afford product $3 \mathbf{a}(1.24 \mathrm{~g}, 71 \%)$ as a yellow solid.

## Reductive cleavage of dihydroisoxazole $5{ }^{[14]}$



A reaction flask equipped with a magnetic stirring bar was charged with methyl 2-((3-phenyl-4,5-dihydroisoxazol-5-yl)methyl)isonicotinate (5g) (88.8 mg, 0.3 mmol$), \mathrm{NH}_{4} \mathrm{Cl}$ ( $161 \mathrm{mg}, 3 \mathrm{mmol}, 10$ equiv.) and Fe powder ( $168 \mathrm{mg}, 3 \mathrm{mmol}$ ). Ethanol/water ( $1: 1 \mathrm{v} / \mathrm{v} 15 \mathrm{~mL}$ ) was then added into the reaction and the resulting mixture stirred at $80^{\circ} \mathrm{C}$ for 10 h . The cooled reaction mixture was then diluted with ethyl acetate and filtered through a silica pad. The filtrate was extracted with ethyl acetate ( $3 \times 25 \mathrm{~mL}$ ) and the combined organic phases were washed with water $(1 \times 30 \mathrm{~mL})$ and brine $(1 \times 30 \mathrm{~mL})$ before being dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$,
filtered and concentrated under reduced pressure. The residue thus obtained was purified by column chromatography ( $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution) to afford $\beta$-hydroxyketone 6 ( $67 \mathrm{mg}, 75 \%$ ) as a clear, light-yellow oil.

## Synthesis of pyridylated 4,5-dihydropyrazole 8



An oven-dried reaction tube equipped with a magnetic stirring bar was charged with $\beta, \gamma$-unsaturated hydrazine $\boldsymbol{7}^{[15]}$ ( $26.6 \mathrm{mg}, 0.1 \mathrm{mmol}$ ), $N$-methoxyheteroarenium salt $\mathbf{2 n}$ ( 63.8 $\mathrm{mg}, 0.25 \mathrm{mmol}), f a c-\operatorname{Ir}(\mathrm{ppy})_{3}(1.3 \mathrm{mg}, 2 \mathrm{~mol} \%)$, and $\mathrm{Cu}(\mathrm{TMHD})_{2}(51.6 \mathrm{mg}, 0.12 \mathrm{mmol})$. The tube was evacuated and backfilled with nitrogen three times. Thereafter, MeCN ( 1.0 mL ) was added to the reaction mixture via syringe and the resulting solution stirred at room temperature for 16 h whilst being irradiated with two Kessil blue LEDs ( $456 \mathrm{~nm}, 40 \mathrm{~W}, 25 \%$ intensity). The reaction mixture was then extracted with ethyl acetate ( $3 \times 25 \mathrm{~mL}$ ) and the combined organic phases washed with water $(1 \times 30 \mathrm{~mL})$ and brine $(1 \times 30 \mathrm{~mL})$ before being dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue thus obtained was purified by column chromatography ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution) to afford the pyridylated 4,5-dihydropyrazole $\mathbf{8}(20.1 \mathrm{mg}, 50 \%)$ as a clear, light-yellow oil.

## Attempted synthesis of a 6-exo-trig cyclisation product



An oven-dried reaction tube equipped with a magnetic stirring bar was charged with the relevant $\gamma, \delta$-unsaturated oxime ( $17.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ ), the relevant $N$-methoxyheteroarenium salt $2(65.3 \mathrm{mg}, 0.25 \mathrm{mmol})$, $\left[\operatorname{Ir}\left\{\mathrm{dFCF}_{3} \mathrm{ppy}\right\}_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}(2.0 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(32.2 \mathrm{mg}, 0.12 \mathrm{mmol})$. The tube was evacuated and backfilled with nitrogen three times. DCM ( 1.0 mL ) was then added to the reaction mixture via syringe and the
resulting solution stirred at room temperature for 16 h whilst being irradiated by two Kessil blue LEDs ( $456 \mathrm{~nm}, 40 \mathrm{~W}, 25 \%$ intensity). Spectroscopic and chromatographic analysis of the reaction mixture obtained after work-up yielded no evidence for the formation of a 6-exo-trig-derived cyclisation product.

## IX. Computational Studies

## Theoretical Procedures

Geometries of all reactants and transition states were identified and located using density functional theory (wB97XD/6-31G(d,p)) ${ }^{[16,17]}$ implemented in Gaussian $16 .{ }^{[18]}$ SMD $^{[19]}$ was used to treat effects of solvents during the mechanistic study. Electronic energies of all species were then improved by increasing the basis set size to a triple zeta basis set (def2TZVPD). ${ }^{[20]}$ The global minima of reactants were identified using a systematic search. All transition states were confirmed through IRC calculations using the Hessian-based Predictor-Corrector (HPC) algorithm. Gibbs free energies of all species in dichloromethane were determined at 298.15 K using the direct method ${ }^{[21]}$ in which ideal gas partition functions are applied directly to solution-phase geometries and frequencies; the resulting Gibbs free energies were then corrected to a standard state of 1 M . To investigate the excited states of the $\left[\mathrm{Ir}^{\mathrm{II}}\right]$ complex, TDDFT calculations ( 10 roots) for singlet and triplet excitations separately were performed at the same functional (wB97XD) used for investigation of the reaction mechanism above. Note that the def 2 SVPD $^{5}$ basis set was used for Ir during the geometrical optimizations and subsequently def2TZVPD ${ }^{5}$ was employed for single point energy and TDDFT calculations. The orbital character of the calculated photochemical transitions was manually assigned by projecting canonical orbitals into Natural Transition Orbitals ${ }^{[22]}$ (NTOs).

The Gibbs free energy barrier for the Outer Single Electron Transfer (OSET) reaction was calculated using Marcus theory as formulated in the following equation: ${ }^{[23-26]}$

$$
\begin{equation*}
\Delta G_{O S E T}^{\ddagger}=\frac{\lambda}{4}\left(1+\frac{\Delta G_{O S E T}^{o}}{\lambda}\right)^{2} \tag{eq.1}
\end{equation*}
$$

where $\Delta G_{O S E T}^{o}$ is the Gibbs free energy of the OSET reaction, $\lambda$ is the total reorganization energy. The reorganization energy ( $\lambda$ ) is approximately determined by averaging the self-exchange reorganization energy of individual reactants in the OSET reactions ${ }^{[27,28]}$ as
given in Scheme S1 below.

$$
\begin{array}{ll}
\mathrm{A}+\mathrm{B} & \xrightarrow{\lambda} \mathrm{~A}^{+}+\mathrm{B}^{-} \\
\mathrm{A}+\mathrm{A}^{+} & \xrightarrow{\lambda_{11}} \mathrm{~A}^{+}+\mathrm{A} \\
\mathrm{~B}^{-}+\mathrm{B} & \xrightarrow{\lambda_{22}} \mathrm{~B}+\mathrm{B}^{-} \tag{r.3}
\end{array}
$$

Scheme S1. Self-exchange reactions of individual reactants in a general OSET reaction.
The total reorganization energy $(\lambda)$ is approximated as follows:

$$
\begin{equation*}
\lambda=\frac{\lambda_{11}+\lambda_{22}}{2} \tag{eq.2}
\end{equation*}
$$

In DFT calculations, individual reorganization energies ( $\lambda_{11}$ and $\lambda_{22}$ ) were calculated by subtracting the structurally optimized energy of the reactant (product) from unrelaxed energy of itself at the relaxed coordinate of the corresponding product (reactant) (Refer to Figure S7 for more details). In the general Scheme $\mathbf{S 1}$, unrelaxed energy of the product $\mathrm{A}^{\boldsymbol{+ +}}$ is the energy on the potential surface of $\mathrm{A}^{\bullet+}$ calculated by using the optimized geometry of A ; unrelaxed energy of the product $\mathrm{B}^{*-}$ is the energy on the potential surface of $\mathrm{B}^{*-}$ calculated using the optimized geometry of B. Similarly, the same procedure is applied for all other species involved in an OSET reaction. The reader is referred to refs 26-28 for further details. Note that to take into account of the effects of solvent on the reorganization energy, non-equilibrium parts of the implicit solvent (the slow/inertial charges) obtained from the optimized energy calculations were used in the corresponding unrelaxed energy calculations followed by an external iteration procedure.


Figure S7. Energy potential curves of the reactant and product of a self-exchange reaction described in Marcus theory. OSET activation barrier $\left(\Delta \mathrm{G}^{\downarrow}\right)$ is determined as the distance from the crossing point between two potential curves to the geometrically optimized energy of the reactant. Coordinates of geometrically optimized structures of the reactant and product are noted as $R_{\text {optimised reactant }}$ and $R_{\text {optimised }}$ product. $\lambda_{r}\left(\lambda_{p}\right)$ is reorganization energy of the reactant (product).

In this work, three OSET reactions were studied: (i) the reaction between the $\mathrm{T}_{1}$ excited state of the photoredox catalyst [ $\left.\mathbf{I I I I I}^{\mathrm{II}}\right]^{*}$ and substrate 2; (ii) the reaction between the ground state of $\left[\mathbf{I r}^{\mathbf{I V}]}\right.$ and the substrate $\mathbf{I V}$; (iii) the reaction between the $\mathrm{T}_{1}$ excited state of the photoredox catalyst $\left[\mathbf{I r}^{[I I}\right]^{*}$ and substrate VI. As an example, the self-exchange reactions of individual reactants of the first OSET reaction (i) were given as follows.

$$
\begin{gather*}
{\left[\mathrm{Ir}^{\mathrm{III}}\right]^{*}+\mathbf{2}^{+} \xrightarrow{\lambda}\left[\mathrm{Ir}^{\mathrm{IV}}\right]+\mathbf{2}}  \tag{i}\\
{\left[\mathrm{Ir}^{\mathrm{III}}\right]^{*}+\left[\mathrm{Ir}^{\mathrm{IV}}\right] \xrightarrow{\lambda_{11}}\left[\mathrm{Ir}^{\mathrm{IV}}\right]+\left[\mathrm{Ir}^{\mathrm{III}}\right]^{*}}  \tag{i.1}\\
\mathbf{2}^{+} \mathbf{2}^{+} \xrightarrow{\lambda_{22}} \mathbf{2}^{+}+\mathbf{2} \tag{i.2}
\end{gather*}
$$

Scheme S2. Individual self-exchange reactions of the reactant $\mathbf{I r}^{[I I I]^{*}}$ and the substrate $\mathbf{2}$ illustrated as the initial SET reaction in Scheme 4 of main text.

Table S5 Electronic energies and Gibbs free energies of the structurally optimized species, and their corresponding unrelaxed electronic energies in three OSET reactions (i, ii, and iii) mentioned above. Note that $X_{Y}$ denotes the geometry of the species X taken from the optimized geometry of the species $\mathrm{Y} .{ }^{[a]}$

| Reaction | Optimized species | $2^{+}$ | $2 \bullet$ | $\left[\mathbf{I I I I}^{\text {II }}{ }^{*}\right.$ | [ $\mathrm{Ir}^{\text {IV }}$ ] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| i | $\mathrm{E}_{\text {elec }}(\mathrm{kJ} / \mathrm{mol})$ | -953634.5 | -953933.9 | -6901049.6 | -6900716.4 |
|  | $\mathrm{G}(\mathrm{kJ} / \mathrm{mol})$ | -953353.2 | -953667.7 | -6900033.4 | -6899686.4 |
|  | Unrelaxed species | $2^{+}{ }^{+}$ | $\mathbf{2}^{\circ}{ }^{2}$ | $\left[\mathrm{Ir}^{\text {IIII }}\right]^{*}{ }_{\left[I \mathrm{I}^{\text {IV }}\right]}$ | $\left[\mathbf{I r}^{\mathbf{I V}}\right]_{\left[I r^{\text {III }}\right]^{*}}$ |
|  | $\mathrm{E}_{\text {elec }}(\mathrm{kJ} / \mathrm{mol})$ | -953470.9 | -953904.0 | -6901038.1 | -6900553.6 |
| ii | Optimized species | IV ${ }^{+}$ | VII ${ }^{\mathbf{2 +}}$ | [ $\mathrm{Ir}^{\text {IV }}$ ] | [ $\mathrm{Ir}^{\text {III }}$ ] |
|  | $\mathrm{E}_{\text {elec }}(\mathrm{kJ} / \mathrm{mol})$ | -2517491.7 | -2516954.2 | -6900716.4 | -6901322.3 |
|  | G (kJ/mol) | -2516630.2 | -2516073.5 | -6899686.4 | -6900295.8 |
|  | Unrelaxed species | $\underline{I} \mathbf{V}^{+\bullet} \mathbf{v}$ | $\mathbf{V I I ~}{ }^{\mathbf{+}}{ }^{\text {IV }}$ | $\left[\mathrm{Ir}^{\text {IV }}\right]_{[I \mathrm{r}}{ }^{\text {III] }}$ | $\left[\mathbf{I r ~}^{\mathbf{I I I}}\right]_{[(\mathbf{r}}{ }^{\mathbf{I V}}{ }^{\text {] }}$ |
|  | $\mathrm{E}_{\text {elec }}(\mathrm{kJ} / \mathrm{mol})$ | -2517395.8 | -2516685.6 | -6900573.9 | -6901324.4 |
| iii | Unrelaxed species | VI ${ }^{+}$ | $\mathbf{V}^{\bullet}$ | [ $\left.\mathbf{I r}^{\text {III }}\right]^{*}$ | [ $\mathrm{Ir}^{\text {IV }}$ ] |
|  | $\mathrm{E}_{\text {elec }}(\mathrm{kJ} / \mathrm{mol})$ | -2516034.6 | -2516326.6 | -6901049.6 | -6900716.4 |
|  | G (kJ/mol) | -2515197.4 | -2515504.0 | -6900033.4 | -6899686.4 |
|  | Unrelaxed species | $\mathbf{V I}^{+} \mathbf{V}$ | $V^{\bullet}{ }_{\text {II }}$ | $\left[\mathbf{I r ~}^{\text {III }}\right]^{*}\left[\mathrm{Ir}^{\text {IV }}\right]$ | $\left[\mathbf{I r}^{\text {IV }}\right]_{\left[I r^{\text {III }}\right]^{*}}$ |
|  | $\mathrm{E}_{\text {elec }}(\mathrm{kJ} / \mathrm{mol})$ | -2515867.6 | -2516108.3 | -6901038.1 | -6900553.6 |

[a] VII is the species formed immediately after IV donated one electron to [ $\mathbf{I r}^{\mathbf{I V}]}$ ] via a SET; afterward the deprotonation will happen to form VI in Scheme $\mathbf{4}$ of main text. V is the species formed after the deprotonation of IV right before the formation of Product in Scheme 4 of main text; this species is also formed after VI receives one electron from [II $\left.{ }^{[I I}\right]^{*}$ via a SET in Scheme $\mathbf{4}$ of main text, and subsequently the product is formed.

Table S6 Reaction barriers $\Delta G_{O S E T}^{\ddagger}$ of the three OSET reactions (i), (ii), and (iii) calculated using Eq. 1

| Reaction | $\Delta G_{O S E T}^{\ddagger}(\mathrm{kJ} / \mathrm{mol})$ | $\lambda(\mathrm{kJ} / \mathrm{mol})$ | $\Delta G_{O S E T}^{o}(\mathrm{~kJ} / \mathrm{mol})$ |
| :---: | :---: | :---: | :---: |
| i | 63.6 | 183.7 | 32.4 |
| ii | 39.5 | 252.5 | -52.7 |
| iii | 91.6 | 178.4 | 40.4 |

Table S7 Energy components (Hartree, 298.15K) used to calculate Gibbs free energies of all species in Scheme 4 of main text.

| Species | $\mathrm{E}^{[b]}$ | E | ZPE | TC | TS | H | G |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | -115.06569 | -115.01719 | 0.03692 | 0.00206 | 0.02687 | -115.02482 | -115.04866 |
| 1 | -596.24806 | -596.05176 | 0.24629 | 0.01287 | 0.05558 | -595.98701 | -596.03956 |
| MeOH | -115.74183 | -115.69133 | 0.05178 | 0.00236 | 0.02697 | -115.68581 | -115.70975 |


| II | -595.60803 | -595.41351 | 0.23446 | 0.01235 | 0.05464 | -595.35934 | -595.41094 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rotated II | -595.60615 | -595.41155 | 0.23442 | 0.01236 | 0.05496 | -595.35749 | -595.40941 |
| III | -595.60391 | -595.41173 | 0.23370 | 0.01195 | 0.05340 | -595.35637 | -595.40674 |
| $\mathrm{H}^{+}$ | -0.19525 | -0.195249 | 0.00000 | 0.00047 | 0.01236 | -0.19289 | -0.20222 |
| Product | -843.38024 | -843.11060 | 0.31928 | 0.01603 | 0.06443 | -843.04305 | -843.10444 |
| $\mathrm{IV}^{+\bullet}$ | -958.86287 | -958.55590 | 0.37566 | 0.01893 | 0.07017 | -958.46639 | -958.53353 |
| VII* | -958.41791 | -958.10443 | 0.36120 | 0.01898 | 0.07121 | -958.03585 | -958.10402 |
| HAT TS | -711.30091 | -711.06209 | 0.28084 | 0.01616 | 0.06362 | -711.00202 | -711.06261 |
| II to rotated-II TS | -595.59086 | -595.39504 | 0.23318 | 0.01215 | 0.05451 | -595.34364 | -595.39512 |
| Cyclization TS | -595.58320 | -595.39007 | 0.23230 | 0.01181 | 0.05378 | -595.33720 | -595.38794 |
| III to IV TS | -958.82337 | -958.51552 | 0.37200 | 0.01924 | 0.07118 | -958.43024 | -958.49839 |
| MeO Cleavage TS | -958.41269 | -958.09951 | 0.35929 | 0.01903 | 0.07255 | -958.03249 | -958.10201 |
| $\left[\mathrm{Ir}^{\text {III }}\right]^{*}$ | -2628.47040 | -2627.50130 | 0.46151 | 0.03901 | 0.11840 | -2627.96800 | -2628.08336 |
| [ $\mathrm{Ir}^{\text {III] }}$ ] | -2628.57427 | -2627.60992 | 0.46450 | 0.03859 | 0.11703 | -2627.10494 | -2627.21894 |
| $\left[\mathrm{Ir}^{\text {IV }}\right.$ ] | -2628.34352 | -2627.38223 | 0.46533 | 0.03853 | 0.11646 | -2627.83777 | -2627.95120 |
| $2^{+}$ | -363.22011 | -363.09995 | 0.13551 | 0.00596 | 0.03925 | -363.07675 | -363.11297 |
| $2{ }^{\bullet}$ | -363.33415 | -363.20733 | 0.13105 | 0.00651 | 0.04111 | -363.19471 | -363.23278 |
| $\mathrm{V}^{2+}$ | -958.65704 | -958.35727 | 0.37926 | 0.01795 | 0.06667 | -958.25794 | -958.32158 |
| MeO* | -115.06569 | -115.01719 | 0.03692 | 0.00206 | 0.02687 | -115.02482 | -115.04866 |

[a] Unless stated otherwise, calculations performed at the wB97XD/6-31G(d,p) level of theory using SMD to model the acetonitrile solvent environment. E is the total DFT energy, ZPE is the zero-point vibrational energy, TC is the thermal correction to the enthalpy, H is the total enthalpy, TS is the temperature times the total entropy, and G is the total Gibbs free energy in solution and includes a correction for change of state from 1atm to 1 M . [b] Calculated with wB97XD/def2TZVPD//wB97XD/6-31G(d,p) using SMD to model the dichloromethane solvent environment

Time dependent DFT Calculations on the Photoredox Catalyst




Figure S8. Highest occupied natural transition orbitals (HUNTOs) and lowest unoccupied ones (LUNTOs) describing characters of electronic transitions ( $\mathrm{S}_{0}$ to $\mathrm{S}_{\mathrm{n}}$, to $\mathrm{T}_{\mathrm{n}}$ ). The [ $\mathrm{Ir}^{\mathrm{III}]}$ complex ground state was determined to have a singlet state $\left(\mathrm{S}_{0}\right)$.


Figure S9. Jablonski energy diagram of the $\left[\mathrm{Ir}^{\mathrm{II}]}\right]$ complex. Singlet and triplet excited states up $\mathrm{S}_{10}$ and $\mathrm{T}_{10}$ were considered. Characters of the singlet-singlet ( $\mathrm{S}_{0}$ to $\mathrm{S}_{\mathrm{n}}$ ) and singlet-triplet ( $\mathrm{S}_{0}$ to $\mathrm{T}_{\mathrm{n}}$ ) transitions are noted in red, where n denotes electronic features of $n$ orbitals (from nitrogen atoms of the ligands) and 6 d orbitals (from the Ir metal), and $\pi^{*}$ denotes unoccupied $\pi$ orbitals of ligands.

## X. The Cytotoxic Effects of Methylene-bridged bis-Heterocycles on Certain Cancer Cell Lines

The MCF7, HepG2 and Caco-2 cells are human adherent cancer cell lines and these were obtained from Procell (Wuhan, China). The culturing conditions for cells used in the reported assays are shown in Table S10. The cytotoxicities of test compounds was investigated using a Cell Counting Kit-8 (CCK-8) assay. Cells were cultured in 96-well plates overnight and then incubated with the test compounds at various concentrations $(0,1,5$, $10,50$ and $200 \mu \mathrm{M})$ for 48 h . Thereafter, each well was treated with $20 \mu \mathrm{~L}$ of CCK-8 solution (Beyotime, Shanghai, China) and incubated for 4 h . The absorbance of each sample at 450 nm was then measured using a microplate reader (Tecan infinite M1000 Pro). The relative cell viability of each sample was normalized against a DMSO control.

Table S10. The culturing conditions used to prepare the cells used in the reported cytotoxicity studies.

| Cell line | MCF7 | HepG2 | Caco-2 |
| :---: | :---: | :---: | :---: |
| Culture <br> medium | DMEM+10\% FBS | MEM+10\% FBS | MEM+10\% FBS |
| Culture <br> condition | $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ | $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ | $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ |
| Seeding <br> number | 3000 cell /well | 3000 cell $/$ well | 5000 cell $/$ well |

The derived cytotoxic effects of the methylene-bridged bis-heterocycles against HepG2 (a typical liver cancer cell line), MCF7 (breast cancer cell line) and Caco2 (colon cancer cell line) are presented in Table S11.

Table S11. The inhibitory effect of compounds on cancer cell viability.

| Compound | $\mathrm{IC}_{50} \pm \mathrm{SD}(\mu \mathrm{M})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Structure | HepG 2 | MCF7 | Caco2 |  |
| $\mathbf{3 a}$ |  | $38.71 \pm 0.75$ | $78.32 \pm 3.15$ | $39.5 \pm 3.31$ |  |


| 3b |  | $87.25 \pm 2.26$ | $22.52 \pm 2.15$ | >200 |
| :---: | :---: | :---: | :---: | :---: |
| 3c |  | $11.2 \pm 1.15$ | $8.23 \pm 1.85$ | >200 |
| 3d |  | >200 | $66.77 \pm 3.15$ | $132.9 \pm 2.21$ |
| 3 e |  | >200 | $16.81 \pm 1.69$ | $68.2 \pm 3.05$ |
| 3 f |  | >200 | >200 | >200 |
| 3g |  | >200 | $6.53 \pm 1.66$ | >200 |
| 3h |  | >200 | >200 | $74.26 \pm 3.15$ |
| $3 \mathbf{i}$ |  | $50.23 \pm 1.52$ | >200 | >200 |
| 3j |  | $70.37 \pm 2.14$ | $40.91 \pm 3.58$ | $114.7 \pm 2.66$ |


| 3k |  | $6.24 \pm 0.85$ | $63.06 \pm 3.17$ | >200 |
| :---: | :---: | :---: | :---: | :---: |
| 31 |  | $88.62 \pm 13.22$ | $13.22 \pm 3.15$ | $10.66 \pm 2.61$ |
| 3m |  | >200 | >200 | >200 |
| 3n |  | $14.37 \pm 1.52$ | $35.64 \pm 2.26$ | >200 |
| 30 |  | $43.7 \pm 2.15$ | $32.34 \pm 2.14$ | >200 |
| 3p |  | >200 | $13.22 \pm 2.05$ | $140.2 \pm 3.86$ |
| $\mathbf{3 q}$ |  | >200 | >200 | >200 |
| 3 r |  | $118.5 \pm 26.85$ | $167.23 \pm 15.26$ | $135.7 \pm 12.3$ |
| 3s |  | >200 | $82.73 \pm 3.13$ | >200 |

$\mathbf{4}$

| $4 e^{\prime}$ |  | >200 | >200 | >200 |
| :---: | :---: | :---: | :---: | :---: |
| 4f |  | $8.53 \pm 1.02$ | $11.29 \pm 1.34$ | >200 |
| 4 g |  | $57.65 \pm 1.56$ | $8.95 \pm 1.55$ | >200 |
| 5a |  | $56.13 \pm 1.74$ | $53.26 \pm 9.56$ | >200 |
| 5a' |  | $69.26 \pm 12.24$ | $28.96 \pm 1.99$ | >200 |
| 5b |  | >200 | >200 | >200 |
| 5c |  | >200 | $110.4 \pm 5.02$ | >200 |
| 5d |  | $50.23 \pm 2.15$ | $76.28 \pm 2.28$ | >200 |
| 5e |  | >200 | >200 | >200 |


| 5 f |  | >200 | >200 | >200 |
| :---: | :---: | :---: | :---: | :---: |
| 5g |  | >200 | >200 | >200 |
| 5h |  | $18.51 \pm 1.48$ | $6.38 \pm 1.83$ | $100.4 \pm 3.65$ |
| $5 i$ |  | $71.12 \pm 2.58$ | $25.12 \pm 2.15$ | $132.9 \pm 4.22$ |
| 5j |  | >200 | $58.59 \pm 3.11$ | >200 |
| 5j' |  | >200 | $50.52 \pm 2.84$ | >200 |
| 5k |  | $14.82 \pm 1.14$ | $27.59 \pm 2.53$ | >200 |
| Taxol (paclitaxel) |  | $6.26 \pm 1.61$ | $7.35 \pm 0.89$ | $9.28 \pm 1.22$ |

## XI. Compound Characterization and Related Data


$3 a$

## 4,4-Dimethyl-5-((4-methylquinolin-2-yl)methyl)-3-phenyl-4,5-dihydroisoxazole

Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime $\mathbf{1 a}(18.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ with the N -methoxyquinolinium salt $\mathbf{2 a}(65.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel $\left(3: 1 \mathrm{v} / \mathrm{v}\right.$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.4$ in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{3 a}(29.4 \mathrm{mg}, 89 \%)$ as a yellow solid, m.p. $=110.5-111.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{dd}, J=8.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}$, $J=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{ddd}, J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=$ $5.2,1.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.71(\mathrm{dd}, J=9.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{ddd}, J=17.9,14.1,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~s}$, $3 \mathrm{H}), 1.42(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.2,158.4,147.7,144.6$, $129.6,129.5,129.3,129.1,128.6,127.4,127.1,125.8,123.7,123.0,90.0,51.5,37.9,24.1$, $19.8,18.7 ;$ IR (ATR) $v_{\max } 3061,2965,2927,1603,1562,1509,1464,1445,761 \mathrm{~cm}^{-1} ;$ HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=331.1805$. Found: 331.1797.


3b

## 4,4-Dimethyl-5-((4-methylquinolin-2-yl)methyl)-3-(p-tolyl)-4,5-dihydroisoxazole

Reaction of 2,2-dimethyl-1-(p-tolyl)but-3-en-1-one oxime 1b ( $20.3 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) with the $N$-methoxyquinolinium salt $\mathbf{2 a}(65.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.4$ in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{3 b}(21.3 \mathrm{mg}, 62 \%)$ as a white solid, m.p. $=116.1-116.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=14.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.56 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=13.3$ Hz, 1H), 3.27 (t, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.95 ( $\mathrm{s}, 3 \mathrm{H}$ ), 2.39 (s, 3H), 1.61 (s, 3H), 1.47 (s, 3H);
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.7,156.5,156.0,140.5,138.1,134.1,129.6,129.5$, $127.5,127.3,125.9,124.7,124.5,122.4,89.1,52.8,33.5,24.7,21.5,20.2,19.9$; IR (ATR) $v_{\text {max }}$ 2922, 2853, 2588, 1644, 1606, 1466, $765 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}$ : $[\mathrm{M}+\mathrm{H}]^{+}=345.1961$. Found: 345.1946.


3 c

## 3-(4-Methoxyphenyl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxaz

 ole (3c). Reaction of 1-(4-methoxyphenyl)-2,2-dimethylbut-3-en-1-one oxime $\mathbf{1 c}$ ( 21.9 mg , 0.1 mmol ) with the $N$-methoxyquinolinium salt $\mathbf{2 a}(65.3 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) followed by standard work-up and flash column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.4 \mathrm{in} 3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound 3c ( $30.6 \mathrm{mg}, 85 \%$ ) as a yellow solid, m.p. $=127.3-127.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.59(\mathrm{~m}, 2 \mathrm{H})$, $7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{dd}, J=7.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.31(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 165.0,160.9,158.5,129.8,128.9,128.7,127.2,126.3,123.9,123.3,121.8,114.2$, 89.9, 55.5, 51.7, 37.6, 24.4, 20.0, 19.0; IR (ATR) $v_{\max } 2966,2923,1606,1513,1464,1254$, $761 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}:[\mathrm{M}+\mathrm{H}]^{+}=361.1911$. Found: 361.1897.

3d
3-([1,1'-Biphenyl]-4-yl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisox azole (3d). Reaction of 1-([1,1'-biphenyl]-4-yl)-2,2-dimethylbut-3-en-1-one oxime 1d (26.5 $\mathrm{mg}, 0.1 \mathrm{mmol}$ ) with the $N$-methoxyquinolinium salt $\mathbf{2 a}(65.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.5$ in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound 3d (28.4 mg, 70\%) as a white solid, m.p. $=115.2-115.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$
$8.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=18.4,8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.63(\mathrm{dd}, J$ $=10.1,8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=9.6,5.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.37(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=8.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=11.3,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}$, 3H), $1.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.1,158.3,142.6,140.3,129.8$, 129.0, 128.4, 127.9, 127.4, 127.2, 127.2, 126.3, 123.9, 123.3, 90.2, 51.7, 37.6, 24.4, 20.0, 19.0; IR (ATR) $v_{\max } 3060,2966,2925,1602,1465,885,764 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=407.2118$. Found: 407.2101.

$3 e$

## 3-(4-Bromophenyl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazol

 $\mathbf{e ~ ( 3 e ) . ~ R e a c t i o n ~ o f ~ 1 - ( 4 - b r o m o p h e n y l ) - 2 , 2 - d i m e t h y l b u t - 3 - e n - 1 - o n e ~ o x i m e ~} \mathbf{1 e}(26.7 \mathrm{mg}, 0.1$ mmol) with the $N$-methoxyquinolinium salt 2a ( $65.3 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.7$ in $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{3 e}(29.0 \mathrm{mg}$, $71 \%)$ as a white solid, m.p. $=106.6-107.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}$, $4 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=8.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=11.1$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.67(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 147.1, 141.6, 121.0, 120.0, 118.6, 118.1, 117.2, 117.0, 114.9, 114.7, 114.2, 87.5, 56.8, 44.7, $34.9,31.4,30.8$; IR (ATR) $v_{\max } 3063,2966,2924,2853,1643,1603,1465,885,760 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=409.0910$. Found: 409.0901.
$3 f$

## 3-(4-Chlorophenyl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazol

e (3f). Reaction of 1-(4-chlorophenyl)-2,2-dimethylbut-3-en-1-one oxime $\mathbf{1 f}$ ( $22.3 \mathrm{mg}, 0.1$ mmol) with the $N$-methoxyquinolinium salt 2a ( $65.3 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) followed by standard
work-up and flash column chromatography on silica gel (3:1 $\mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.3$ in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{3 f}(31.7 \mathrm{mg}$, $87 \%$ ) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ - 7.33 (m, 3H), 5.21 (t, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.09 (d, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.61 (s, 3H), 2.57 (s, 3H), 2.55 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 146.9, 141.9, 132.9, 132.0, 124.1, 119.2, $118.6,118.4,118.4,117.8,117.2,116.4,114.5,114.0,87.6,56.6,45.4,34.8,31.3,30.6$; IR (ATR) $v_{\max } 3062,2968,2927,1601,1493,1465,1092,759 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=365.1415$. Found: 365.1404

$3 \mathbf{g}$

## 4-(4,4-Dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazol-3-yl)benzonitrile

 (3g). Reaction of 4-(1-(hydroxyimino)-2,2-dimethylbut-3-en-1-yl)benzonitrile $\mathbf{1 g}$ ( 21.4 mg , 0.1 mmol ) with the $N$-methoxyquinolinium salt 2a ( $65.3 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.3$ in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{3 g}(27.3 \mathrm{mg}, 77 \%)$ as a yellow solid, m.p. $=144.7-145.2{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.54(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.71$ (dd, $J=14.1,8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=10.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 1 \mathrm{H}), 3.29(\mathrm{dd}$, $J=13.8,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 126 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 164.1,156.7,133.7,132.6,132.3,129.5,128.2,128.0,127.3,124.3,123.9,118.4$, $113.6,90.3,51.8,35.1,24.4,19.9,19.7$; IR (ATR) $v_{\max } 3066,2968,2924,2228,1644,1604$, 1467, $764 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=356.1757$. Found: 356.1742.

3h
3-(3-Methoxyphenyl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxaz ole (3h). Reaction of 1-(3-methoxyphenyl)-2,2-dimethylbut-3-en-1-one oxime $\mathbf{1 h}$ ( $21.9 \mathbf{m g}$, 0.1 mmol ) with the $N$-methoxyquinolinium salt $\mathbf{2 a}$ ( $65.3 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) followed by standard work-up and flash column chromatography on silica gel (3:1 $\mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.4$ in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound 3h ( $31.3 \mathrm{mg}, 87 \%$ ) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.97(\mathrm{dd}, J=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{ddd}, J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{ddd}, J=8.2$, $6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{ddd}, J=8.3$, $2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.67(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H})$, $1.43(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.2,159.6,158.2,130.6$, 129.7, 129.7, 128.6, 127.1, 126.2, 123.8, 123.2, 119.7, 115.7, 112.8, 90.1, 55.4, 51.6, 37.5, 24.3, 19.9, 19.0; IR (ATR) $v_{\max } 2965,2922,1602,1465,1239,1023,760 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}:[\mathrm{M}+\mathrm{H}]^{+}=361.1911$. Found: 361.1898.

$3 i$

## 3-(3-Bromophenyl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazol

 e (3i). Reaction of 1-(3-bromophenyl)-2,2-dimethylbut-3-en-1-one oxime $\mathbf{1 i}$ ( $26.7 \mathrm{mg}, 0.1$ mmol) with the $N$-methoxyquinolinium salt 2a ( $65.3 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.5$ in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{3 i}(34.3 \mathrm{mg}$, $84 \%)$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=16.2,8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.40(\mathrm{~s}$, $1 \mathrm{H}), 7.29(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=7.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H})$, $1.44(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 164.1, 158.1, 132.8, 131.6, 130.4, 130.2, 129.6, 128.9, 127.2, 126.2, 125.9, 123.8, 123.2, 122.8, 90.4, 51.5, 37.6, 24.3,19.9, 18.9; IR (ATR) $v_{\max } 3063,2965,2927,1602,1561,1465,917,758 \mathrm{~cm}^{-1} ;$ HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=409.0910$. Found: 409.0896.


3j
3-(3-Chlorophenyl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazol e (3j). Reaction of 1-(3-chlorophenyl)-2,2-dimethylbut-3-en-1-one oxime $\mathbf{1 j}$ ( $22.3 \mathrm{mg}, 0.1$ mmol ) with the $N$-methoxyquinolinium salt $\mathbf{2 a}(65.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.6$ in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{3 j}$ ( 26.2 mg , $72 \%$ ) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H})$, $5.23(\mathrm{dd}, J=7.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 146.8,141.8,132.7,132.3,123.2,120.4,119.4,119.3$, $118.3,117.4,117.2,116.5,115.8,114.5,114.0,87.7,56.6,45.3,34.8,31.3,30.6$; IR (ATR) $v_{\max } 3065,2969,2927,1602,1465,887,760 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}$ : $[M+H]^{+}=365.1415$. Found: 365.1399.


3k

3-(2-Methoxyphenyl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxaz ole ( $\mathbf{3 k}$ ). Reaction of 1-(2-methoxyphenyl)-2,2-dimethylbut-3-en-1-one oxime $\mathbf{1 k}$ ( 21.9 mg , 0.1 mmol ) with the $N$-methoxyquinolinium salt 2a ( $65.3 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.3$ in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound 3k ( $33.5 \mathrm{mg}, 93 \%$ ) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H})$, $7.69(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=10.2,4.6 \mathrm{~Hz}$, $2 \mathrm{H}), 5.26(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.35(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.10$
$(\mathrm{m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{dd}, J=15.4,2.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 148.0, 141.8, 141.8, 120.3, 120.2, 117.2, 117.2, 116.7, 114.7, 114.5, 111.8, 110.0, 104.4, 86.4, 59.9, 58.7, 44.7, 34.6, 30.9, 30.6; IR (ATR) $v_{\max } 3063,2963,2924,1602,1462,1247,1023$, $758 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}:[\mathrm{M}+\mathrm{H}]^{+}=361.1911$. Found: 361.1894.


31
3-(3,4-Dimethoxyphenyl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroiso xazole (31). Reaction of 1-(3,4-dimethoxyphenyl)-2,2-dimethylbut-3-en-1-one oxime $1 \mathbf{1 1}$ (24.9 $\mathrm{mg}, 0.1 \mathrm{mmol}$ ) with the $N$-methoxyquinolinium salt $\mathbf{2 a}(65.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.3$ in $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $31(26.1 \mathrm{mg}, 67 \%)$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.06(\mathrm{dd}, J=8.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=8.8,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.20-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 164.7,158.4,150.5,149.0,147.0,145.3,129.4,128.8,127.1,126.0$, 123.7, 123.1, 122.0, 119.8, 110.6, 110.5, 90.0, 55.9, 55.9, 51.4, 37.6, 24.4, 20.0, 18.8; IR (ATR) $v_{\max } 2932,1602,1513,1463,1254,1022,759 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}:[\mathrm{M}+\mathrm{H}]^{+}=391.2016$. Found: 391.2000.


3m
4,4-Dimethyl-5-((4-methylquinolin-2-yl)methyl)-3-(naphthalen-2-yl)-4,5-dihydroisoxazol $\mathbf{e ~ ( 3 m ) . ~ R e a c t i o n ~ o f ~ 2 , 2 - d i m e t h y l - 1 - ( n a p h t h a l e n - 2 - y l ) b u t - 3 - e n - 1 - o n e ~ o x i m e ~} \mathbf{1 m}(23.9 \mathbf{~ m g}, 0.1$ mmol ) with the $N$-methoxyquinolinium salt 2a ( $65.3 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) followed by standard work-up and flash column chromatography on silica gel (3:1 $\mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.3$ in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{3 m}$ (26.6
$\mathrm{mg}, 70 \%$ ) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94$ $(\mathrm{s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.67(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 3 \mathrm{H}), 5.27(\mathrm{dd}, J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (dd, $J=11.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 147.7,141.8,122.5,121.8,119.9,118.3,118.3,117.7,117.4,117.2,117.2,117.0$, $116.9,116.9,116.8,115.3,114.6,114.3,87.5,57.0,44.9,35.1,31.5,30.8$; IR (ATR) $v_{\max }$ 3058, 2966, 2925, 1643, 1603, 1464, 821, $756 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}$ : $[\mathrm{M}+\mathrm{H}]^{+}=381.1961$. Found: 381.1950.


3n

## 4,4-Dimethyl-5-((4-methylquinolin-2-yl)methyl)-3-(thiophen-2-yl)-4,5-dihydroisoxazole

 (3n). Reaction of 2,2-dimethyl-1-(thiophen-2-yl)but-3-en-1-one oxime $\mathbf{1 n}$ ( $19.5 \mathrm{mg}, 0.1$ mmol) with the $N$-methoxyquinolinium salt 2a ( $65.3 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.6$ in $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{3 n}(25.2 \mathrm{mg}$, $75 \%$ ) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=15.6,5.4 \mathrm{~Hz}$, $3 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 1.49$ $(\mathrm{s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.9,158.2,131.2,129.7,128.8$, $127.8,127.5,127.2,127.0,126.2,123.9,123.3,90.3,51.7,37.7,24.6,20.0,18.9$; IR (ATR) $v_{\max } 3066,2969,2926,1602,1463,882,760,710 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{OS}$ : $[\mathrm{M}+\mathrm{H}]^{+}=337.1369$. Found: 337.1358.

30

3-(Furan-2-yl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole (30). Reaction of 1-(furan-2-yl)-2,2-dimethylbut-3-en-1-one oxime 10 ( $17.9 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) with
the $N$-methoxyquinolinium salt $\mathbf{2 a}(65.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=$ 0.6 in $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $30(23.1 \mathrm{mg}, 72 \%$ ) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.69$ (ddd, $J=8.4,6.9$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=3.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=$ $3.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=9.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}$, 3H), 1.41 ( $\mathrm{s}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 158.5,157.7,147.7,144.9,144.9,144.0$, 129.4, 129.4, 127.3, 126.0, 123.9, 123.2, 111.6, 111.4, 89.9, 51.4, 38.1, 24.5, 19.9, 18.9; IR (ATR) $v_{\max } 2961,2924,1603,1562,1464,1005,879,756 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}:[\mathrm{M}+\mathrm{H}]^{+}=321.1598$. Found: 321.1593.


3p
5-((4-Methylquinolin-2-yl)methyl)-3-phenyl-4,5-dihydroisoxazole (3p). Reaction of 1-phenylbut-3-en-1-one oxime $\mathbf{1 p}(16.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ with the $N$-methoxyquinolinium salt $\mathbf{2 a}(65.3 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.6$ in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{3 p}(23.3 \mathrm{mg}, 77 \%)$ as a yellow solid, m.p. $=96.0-96.7^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=8.3,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-$ $7.55(\mathrm{~m}, 3 \mathrm{H}), 7.43$ (ddd, $J=8.1,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.20(\mathrm{dq}, J=10.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{ddd}, J=12.9,7.5,6.4 \mathrm{~Hz}$, 2 H ), $2.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 157.6,156.7,147.6,144.6,129.9$, 129.6, 129.3, 129.1, 128.6, 127.0, 126.6, 125.8, 123.6, 123.0, 80.7, 43.8, 39.8, 18.6; IR (ATR) $v_{\text {max }} 3060,2921,1600,1446,1356,910,758,692 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}$ : $[\mathrm{M}+\mathrm{H}]^{+}=303.1492$. Found: 303.1479.


3q

## 3-(4-Methoxyphenyl)-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole

(3q).
Reaction of 1-(4-methoxyphenyl)but-3-en-1-one oxime $\mathbf{1 q}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ with the N -methoxyquinolinium salt $\mathbf{2 a}(65.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.2$ in 3:1 v/v petroleum ether/ethyl acetate) gave compound $\mathbf{3 q}(23.3 \mathrm{mg}, 70 \%)$ as a yellow solid, m.p. $=109.8-110.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=$ $8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 6.90-6.87(\mathrm{~m}$, $2 \mathrm{H}), 5.26(\mathrm{dq}, J=13.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.36$ (dd, $J=13.9,5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=16.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $161.1,157.5,156.6,130.0,128.3,127.2,126.5,123.9,123.5,122.2,114.2,80.4,55.4,43.2$, 40.4, 19.0; IR (ATR) $v_{\max } 2926,2840,1605,1515,1357,1253,1178,762 \mathrm{~cm}^{-1} ;$ HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}:[\mathrm{M}+\mathrm{H}]^{+}=333.1598$. Found: 333.1587.

$3 r$

3-(4-Chlorophenyl)-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole (3r). Reaction of 1-(4-chlorophenyl)but-3-en-1-one oxime $\mathbf{1 r}$ ( $19.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) with the $N$-methoxyquinolinium salt $\mathbf{2 a}(65.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.4$ in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $3 \mathbf{r}(25.5 \mathrm{mg}, 76 \%)$ as yellow crystals, m.p. $=125.3-125.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.62(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.70$ $(\mathrm{td}, J=11.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.04(\mathrm{~m}, 4 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 141.2,140.3,132.5,124.3,119.4,118.6,118.2,117.8,117.1,116.6,114.6,114.1$, 80.2, 50.0, 47.3, 30.6; IR (ATR) $v_{\max } 3062,2923,2852,1600,1494,1351,1092,829,761$ $\mathrm{cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=337.1102$. Found: 337.1086.


3s

5-Methyl-5-((4-methylquinolin-2-yl)methyl)-3-phenyl-4,5-dihydroisoxazole
(3s). Reaction of 3-methyl-1-phenylbut-3-en-1-one oxime $1 \mathbf{s}(17.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ with the $N$-methoxyquinolinium salt $\mathbf{2 a}(65.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel $\left(3: 1 \mathrm{v} / \mathrm{v}\right.$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.6$ in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $3 \mathrm{~s}(23.4 \mathrm{mg}, 74 \%)$ as colorless crystals, m.p. $=174.7-175.2{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.31(\mathrm{~m}$, $3 \mathrm{H}), 4.38(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}$, $3 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.2,141.2,119.5,119.4,119.3$, $118.4,117.8,117.2,116.8,116.7,114.9,114.6,85.3,53.1,51.3,36.6,30.7$; IR (ATR) $v_{\max }$ 3061, 2924, 2852, 1602, 1446, 1359, 922, 760, $692 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}$ : $[\mathrm{M}+\mathrm{H}]^{+}=317.1648$. Found: 317.1642.


3t

4,4-Dimethyl-5-((4-methylquinolin-2-yl)methyl)-3-phenethyl-4,5-dihydroisoxazole (3t). Reaction of 4,4-dimethyl-1-phenylhex-5-en-3-one oxime 1t ( $21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) with the $N$-methoxyquinolinium salt $\mathbf{2 a}(65.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel $\left(3: 1 \mathrm{v} / \mathrm{v}\right.$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.7$ in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $3 \mathrm{t}(21.5 \mathrm{mg}, 60 \%)$ as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ $(\mathrm{ddd}, J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{ddd}, J=8.1,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=10.2,4.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 4 \mathrm{H}), 4.38(\mathrm{dd}, J=9.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{ddd}, J=23.5,14.1,6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.89-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.37(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,158.5,141.4,129.8,128.6,128.5,127.2,126.3$, $123.9,123.3,88.2,52.1,37.9,32.3,27.0,23.6,19.0 ;$ IR (ATR) $v_{\max } 3027,2964,2927,1603$,

1453, 886, 759, $700 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=359.2118$. Found: 359.2102 .


3u

## 3-Hexyl-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole

(3u). Reaction of 3,3-dimethyldec-1-en-4-one oxime $\mathbf{1 u}(19.7 \mathrm{mg}, 0.1 \mathrm{mmol})$ with the N -methoxyquinolinium salt $\mathbf{2 a}(65.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.8$ in 3:1 v/v petroleum ether/ethyl acetate) gave compound $\mathbf{3 u}(22.7 \mathrm{mg}, 67 \%)$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.73$ (m, 1H), 7.61 (dd, $J=11.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=10.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}$, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.19 (dd, $J=13.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.69-$ $1.63(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.27(\mathrm{~m}, 6 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.3,158.1,130.9,127.2,127.1,126.8,124.1,123.7,87.9,52.4$, 36.7, 31.7, 29.3, 26.2, 25.0, 23.8, 22.7, 19.3, 19.0, 14.2; IR (ATR) $v_{\max } 2925,2855,1604$, 1466, 1261, 1021, 799, $761 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=339.2431$. Found: 339.2423.

$3 v$

4,4-Dimethyl-5-((4-methylquinolin-2-yl)methyl)-3-propyl-4,5-dihydroisoxazole (3v). Reaction of 3,3-dimethylhept-1-en-4-one oxime $\mathbf{1 v}(15.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ with the $N$-methoxyquinolinium salt $\mathbf{2 a}(65.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.8$ in $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{3 v}(18.7 \mathrm{mg}, 63 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.02(\mathrm{ddd}, J=8.4,1.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=8.7,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65$ (ddd, $J=8.4,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.49 (ddd, $J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H})$, 4.45 (dd, $J=9.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.09$ (m, 2H), 2.66 (s, 3H), $2.21-2.16$ (m, 2H), $1.75-$
$1.62(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 166.8,158.8,147.6,144.7,129.2,129.2,127.1,125.8,123.8,123.1,88.1,51.9$, $38.4,27.0,23.6,19.6,19.0,18.8,14.1$; IR (ATR) $v_{\max } 2963,2930,2872,1603,1562,1509$, 1466, 885, $759 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=297.1961$. Found: 297.1986.


3w
3-Cyclohexyl-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole (3w). Reaction of 1-cyclohexyl-2,2-dimethylbut-3-en-1-one oxime $\mathbf{1 w}(19.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ with the $N$-methoxyquinolinium salt $\mathbf{2 a}(65.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=$ 0.5 in $4: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $3 \mathrm{w}(20.5 \mathrm{mg}, 61 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66$ (ddd, $J=8.4,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (ddd, $J=8.2,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H})$, $4.40(\mathrm{dd}, J=9.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{tt}, J=11.7,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,158.9,147.5,144.7,129.2,127.1,125.8,123.8$, $123.2,88.1,52.4,38.3,35.7,32.4,32.2,26.5,25.8,23.7,19.2,18.8$; IR (ATR) $v_{\max } 2926$, 2852, 1602, 1561, 1509, 1447, 892, $757 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=$ 337.2274. Found: 337.2433.


4a

1-(2-((4,4-Dimethyl-3-phenyl-4,5-dihydroisoxazol-5-yl)methyl)quinolin-4-yl)ethan-1-one (4a). Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime $\mathbf{1 a}(18.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ with the $N$-methoxyquinolinium salt $\mathbf{2 b}(72.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=$ 0.6 in $2.5: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{4 a}(21.5 \mathrm{mg}, 60 \%)$ as a
light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.43$ (dd, $\left.J=8.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.09(\mathrm{dd}, J=$ $8.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 1 \mathrm{H})$, $7.43-7.39(\mathrm{~m}, 3 \mathrm{H}), 4.70(\mathrm{dd}, J=10.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=14.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32$ (dd, $J=14.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 210.9,201.5,165.3,158.5,148.8,143.0,129.9,129.8,129.3,129.3,128.6,127.7$, 127.4, 125.4, 122.5, 121.3, 111.5, 89.8, 51.6, 38.1, 30.1, 24.2, 19.8; IR (ATR) $v_{\max } 3062$, 2967, 2921, 1692, 1592, 1463, 891, 766, $696 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$ : $[\mathrm{M}+\mathrm{H}]^{+}=359.1754$. Found: 359.1738.


4b

## 5-((4-Bromoquinolin-2-yl)methyl)-4,4-dimethyl-3-phenyl-4,5-dihydroisoxazole

Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime 1a ( $18.9 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) with the $N$-methoxyquinolinium salt $\mathbf{2 c}(81.2 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.7$ in $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{4 b}(24.0 \mathrm{mg}, 61 \%)$ as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{dd}, J=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}$, 1H), $7.75-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 3 \mathrm{H}), 4.70$ (dd, $J=9.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{qd}, J=14.2,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.1,158.6,147.9,134.7$, 130.5, 129.7, 129.2, 128.9, 128.6, $127.4,127.3,126.6,126.6,126.2,89.6,51.5,37.4,24.2,19.7$; IR (ATR) $v_{\max } 3061,2968$, 1584, 1553, 1492, 908, 762, $694 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=$ 395.0754. Found: 395.0740.


4c

## 5-((4-Chloroquinolin-2-yl)methyl)-4,4-dimethyl-3-phenyl-4,5-dihydroisoxazole

Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime 1a ( $18.9 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) with the $N$-methoxyquinolinium salt $\mathbf{2 d}(70.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash
column chromatography on silica gel (3:1 v/v petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.5$ in 3:1 v/v petroleum ether/ethyl acetate) gave compound $4 \mathbf{c}(22.4 \mathrm{mg}, 64 \%)$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.23(\mathrm{dd}, J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.81-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 3 \mathrm{H}), 4.70(\mathrm{dd}, J=8.6$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.29(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.4,158.7,147.7,144.0,131.1,129.9,129.8,129.3,128.8,128.5,127.5,125.5$, 124.3, 122.7, 89.7, 51.8, 37.5, 24.4, 19.9; IR (ATR) $v_{\max } 3062,2966,2926,1588,1494,917$, $763,695 \mathrm{~cm}^{-1} ;$ HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=351.1259$. Found: 351.1244.


4d

## 4,4-Dimethyl-5-((2-methylquinolin-4-yl)methyl)-3-phenyl-4,5-dihydroisoxazole

 (4d). Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime 1a ( $18.9 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) with the $N$-methoxyquinolinium salt $\mathbf{2 e}(65.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.4$ in 3:1 v/v petroleum ether/ethyl acetate) gave compound $\mathbf{4 d}(26.4 \mathrm{mg}, 80 \%)$ as a yellow solid, m.p. $=117.9-118.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 4 \mathrm{H}), 4.52(\mathrm{dd}, J=9.2$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.3,158.7,147.9,143.8,129.9,129.5,129.2,129.2,128.7,127.3,125.8$, 125.7, 123.0, 122.8, 89.4, 51.6, 30.4, 25.2, 24.0, 19.7; IR (ATR) vmax 3061, 2920, 2850, 1648, 1603, 1467, 902, 766, $695 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=$ 331.1805. Found: 331.1798.

4e-C6

4,4-Dimethyl-3-phenyl-5-(quinolin-2-ylmethyl)-4,5-dihydroisoxazole (4e-C6) (C6:C4 = 1.2:1). Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime $\mathbf{1 a}(18.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ with the $N$-methoxyquinolinium salt $\mathbf{2 f}(61.8 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and
flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=$ 0.5 in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{4 e - C 6}(13.0 \mathrm{mg}, 41 \%)$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (ddd, $J=8.4,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.53$ (ddd, $J=10.0,8.0,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 3 \mathrm{H}), 4.72(\mathrm{dd}, J=9.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (ddd, $J=18.0,14.1,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.2,158.7,136.8,129.6,129.4,128.5,128.5,127.6,127.4,127.0,126.2,122.4,89.9$, $51.5,37.8,24.2,19.8$; IR (ATR) $v_{\max } 3058,2968,2927,1619,1599,1504,1464,901,767$, $696 \mathrm{~cm}^{-1} ;$ HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=317.1648$. Found: 317.1643.


4e-C4
4,4-Dimethyl-3-phenyl-5-(quinolin-4-ylmethyl)-4,5-dihydroisoxazole (4e-C4) (C6:C4 = 1.2:1). Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime $\mathbf{1 a}(18.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ with the $N$-methoxyquinolinium salt $\mathbf{2 f}(61.8 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=$ 0.2 in 3:1 v/v petroleum ether/ethyl acetate) gave compound $\mathbf{4 e} \mathbf{- C 4}(10.7 \mathrm{mg}, 34 \%)$ as yellow crystals, m.p. $=167.8-168.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.86(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), \delta$ $7.59(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 3 \mathrm{H}), 4.48(\mathrm{dd}, J=6.8,6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 165.2,149.7,147.8,144.3,130.0,129.8,129.3,129.1,128.6,128.5,127.4,127.4$, 127.3, 126.7, 123.1, 122.0, 89.4, 51.5, 30.4, 23.9, 19.6; IR (ATR) $v_{\max } 3061,2967,2926$, 1592, 1509, 1464, 901, 766, $696 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=$ 317.1648. Found: 317.1635.


4f

5-(Isoquinolin-1-ylmethyl)-4,4-dimethyl-3-phenyl-4,5-dihydroisoxazole (4f). Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime 1a (18.9 mg, 0.1 mmol$)$ with the $N$-methoxyquinolinium salt $\mathbf{2 g}(61.8 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.4$ in 2:1 $\mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{4 f}(19.3 \mathrm{mg}, 61 \%)$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.49(\mathrm{~d}, J=5.7,1 \mathrm{H}), 8.28-8.25(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=$ $7.3,1 \mathrm{H}), 7.73-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{~d}, J=5.7,1 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 3 \mathrm{H}), 4.84(\mathrm{dd}, J=8.9$, $4.2,1 \mathrm{H}), 3.89$ (dd, $J=14.4,8.9,1 \mathrm{H}$ ), 3.44 (dd, $J=14.4,4.2,1 \mathrm{H}), 1.47$ (s, 3H), $1.41(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.6,158.3,136.8,131.0,129.9,129.6,128.8,128.0$, $127.6,127.5,126.1,120.7,90.3,51.8,33.5,24.3,20.0$; IR (ATR) $v_{\max } 2923,2852,1624$, 1587, 1464, 1390, 899, 767, $696 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=$ 317.1648. Found: 317.1670.

$4 g$

## 5-(Benzo[h]quinolin-4-ylmethyl)-4,4-dimethyl-3-phenyl-4,5-dihydroisoxazole

(4g).
Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime 1a ( $18.9 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) with the $N$-methoxyquinolinium salt $\mathbf{2 h}(74.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel (5:1 $\mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.4$ in $5: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{4 g}(19.0 \mathrm{mg}, 52 \%)$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.36(\mathrm{dd}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.95(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.92-7.82$ (m, 3H), 7.72 (ddd, $J=9.1,7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.65$ (m, 2H), 7.56 (d, $J=4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=5.2,1.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.51(\mathrm{dd}, J=8.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.39(\mathrm{~m}, 2 \mathrm{H})$, $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.4,148.4,146.6,143.8$, 133.2, 131.9, 129.9, 129.3, 128.7, 128.3, 127.9, 127.8, 127.4, 127.3, 125.3, 124.9, 123.1, 120.6, 89.8, 51.6, 30.8, 24.1, 19.8; IR (ATR) $v_{\max } 3053$, 2925, 1621, 1586, 1443, 905, 830, $727,693 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=367.1805$. Found: 367.1806.


5a-C2
4,4-Dimethyl-3-phenyl-5-(pyridin-2-ylmethyl)-4,5-dihydroisoxazole (5a-C2) (C2:C4 = 3.2:1). Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime $\mathbf{1 a}(18.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ with the $N$-methoxypyridinium salt $2 \mathbf{i}(49.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=$ 0.4 in $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{5 a - C} \mathbf{~ ( 1 7 . 8 ~ m g , ~ 6 7 \% ) ~ a s ~ a ~}$ light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.56(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{td}, J=7.7,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=7.5,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{dd}, J=7.6,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{dd}, \mathrm{J}=8.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.16(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (126 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 165.4,157.9,148.8,137.3,129.8,129.5,128.7,127.5,124.7,122.1$, $90.0,51.5,37.0,24.2,19.9$; IR (ATR) $v_{\max } 2968,2927,1590,1467,1438,902,766,696 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=$267.1492. Found: 267.1488.


5a-C4

4,4-Dimethyl-3-phenyl-5-(pyridin-4-ylmethyl)-4,5-dihydroisoxazole (5a-C4) (C2:C4 = 3.2:1). Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime $\mathbf{1 a}(18.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ with the $N$-methoxypyridinium salt $2 \mathbf{i}(49.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=$ 0.2 in $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{5 a - C 4}(5.6 \mathrm{mg}, 21 \%)$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.55(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 2 \mathrm{H})$, $7.40(\mathrm{dd}, J=5.3,2.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.32(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{dd}, J=10.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ (dd, $J=14.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=14.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.3,149.3,147.9,130.0,129.2,128.8,127.5,124.9,90.0,51.6$, 34.1, 24.1, 19.8; IR (ATR) $v_{\max } 2925,2855,1603,1558,1463,904,775,702 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=267.1492$. Found: 267.1486.


5b
2-((4,4-Dimethyl-3-phenyl-4,5-dihydroisoxazol-5-yl)methyl)isonicotinonitrile
(5b).
Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime 1a ( $18.9 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) with the $N$-methoxypyridinium salt $\mathbf{2 j}$ ( $55.5 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.2$ in 3:1 $\mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{5 b}$ ( $22.4 \mathrm{mg}, 77 \%$ ) as a yellow solid, m.p. $=96.1-96.5{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.75(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H})$, $7.64(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{q}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.58(\mathrm{dd}, J=$ $8.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.17(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.3,159.8,149.6,130.0,129.2,128.8,127.5,126.5,123.7,121.8,116.4,89.4$, 51.7, 36.9, 24.4, 19.9; IR (ATR) $v_{\max } 3060,2969,2931,2238,1719,1595,1550,1467,1402$, 891, 767, $696 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=292.1444$. Found: 292.1433.


5c

## 4,4-Dimethyl-3-phenyl-5-((4-(trifluoromethyl)pyridin-2-yl)methyl)-4,5-dihydroisoxazole

 (5c). Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime 1a ( $18.9 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) with the $N$-methoxypyridinium salt $\mathbf{2 k}$ ( $66.3 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) followed by standard work-up and flash column chromatography on silica gel ( $4: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=$ 0.5 in $4: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $5 \mathrm{c}(24.4 \mathrm{mg}, 73 \%)$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.73(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=7.3,2.1$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 7.60 ( $\mathrm{s}, 1 \mathrm{H}$ ), $7.40-7.39(\mathrm{~m}, 4 \mathrm{H}), 4.61(\mathrm{dd}, J=10.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=14.2$, $10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=14.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.3,159.9,150.3,138.9(\mathrm{q}, J=33.9 \mathrm{~Hz}), 129.9,129.3,128.7,127.5,122.9$ $(\mathrm{q}, J=273.3 \mathrm{~Hz}), 119.9(\mathrm{q}, J=3.6 \mathrm{~Hz}), 117.5(\mathrm{q}, J=3.7 \mathrm{~Hz}), 89.6,51.5,37.3,24.2,19.8 ;{ }^{19} \mathrm{~F}$ NMR ( $565 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.7$; IR (ATR) $v_{\max } 2969,1613,1411,1331,1132,897,765$, $693 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=335.1366$. Found: 335.1361.

5d

## 5-((4-Chloropyridin-2-yl)methyl)-4,4-dimethyl-3-phenyl-4,5-dihydroisoxazole

Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime 1a ( $18.9 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) with the $N$-methoxypyridinium salt $\mathbf{2 1}(57.8 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.3$ in 3:1 v/v petroleum ether/ethyl acetate) gave compound $\mathbf{5 d}(17.1 \mathrm{mg}, 57 \%)$ as a yellow solid, m.p. $=75.9-76.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.44(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.62(\mathrm{~m}$, $2 \mathrm{H}), 7.42(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{dd}, J=5.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J$ $=9.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.1,159.6,149.7,144.7,129.7,129.2,128.5,127.3,124.6,122.2,89.4,51.3$, $36.8,24.1,19.7$; IR (ATR) $v_{\max } 3056,2968,2930,1575,1555,1466,896,766,696 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=$301.1102. Found: 301.1091

$5 e$

1-(2-((4,4-Dimethyl-3-phenyl-4,5-dihydroisoxazol-5-yl)methyl)pyridin-4-yl)ethan-1-one (5e). Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime $\mathbf{1 a}(18.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ with the $N$-methoxypyridinium salt $\mathbf{2 m}(59.8 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=$ 0.2 in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{5 e}(20.0 \mathrm{mg}, 65 \%)$ as needle crystals, m.p. $=69.1-69.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.75(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}$, $1 \mathrm{H}), 7.68(\mathrm{dd}, J=5.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 3 \mathrm{H}), 4.62(\mathrm{dd}, J=$ 9.1, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 197.2,165.4,159.5,149.5,144.2,130.0,129.3,128.8,127.5,122.7$, 119.9, 89.7, 51.6, 36.8, 27.0, 24.3, 19.9; IR (ATR) $v_{\max } 2968,2922,1695,1556,1409,1271$, $768,697 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}:[\mathrm{M}+\mathrm{H}]^{+}=309.1598$. Found: 309.1591.

$5 f$

## Methyl 2-((4,4-dimethyl-3-phenyl-4,5-dihydroisoxazol-5-yl)methyl)isonicotinate (5f).

 Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime $1 \mathbf{1 a}(18.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ with the $N$-methoxypyridinium salt $\mathbf{2 n}(63.8 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.4$ in 3:1 v/v petroleum ether/ethyl acetate) gave compound $\mathbf{5 f}(25.3 \mathrm{mg}, 78 \%)$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.73(\mathrm{dd}, J=5.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=$ $5.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 3 \mathrm{H}), 4.63(\mathrm{dd}, J=9.8,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.97 (s, 3H), 3.33 - 3.21 (m, 2H), 1.43 (s, 3H), 1.38 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.2,165.1,158.8,150.1,148.7,139.0,129.8,129.2,128.6,127.4,124.3,123.1$, $121.6,89.5,52.9,51.5,36.5,24.2,19.8$; IR (ATR) $v_{\max } 2965,2923,1731,1438,1299,1216$, $764,695 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}:[\mathrm{M}+\mathrm{H}]^{+}=325.1547$. Found: 325.1534.

5 g

Methyl 2-((3-phenyl-4,5-dihydroisoxazol-5-yl)methyl)isonicotinate (5g). Reaction of 1-phenylbut-3-en-1-one oxime $\mathbf{1 p}(16.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ with the $N$-methoxypyridinium salt $2 \mathbf{n}(63.8 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.3 \mathrm{in} 3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{5 g}(21.3 \mathbf{~ m g}, 72 \%)$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.69(\mathrm{dd}, J=5.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=5.1,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.66-7.63$ (m, 2H), $7.40-7.36$ (m, 3H), 5.22 (ddd, $J=13.9,10.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ (s, 3H), $3.50-3.15(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.8,158.7,156.8,150.3,138.0$, 130.2, 129.7, 128.8, 126.8, 123.5, 121.2, 80.5, 52.8, 43.4, 39.9; IR (ATR) $v_{\max } 2954,2923$, 1723, 1437, 1293, 761, $692 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}:[\mathrm{M}+\mathrm{H}]^{+}=297.1234$. Found: 297.1227.


5h
4,4-Dimethyl-5-((4-methylpyridin-2-yl)methyl)-3-phenyl-4,5-dihydroisoxazole
(5h).
Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime 1a ( $18.9 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) with the $N$-methoxypyridinium salt $\mathbf{2 0}$ ( $52.8 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) followed by standard work-up and flash column chromatography on silica gel ( $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.4$ in 3:1 v/v petroleum ether/ethyl acetate) gave compound $\mathbf{5 h}(18.8 \mathrm{mg}, 67 \%)$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.40(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.38$ (m, 3H), $7.20(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=9.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ (ddd, $J=$ $17.6,14.1,6.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.2,157.7,149.0,147.6,129.6,129.5,128.5,127.3,125.0,122.7,90.0,51.2$, 37.0, 24.0, 21.0, 19.7; IR (ATR) $v_{\max } 3057,2968,2926,1606,1463,906,767,696 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=281.1648$. Found: 281.1643.

$5 i$

## 4,4-Dimethyl-3-phenyl-5-((4-phenylpyridin-2-yl)methyl)-4,5-dihydroisoxazole

Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime 1a ( $18.9 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) with the $N$-methoxypyridinium salt $\mathbf{2 p}$ ( $68.3 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) followed by standard work-up and flash column chromatography on silica gel ( $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.3$ in $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{5 i}$ ( $22.2 \mathrm{mg}, 65 \%$ ) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.59(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.60(\mathrm{~d}, J=$ $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=7.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 5 \mathrm{H}), 4.66(\mathrm{dd}, J=9.8,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.19 (ddd, $J=17.5,14.1,6.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $1.40(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.1,158.4,149.5,148.8,138.0,129.5,129.3,128.9,128.8,128.4,127.2,127.0$, $122.0,119.6,89.8,51.1,37.1,23.9,19.6$; IR (ATR) $v_{\max } 3057,2967,2928,1597,1545,1464$, 894, 761, $693 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=343.1805$. Found: 343.1789 .


5j-C2

## 4,4-Dimethyl-3-phenyl-5-((6-phenylpyridin-2-yl)methyl)-4,5-dihydroisoxazole

(C2:C4 = 1.2:1). Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime $\mathbf{1 a}(18.9 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ with the $N$-methoxypyridinium salt $\mathbf{2 q}(68.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.8$ in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{5 j - C 2}$ (11.6 $\mathrm{mg}, 34 \%$ ) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.03-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.75-$ $7.69(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{dd}, J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43-$ 7.40 (m, 4H), 7.32 (dd, $J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (dd, $J=8.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.17$ (m, $2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 165.5, 158.0, 157.1, 139.7, 137.3, 129.8, 129.7, 129.0, 128.8, 128.7, 127.6, 127.1, 122.5, 118.7, 90.2, 51.4, 37.4, 24.2, 20.0; IR (ATR) $v_{\max }$ 2925, 1572, 1448, 899, 759, $694 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=343.1805$. Found: 343.1815.


5j-C4

4,4-Dimethyl-3-phenyl-5-((2-phenylpyridin-4-yl)methyl)-4,5-dihydroisoxazole
(5j-C4)
(C2:C4 = 1.2:1). Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime $\mathbf{1 a}(18.9 \mathrm{mg}, 0.1$ mmol) with the $N$-methoxypyridinium salt $\mathbf{2 q}(68.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.6$ in $3: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{5 j - C 4}$ (9.9 $\mathrm{mg}, 29 \%$ ) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.64(\mathrm{dd}, J=5.0,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.02 - 7.99 (m, 2H), 7.73 ( $\mathrm{s}, 1 \mathrm{H}$ ), $7.67-7.64$ (m, 2H), 7.48 - 7.45 (m, 2H), $7.44-7.39$ (m, 4 H ), 7.24 (dd, $J=5.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39$ (dd, $J=9.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.13 (dd, $J=14.4,9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.92(\mathrm{dd}, J=14.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.4,157.9,149.9,147.9,139.5,130.0,129.3,129.1,128.8,128.8,127.5,127.2$,
123.1, 121.7, 90.3, 51.6, 34.3, 24.2, 19.9; IR (ATR) $v_{\max } 2924,1602,1445,894,767,695 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=343.1805$. Found: 343.1810.


5k

## 5-((2,6-Dimethylpyridin-4-yl)methyl)-4,4-dimethyl-3-phenyl-4,5-dihydroisoxazole (5k).

 Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime 1a ( $18.9 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) with t he $N$-methoxypyridinium salt $2 \mathbf{r}(56.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ followed by standard work-up and flash column chromatography on silica gel ( $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.2$ in $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{5 k}(14.7 \mathrm{~m}$ $\mathrm{g}, 50 \%$ ) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.67-7.62(\mathrm{~m}, 2 \mathrm{H}), 7$. $44-7.39(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{dd}, J=10.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=14$. $4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=14.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 6 \mathrm{H}), 1.37$ (s, 3H), 1.33 (s, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.4,157.8,148.1,130.0,129.4,128.8,127$. $5,121.4,90.3,51.5,33.9,29.8,24.3,24.1,19.8$; IR (ATR) $v_{\max } 2929,1613,1569,146$ 3, 906, 767, $695 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}=295.1805$. Found: 29 5.1800 .

6

Methyl 2-(2-hydroxy-4-0xo-4-phenylbutyl)isonicotinate (6). Purified by flash column chromatography on silica gel ( $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution). From methyl 2-((3-phenyl-4,5-dihydroisoxazol-5-yl)methyl)isonicotinate $\quad \mathbf{5 g} \quad(88.8 \mathbf{m g}, \quad 0.3 \mathrm{mmol})$, compound 6 ( $67 \mathrm{mg}, 75 \%$ ) was obtained as a light-yellow oil, $R_{\mathrm{f}}=0.3$ in $2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.66(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.93(\mathrm{~m}$, $2 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=5.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 4.70 (ddd, $J=12.1,7.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.93 (s, 3H), $3.33-3.18$ (m, 2H), $3.16-3.05$ (m, 2H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.6,165.6,160.5,149.7,137.9,136.8,133.4,128.6$, 128.1, 123.3, 120.9, 52.7, 44.8, 43.5; IR (ATR) $v_{\max } 3435,2954,2923,1719,1681,1438$,

1293, 1214, 762, $690 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{4}:[\mathrm{M}+\mathrm{H}]^{+}=300.1230$. Found: 300.1227.


8
Methyl 2-((4,4-dimethyl-1-(methylsulfonyl)-3-phenyl-4,5-dihydro-1H-pyrazol-5-yl)methyl)isonicotinate (8). Reaction of $\mathrm{N}^{\prime}$-(2,2-dimethyl-1-phenylbut-3-en-1-ylidene)methanesulfonohydrazide 7 ( $26.6 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) with the $N$-methoxypyridinium salt $2 \mathbf{n}$ ( $63.8 \mathrm{mg}, 0.25$ mmol ) followed by the above procedure and flash column chromatography on silica gel (2:1 $\mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.5 \mathrm{in} 2: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound 8 ( $20.1 \mathrm{mg}, 50 \%$ ) as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.69$ (dd, $J=5.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=5.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.65(\mathrm{~m}, 2 \mathrm{H})$, $7.42-7.38(\mathrm{~m}, 3 \mathrm{H}), 4.47(\mathrm{dd}, J=8.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{dd}, J=14.9,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.32(\mathrm{dd}, J=14.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 166.0,165.8,159.4,150.0,137.9,130.7,130.2,128.6,128.0,123.3$, $121.0,70.4,52.8,52.2,37.7,36.3,25.7,20.2$; IR (ATR) $v_{\max } 2929,1728,1349,1309,1165$, 958, 760, 695, $542 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}:[\mathrm{M}+\mathrm{H}]^{+}=402.1482$. Found: 402.1470.


11
2-((4,4-Dimethyl-3-phenyl-4,5-dihydroisoxazol-5-yl)methyl)-4-methylquinoline 1-oxide (11). Reaction of 2,2-dimethyl-1-phenylbut-3-en-1-one oxime $1 \mathbf{1 a}(18.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ with quinoline $N$-oxide $\mathbf{1 0}$ ( $39.8 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) followed by standard work-up and flash column chromatography on silica gel ( $1: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate elution, $R_{\mathrm{f}}=0.2$ in $2: 1$ $\mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate) gave compound $\mathbf{1 1}(5.2 \mathrm{mg}, 15 \%)$ as a light-yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-$ $7.75(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{dd}, J=5.1,1.9 \mathrm{~Hz}, 4 \mathrm{H}), 4.79(\mathrm{dd}, J=10.8,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=14.2,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H})$,
1.44 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 165.3,145.1,141.1,134.2,130.3,130.0$, $129.4,129.2,128.8,128.0,127.5,124.9,124.1,120.1,86.6,51.9,31.3,24.3,19.6,18.5$; IR (ATR) $v_{\text {max }} 3395,2925,1666,1565,1464,1237,896,768,696 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}:[\mathrm{M}+\mathrm{H}]^{+}=347.1754$. Found: 347.1748.


12

## 4,4-Dimethyl-3-phenyl-5-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)methyl)-4,5-dihydrois

 oxazole (12). Formed ( $20.7 \mathrm{mg}, 60 \%$ ) according to the above procedure and obtained as colorless needles, m.p. $=93.6-94.0{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}=0.8$ in $5: 1 \mathrm{v} / \mathrm{v}$ petroleum ether/ethyl acetate. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.68(\mathrm{dd}, J=6.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.46-7.42(\mathrm{~m}, 3 \mathrm{H}), 4.38(\mathrm{t}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{qd}, J=10.2,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 8 \mathrm{H}), 1.36(\mathrm{~s}, 4 \mathrm{H}), 1.27(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.17(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.6,129.7,129.4$, $128.6,127.5,88.5,74.8,60.1,51.0,39.7,33.2,32.9,24.8,20.2,20.1,19.7,17.1$; IR (ATR) $v_{\text {max }}$ 2928, 1467, 1360, 1133, 1045, 903, 765, $694 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}$ : $[\mathrm{M}+\mathrm{H}]^{+}=345.2537$. Found: 345.2524.
## XII. X-ray Crystallographic Data for Compounds 3r, 3s, 4e' and 5e


$3 r$


Datablock: ytt-203 (CCDC : 2209584)

| Bond precision: | $\mathrm{C}-\mathrm{C}=0.0028 \mathrm{~A}$ | Wavelength=1.54184 |
| :--- | :--- | :--- |
| Cell: | $\mathrm{a}=14.3458(4)$ | $\mathrm{b}=11.8545(3)$ |$\quad \mathrm{c}=10.1259(3)$


|  | Calculated | Reported |
| :--- | :--- | :--- |
| Volume | $1652.05(8)$ | $1652.05(8)$ |
| Space group | $\mathrm{P} 21 / \mathrm{c}$ | $\mathrm{P} 121 / \mathrm{c} 1$ |
| Hall group | -P 2 ybc | -P 2 ybc |
| Moiety formula | C 20 H 17 Cl N 2 O | C 20 H 17 Cl N 2 O |
| Sum formula | C 20 H 17 Cl N 2 O | C 20 H 17 Cl N 2 O |
| Mr | 336.81 | 336.80 |
| Dx,g cm-3 | 1.354 | 1.354 |
| Z | 4 | 4 |
| Mu (mm-1) | 2.106 | 2.106 |
| F000 | 704.0 | 704.0 |
| F000' | 707.25 |  |
| h,k,lmax | $17,14,12$ | $17,14,12$ |
| Nref | 3342 | 3241 |
| Tmin,Tmax | $0.766,0.760$ | $0.238,1.000$ |
| Tmin' | 0.694 |  |

Correction method= \# Reported T Limits: Tmin=0.238 Tmax=1.000 AbsCorr $=$ MULTI-SCAN

Data completeness $=0.970 \quad$ Theta $(\max )=73.657$
$R($ reflections $)=0.0566(2877)$
$w R 2($ reflections $)=0.1554(3241)$
$S=1.047$
Npar $=219$

## Crystallographic Data for 3s (CCDC : 2209585)


$3 s$


Datablock: ytt-214

Bond precision:
$\mathrm{C}-\mathrm{C}=0.0016 \mathrm{~A}$
Wavelength $=1.54184$
Cell

| $\mathrm{a}=11.5609(2)$ | $\mathrm{b}=11.2342(2)$ | $\mathrm{c}=25.6255(4)$ |
| :--- | :--- | :--- |
| alpha $=90$ | beta $=90$ | gamma $=90$ |

Temperature: 170 K

|  | Calculated | Reported |
| :---: | :---: | :---: |
| Volume | 3328.18(10) | 3328.18(10) |
| Space group | P b c a | P b c a |
| Hall group | -P 2ac 2ab | -P 2ac 2ab |
| Moiety formula | C21 H20 N2 O | C21 H20 N2 O |
| Sum formula | C21 H20 N2 O | C21 H20 N2 O |
| Mr | 316.39 | 316.39 |
| Dx,g cm-3 | 1.263 | 1.263 |
| Z | 8 | 8 |
| Mu (mm-1) | 0.613 | 0.613 |
| F000 | 1344.0 | 1344.0 |
| F000' | 1347.70 |  |
| h,k, $\operatorname{lmax}$ | 14,14,31 | 13,13,31 |
| Nref | 3364 | 3310 |
| Tmin, Tmax | 0.916,0.941 | 0.677,1.000 |
| Tmin' | 0.912 |  |
| Correction method= \# rr = MULTI-SCAN | Reported T Limits: Tmin $=0.677$ | $=1.000 \mathrm{AbsCo}$ |
| Data completeness $=0.9$ | 984 Theta $(\max )=73.9$ |  |
| R (reflections) $=0.0350$ ( | 3014) | reflections $)=0.0936(3310)$ |
| $\mathrm{S}=1.019$ | Npar $=220$ |  |

## Crystallographic Data for $4 \mathrm{e}^{\prime}$ (CCDC : 2209586)


$4 e^{\prime}$



Datablock: 228-2_2

| Bond precision: | $\mathrm{C}-\mathrm{C}=0.0019 \mathrm{~A}$ | Wavelength $=1.54184$ |
| :---: | :---: | :---: |
| Cell: | $\mathrm{a}=8.4599(5) \quad \mathrm{b}=9.7370$ (6) | $\mathrm{c}=11.2374$ (6) |
|  | alpha=66.551(5) beta=78.251(5) | gamma=79.553(5) |
| Temperature: 170 K |  |  |
|  | Calculated | Reported |
| Volume | 826.23(9) | 826.23(9) |
| Space group | P -1 | P -1 |
| Hall group | -P 1 | -P 1 |
| Moiety formula | C21 H20 N2 O | C21 H20 N2 O |
| Sum formula | C21 H20 N2 O | C21 H20 N2 O |
| Mr | 316.39 | 316.39 |
| Dx,g cm-3 | 1.272 | 1.272 |
| Z | 2 | 2 |
| Mu (mm-1) | 0.618 | 0.618 |
| F000 | 336.0 | 336.0 |
| F000' | 336.92 |  |
| h,k, $\operatorname{lmax}$ | 10,12,13 | 10,12,13 |
| Nref | 3337 | 3214 |
| Tmin, Tmax | 0.911,0.929 | 0.750,1.000 |
| Tmin' | 0.911 |  |
| Correction method= \# Reported T Limits: Tmin=0.750 Tmax=1.000 AbsC orr $=$ MULTI-SCAN |  |  |
| Data completeness $=0.963$ Theta $(\max )=73.58$ |  |  |
| R (reflections) $=0.0426$ ( 2929) |  | $w R 2$ (reflections) $=0.1153(3214$ ) |
| $\mathrm{S}=1.013$ | Npar $=331$ |  |

## Crystallographic Data for 5e (CCDC : 2209721)




## Datablock: ytt-229

Bond precision:

$$
\begin{array}{rlr}
\mathrm{C}-\mathrm{C}= & 0.0030 \mathrm{~A} & \\
& \mathrm{~b}=10.1900(3) & \mathrm{c}=20.3391(6) \\
& \text { beta }=91.588(3) & \text { gamma }=90
\end{array}
$$

Wavelength $=1.54184$
Cell: $\quad a=8.3746(2)$
alpha=90
Temperature: 170 K

|  | Calculated | Reported |
| :---: | :---: | :---: |
| Volume | 1735.02(8) | 1735.01(8) |
| Space group | P 21/c | P 1 21/c 1 |
| Hall group | -P 2ybc | -P 2ybc |
| Moiety formula | C19 H21 N2 O2, Cl | Cl, C19 H21 N2 O2 |
| Sum formula | C19 H21 Cl N2 O2 | C 19 H 21 Cl N 2 O 2 |
| Mr | 344.83 | 344.83 |
| Dx,g cm-3 | 1.320 | 1.320 |
| Z | 4 | 4 |
| $\mathrm{Mu}(\mathrm{mm}-1)$ | 2.056 | 2.056 |
| F000 | 728.0 | 728.0 |
| F000' | 731.37 |  |
| h,k,lmax | 10,12,25 | 10,12,25 |
| Nref | 3538 | 3446 |
| Tmin, Tmax | 0.771,0.781 | 0.462,1.000 |
| Tmin' | 0.700 |  |
| Correction method= \# Reported T Limits: Tmin=0.462 Tmax=1.000 AbsCorr = MULTI-SCAN |  |  |
| Data completeness $=0.974 \quad$ Theta $(\max )=74.121$ |  |  |
| $\mathrm{R}($ reflections $)=0$ | 3091) | lections $)=0.1394(34$ |

$\mathrm{S}=1.061$
Npar $=224$

## XIII. References

[1] F. Chen, F. F. Zhu, M. Zhang, R. H. Liu, W. Yu, B. Han, Org. Lett. 2017, 19, 3255-3258.
[2] X. L. Yang, F. Chen, N. N. Zhou, W. Yu, B. Han, Org. Lett. 2014, 16, 6476-6479.
[3] Y. Xu, H. Chen, W. Li, Q. Xie, L. Yu, L. Shao, Org. Biomol. Chem. 2018, 16, 4996-5005.
[4] a) S. Jung, H. Lee, Y. Moon, H.-Y. Jung, S. Hong, ACS Catal. 2019, 9, 9891-9896; b) I. Kim, G. Kang, K. Lee, B. Park, D. Kang, H. Jung, Y. T. He, M. H. Baik, S. Hong, J. Am. Chem. Soc. 2019, 141, 9239-9248.
[5] Y.-T. He, D. Kang, I. Kim, S. Hong, Green Chem. 2018, 20, 5209-5214.
[6] X. Gao, A. Liang, J. Li, D. Zou, Y. Wu, Y. Wu, Tetrahedron Lett. 2017, 58, 1917-1920.
[7] L. Shen, X. Gao, N. Luan, Z. Liu, J. Li, D. Zou, Y. Wu, Y. Wu, Org. Biomol. Chem. 2020, 18, 1738-1742.
[8] Y. Chen, G. Y. Zhang, C. Guo, P. Lan, M. G. Banwell, Y. T. He, Chem. Eur. J. 2022, 28, e202104627.
[9] S. Rieder, C. Melendez, F. Denes, H. Jangra, K. Mulliri, H. Zipse, P. Renaud, Chem. Sci. 2021, 12, 15362-15373.
[10] M. Vellakkaran, T. Kim, S. Hong, Angew. Chem. Int. Ed. 2022, 61, e202113658.
[11] M. A. Cismesia, T. P. Yoon, Chem. Sci. 2015, 6, 5426-5434.
[12] H. J. Kuhn, S. E. Braslavsky, R. Schmidt, Pure Appl. Chem. 2004, 76, 2105.
[13] J. N. Demas, W. D. Bowman, E. F. Zalewski, R. A. Velapoldi, J. Phys. Chem. 1981, 85, 2766.
[14] C. Y. W. Jiang. D. H, J. Org. Chem. 2008, 73, 9181-9183.
[15] Q. Q. Zhao, J. Chen, D. M. Yan, J. R. Chen, W. J. Xiao, Org. Lett. 2017, 19, 3620-3623.
[16] J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
[17] G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, J. Mantzaris, J. Chem. Phys. 1988, 89, 2193-2218.
[18] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, 2016.
[19] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
[20] D. Rappoport, F. Furche, J. Chem. Phys. 2010, 133, 134105.
[21] R. F. Ribeiro, A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2011, 115, 1455614562.
[22] R. L. Martin, J. Chem. Phys. 2003, 118, 4775-4777.
[23] R. A. Marcus, J. Chem. Phys. 1956, 24, 966-978.
[24] R. A. Marcus, J. Chem. Phys. 1957, 26, 867-871.
[25] R. A. Marcus, J. Chem. Phys. 1957, 26, 872-877.
[26] O. López-Estrada, H. G. Laguna, C. Barrueta-Flores, C. Amador-Bedolla, ACS Omega 2018, 3, 2130-2140.
[27] R. A. Marcus, N. Sutin, Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics 1985, 811, 265-322.
[28] K. M. Rosso, M. Dupuis, Theor Chem Acc 2006, 116, 124-136.

## Appendix I

Copies of Relevant ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ - and ${ }^{19} \mathrm{~F}$-NMR Spectra

4,4-Dimethyl-5-((4-methylquinolin-2-yl)methyl)-3-phenyl-4,5-dihydroisoxazole (3a). $300 \mathbf{M H z}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )

$75 \mathrm{MHz}{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )



4,4-Dimethyl-5-((4-methylquinolin-2-yl)methyl)-3-(p-tolyl)-4,5-dihydroisoxazole (3b). $500 \mathrm{MHz}{ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$126 \mathrm{MHz}{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )


3-(4-Methoxyphenyl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole (3c). $300 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$75 \mathrm{MHz}{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


3-([1,1'-Biphenyl]-4-yl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole (3 d).
$400 \mathrm{MHz}{ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )



3d

$101 \mathbf{M H z}{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )


3d



3-(4-Bromophenyl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole (3e). $400 \mathrm{MHz}^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$101 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


3-(4-Chlorophenyl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole (3f). $400 \mathrm{MHz}{ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


 Ein
ing
ion


$101 \mathbf{M H z}{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )



4-(4,4-Dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazol-3-yl)benzonitrile (3g) $500 \mathrm{MHz}{ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


3-(3-Methoxyphenyl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole (3h). $400 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$101 \mathbf{M H z}{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )



3-(3-Bromophenyl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole (3i). $400 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )

$101 \mathrm{MHz}{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )


3-(3-Chlorophenyl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole (3j). $400 \mathrm{MHz}^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


$9 \% \%$
ion
Nij

3j

$101 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )



3-(2-Methoxyphenyl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole (3k). $400 \mathrm{MHz}{ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$101 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )



3-(3,4-Dimethoxyphenyl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole (31).
$500 \mathrm{MHz}{ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


4,4-Dimethyl-5-((4-methylquinolin-2-yl)methyl)-3-(naphthalen-2-yl)-4,5-dihydroisoxazole (3m). $400 \mathrm{MHz}^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )



3m

$101 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


4,4-Dimethyl-5-((4-methylquinolin-2-yl)methyl)-3-(thiophen-2-yl)-4,5-dihydroisoxazole (3n). $400 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )
$\sqrt{\text { ag }}$


3n
$101 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$\qquad$

3-(Furan-2-yl)-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole (30). $300 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


## $75 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )



5-((4-Methylquinolin-2-yl)methyl)-3-phenyl-4,5-dihydroisoxazole (3p).
$500 \mathrm{MHz}{ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$126 \mathrm{MHz}{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


3-(4-Methoxyphenyl)-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole (3q). $500 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )

$126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


[^0]3-(4-Chlorophenyl)-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole (3r). $400 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )

$\xrightarrow{\sim}$

$3 r$

$101 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


5-Methyl-5-((4-methylquinolin-2-yl)methyl)-3-phenyl-4,5-dihydroisoxazole (3s).
$400 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )




3s

$101 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


4,4-Dimethyl-5-((4-methylquinolin-2-yl)methyl)-3-phenethyl-4,5-dihydroisoxazole (3t). $500 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )


3t
$126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


3-Hexyl-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole (3u).
$300 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )

vi

$3 u$

$75 \mathrm{MHz}{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )


4,4-Dimethyl-5-((4-methylquinolin-2-yl)methyl)-3-propyl-4,5-dihydroisoxazole (3v).
$300 \mathbf{M H z}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )

$75 \mathrm{MHz}{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )



3-Cyclohexyl-4,4-dimethyl-5-((4-methylquinolin-2-yl)methyl)-4,5-dihydroisoxazole (3w). $300 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )


## $75 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )



$3 w$



1-(2-((4,4-Dimethyl-3-phenyl-4,5-dihydroisoxazol-5-yl)methyl)quinolin-4-yl)ethan-1-one (4a). $500 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )

$126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )



5-((4-Bromoquinolin-2-yl)methyl)-4,4-dimethyl-3-phenyl-4,5-dihydroisoxazole (4b). $500 \mathrm{MHz}{ }^{1} \mathbf{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

4b

$126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$$
\begin{aligned}
& \text { 4b }
\end{aligned}
$$

5-((4-Chloroquinolin-2-yl)methyl)-4,4-dimethyl-3-phenyl-4,5-dihydroisoxazole (4c). $400 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )

$101 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


4,4-Dimethyl-5-((2-methylquinolin-4-yl)methyl)-3-phenyl-4,5-dihydroisoxazole (4d).
$300 \mathrm{MHz}{ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )

$75 \mathrm{MHz}{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$\qquad$

4,4-Dimethyl-3-phenyl-5-(quinolin-2-ylmethyl)-4,5-dihydroisoxazole (4e-C6).
$500 \mathrm{MHz}{ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


[^1]4,4-Dimethyl-3-phenyl-5-(quinolin-4-ylmethyl)-4,5-dihydroisoxazole (4e-C4).
$500 \mathrm{MHz}{ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


5-(Isoquinolin-1-ylmethyl)-4,4-dimethyl-3-phenyl-4,5-dihydroisoxazole (4f). $300 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )



$75 \mathrm{MHz}{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )


[^2]5-(Benzo[h]quinolin-4-ylmethyl)-4,4-dimethyl-3-phenyl-4,5-dihydroisoxazole (4g).
$300 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )



49

$75 \mathrm{MHz}{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )



[^3]4,4-Dimethyl-3-phenyl-5-(pyridin-2-ylmethyl)-4,5-dihydroisoxazole (5a-C2).
$500 \mathrm{MHz}{ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


[^4]4,4-Dimethyl-3-phenyl-5-(pyridin-4-ylmethyl)-4,5-dihydroisoxazole (5a-C4).
$300 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$75 \mathrm{MHz}{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )



5a-C4


2-((4,4-Dimethyl-3-phenyl-4,5-dihydroisoxazol-5-yl)methyl)isonicotinonitrile (5b). $500 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )
LeE

बत्ष
vin
筑

5b

$126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )






5b


4,4-Dimethyl-3-phenyl-5-((4-(trifluoromethyl)pyridin-2-yl)methyl)-4,5-dihydroisoxazole (5c). $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )
ytt-509. 1. fid

$151 \mathrm{MHz}{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )
ytt-509.2.fid


[^5]$565 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )
ytt-509.3. fid


5c


5-((4-Chloropyridin-2-yl)methyl)-4,4-dimethyl-3-phenyl-4,5-dihydroisoxazole (5d). $500 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )

$126 \mathrm{MHz}{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$\qquad$

1-(2-((4,4-Dimethyl-3-phenyl-4,5-dihydroisoxazol-5-yl)methyl)pyridin-4-yl)ethan-1-one (5e). $400 \mathrm{MHz}{ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$101 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


Methyl 2-((4,4-dimethyl-3-phenyl-4,5-dihydroisoxazol-5-yl)methyl)isonicotinate (5f). $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$101 \mathrm{MHz}{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


[^6]Methyl 2-((3-phenyl-4,5-dihydroisoxazol-5-yl)methyl)isonicotinate (5g).
$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

$75 \mathrm{MHz}{ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )



5 g

4,4-Dimethyl-5-((4-methylpyridin-2-yl)methyl)-3-phenyl-4,5-dihydroisoxazole (5h). $500 \mathrm{MHz}{ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


5h
 $\cdots$

$126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

4,4-Dimethyl-3-phenyl-5-((4-phenylpyridin-2-yl)methyl)-4,5-dihydroisoxazole (5i). $500 \mathrm{MHz}{ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )

-6な!
 $\frac{85}{41}$

$5 \mathbf{i}$

$\qquad$

$126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


4,4-Dimethyl-3-phenyl-5-((6-phenylpyridin-2-yl)methyl)-4,5-dihydroisoxazole (5j-C2). $300 \mathrm{MHz}{ }^{\mathbf{1}} \mathrm{H}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )
ill $_{\text {ill }}^{\text {-369B-2.1.fid }}$


5j-C2


$75 \mathrm{MHz}{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )
${ }_{13 \mathrm{CL}}^{\mathrm{yL}-369 \mathrm{~B}-2.2 \text {. fid }}$


5j-C2

## 

4,4-Dimethyl-3-phenyl-5-((2-phenylpyridin-4-yl)methyl)-4,5-dihydroisoxazole (5j-C4). $300 \mathrm{MHz}{ }^{1} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )
$\mathrm{VII}^{\mathrm{yl}-369 \mathrm{~B}-3.1 . \text { fid }}$


5-C4

$75 \mathrm{MHz}{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )



5j-C4

## 

5-((2,6-Dimethylpyridin-4-yl)methyl)-4,4-dimethyl-3-phenyl-4,5-dihydroisoxazole (5k). $300 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )

$75 \mathrm{MHz}{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )



5k

[^7]Methyl 2-(2-hydroxy-4-oxo-4-phenylbutyl)isonicotinate (6).
$300 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )

$75 \mathrm{MHz}{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


## Methyl

2-((4,4-dimethyl-1-(methylsulfonyl)-3-phenyl-4,5-dihydro-1H-pyrazol-5-yl)methyl)isonicotinate (8).
$500 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )
ytt-355. 1. fid


8

$126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


[^8]2-((4,4-Dimethyl-3-phenyl-4,5-dihydroisoxazol-5-yl)methyl)-4-methylquinoline 1-oxide (11). $300 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )


| $\stackrel{\vec{\omega}}{4 \mathrm{BREF}}$ | $\begin{aligned} & \text { 8.8 } \\ & \text { M\% } \\ & \hline 1 \end{aligned}$ |  |
| :---: | :---: | :---: |
| $\int$ | $\int$ | $\int$ |


11

$75 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum (recorded in $\mathrm{CDCl}_{3}$ )


[^9]4,4-Dimethyl-3-phenyl-5-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)methyl)-4,5-dihydroisoxazole (12).
$300 \mathrm{MHz}{ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )

-


12


$75 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR Spectrum (recorded in $\mathbf{C D C l}_{3}$ )

12


[^10]
## Appendix II

Data from DFT Calculations

## Coordinates of all species

| 2••xyz |  |  |  |
| :--- | ---: | ---: | ---: |
| C | 0.2311430000 | -1.2022590000 | 0.0413180000 |
| C | 1.5963130000 | -1.2076000000 | 0.0151370000 |
| C | 2.3295900000 | 0.0000050000 | 0.0177440000 |
| C | 1.5963040000 | 1.2076070000 | 0.0151350000 |
| C | 0.2311350000 | 1.2022550000 | 0.0013160000 |
| H | -0.3829330000 | -2.0938430000 | 0.0364420000 |
| H | 2.1056040000 | -2.1657860000 | -0.0063610000 |
| H | 3.4121130000 | 0.0000100000 | -0.0124770000 |
| H | 2.1055890000 | 2.1657950000 | -0.0063660000 |
| H | -0.3829500000 | 2.0938340000 | 0.0364380000 |
| N | -0.4746980000 | -0.0000050000 | 0.1399920000 |
| O | -1.6808010000 | -0.0000090000 | -0.6153600000 |
| C | -2.7878680000 | 0.0000000000 | 0.2756860000 |
| H | -2.7930500000 | -0.8945690000 | 0.9090090000 |
| H | -3.6763490000 | 0.0000000000 | -0.3607470000 |
| H | -2.7930440000 | 0.8945920000 | 0.9089880000 |


| $2^{+} . \mathrm{xyz}$ |  |  |  |
| :--- | ---: | ---: | :---: |
| C | -0.1940800000 | 1.1869950000 | -0.1637550000 |
| C | -1.5505140000 | 1.2054800000 | 0.0873380000 |
| C | -2.2361650000 | -0.0000610000 | 0.2142950000 |
| C | -1.5503060000 | -1.2056020000 | 0.0872220000 |
| C | -0.1939770000 | -1.1870020000 | -0.1638130000 |
| H | 0.4278450000 | 2.0639660000 | -0.2891500000 |
| H | -2.0551490000 | 2.1588860000 | 0.1749380000 |
| H | -3.3027770000 | -0.0002220000 | 0.4069630000 |
| H | -2.0549850000 | -2.1589990000 | 0.1746830000 |
| H | 0.4282610000 | -2.0637630000 | -0.2891690000 |
| N | 0.4255290000 | 0.0001150000 | -0.2744620000 |
| O | 1.7574130000 | 0.0001740000 | -0.5956330000 |
| C | 2.5797100000 | -0.0000920000 | 0.5933150000 |
| H | 2.3957290000 | 0.9005310000 | 1.1847840000 |
| H | 3.5993780000 | -0.0000330000 | 0.2111420000 |
| H | 2.3956830000 | -0.9008800000 | 1.1844990000 |


| 1.xyz |  |  |  |
| :--- | ---: | ---: | ---: |
| N | -0.9030120000 | 1.9297960000 | -0.5142590000 |
| O | 0.2142630000 | 2.6694490000 | -0.8865530000 |
| C | -1.7707500000 | -0.1640930000 | 0.2972060000 |
| C | -1.4760380000 | -0.7408740000 | 1.6888720000 |
| C | -3.0984010000 | 0.6099090000 | 0.3444210000 |
| C | -1.9054810000 | -1.2448550000 | -0.7634150000 |
| C | -1.7444220000 | -2.5546240000 | -0.5977690000 |
| C | 2.8980230000 | 0.1178890000 | 1.1363190000 |
| C | 1.5968350000 | 0.5990900000 | 1.0361800000 |
| C | 0.7892210000 | 0.2338970000 | -0.0453520000 |
| C | 1.3056280000 | -0.6119470000 | -1.0292060000 |
| C | 2.6107430000 | -1.0886940000 | -0.9296120000 |


| C | 3.4077610000 | -0.7282320000 | 0.1532910000 |
| :--- | :---: | :---: | :---: |
| H | 3.5150030000 | 0.4050210000 | 1.9822480000 |
| H | 1.2002470000 | 1.2609410000 | 1.8001850000 |
| H | 0.6881870000 | -0.8959160000 | -1.8747320000 |
| H | 3.0033890000 | -1.7439280000 | -1.7010890000 |
| H | 4.4235350000 | -1.1035070000 | 0.2309990000 |
| C | -0.6112370000 | 0.7476200000 | -0.1240990000 |
| H | -0.1719420000 | 3.5163030000 | -1.1423330000 |
| H | -0.5535690000 | -1.3268710000 | 1.7067810000 |
| H | -2.2987730000 | -1.3877340000 | 2.0083220000 |
| H | -1.3779850000 | 0.0688350000 | 2.4187010000 |
| H | -3.8997950000 | -0.0696560000 | 0.6501750000 |
| H | -3.3567220000 | 1.0306150000 | -0.6305510000 |
| H | -3.0460940000 | 1.4321350000 | 1.0639430000 |
| H | -2.1753300000 | -0.8653800000 | -1.7497450000 |
| H | -1.4706120000 | -2.9948780000 | 0.3568150000 |
| H | -1.8838560000 | -3.2406560000 | -1.4284820000 |


| HAT-TS.xyz |  |  |  |
| :--- | ---: | ---: | ---: |
| N | 1.3892040000 | -0.4228710000 | -0.1210980000 |
| O | 1.3702860000 | -1.7222290000 | -0.3863060000 |
| C | 0.3356900000 | 1.7035450000 | 0.3371610000 |
| C | -0.4590500000 | 1.9763270000 | 1.6223210000 |
| C | 1.7828180000 | 2.1867070000 | 0.5267730000 |
| C | -0.2355870000 | 2.4331720000 | -0.8682290000 |
| C | -1.3023560000 | 3.2269770000 | -0.8892190000 |
| C | -2.5899630000 | -2.0258320000 | 1.0645490000 |
| C | -1.3693610000 | -1.3596670000 | 1.0657850000 |
| C | -1.0274280000 | -0.5116080000 | 0.0074720000 |
| C | -1.9174350000 | -0.3471280000 | -1.0560330000 |
| C | -3.1363830000 | -1.0214450000 | -1.0571950000 |
| C | -3.4765340000 | -1.8572390000 | 0.0025550000 |
| H | -2.8484540000 | -2.6779640000 | 1.8929800000 |
| H | -0.6762300000 | -1.4927780000 | 1.8908590000 |
| H | -1.6568100000 | 0.3026490000 | -1.8840550000 |
| H | -3.8203180000 | -0.8917170000 | -1.8901530000 |
| H | -4.4285960000 | -2.3788460000 | 0.0006820000 |
| C | 0.2842810000 | 0.2014490000 | 0.0429460000 |
| H | 2.4228540000 | -2.0486230000 | -0.3809360000 |
| H | -1.5058940000 | 1.6754830000 | 1.5304640000 |
| H | -0.4283190000 | 3.0431050000 | 1.8629710000 |
| H | -0.0190010000 | 1.4263140000 | 2.4598710000 |
| H | 1.7752790000 | 3.2572230000 | 0.7516830000 |
| H | 2.3825490000 | 2.0325180000 | -0.3743940000 |
| H | 2.2670470000 | 1.6617320000 | 1.3555510000 |
| H | 0.3289480000 | 2.2790720000 | -1.7885290000 |
| H | -1.9087930000 | 3.4168940000 | -0.0082910000 |
| H | -1.6080710000 | 3.7206380000 | -1.8072690000 |
| C | 4.2173860000 | -0.9420200000 | -0.0726050000 |
| H | 5.0129430000 | -0.5576770000 | -0.7267230000 |
| H | 3.3895950000 | -0.1713020000 | -0.0815500000 |
| H | 4.5478030000 | -0.9850370000 | 0.9782290000 |
| O | 3.6812860000 | -2.1066490000 | -0.5251190000 |
|  |  |  |  |


| II-IIrotated-TS.xyz |  |  |  |
| :---: | :---: | :---: | :---: |
| N | -0.6614400000 | 1.8967130000 | -0.3624940000 |
| O | -0.8421800000 | 3.0667110000 | -0.6467570000 |
| C | -1.6977680000 | -0.2018090000 | 0.2859710000 |
| C | -1.4558550000 | -0.8975810000 | 1.6319180000 |
| C | -2.9428740000 | 0.6960750000 | 0.4092980000 |
| C | -1.9617570000 | -1.1680630000 | -0.8565350000 |
| C | -2.1448110000 | -2.4822660000 | -0.7600380000 |
| C | 2.5971740000 | -1.5670140000 | -0.2339230000 |
| C | 1.2681930000 | -1.1527870000 | -0.2627450000 |
| C | 0.9397750000 | 0.1873840000 | -0.0315880000 |
| C | 1.9715780000 | 1.0989970000 | 0.2271200000 |
| C | 3.2970000000 | 0.6828070000 | 0.2532860000 |
| C | 3.6155890000 | -0.6542840000 | 0.0241290000 |
| H | 2.8342450000 | -2.6100310000 | -0.4197170000 |
| H | 0.4890890000 | -1.8733520000 | -0.4808670000 |
| H | 1.7311310000 | 2.1419460000 | 0.4127910000 |
| H | 4.0821730000 | 1.4038650000 | 0.4582270000 |
| H | 4.6503720000 | -0.9812960000 | 0.0468780000 |
| C | -0.4741230000 | 0.6833460000 | -0.0683470000 |
| H | -1.2508210000 | -0.1513200000 | 2.4053060000 |
| H | -0.6147910000 | -1.5938860000 | 1.6006800000 |
| H | -2.3483390000 | -1.4552270000 | 1.9313650000 |
| H | -2.8072150000 | 1.4478750000 | 1.1934420000 |
| H | -3.8080180000 | 0.0794720000 | 0.6677160000 |
| H | -3.1645360000 | 1.2134510000 | -0.5289650000 |
| H | -2.0516180000 | -0.6898640000 | -1.8323020000 |
| H | -2.0697910000 | -3.0142150000 | 0.1843960000 |
| H | -2.3770920000 | -3.0769300000 | -1.6387200000 |
| II.xyz |  |  |  |
| N | -0.6447540000 | 1.9618940000 | -0.4169790000 |
| O | 0.0912390000 | 2.8828000000 | -0.7743060000 |
| C | -1.7473530000 | -0.0490380000 | 0.2931990000 |
| C | -1.5299920000 | -0.7748710000 | 1.6283540000 |
| C | -2.9323390000 | 0.9242980000 | 0.4531940000 |
| C | -2.1108000000 | -0.9896780000 | -0.8467210000 |
| C | -2.3842070000 | -2.2880350000 | -0.7516090000 |
| C | 2.4100590000 | -1.7195800000 | -0.2875480000 |
| C | 1.1227920000 | -1.1949800000 | -0.3388850000 |
| C | 0.8925090000 | 0.1535810000 | -0.0370430000 |
| C | 1.9819380000 | 0.9588110000 | 0.3198860000 |
| C | 3.2662350000 | 0.4287470000 | 0.3758710000 |
| C | 3.4860890000 | -0.9119410000 | 0.0705880000 |
| H | 2.5702390000 | -2.7649730000 | -0.5323900000 |
| H | 0.2960080000 | -1.8335460000 | -0.6265190000 |
| H | 1.8265620000 | 2.0046090000 | 0.5629690000 |
| H | 4.0967400000 | 1.0672010000 | 0.6603300000 |
| H | 4.4896090000 | -1.3238210000 | 0.1103550000 |
| C | -0.4801840000 | 0.7323710000 | -0.0815940000 |


| H | -1.2514400000 | -0.0543430000 | 2.4032100000 |
| :--- | :---: | :---: | :---: |
| H | -0.7443400000 | -1.5318480000 | 1.5710380000 |
| H | -2.4548350000 | -1.2671250000 | 1.9429420000 |
| H | -2.7306100000 | 1.6597430000 | 1.2382780000 |
| H | -3.8256320000 | 0.3570060000 | 0.7289820000 |
| H | -3.1442780000 | 1.4621700000 | -0.4753350000 |
| H | -2.1904960000 | -0.4994470000 | -1.8173630000 |
| H | -2.3211760000 | -2.8309150000 | 0.1874250000 |
| H | -2.6814750000 | -2.8584780000 | -1.6267690000 |

III-IV-TS.xyz

| C | 3.0461820000 | -0.5364050000 | -1.0806330000 |
| :--- | ---: | ---: | ---: |
| C | 2.8187860000 | -1.8512540000 | -0.6387420000 |
| C | 3.1652110000 | -2.2128570000 | 0.6462800000 |
| C | 3.7851750000 | -1.2837870000 | 1.4968370000 |
| C | 4.0772990000 | -0.0275110000 | 1.0189970000 |
| H | 3.0306900000 | -0.2451290000 | -2.1231450000 |
| H | 2.3321190000 | -2.5426230000 | -1.3138450000 |
| H | 2.9635200000 | -3.2174950000 | 0.9988790000 |
| H | 4.0531760000 | -1.5358670000 | 2.5144840000 |
| H | 4.5705350000 | 0.7529450000 | 1.5841530000 |
| N | 3.7552160000 | 0.2786580000 | -0.2518490000 |
| O | 4.0246600000 | 1.5463690000 | -0.6965420000 |
| C | 5.3143080000 | 1.5984310000 | -1.3427770000 |
| H | 6.1059830000 | 1.3478490000 | -0.6318950000 |
| H | 5.4116680000 | 2.6327810000 | -1.6699200000 |
| H | 5.3385320000 | 0.9241820000 | -2.2031850000 |
| N | -1.2796280000 | -1.4227970000 | 0.1648270000 |
| O | 0.0828140000 | -1.2920630000 | 0.4286050000 |
| C | -0.9013110000 | 0.8317660000 | 0.6985260000 |
| C | -1.0884600000 | 2.1603610000 | -0.0322950000 |
| C | -0.9831680000 | 1.0238320000 | 2.2230350000 |
| C | 0.4315830000 | 0.1033020000 | 0.3538940000 |
| C | 0.9928460000 | 0.4039830000 | -0.9945750000 |
| C | -5.4647030000 | 0.8624290000 | 0.2365470000 |
| C | -4.1089530000 | 0.7989630000 | 0.5440360000 |
| C | -3.2919450000 | -0.1703250000 | -0.0491970000 |
| C | -3.8625980000 | -1.0676750000 | -0.9633740000 |
| C | -5.2168260000 | -1.0031720000 | -1.2658190000 |
| C | -6.0229810000 | -0.036580000 | -0.6674210000 |
| H | -6.0853290000 | 1.6172000000 | 0.7089560000 |
| H | -3.6992590000 | 1.5013480000 | 1.2603250000 |
| H | -3.2319660000 | -1.8105570000 | -1.4403220000 |
| H | -5.6422570000 | -1.7040700000 | -1.9770930000 |
| H | -7.0801070000 | 0.0173640000 | -0.9077330000 |
| C | -1.8515410000 | -0.2783600000 | 0.2585960000 |
| H | -1.1378380000 | 2.0268910000 | -1.1165720000 |
| H | -0.2561940000 | 2.8331450000 | 0.19649700000 |
| H | -2.0082500000 | 2.6536220000 | 0.2900000000 |
| H | -1.9611330000 | 1.4006480000 | 2.5318680000 |
| H | -0.2278010000 | 1.7499650000 | 2.5405630000 |
| H | -0.7983420000 | 0.0807880000 | 2.7458950000 |
|  |  |  |  |
| H |  |  | 0 |


| H | 1.1745320000 | 0.2954060000 | 1.1346460000 |
| :--- | ---: | ---: | ---: |
| H | 0.5497830000 | -0.1002210000 | -1.8498600000 |
| H | 1.3756150000 | 1.4055530000 | -1.1715350000 |


| III.xyz |  |  |  |
| :--- | ---: | ---: | ---: |
| N | 0.8244540000 | -1.4934350000 | -0.6435370000 |
| O | 2.2008240000 | -1.5550450000 | -0.4573880000 |
| C | 1.4247650000 | 0.4374820000 | 0.5439320000 |
| C | 1.3756990000 | 1.9452860000 | 0.3077630000 |
| C | 1.3190600000 | 0.1351830000 | 2.0486910000 |
| C | 2.6843320000 | -0.2439830000 | -0.0653710000 |
| C | 3.2838820000 | 0.4245780000 | -1.2457740000 |
| C | -3.0336220000 | 1.2284470000 | -0.5434180000 |
| C | -1.6536250000 | 1.0491370000 | -0.5568100000 |
| C | -1.0961490000 | -0.1699060000 | -0.1544810000 |
| C | -1.9462820000 | -1.2032710000 | 0.2588810000 |
| C | -3.3247850000 | -1.0204800000 | 0.2711020000 |
| C | -3.8719050000 | 0.1970220000 | -0.1276070000 |
| H | -3.4540970000 | 2.1763050000 | -0.8645110000 |
| H | -1.0140100000 | 1.8528000000 | -0.9033690000 |
| H | -1.5163480000 | -2.1475050000 | 0.5771460000 |
| H | -3.9718280000 | -1.8289650000 | 0.5968140000 |
| H | -4.9477460000 | 0.3414020000 | -0.1153640000 |
| C | 0.3656510000 | -0.3987410000 | -0.1615710000 |
| H | 0.4956460000 | 2.3828720000 | 0.7871720000 |
| H | 1.3564300000 | 2.1952670000 | -0.7566880000 |
| H | 2.2604910000 | 2.4139550000 | 0.7502390000 |
| H | 0.3491040000 | 0.4564810000 | 2.4406460000 |
| H | 2.1031390000 | 0.6713500000 | 2.5934160000 |
| H | 1.4322960000 | -0.9356710000 | 2.2438660000 |
| H | 3.4397430000 | -0.4024410000 | 0.7112060000 |
| H | 4.0967280000 | 1.1319480000 | -1.1244470000 |
| H | 2.8305800000 | 0.3020790000 | -2.2242920000 |


| IIrotated.xyz |  |  |  |
| :--- | ---: | ---: | ---: |
| N | 0.6680260000 | -1.8422700000 | -0.6175680000 |
| O | 1.6317280000 | -2.5710500000 | -0.8547500000 |
| C | 1.6134560000 | 0.2305220000 | 0.3797050000 |
| C | 1.1563290000 | 0.9744740000 | 1.6429310000 |
| C | 2.8596120000 | -0.5998190000 | 0.7432380000 |
| C | 1.9990790000 | 1.1619240000 | -0.7586700000 |
| C | 2.0470430000 | 2.4907480000 | -0.7170020000 |
| C | -2.7245020000 | 1.3573830000 | -0.4234460000 |
| C | -1.3778720000 | 1.0101330000 | -0.4629440000 |
| C | -0.9650060000 | -0.2677930000 | -0.0681870000 |
| C | -1.9280370000 | -1.1863470000 | 0.3648940000 |
| C | -3.2744990000 | -0.8380920000 | 0.3979780000 |
| C | -3.6769660000 | 0.4361480000 | 0.0061820000 |
| H | -3.0301410000 | 2.3508340000 | -0.7368340000 |
| H | -0.6448590000 | 1.7290190000 | -0.8126880000 |
| H | -1.6147590000 | -2.1758880000 | 0.6839650000 |


| H | -4.0083280000 | -1.5618660000 | 0.7387090000 |
| :--- | ---: | ---: | :---: |
| H | -4.7268340000 | 0.7104140000 | 0.0363090000 |
| C | 0.4673420000 | -0.6760140000 | -0.1211610000 |
| H | 0.8590590000 | 0.2564060000 | 2.4129380000 |
| H | 0.3129950000 | 1.6429160000 | 1.4597020000 |
| H | 1.9835080000 | 1.5707190000 | 2.0385470000 |
| H | 2.6204070000 | -1.3607030000 | 1.4925590000 |
| H | 3.6146770000 | 0.0712510000 | 1.1625760000 |
| H | 3.2962840000 | -1.0952610000 | -0.1264230000 |
| H | 2.2908290000 | 0.6471100000 | -1.6743820000 |
| H | 1.7697500000 | 3.0581030000 | 0.1670570000 |
| H | 2.3715320000 | 3.0616450000 | -1.5821640000 |


| IV ${ }^{\bullet} \cdot \mathrm{xyz}$ |  |  |  |
| :--- | ---: | :---: | :---: |
| C | -2.5332690000 | 0.1323170000 | -1.0531500000 |
| C | -2.3304880000 | 1.6035730000 | -1.1953910000 |
| C | -3.0654510000 | 2.5311800000 | -0.5158900000 |
| C | -4.0293090000 | 2.1166390000 | 0.4220070000 |
| C | -4.2220000000 | 0.7517280000 | 0.6510690000 |
| H | -2.9423660000 | -0.2313440000 | -2.0096460000 |
| H | -1.5727730000 | 1.9014090000 | -1.9108840000 |
| H | -2.8912190000 | 3.5881470000 | -0.6791820000 |
| H | -4.6192180000 | 2.8234740000 | 0.9902810000 |
| H | -4.9233840000 | 0.3660540000 | 1.3818640000 |
| N | -3.5402670000 | -0.1494210000 | -0.0249400000 |
| O | -3.7225740000 | -1.4603520000 | 0.3169830000 |
| C | -4.5460600000 | -2.1559980000 | -0.6430180000 |
| H | -5.5040190000 | -1.6427080000 | -0.7588830000 |
| H | -4.6936530000 | -3.1418220000 | -0.2040420000 |
| H | -4.0367620000 | -2.2518520000 | -1.6055300000 |
| N | 0.9934570000 | 1.2895780000 | 0.2148350000 |
| O | -0.3251480000 | 1.0536680000 | 0.6236640000 |
| C | 0.8124120000 | -0.9900070000 | 0.7335570000 |
| C | 1.0147260000 | -2.3321290000 | 0.0327680000 |
| C | 1.1265290000 | -1.1376860000 | 2.2343040000 |
| C | -0.5810580000 | -0.3609040000 | 0.5404450000 |
| C | -1.2409170000 | -0.6678670000 | -0.8014360000 |
| C | 5.0432240000 | -0.6765510000 | -1.2003280000 |
| C | 3.6770920000 | -0.7275920000 | -0.9409020000 |
| C | 3.0906440000 | 0.1972510000 | -0.0696020000 |
| C | 3.8949350000 | 1.1713850000 | 0.5348430000 |
| C | 5.2599360000 | 1.2177360000 | 0.2740760000 |
| C | 5.8374390000 | 0.2927570000 | -0.5927550000 |
| H | 5.4864010000 | -1.3942430000 | -1.8833460000 |
| H | 3.0674050000 | -1.4747840000 | -1.4359120000 |
| H | 3.4427240000 | 1.8848880000 | 1.2159790000 |
| H | 5.8735190000 | 1.9750510000 | 0.7516780000 |
| H | 6.9034060000 | 0.3274050000 | -0.7946780000 |
| C | 1.6405640000 | 0.1837730000 | 0.2196190000 |
| H | 0.9110170000 | -2.2643980000 | -1.0529540000 |
| H | 0.2804150000 | -3.0536970000 | 0.4044290000 |
| H | 2.0082260000 | -2.7281740000 | 0.2574250000 |
|  |  |  |  |
| H |  |  |  |
| H |  |  |  |
| H |  |  |  |
| H |  |  |  |


| H | 2.1813380000 | -1.3867170000 | 2.3822820000 |
| :--- | ---: | ---: | ---: |
| H | 0.5204400000 | -1.9414080000 | 2.6640740000 |
| H | 0.9106720000 | -0.2117430000 | 2.7754510000 |
| H | -1.2523010000 | -0.6097850000 | 1.3675390000 |
| H | -0.5601130000 | -0.4263990000 | -1.6239700000 |
| H | -1.4739910000 | -1.7326100000 | -0.8677180000 |


| MeO.xyz |  |  |  |
| :--- | :---: | :---: | :---: |
| C | -0.5716880000 | 0.0002820000 | -0.0139270000 |
| H | -0.8725440000 | -0.0100470000 | 1.0542740000 |
| H | -1.0093750000 | 0.9128030000 | -0.4478170000 |
| H | -1.0084750000 | -0.9052540000 | -0.4632840000 |
| O | 0.7900650000 | 0.0001010000 | -0.0074510000 |

MeOH.xyz

| H | -1.1246170000 |
| :--- | ---: |
| O | -0.7472210000 |
| C | 0.6592280000 |
| H | 1.0295140000 |
| H | 1.0295120000 |
| H | 1.0879890000 |


| 0.7631180000 | -0.0000160000 |
| ---: | ---: |
| -0.1226560000 | 0.0000010000 |
| 0.0188370000 | 0.0000060000 |
| 0.5459810000 | -0.8907360000 |
| 0.5460700000 | 0.8906720000 |
| -0.9869420000 | 0.0000320000 |

MeOdetachment-TS.xyz
C 25365110000
C $\quad 2.8665110000$
C 4.0892090000
C 4.9600890000
C $\quad 4.6034480000$
H 2.1436430000
H 4.3487520000
H $\quad 5.9047190000$
$\mathrm{H} \quad 5.2326780000$
$\mathrm{N} \quad 3.4089430000$
O 3.6462670000
C 43151550000
H 5.2925530000
H 4.4806700000
$\mathrm{H} \quad 3.7224460000$
$\mathrm{N} \quad-1.1912850000$
O $\quad 0.1004120000$
C $\quad-0.9725070000$
C $\quad-1.0689340000$
C $\quad-1.4029600000$
C 0.4098560000
C $\quad 1.2343690000$
C $\quad-5.0722080000$
C $\quad-3.7233670000$
C $\quad-3.2288760000$
C -4.1094860000
C $\quad-5.4569330000$

| -0.4065170000 | -0.4144940000 |
| ---: | ---: |
| -1.5835390000 | -1.0561570000 |
| -2.2183160000 | -0.8090150000 |
| -1.6386000000 | 0.1208950000 |
| -0.4666700000 | 0.7486310000 |
| -2.0205210000 | -1.7380000000 |
| -3.1386440000 | -1.3194110000 |
| -2.1076860000 | 0.3751300000 |
| 0.0265780000 | 1.4807550000 |
| 0.1533860000 | 0.4934310000 |
| 1.7383400000 | 0.2064780000 |
| 1.8804080000 | -1.0225470000 |
| 1.3761800000 | -1.0318650000 |
| 2.9550290000 | -1.1561720000 |
| 1.5132350000 | -1.8740500000 |
| -1.2962410000 | 0.6647390000 |
| -0.9893380000 | 1.0844010000 |
| 1.0342540000 | 0.5661790000 |
| 2.1281680000 | -0.4958360000 |
| 1.6022290000 | 1.9320050000 |
| 0.3626870000 | 0.6795600000 |
| 0.3135910000 | -0.6091000000 |
| 0.2716620000 | -1.5209920000 |
| 0.3624190000 | -1.1907500000 |
| -0.2906150000 | -0.0559540000 |
| -1.0355560000 | 0.7382380000 |
| -1.1234660000 | 0.4056390000 |


| C | -5.9421550000 | -0.4680540000 | -0.7237270000 |
| :--- | ---: | :---: | :---: |
| H | -5.4424390000 | 0.7771950000 | -2.4073930000 |
| H | -3.0533050000 | 0.9250720000 | -1.8308720000 |
| H | -3.7297100000 | -1.5379040000 | 1.6220690000 |
| H | -6.1291250000 | -1.7014320000 | 1.0321280000 |
| H | -6.9944640000 | -0.5341300000 | -0.9820470000 |
| C | -1.8004610000 | -0.2221180000 | 0.3227860000 |
| H | -0.8774000000 | 1.7545910000 | -1.5047950000 |
| H | -0.3419330000 | 2.9171780000 | -0.2787520000 |
| H | -2.0627840000 | 2.5835980000 | -0.4815580000 |
| H | -2.4546620000 | 1.9039230000 | 1.9116720000 |
| H | -0.7979430000 | 2.4812580000 | 2.1767830000 |
| H | -1.2714000000 | 0.8602400000 | 2.7253520000 |
| H | 1.0087500000 | 0.8023840000 | 1.4814560000 |
| H | 0.6602830000 | -0.1798080000 | -1.3989370000 |
| H | 1.4400560000 | 1.3398380000 | -0.9278710000 |


| Product.xyz |  |  |  |
| :---: | :---: | :---: | :---: |
| C | -3.0180060000 | -0.0071060000 | 0.5474370000 |
| C | -3.2807860000 | -1.3761920000 | 0.6173100000 |
| C | -4.5532740000 | -1.8366070000 | 0.3030300000 |
| C | -5.5243320000 | -0.9155290000 | -0.0762100000 |
| C | -5.1695950000 | 0.4279220000 | -0.1236900000 |
| H | -2.4936040000 | -2.0621870000 | 0.9110490000 |
| H | -4.7826000000 | -2.8966080000 | 0.3512150000 |
| H | -6.5319140000 | -1.2258100000 | -0.3301270000 |
| H | -5.9014170000 | 1.1773370000 | -0.4174090000 |
| N | -3.9499770000 | 0.8835030000 | 0.1782260000 |
| N | 0.5680370000 | -0.9832060000 | -0.8426290000 |
| O | -0.6968240000 | -0.4762080000 | -1.1344650000 |
| C | 0.5866640000 | 1.2889720000 | -0.2713180000 |
| C | 0.8265170000 | 2.1308650000 | 0.9801820000 |
| C | 1.0338970000 | 2.0764700000 | -1.5175600000 |
| C | -0.8590510000 | 0.7856280000 | -0.4490480000 |
| C | -1.6475550000 | 0.5460080000 | 0.8419240000 |
| C | 4.6225900000 | -0.2835700000 | 1.4619630000 |
| C | 3.2811840000 | -0.0096280000 | 1.2128780000 |
| C | 2.7126650000 | -0.3355420000 | -0.0236630000 |
| C | 3.5099500000 | -0.9409390000 | -1.0024850000 |
| C | 4.8506280000 | -1.2119620000 | -0.7504900000 |
| C | 5.4105640000 | -0.8817810000 | 0.4815230000 |
| H | 5.0512540000 | -0.0326660000 | 2.4271650000 |
| H | 2.6723750000 | 0.4379140000 | 1.9905630000 |
| H | 3.0717550000 | -1.1893480000 | -1.9638090000 |
| H | 5.4591780000 | -1.6781760000 | -1.5190440000 |
| H | 6.4576460000 | -1.0907410000 | 0.6774770000 |
| C | 1.2894670000 | -0.0623670000 | -0.3205830000 |
| H | 0.6168020000 | 1.5839140000 | 1.9026620000 |
| H | 0.1869880000 | 3.0188280000 | 0.9557790000 |
| H | 1.8646010000 | 2.4725610000 | 1.0131180000 |
| H | 2.1108220000 | 2.2682740000 | -1.4882210000 |
| H | 0.5143470000 | 3.0394340000 | -1.5552530000 |


| H | 0.8059180000 | 1.5243330000 | -2.4343310000 |
| :--- | ---: | ---: | :---: |
| H | -1.4350350000 | 1.4337140000 | -1.1158320000 |
| H | -1.0883130000 | -0.1395090000 | 1.4869430000 |
| H | -1.7597970000 | 1.4984620000 | 1.3673960000 |


| $\mathrm{V}^{2+}$. xyz |  |  |  |
| :---: | :---: | :---: | :---: |
| C | -2.3842200000 | -0.0277760000 | -0.9005070000 |
| C | -1.6777870000 | 1.2730680000 | -0.5154680000 |
| C | -2.4716460000 | 2.2993960000 | 0.2183890000 |
| C | -3.6768330000 | 2.0046600000 | 0.7167900000 |
| C | -4.2185450000 | 0.6722170000 | 0.5799120000 |
| H | -2.6732730000 | 0.0049440000 | -1.9532440000 |
| H | -1.1623370000 | 1.6909390000 | -1.3794320000 |
| H | -2.0248280000 | 3.2791450000 | 0.3429630000 |
| H | -4.2742630000 | 2.7271840000 | 1.2575010000 |
| H | -5.1355430000 | 0.3734530000 | 1.0778920000 |
| N | -3.6249610000 | -0.2293430000 | -0.1234210000 |
| O | -4.1416380000 | -1.4900890000 | -0.1036300000 |
| C | -4.7285660000 | -1.8611910000 | -1.3759760000 |
| H | -5.4554410000 | -1.1065590000 | -1.6836890000 |
| H | -5.2243390000 | -2.8074030000 | -1.1656910000 |
| H | -3.9570640000 | -2.0037460000 | -2.1355860000 |
| N | 0.7766840000 | 1.1520790000 | -0.1666710000 |
| O | -0.5742130000 | 0.8373380000 | 0.4123430000 |
| C | 0.8167650000 | -0.9956590000 | 0.8725260000 |
| C | 1.1539340000 | -2.4181470000 | 0.4251050000 |
| C | 1.1992600000 | -0.8008420000 | 2.3539580000 |
| C | -0.6542060000 | -0.6480800000 | 0.6419130000 |
| C | -1.3572200000 | -1.1281760000 | -0.6133490000 |
| C | 4.9146330000 | -0.6411910000 | -1.2934610000 |
| C | 3.5644430000 | -0.7707700000 | -0.9908250000 |
| C | 2.9294960000 | 0.2227480000 | -0.2376870000 |
| C | 3.6468150000 | 1.3400530000 | 0.2055360000 |
| C | 4.9995350000 | 1.4527410000 | -0.0928580000 |
| C | 5.6328260000 | 0.4641040000 | -0.8416180000 |
| H | 5.4065300000 | -1.4064700000 | -1.8842420000 |
| H | 3.0094200000 | -1.6251910000 | -1.3590770000 |
| H | 3.1479110000 | 2.1017700000 | 0.7954500000 |
| H | 5.5576960000 | 2.3132830000 | 0.2600910000 |
| H | 6.6888180000 | 0.5545540000 | -1.0745210000 |
| C | 1.4953770000 | 0.1284200000 | 0.0973450000 |
| H | 0.9891140000 | -2.5772760000 | -0.6427120000 |
| H | 0.5253750000 | -3.1181010000 | 0.9825000000 |
| H | 2.1957530000 | -2.6456480000 | 0.6582090000 |
| H | 2.2787630000 | -0.9127120000 | 2.4784070000 |
| H | 0.7001590000 | -1.5665150000 | 2.9536440000 |
| H | 0.9048920000 | 0.1856220000 | 2.7228580000 |
| H | -1.2629820000 | -0.7583950000 | 1.5410420000 |
| H | -0.6695680000 | -1.1732370000 | -1.4613390000 |
| H | -1.8145440000 | -2.1073800000 | -0.4743560000 |


| $\mathrm{VII}^{+} . \mathrm{xyz}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| C | -2.4689450000 | 0.4927840000 | -0.4884740000 |
| C | -2.7048000000 | 1.6217320000 | -1.2256940000 |
| C | -3.8910830000 | 2.3747370000 | -1.0843460000 |
| C | -4.8383090000 | 1.9357280000 | -0.1360860000 |
| C | -4.6072310000 | 0.8161800000 | 0.6106620000 |
| H | -1.9334300000 | 1.9399270000 | -1.9206740000 |
| H | -4.0658480000 | 3.2580680000 | -1.6860700000 |
| H | -5.7595610000 | 2.4855210000 | 0.0282510000 |
| H | -5.2824750000 | 0.4324020000 | 1.3651930000 |
| N | -3.4087890000 | 0.1094870000 | 0.4859460000 |
| O | -3.5377350000 | -1.2846770000 | 0.6857590000 |
| C | -4.2322480000 | -1.9093010000 | -0.3951700000 |
| H | -5.2582070000 | -1.5333550000 | -0.4779300000 |
| H | -4.2490670000 | -2.9732060000 | -0.1524250000 |
| H | -3.7106040000 | -1.7564090000 | -1.3473900000 |
| N | 1.2768080000 | 1.3123570000 | 0.5613700000 |
| O | -0.0325880000 | 1.1258940000 | 0.9965840000 |
| C | 0.9379470000 | -0.9969170000 | 0.7555570000 |
| C | 0.9893510000 | -2.2247980000 | -0.1519610000 |
| C | 1.3229960000 | -1.4012780000 | 2.1914940000 |
| C | -0.4084870000 | -0.2470860000 | 0.7561470000 |
| C | -1.2094990000 | -0.3176960000 | -0.5489330000 |
| C | 5.0939810000 | -0.7168970000 | -1.3411650000 |
| C | 3.7389530000 | -0.6975520000 | -1.0244520000 |
| C | 3.2663810000 | 0.1226750000 | 0.0062870000 |
| C | 4.1753340000 | 0.9225260000 | 0.7101510000 |
| C | 5.5287250000 | 0.9004950000 | 0.3911830000 |
| C | 5.9918990000 | 0.0786400000 | -0.6337580000 |
| H | 5.4471520000 | -1.3524420000 | -2.1471950000 |
| H | 3.0480940000 | -1.3055530000 | -1.5973420000 |
| H | 3.8124390000 | 1.5552330000 | 1.5136930000 |
| H | 6.2227630000 | 1.5229840000 | 0.9472460000 |
| H | 7.0487600000 | 0.0588920000 | -0.8809270000 |
| C | 1.8327520000 | 0.1743610000 | 0.3669110000 |
| H | 0.8282160000 | -1.9792660000 | -1.2045800000 |
| H | 0.2203600000 | -2.9410690000 | 0.1545370000 |
| H | 1.9580530000 | -2.7233860000 | -0.0603260000 |
| H | 2.3579770000 | -1.7546920000 | 2.2297260000 |
| H | 0.6708340000 | -2.2095320000 | 2.5381310000 |
| H | 1.2207370000 | -0.5558110000 | 2.8784780000 |
| H | -1.0393190000 | -0.5525480000 | 1.5949640000 |
| H | -0.5954710000 | 0.0493700000 | -1.3767980000 |
| H | -1.4442700000 | -1.3673540000 | -0.7519090000 |


| VI•.xyz |  |  |  |
| :--- | ---: | ---: | ---: |
| C | -2.4689450000 | 0.4927840000 | -0.4884740000 |
| C | -2.7048000000 | 1.6217320000 | -1.2256940000 |
| C | -3.8910830000 | 2.3747370000 | -1.0843460000 |
| C | -4.8383090000 | 1.9357280000 | -0.1360860000 |
| C | -4.6072310000 | 0.8161800000 | 0.6106620000 |
| H | -1.9334300000 | 1.9399270000 | -1.9206740000 |


| H | -4.0658480000 | 3.2580680000 | -1.6860700000 |
| :--- | ---: | ---: | ---: |
| H | -5.7595610000 | 2.4855210000 | 0.0282510000 |
| H | -5.2824750000 | 0.4324020000 | 1.3651930000 |
| N | -3.4087890000 | 0.1094870000 | 0.4859460000 |
| O | -3.5377350000 | -1.2846770000 | 0.6857590000 |
| C | -4.2322480000 | -1.9093010000 | -0.3951700000 |
| H | -5.2582070000 | -1.5333550000 | -0.4779300000 |
| H | -4.2490670000 | -2.9732060000 | -0.1524250000 |
| H | -3.7106040000 | -1.7564090000 | -1.3473900000 |
| N | 1.2768080000 | 1.3123570000 | 0.5613700000 |
| O | -0.0325880000 | 1.1258940000 | 0.9965840000 |
| C | 0.9379470000 | -0.9969170000 | 0.7555570000 |
| C | 0.9893510000 | -2.2247980000 | -0.1519610000 |
| C | 1.3229960000 | -1.4012780000 | 2.1914940000 |
| C | -0.4084870000 | -0.2470860000 | 0.7561470000 |
| C | -1.2094990000 | -0.3176960000 | -0.5489330000 |
| C | 5.0939810000 | -0.7168970000 | -1.3411650000 |
| C | 3.7389530000 | -0.6975520000 | -1.0244520000 |
| C | 3.2663810000 | 0.1226750000 | 0.0062870000 |
| C | 4.1753340000 | 0.9225260000 | 0.7101510000 |
| C | 5.5287250000 | 0.9004950000 | 0.3911830000 |
| C | 5.9918990000 | 0.0786400000 | -0.6337580000 |
| H | 5.4471520000 | -1.3524420000 | -2.1471950000 |
| H | 3.0480940000 | -1.3055530000 | -1.5973420000 |
| H | 3.8124390000 | 1.5552330000 | 1.5136930000 |
| H | 6.2227630000 | 1.5229840000 | 0.9472460000 |
| H | 7.0487600000 | 0.0588920000 | -0.8809270000 |
| C | 1.8327520000 | 0.1743610000 | 0.3669110000 |
| H | 0.8282160000 | -1.9792660000 | -1.2045800000 |
| H | 0.2203600000 | -2.9410690000 | 0.1545370000 |
| H | 1.9580530000 | -2.7233860000 | -0.0603260000 |
| H | 2.3579770000 | -1.7546920000 | 2.2297260000 |
| H | 0.6708340000 | -2.2095320000 | 2.5381310000 |
| H | 1.2207370000 | -0.5558110000 | 2.8784780000 |
| H | -1.0393190000 | -0.5525480000 | 1.5949640000 |
| H | -0.5954710000 | 0.0493700000 | -1.3767980000 |
| H | -1.4442700000 | -1.3673540000 | -0.7519090000 |
|  |  |  |  |


| [IrIII].'xyz |  |  |  |
| :--- | ---: | ---: | :---: |
| F | -2.1391720000 | 3.6078960000 | 3.4929610000 |
| C | -1.0511400000 | 3.0013060000 | 3.0099160000 |
| C | 0.1803360000 | 3.3314170000 | 3.5575270000 |
| C | 1.3039270000 | 2.6959970000 | 3.0534120000 |
| F | 2.4829360000 | 3.0295690000 | 3.5946980000 |
| C | 1.2339480000 | 1.7497100000 | 2.0332770000 |
| C | 2.3699360000 | 1.0141890000 | 1.4685690000 |
| N | 2.0203360000 | 0.1694040000 | 0.4640660000 |
| C | 2.9341440000 | -0.5935950000 | -0.1449460000 |
| C | 4.2667250000 | -0.5422430000 | 0.2160700000 |
| C | 5.2824920000 | -1.4097950000 | -0.4745360000 |
| F | 6.2820200000 | -0.6723410000 | -0.9847510000 |
| F | 5.8366830000 | -2.2827010000 | 0.3814450000 |


| F | 4.7435310000 | -2.1135580000 | -1.4794050000 |
| :---: | :---: | :---: | :---: |
| C | 4.6567260000 | 0.3184770000 | 1.2382050000 |
| C | 3.7039520000 | 1.0994300000 | 1.8685200000 |
| C | -0.0460070000 | 1.4555880000 | 1.4812780000 |
| Ir | 0.0076720000 | 0.1193640000 | -0.0001150000 |
| N | 0.1235880000 | -1.5990710000 | -1.3121890000 |
| C | 0.0050280000 | -2.8324980000 | -0.6923740000 |
| C | -0.1280450000 | -2.8233310000 | 0.7172610000 |
| C | -0.2393760000 | -3.9905700000 | 1.5249650000 |
| C | -0.3494980000 | -3.8872730000 | 2.8827770000 |
| C | -0.3523910000 | -2.6050970000 | 3.4887630000 |
| C | -0.2500530000 | -1.5046140000 | 2.6783690000 |
| N | -0.1490850000 | -1.5806970000 | 1.3300730000 |
| C | 0.0305800000 | -4.0101350000 | -1.4921480000 |
| C | 0.1655500000 | -3.9251680000 | -2.8489370000 |
| C | 0.2819680000 | -2.6514510000 | -3.4613890000 |
| C | 0.2523670000 | -1.5407170000 | -2.6589890000 |
| N | -2.0036710000 | 0.1928010000 | -0.4671000000 |
| C | -2.3384240000 | 1.0206520000 | -1.4906040000 |
| C | -1.1915490000 | 1.7341290000 | -2.0617360000 |
| C | -1.2468380000 | 2.6644310000 | -3.0972350000 |
| F | -2.4194860000 | 2.9990750000 | -3.6514440000 |
| C | -0.1147310000 | 3.2825480000 | -3.6038460000 |
| C | 1.1102650000 | 2.9515570000 | -3.0423970000 |
| F | 2.2064210000 | 3.5420380000 | -3.5270560000 |
| C | 1.2363230000 | 2.0420620000 | -2.0065730000 |
| C | 0.0823930000 | 1.4370170000 | -1.4973960000 |
| C | -3.6687300000 | 1.1100180000 | -1.9015280000 |
| C | -4.6333910000 | 0.3506780000 | -1.2624580000 |
| C | -4.2587560000 | -0.4914010000 | -0.2194600000 |
| C | -5.2890860000 | -1.3113410000 | 0.5068050000 |
| F | -6.1155180000 | -0.5302010000 | 1.2221780000 |
| F | -6.0510820000 | -2.0049870000 | -0.3526800000 |
| F | -4.7287250000 | -2.1861910000 | 1.3532980000 |
| C | -2.9292630000 | -0.5466290000 | 0.1526620000 |
| C | -1.1916670000 | 2.0770410000 | 1.9891630000 |
| H | 0.2683900000 | 4.0600970000 | 4.3542520000 |
| H | 2.5744720000 | -1.2430660000 | -0.9325850000 |
| H | 5.6961420000 | 0.3785970000 | 1.5421980000 |
| H | 3.9896820000 | 1.7680770000 | 2.6658800000 |
| H | -0.2321510000 | -4.9665990000 | 1.0551690000 |
| H | -0.4321160000 | -4.7813710000 | 3.4917970000 |
| H | -0.4363510000 | -2.4806760000 | 4.5611410000 |
| H | -0.2579780000 | -0.5055390000 | 3.0984560000 |
| H | -0.0612500000 | -4.9790580000 | -1.0165080000 |
| H | 0.1831990000 | -4.8269630000 | -3.4519450000 |
| H | 0.3943150000 | -2.5413220000 | -4.5327500000 |
| H | 0.3450240000 | -0.5482540000 | -3.0846040000 |
| H | -0.1914420000 | 3.9992960000 | -4.4124830000 |
| H | 2.2213050000 | 1.8242710000 | -1.6103690000 |
| H | -3.9425240000 | 1.7637330000 | -2.7153040000 |
| H | -5.6695710000 | 0.4120740000 | -1.5769760000 |
| H | -2.5815640000 | -1.1822120000 | 0.9568310000 |


| [IrIII].xyz |  |  |  |
| :---: | :---: | :---: | :---: |
| F | -2.1263300000 | -3.7377180000 | -3.3305710000 |
| C | -1.0338820000 | -3.0972570000 | -2.8873030000 |
| C | 0.1838660000 | -3.4063160000 | -3.4748170000 |
| C | 1.2925500000 | -2.7341050000 | -2.9986940000 |
| F | 2.4735900000 | -3.0309310000 | -3.5707010000 |
| C | 1.2222610000 | -1.7821340000 | -1.9767430000 |
| C | 2.3578820000 | -1.0396310000 | -1.4287340000 |
| N | 2.0109310000 | -0.1523050000 | -0.4573140000 |
| C | 2.9454050000 | 0.5900420000 | 0.1513260000 |
| C | 4.2821530000 | 0.4920710000 | -0.1760230000 |
| C | 5.3064020000 | 1.3476110000 | 0.5114620000 |
| F | 6.2984220000 | 0.6041020000 | 1.0283140000 |
| F | 5.8749310000 | 2.2130210000 | -0.3459130000 |
| F | 4.7763530000 | 2.0665090000 | 1.5128830000 |
| C | 4.6663350000 | -0.4065060000 | -1.1700110000 |
| C | 3.7022120000 | -1.1720480000 | -1.7956270000 |
| C | -0.0437700000 | -1.4873870000 | -1.4041920000 |
| Ir | -0.0012930000 | -0.0482530000 | 0.0011130000 |
| N | 0.1389150000 | 1.6740030000 | 1.3311590000 |
| C | 0.0783690000 | 2.8883180000 | 0.7411830000 |
| C | -0.0536370000 | 2.8888890000 | -0.7386190000 |
| C | -0.1038610000 | 4.0549040000 | -1.4968160000 |
| C | -0.2325720000 | 3.9655400000 | -2.8766180000 |
| C | -0.3087060000 | 2.7131450000 | -3.4711050000 |
| C | -0.2529500000 | 1.5916710000 | -2.6592600000 |
| N | -0.1306390000 | 1.6752860000 | -1.3280640000 |
| C | 0.1431210000 | 4.0537750000 | 1.4991650000 |
| C | 0.2684140000 | 3.9630840000 | 2.8792190000 |
| C | 0.3266450000 | 2.7099970000 | 3.4742510000 |
| C | 0.2576200000 | 1.5891190000 | 2.6626040000 |
| N | -2.0136570000 | -0.1423780000 | 0.4628640000 |
| C | -2.3626750000 | -1.0260810000 | 1.4370030000 |
| C | -1.2307170000 | -1.7790480000 | 1.9783060000 |
| C | -1.3047590000 | -2.7362750000 | 2.9951560000 |
| F | -2.4859610000 | -3.0274420000 | 3.5697510000 |
| C | -0.1998040000 | -3.4202490000 | 3.4630360000 |
| C | 1.0181070000 | -3.1179060000 | 2.8724040000 |
| F | 2.1069770000 | -3.7699090000 | 3.3076410000 |
| C | 1.1604200000 | -2.1793910000 | 1.8636350000 |
| C | 0.0353600000 | -1.4917930000 | 1.4021350000 |
| C | -3.7055130000 | -1.1445850000 | 1.8140720000 |
| C | -4.6668890000 | -0.3710850000 | 1.1940570000 |
| C | -4.2810480000 | 0.5209240000 | 0.1948370000 |
| C | -5.3054000000 | 1.3593590000 | -0.5129230000 |
| F | -6.1492900000 | 0.6003520000 | -1.2324800000 |
| F | -6.0549530000 | 2.0539640000 | 0.3594250000 |
| F | -4.7433850000 | 2.2413680000 | -1.3538560000 |
| C | -2.9456560000 | 0.6064730000 | -0.1415560000 |
| C | -1.1725480000 | -2.1632510000 | -1.8737600000 |


| H | 0.2690250000 | -4.1390660000 | -4.2672060000 |
| :--- | ---: | ---: | :---: |
| H | 2.5995870000 | 1.2678830000 | 0.9204550000 |
| H | 5.7096580000 | -0.5080270000 | -1.4492310000 |
| H | 3.9833470000 | -1.8767300000 | -2.5627640000 |
| H | -0.0435880000 | 5.0269840000 | -1.0252420000 |
| H | -0.2720700000 | 4.8676030000 | -3.4769010000 |
| H | -0.4103040000 | 2.5968140000 | -4.5431840000 |
| H | -0.3112050000 | 0.5907950000 | -3.0711190000 |
| H | 0.0968040000 | 5.0264530000 | 1.0272490000 |
| H | 0.3190680000 | 4.8647180000 | 3.4793050000 |
| H | 0.4246750000 | 2.5926360000 | 4.5465490000 |
| H | 0.3019810000 | 0.5877200000 | 3.0748770000 |
| H | -0.2879290000 | -4.1570160000 | 4.2513610000 |
| H | 2.1484180000 | -2.0033400000 | 1.4524190000 |
| H | -3.9875390000 | -1.8433600000 | 2.5862600000 |
| H | -5.7086120000 | -0.4602870000 | 1.4831640000 |
| H | -2.5994880000 | 1.2812470000 | -0.9132990000 |
| H | -2.1606930000 | -1.9808930000 | -1.4656150000 |


| cyclization-TS.xyz |  |  |  |
| :--- | ---: | ---: | ---: |
| N | 0.8428570000 | -1.4663700000 | -0.7758600000 |
| O | 2.1272200000 | -1.6752040000 | -0.7222120000 |
| C | 1.4204050000 | 0.4260210000 | 0.5688880000 |
| C | 1.2026950000 | 1.9419990000 | 0.4595910000 |
| C | 1.2812410000 | -0.0001600000 | 2.0433390000 |
| C | 2.7865740000 | 0.0072040000 | 0.0468920000 |
| C | 3.3836930000 | 0.5853860000 | -1.0561370000 |
| C | -3.0330420000 | 1.1655300000 | -0.6705510000 |
| C | -1.6535010000 | 0.9866440000 | -0.7118170000 |
| C | -1.0738810000 | -0.1746910000 | -0.1884920000 |
| C | -1.9040000000 | -1.1532230000 | 0.3710410000 |
| C | -3.2833130000 | -0.9738550000 | 0.4092070000 |
| C | -3.8508330000 | 0.1878610000 | -0.1086390000 |
| H | -3.4700690000 | 2.0684050000 | -1.0856860000 |
| H | -1.0276500000 | 1.7449430000 | -1.1700050000 |
| H | -1.4584170000 | -2.0552160000 | 0.7790800000 |
| H | -3.9143900000 | -1.7412260000 | 0.8468100000 |
| H | -4.9266040000 | 0.3301800000 | -0.0771170000 |
| C | 0.3920840000 | -0.4019580000 | -0.2225560000 |
| H | 0.2407730000 | 2.2218870000 | 0.8971970000 |
| H | 1.2217300000 | 2.2918300000 | -0.5755550000 |
| H | 1.9875010000 | 2.4673710000 | 1.0113770000 |
| H | 0.2771290000 | 0.2209970000 | 2.4170630000 |
| H | 2.0034640000 | 0.5424860000 | 2.6625750000 |
| H | 1.4644840000 | -1.0730390000 | 2.1577300000 |
| H | 3.4386040000 | -0.4853970000 | 0.7636870000 |
| H | 4.4142100000 | 0.3565530000 | -1.3059840000 |
| H | 2.8227390000 | 1.1958980000 | -1.7570590000 |
|  |  |  |  |


[^0]:    

[^1]:    

[^2]:    

[^3]:    

[^4]:    

[^5]:    

[^6]:    

[^7]:    

[^8]:    

[^9]:    

[^10]:    

