Supporting Information

Diverse Synthesis of Functionalized Hydroquinoline Derivatives

from α-Aryl Vinylsulfonium Salts

Zhen-Hua Wang,* Tong Zhang, Qing-Fei Yan, Jian-Qiang Zhao, Yong You, Yan-Ping Zhang, Jun-Qing Yin, and Wei-Cheng Yuan*

Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China

wangzhenhua@cdu.edu.cn

yuanwc@cioc.ac.cn

Table of Contents

1.	General experimental information
2.	Table S1 Optimization of conditions for the synthesis of 3a
3.	General procedure for the synthesis of the product 3
4.	Procedure for the synthesis of spiro-cyclopropane-oxindole-fused tetrahydroquinolines 6S8
5.	Procedure for the synthesis of epoxypropane-fused tetrahydroquinolines 8
6.	Procedure for the synthesis of 3-phenylquinoline 9
7.	Procedure for the synthesis of 3-phenyl-1-tosyl-1,2,3,4-tetrahydroquinoline 10
8.	Procedure for the synthesis of 3,7-diphenyl-1-tosyl-1,2,3,4-tetrahydroquinoline 11
9.	Crystal data and structure refinement
10	. ¹ H, ¹³ C NMR spectra for compounds 3 , 6 , 8 , 9 , 10 , and 11

1. General experimental information

Reagents were purchased from commercial sources and were used as received unless mentioned otherwise. Reactions were monitored by TLC. The NMR spectrum were recorded by Bruker Avance NEO 400 or 300. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ or DMSO-*d*₆. ¹H NMR chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃ at 7.26 ppm, DMSO-*d*₆ at 2.50 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, br s = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃ at 77.16 ppm, DMSO-*d*₆ at 39.52 ppm). The melting points of the products were determined by the OptiMelt melting point apparatus. The HRMS were recorded by Agilent 6545 LC/Q-TOF mass spectrometer.

2. Table S1 Optimization of conditions for the synthesis of 3a

entry	base	solvent	temp. (°C)	time (h)	yield $(\%)^b$
1	Et ₃ N	DCM	25	28	34
2	DABCO	DCM	25	28	7
3	DBU	DCM	25	1.0	95
4	TMG	DCM	25	2.5	66
5	K_2CO_3	DCM	25	10	97
6	Cs_2CO_3	DCM	25	1.0	98
7	t-BuOK	DCM	25	2.5	63
8	$K_3PO_4 \cdot 7H_2O$	DCM	25	1.5	93
9	Cs_2CO_3	THF	25	1.0	91
10	Cs_2CO_3	CH ₃ CN	25	1.0	90
11	Cs_2CO_3	toluene	25	1.0	99
12	Cs_2CO_3	MTBE	25	9.0	85
13	Cs_2CO_3	EtOAc	25	0.5	62
14	Cs_2CO_3	MeOH	25	1.0	n.p.
15 ^c	Cs_2CO_3	toluene	25	1.0	97
16 ^d	Cs_2CO_3	toluene	25	1.0	98
17 ^e	Cs_2CO_3	toluene	25	1.5	98
18^{f}	Cs_2CO_3	toluene	40	1.0	98

^{*a*}Unless otherwise noted, the reactions were carried out with **1a** (0.24 mmol), **2** (0.18 mmol) and base (0.24 mmol) in 2 mL specified solvent at room temperature for the indicated time; ^{*b*} Isolated yield; ^{*c*} 1.6 equiv Cs₂CO₃ was used. ^{*d*}2.1 equiv Cs₂CO₃ was used. ^{*e*}1.1 equiv Cs₂CO₃ was used. ^{*f*}The reaction was conducted at 40 °C. n.p. = no product.

3. General procedure for the synthesis of the product 3

Substrate **1** (0.24 mmol), substrate **2** (0.18 mmol), Cs_2CO_3 (0.24 mmol) and 2.0 mL of toluene were successively added to a vial. The resulting mixture was stirred at room temperature for indicated time. After completion of the reaction (monitored by TLC), the reaction mixture was directly subjected to flash column chromatography (petroleum ether/ethyl acetate/dichloromethane (10:1:1)) on silica gel to afford the corresponding product **3**.

3-phenyl-1-tosyl-1,2-dihydroquinoline (3a)

White solid, 66.7 mg, 99% yield; m.p. 186.1 - 186.5 °C

¹**H NMR (300 MHz, CDCl**₃) δ 7.83 – 7.75 (m, 1H), 7.44 – 7.33 (m, 3H), 7.33 – 7.29 (m, 2H), 7.28 – 7.21 (m, 2H), 7.18 (d, *J* = 8.2 Hz, 2H), 7.10-7.01 (m, 1H), 6.93 (d, *J* = 8.4 Hz, 2H), 6.33 (s, 1H), 4.82 (s, 2H), 2.30 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 143.5, 137.5, 135.8, 134.6, 134.4, 130.6, 129.0, 128.8, 128.3, 128.0, 127.2, 127.1, 127.0, 126.9, 125.2, 121.4, 47.7, 21.6.

HRMS (ESI) m/z: [M + Na]⁺ Calcd. for C₂₂H₁₉NO₂SNa 384.1029; found: 384.1022.

6-methyl-3-phenyl-1-tosyl-1,2-dihydroquinoline (3b)

White solid, 69.3 mg, 98% yield; m.p. 139.5 - 104.7 °C

¹**H NMR (300 MHz, CDCl**₃) δ 7.65 (d, *J* = 8.1 Hz, 1H), 7.42 – 7.29 (m, 3H), 7.28 – 7.21 (m, 2H), 7.17 (d, *J* = 8.2 Hz, 2H), 7.14 – 7.07 (m, 1H), 6.91 (d, *J* = 8.0 Hz, 2H), 6.84 (s, 1H), 6.26 (s, 1H), 4.77 (s, 2H), 2.34 (s, 3H), 2.28 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 143.3, 137.6, 136.8, 135.7, 134.4, 131.8, 130.3, 128.9, 128.7, 128.2, 127.5, 127.2, 126.6, 125.2, 121.4, 47.7, 21.5, 21.1.

HRMS (ESI) m/z: [M + Na]⁺ Calcd. for C₂₃H₂₁NO₂SNa 398.1185; found: 398.1204

6-chloro-3-phenyl-1-tosyl-1,2-dihydroquinoline (3c)

White solid, 73.0 mg, 98% yield; m.p. 108.1 - 109.0 °C

¹**H NMR (300 MHz, CDCl**₃) δ 7.70 (d, *J* = 8.6 Hz, 1H), 7.42 – 7.30 (m, 3H), 7.29 – 7.21 (m, 3H), 7.18 (d, *J* = 8.2 Hz, 2H), 7.01 (d, *J* = 2.2 Hz, 1H), 6.94 (d, *J* = 8.2 Hz, 2H), 6.24 (s, 1H), 4.78 (s, 2H), 2.29 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 143.7, 137.0, 136.1, 135.5, 132.8, 132.4, 131.9, 129.1, 128.8, 128.7, 128.1, 127.7, 127.1, 126.6, 125.3, 120.2, 47.6, 21.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for C₂₂H₁₈ClNO₂SNa 418.0639, 420.0616; found: 418.0650, 420.0628.

6-bromo-3-phenyl-1-tosyl-1,2-dihydroquinoline (3d)

White solid, 82.9 mg, 99% yield; m.p. 119.0 - 119.9 °C

¹**H NMR (300 MHz, CDCl**₃) δ 7.64 (d, *J* = 8.6 Hz, 1H), 7.43 – 7.29 (m, 4H), 7.29 – 7.22 (m, 2H), 7.22 – 7.13 (m, 3H), 6.95 (d, *J* = 8.0 Hz, 2H), 6.24 (s, 1H), 4.78 (s, 2H), 2.29 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 143.8, 137.0, 136.1, 135.5, 133.3, 132.2, 130.6, 129.6, 129.1, 128.8, 128.7, 128.4, 127.1, 125.3, 120.4, 120.0, 47.5, 21.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for C₂₂H₁₈BrNO₂SNa 462.0134, 464.0115; found: 462.0132, 464.0115.

7-chloro-3-phenyl-1-tosyl-1,2-dihydroquinoline (3e)

White solid, 73.4 mg, 99% yield; m.p. 186.0 - 186.9 °C

¹**H NMR (300 MHz, CDCl**₃) δ 7.79 (d, *J* = 1.6 Hz, 1H), 7.44 – 7.30 (m, 3H), 7.29 – 7.12 (m, 5H), 6.95 (t, *J* = 7.3 Hz, 3H), 6.29 (s, 1H), 4.78 (s, 2H), 2.29 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 143.8, 137.1, 135.6, 135.3, 134.8, 133.0, 129.1, 128.9, 128.8, 128.6, 127.8, 127.1, 126.8, 125.2, 120.4, 47.5, 21.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for C₂₂H₁₈ClNO₂SNa 418.0639, 420.0616; found: 418.0661, 420.0639.

7-bromo-3-phenyl-1-tosyl-1,2-dihydroquinoline (3f)

White solid, 83.0 mg, 99% yield; m.p. 265.7 - 166.5 °C

¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.43 – 7.33 (m, 4H), 7.30 – 7.26 (m, 2H), 7.23 (d, J = 8.3 Hz, 2H), 6.97 (d, J = 8.3 Hz, 2H), 6.92 (d, J = 8.2 Hz, 1H), 6.30 (s, 1H), 4.79 (s, 2H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 137.1, 135.6, 135.5, 135.1, 130.1, 129.6, 129.4, 129.1, 128.8,

128.6, 128.1, 127.1, 125.2, 120.8, 120.4, 47.5, 21.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for C₂₂H₁₈BrNO₂SNa 462.0134, 464.0115; found: 462.0156, 464.0140.

8-methyl-3-phenyl-1-tosyl-1,2-dihydroquinoline (3g)

White solid, 68.6 mg, 97% yield; m.p. 147.9 – 148.7 °C

¹**H NMR (300 MHz, CDCl₃)** δ 7.37 – 7.28 (m, 3H), 7.27 – 7.21 (m, 1H), 7.21 – 7.11 (m, 5H), 6.91 (d, J = 8.0 Hz, 2H), 6.88 – 6.83 (m, 1H), 6.19 (d, J = 2.4 Hz, 1H), 5.13 (d, J = 17.6 Hz, 1H), 4.23 (dd, J = 17.6, 2.4 Hz, 1H), 2.65 (s, 3H), 2.31 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 143.4, 137.7, 137.4, 135.7, 135.1, 133.2, 131.9, 130.9, 128.8, 128.6, 128.2, 127.7, 127.4, 124.9, 124.6, 122.1, 48.5, 21.5, 19.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for $C_{23}H_{21}NO_2SNa$ 398.1185; found: 398.1202.

3-phenyl-1-(phenylsulfonyl)-1,2-dihydroquinoline (3h)

White solid, 64.2 mg, 99% yield; m.p. 141.4 - 142.1 °C

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 7.9 Hz, 1H), 7.45 – 7.37 (m, 3H), 7.37 – 7.30 (m, 3H), 7.29 – 7.23 (m, 4H), 7.15 (t, J = 7.9 Hz, 2H), 7.05 (dd, J = 7.5, 1.3 Hz, 1H), 6.30 (s, 1H), 4.83 (s, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 138.5, 137.4, 134.6, 134.2, 132.7, 130.6, 128.8, 128.4, 128.3, 128.0, 127.2, 127.1, 127.0, 126.9, 125.2, 121.2, 47.7.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for $C_{21}H_{17}NO_2SNa$ 370.0872; found: 370.0878.

1-(methylsulfonyl)-3-phenyl-1,2-dihydroquinoline (3i)

White solid, 43.2 mg, 82% yield; m.p. 129.1 - 130.0 °C

¹**H NMR (300 MHz, CDCl₃)** δ 7.71 – 7.61 (m, 1H), 7.60 – 7.53 (m, 2H), 7.49 – 7.41 (m, 2H), 7.41 – 7.34 (m, 1H), 7.33 – 7.27 (m, 3H), 6.95 (s, 1H), 4.78 (s, 2H), 2.64 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 137.1, 135.7, 134.5, 129.9, 129.1, 128.7, 128.4, 127.4, 127.2, 126.4, 125.4, 122.0, 47.4, 37.6.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₆H₁₅N₂O₂SNa 308.0716; found: 308.0719.

3-phenyl-1-(propylsulfonyl)-1,2-dihydroquinoline (3j)

White solid, 51.0 mg, 88% yield; m.p. 86.2 – 87.0 °C

¹**H NMR (400 MHz, CDCl**₃) δ 7.75 – 7.69 (m, 1H), 7.61 – 7.55 (m, 2H), 7.51 – 7.44 (m, 2H), 7.42 – 7.36 (m, 1H), 7.33 – 7.27 (m, 3H), 6.96 (s, 1H), 4.79 (s, 2H), 2.81 – 2.73 (m, 2H), 1.76 – 1.65 (m, 2H), 0.89 (t, J = 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 137.1, 136.1, 134.7, 129.8, 129.1, 128.7, 128.3, 127.4, 126.7, 125.6, 125.4, 122.0, 52.9, 47.3, 17.0, 13.1.

HRMS (ESI) m/z: [M + Na]⁺ Calcd. for C₁₈H₁₉NO₂SNa 336.1029; found: 336.1030

benzyl 3-phenylquinoline-1(2H)-carboxylate (3k)

Colorless oil, 49.9 mg, 78% yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.74 – 7.63 (m, 1H), 7.58 (d, *J* = 7.5 Hz, 2H), 7.47 – 7.35 (m, 8H), 7.31 – 7.21 (m, 2H), 7.21 – 7.14 (m, 1H), 6.90 (s, 1H), 5.32 (s, 2H), 4.87 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 177.0, 154.2, 137.6, 136.2, 135.7, 128.9, 128.8, 128.7, 128.3, 128.2, 128.1, 127.4, 127.0, 125.3, 124.8, 123.6, 122.1, 68.0, 45.6.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₃H₁₉NO₂Na 364.1308; found: 364.1310.

3-(p-tolyl)-1-tosyl-1,2-dihydroquinoline (3l)

White solid, 69.4 mg, 99% yield; m.p. 149.0 – 149.8 °C

¹**H NMR (300 MHz, CDCl**₃) δ 7.77 (d, *J* = 7.9 Hz, 1H), 7.34 – 7.25 (m, 1H), 7.25 – 7.20 (m, 1H), 7.20 – 7.13 (m, 6H), 7.07 – 6.99 (m, 1H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.27 (s, 1H), 4.78 (s, 2H), 2.38 (s, 3H), 2.28 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 143.4, 138.3, 135.7, 134.6, 134.2, 130.7, 129.5, 128.9, 127.7, 127.1, 127.0, 126.9, 126.8, 125.1, 120.5, 47.6, 21.5, 21.3.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for C₂₃H₂₁NO₂SNa 398.1185; found: 398.1191.

3-(4-methoxyphenyl)-1-tosyl-1,2-dihydroquinoline (3m)

White solid, 68.9 mg, 94% yield; m.p. 132.0 - 132.9 °C

¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, J = 7.7 Hz, 1H), 7.33 – 7.19 (m, 4H), 7.18 – 7.12 (m, 2H), 7.00 (dd, J = 7.4, 1.4 Hz, 1H), 6.95 – 6.86 (m, 4H), 6.21 (s, 1H), 4.75 (s, 2H), 3.84 (s, 3H), 2.27 (s, 3H).
¹³C NMR (75 MHz, CDCl₃) δ 159.8, 143.4, 135.7, 134.2, 134.0, 130.8, 130.0, 128.9, 127.5, 127.1, 127.0, 126.8, 126.5, 119.5, 114.1, 55.4, 47.6, 21.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for $C_{23}H_{21}NO_3SNa 414.1134$; found: 414.1143.

3-(4-(tert-butyl)phenyl)-1-tosyl-1,2-dihydroquinoline (3n)

White solid, 77.2 mg, 99% yield; m.p. 174.0 - 174.8 °C

¹**H** NMR (300 MHz, CDCl₃) δ 7.78 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 8.5 Hz, 2H), 7.34 – 7.16 (m, 6H), 7.06 – 6.98 (m, 1H), 6.92 (d, J = 8.1 Hz, 2H), 6.30 (s, 1H), 4.80 (s, 2H), 2.29 (s, 3H), 1.37 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 151.5, 143.4, 135.7, 134.7, 134.6, 134.2, 130.7, 128.9, 127.7, 127.2, 127.0, 126.7, 125.7, 125.0, 120.6, 47.7, 34.8, 31.4, 21.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for $C_{26}H_{27}NO_2SNa$ 440.1655; found: 440.1664.

3-(4-fluorophenyl)-1-tosyl-1,2-dihydroquinoline (30)

White solid, 70.4 mg, 99% yield; m.p. 141.1 - 142.0 °C

¹**H NMR (300 MHz, CDCl₃)** δ 7.76 (d, *J* = 7.9 Hz, 1H), 7.36 – 7.18 (m, 4H), 7.14 (d, *J* = 8.2 Hz, 2H), 7.10 – 6.99 (m, 3H), 6.92 (d, *J* = 8.3 Hz, 2H), 6.25 (s, 1H), 4.75 (s, 2H), 2.28 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 162.7 (d, *J* = 246.9 Hz), 143.5, 135.7, 134.2, 133.7 (d, *J* = 3.2 Hz), 133.4,

130.4, 128.9, 128.0, 127.1, 127.0, 126.9, 126.8, 121.2, 115.8 (d, *J* = 21.5 Hz), 47.6, 21.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for $C_{22}H_{18}FNO_2SNa$ 402.0934; found: 402.0938.

3-(4-chlorophenyl)-1-tosyl-1,2-dihydroquinoline (3p)

White solid, 71.6 mg, 96% yield; m.p. 189.9 - 190.9 °C

¹**H NMR (300 MHz, CDCl₃)** δ 7.76 (d, *J* = 7.8 Hz, 1H), 7.38-7.27 (m, 3H), 7.25 – 7.09 (m, 5H), 7.03 (d, *J* = 7.4 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.29 (s, 1H), 4.74 (s, 2H), 2.28 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 143.6, 135.9, 135.6, 134.3, 134.1, 133.2, 130.2, 129.0, 128.2, 127.2, 127.1, 127.0, 126.9, 126.4, 121.8, 47.4, 21.5.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for C₂₂H₁₈ClNO₂SNa 418.0639, 420.0616; found: 418.0644, 420.0622.

3-(3-fluorophenyl)-1-tosyl-1,2-dihydroquinoline (3q)

White solid, 70.3 mg, 98% yield; m.p. 167.2 - 167.9 °C

¹**H NMR (400 MHz, CDCl₃)** δ 7.76 (d, *J* = 7.9 Hz, 1H), 7.39 – 7.28 (m, 2H), 7.23 (td, *J* = 7.5, 1.1 Hz, 1H), 7.15 (d, *J* = 8.3 Hz, 2H), 7.09 – 6.97 (m, 3H), 6.96 – 6.84 (m, 3H), 6.32 (s, 1H), 4.75 (s, 2H), 2.29 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.1 (d, *J* = 247.2 Hz), 143.7, 139.7 (d, *J* = 7.7 Hz), 135.7, 134.5, 133.2, 133.2, 130.3 (d, *J* = 8.5 Hz), 130.1, 129.0, 128.4, 127.3, 127.1, 126.9, 122.4, 120.8 (d, *J* = 2.8 Hz), 115.1 (d, *J* = 21.4 Hz), 112.0 (d, *J* = 22.3 Hz), 47.5, 21.5.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for $C_{22}H_{18}FNO_2SNa 402.0934$; found: 402.0939.

3-(3-chlorophenyl)-1-tosyl-1,2-dihydroquinoline (3r)

White solid, 74.0 mg, 99% yield; m.p. 153.4 – 154.1 °C

¹**H NMR (300 MHz, CDCl**₃) δ 7.76 (d, J = 7.9 Hz, 1H), 7.37 – 7.20 (m, 4H), 7.18 – 7.09 (m, 4H), 7.07 – 7.02 (m, 1H), 6.94 (d, J = 8.0 Hz, 2H), 6.31 (s, 1H), 4.73 (d, J = 1.3 Hz, 2H), 2.31 (s, 3H).

¹³C NMR (**75 MHz, CDCl**₃) *δ* 143.7, 139.3, 135.7, 134.7, 134.5, 133.0, 130.0, 129.0, 128.4, 128.2, 127.3, 127.2, 127.1, 127.0, 125.4, 123.2, 122.5, 47.4, 21.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for $C_{22}H_{18}CINO_2SNa$ 418.0639, 420.0616; found: 418.0646, 420.0623.

3-(3-bromophenyl)-1-tosyl-1,2-dihydroquinoline (3s)

White solid, 81.6 mg, 99% yield; m.p. 139.5 - 140.3 °C

¹**H NMR (300 MHz, CDCl₃)** δ 7.75 (d, J = 7.8 Hz, 1H), 7.42 (d, J = 7.2 Hz, 1H), 7.37 – 7.28 (m, 1H), 7.28 – 7.20 (m, 3H), 7.19 – 7.09 (m, 3H), 7.04 (d, J = 7.4 Hz, 1H), 6.94 (d, J = 8.0 Hz, 2H), 6.29 (s, 1H), 4.72 (s, 2H), 2.31 (s, 3H).

¹³C NMR (**75 MHz, CDCl**₃) *δ* 143.7, 139.6, 135.7, 134.4, 132.9, 131.1, 130.3, 130.0, 129.0, 128.4, 128.3, 127.3, 127.1, 127.0, 126.9, 123.7, 122.9, 122.5, 47.4, 21.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for C₂₂H₁₈BrNO₂SNa 462.0134, 464.0115; found: 462.0137, 464.0118.

3-([1,1'-biphenyl]-4-yl)-1-tosyl-1,2-dihydroquinoline (3t)

White solid, 73.7 mg, 90% yield; m.p. 185.2 - 186.1 °C

¹**H NMR (300 MHz, CDCl₃)** δ 7.83 (d, J = 7.8 Hz, 1H), 7.65 (t, J = 7.5 Hz, 4H), 7.50 (t, J = 7.5 Hz, 2H), 7.45 – 7.30 (m, 4H), 7.30 – 7.19 (m, 3H), 7.08 (d, J = 7.4 Hz, 1H), 6.96 (d, J = 8.0 Hz, 2H), 6.40 (s, 1H), 4.86 (s, 2H), 2.31 (s, 3H).

¹³C NMR (**75 MHz, CDCl**₃) *δ* 143.5, 141.0, 140.3, 136.3, 135.7, 134.3, 134.1, 130.5, 129.0, 128.9, 128.0, 127.7, 127.3, 127.2, 127.1, 127.0, 126.9, 126.8, 125.6, 121.2, 47.5, 21.6.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₈H₂₃NO₂SNa 460.1342; found: 460.1347.

3-(naphthalen-2-yl)-1-tosyl-1,2-dihydroquinoline (3u)

White solid, 76.8 mg, 99% yield; m.p. 144.0 – 144.9 °C

¹**H NMR (300 MHz, CDCl₃)** *δ* 7.89 – 7.75 (m, 4H), 7.71 (s, 1H), 7.56 – 7.44 (m, 2H), 7.37 – 7.26 (m, 2H), 7.26 – 7.19 (m, 1H), 7.15 (d, *J* = 8.2 Hz, 2H), 7.09 – 7.02 (m, 1H), 6.85 (d, *J* = 8.1 Hz, 2H), 6.44 (s, 1H), 4.90 (s, 2H), 2.24 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) *δ* 143.5, 135.7, 134.5, 134.4, 134.2, 133.4, 133.1, 130.5, 128.9, 128.4, 128.3, 128.0, 127.7, 127.2, 127.1, 126.9, 126.7, 126.5, 124.2, 123.0, 121.7, 47.5, 21.5. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₆H₂₁NO₂SNa 434.1185; found: 434.1193.

4. Procedure for the synthesis of spiro-cyclopropane-oxindole-fused tetrahydroquinolines 6

Substrate 1 (0.24 mmol), substrate 5 (0.20 mmol), Cs_2CO_3 (0.24 mmol) and 2.0 mL of toluene were successively added to a vial. The resulting mixture was stirred at room temperature for indicated time. After completion of the reaction (monitored by TLC), the reaction mixture was directly subjected to flash column chromatography (petroleum ether/ethyl acetate/dichloromethane (10:1:1)) on silica gel to afford the corresponding product **6**.

Tert-butyl 2'-oxo-1a-phenyl-3-tosyl-1a,2,3,7b-tetrahydrospiro[cyclopropa[*c*]quinoline-1,3'indoline]-1'-carboxylate (6a)

White solid, 117.1 mg, 99% yield; m.p. 195.6 - 196.7 °C

¹**H NMR (400 MHz, CDCl**₃) δ 7.96 (d, J = 8.2 Hz, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.38 (t, J = 7.1 Hz, 1H), 7.24 – 7.09 (m, 8H), 7.05 (d, J = 7.8 Hz, 2H), 6.82 (t, J = 7.6 Hz, 1H), 6.68 (s, 2H), 5.91 (d, J = 7.6 Hz, 1H), 4.89 (d, J = 16.2 Hz, 1H), 4.23 (d, J = 16.2 Hz, 1H), 3.64 (s, 1H), 2.41 (s, 3H), 1.48 (s, 9H). ¹³**C NMR (101 MHz, CDCl**₃) δ 170.3, 148.9, 143.6, 140.5, 138.5, 137.0, 136.8, 131.0, 129.8, 128.7, 128.1, 127.5, 127.4, 127.3, 126.6, 126.2, 125.3, 123.4, 123.3, 122.2, 114.8, 84.1, 49.6, 43.1, 39.8, 31.5, 28.0, 21.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for $C_{35}H_{32}N_2O_5SNa$ 615.1924; found: 615.1930.

1'-Benzyl-1a-phenyl-3-tosyl-1a,2,3,7b-tetrahydrospiro[cyclopropa[*c*]quinoline-1,3'-indolin]-2'one (6b)

White solid, 108.0 mg, 93% yield; m.p. 262.2 - 263.0 °C

¹**H NMR** (**400 MHz, CDCl**₃) δ 7.96 (d, *J* = 8.1 Hz, 1H), 7.46 – 7.32 (m, 1H), 7.31 – 7.12 (m, 10H), 7.11 – 6.99 (m, 5H), 6.92 – 6.29 (m, 4H), 5.93 (d, *J* = 7.5 Hz, 1H), 5.00 (d, *J* = 15.6 Hz, 1H), 4.91 (d, *J* = 16.2 Hz, 1H), 4.43 (d, *J* = 15.6 Hz, 1H), 4.31 (d, *J* = 16.1 Hz, 1H), 3.68 (s, 1H), 2.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.7, 143.8, 143.6, 139.2, 136.9, 136.9, 136.1, 130.9, 129.8, 128.8, 128.7, 128.5, 128.0, 127.6, 127.4, 127.3, 127.3, 127.2, 126.7, 126.3, 126.0, 124.3, 122.6, 121.4, 109.1, 50.3, 43.8, 43.1, 38.5, 30.8, 21.7.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for $C_{37}H_{30}N_2O_3SNa$ 605.1869; found: 605.1876.

1'-Methyl-1a-phenyl-3-tosyl-1a,2,3,7b-tetrahydrospiro[cyclopropa[*c*]quinoline-1,3'-indolin]-2'one (6c)

White solid, 117.1 mg, 70% yield; m.p. 231.2 - 232.0 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.2 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 7.25 – 7.10 (m, 8H), 7.06 (d, J = 7.8 Hz, 2H), 6.84 (d, J = 7.8 Hz, 1H), 6.80 – 6.46 (m, 3H), 5.97 (d, J = 7.5 Hz, 1H), 4.91 (d, J = 16.2 Hz, 1H), 4.35 (d, J = 16.2 Hz, 1H), 3.60 (s, 1H), 3.07 (s, 3H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.8, 144.8, 143.5, 139.2, 137.0, 136.9, 130.9, 129.8, 128.7, 128.5, 128.0, 127.4, 127.3, 127.2, 126.7, 126.3, 126.0, 124.4, 122.6, 121.4, 108.3, 50.3, 43.1, 38.1, 31.0, 26.6, 21.7.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for $C_{31}H_{26}N_2O_3SNa$ 529.1556; found: 529.1566.

1a,1'-Diphenyl-3-tosyl-1a,2,3,7b-tetrahydrospiro[cyclopropa[c]quinoline-1,3'-indolin]-2'-one (6d)

White solid, 113.0 mg, 99% yield; m.p. 259.0 - 259.7 °C

¹**H NMR** (**400 MHz, CDCl**₃) δ 7.99 (d, *J* = 8.2 Hz, 1H), 7.43 – 7.33 (m, 3H), 7.31 – 7.24 (m, 2H), 7.23 – 7.07 (m, 9H), 7.05 (d, *J* = 7.9 Hz, 2H), 6.87 – 6.48 (m, 4H), 6.01 (d, *J* = 7.5 Hz, 1H), 4.96 (d, *J* = 16.1 Hz, 1H), 4.37 (d, *J* = 16.1 Hz, 1H), 3.70 (s, 1H), 2.40 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.9, 144.5, 143.5, 139.0, 137.0, 136.9, 134.5, 131.0, 129.8, 129.5, 128.6, 128.5, 128.0, 127.9, 127.4, 127.2, 127.1, 126.7, 126.6, 126.2, 125.8, 124.1, 122.7, 121.8, 109.5, 50.2, 43.1, 38.7, 31.1, 21.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for $C_{36}H_{28}N_2O_3SNa$ 591.1713; found: 591.1713.

5'-Fluoro-1'-methyl-1a-phenyl-3-tosyl-1a,2,3,7b-tetrahydrospiro[cyclopropa[*c*]quinoline-1,3'indolin]-2'-one (6e)

White solid, 104.2 mg, 99% yield; m.p. 245.0 – 245.7 °C

¹**H NMR (400 MHz, CDCl₃)** δ 7.95 (d, J = 8.2 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.24 – 7.10 (m, 7H), 7.06 (d, J = 7.8 Hz, 2H), 6.89 (t, J = 8.7 Hz, 1H), 6.81 – 6.47 (m, 3H), 5.68 (d, J = 8.9 Hz, 1H), 4.91 (d, J = 16.2 Hz, 1H), 4.26 (d, J = 16.2 Hz, 1H), 3.62 (s, 1H), 3.04 (s, 3H), 2.42 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 172.5, 158.0 (d, J = 239.3 Hz) 143.6, 140.8, 140.7, 138.9, 136.8 (d, J =3.4 Hz), 130.8, 129.8, 128.8, 128.7, 128.1, 127.4, 126.8, 126.4, 125.9 (d, J = 8.9 Hz), 125.5, 113.4 (d, J =23.4 Hz), 110.8 (d, J = 26.9 Hz), 108.4 (d, J = 8.4 Hz), 50.1, 43.2, 38.7, 31.3, 26.7, 21.7. **HRMS (ESI)** m/z: [M + Na]⁺ Calcd. for C₃₁H₂₅FN₂O₃SNa 547.1462; found: 547.1476.

1',5'-Dimethyl-1a-phenyl-3-tosyl-1a,2,3,7b-tetrahydrospiro[cyclopropa[c]quinoline-1,3'-indolin]-2'-one (6f)

White solid, 101.6 mg, 98% yield; m.p. 238.8 - 239.5 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.2 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 7.25 – 7.11 (m, 7H), 7.07 (d, J = 7.9 Hz, 2H), 7.01 (d, J = 7.8 Hz, 1H), 6.85 – 6.38 (m, 3H), 5.76 (s, 1H), 4.92 (d, J = 16.1 Hz, 1H), 4.37 (d, J = 16.1 Hz, 1H), 3.59 (s, 1H), 3.04 (s, 3H), 2.44 (s, 3H), 2.09 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.7, 143.5, 142.4, 139.3, 136.9, 136.8, 130.9, 130.7, 129.8, 128.6, 128.3, 128.0, 127.5, 127.4, 127.1, 126.6, 126.2, 126.1, 124.3, 123.5, 107.9, 50.3, 43.1, 37.9, 30.8, 26.6, 21.6, 21.3.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for $C_{32}H_{28}N_2O_3SNa$ 543.1713; found: 543.1715.

6'-Fluoro-1a,1'-diphenyl-3-tosyl-1a,2,3,7b-tetrahydrospiro[cyclopropa[c]quinoline-1,3'-indolin]-2'-one (6g)

White solid, 113.8 mg, 97% yield; m.p. 249.3 - 250.1 °C

¹**H NMR (400 MHz, CDCl**₃) δ 7.98 (d, *J* = 8.2 Hz, 1H), 7.40 (t, *J* = 7.2 Hz, 3H), 7.34 – 7.28 (m, 1H), 7.28 – 7.22 (m, 2H), 7.22 – 7.09 (m, 7H), 7.06 (d, *J* = 7.8 Hz, 2H), 6.71 (s, 2H), 6.57 (d, *J* = 9.0 Hz, 1H),

6.45 (t, *J* = 8.8 Hz, 1H), 5.95 – 5.86 (m, 1H), 4.96 (d, *J* = 16.2 Hz, 1H), 4.30 (d, *J* = 16.2 Hz, 1H), 3.67 (s, 1H), 2.41 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.1, 162.5 (d, *J* = 245.9 Hz), 145.9 (d, *J* = 11.3 Hz), 143.6, 138.8, 136.9, 136.8, 134.1, 130.9, 129.8, 129.6, 128.7, 128.6, 128.2, 128.1, 127.4, 127.3, 126.7, 126.6, 126.3, 125.6, 123.6(d, *J* = 9.4 Hz), 119.4, 119.4, 108.1 (d, *J* = 22.2 Hz), 98.4 (d, *J* = 27.9 Hz), 50.2, 42.8, 38.6, 31.0, 21.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for $C_{36}H_{27}FN_2O_3SNa$ 609.1619; found: 609.1623.

6'-Chloro-1a,1'-diphenyl-3-tosyl-1a,2,3,7b-tetrahydrospiro[cyclopropa[*c*]quinoline-1,3'-indolin]-2'-one (6h)

White solid, 118.9 mg, 99% yield; m.p. 266.3 - 267.0 °C

¹**H NMR (400 MHz, CDCl**₃) δ 7.98 (d, J = 8.2 Hz, 1H), 7.40 (t, J = 7.5 Hz, 3H), 7.35 – 7.28 (m, 1H), 7.28 – 7.22 (m, 2H), 7.21 – 7.09 (m, 7H), 7.06 (d, J = 7.9 Hz, 2H), 6.91 – 6.38 (m, 4H), 5.89 (d, J = 8.1 Hz, 1H), 4.96 (d, J = 16.2 Hz, 1H), 4.29 (d, J = 16.2 Hz, 1H), 3.69 (s, 1H), 2.41 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.8, 145.7, 143.7, 138.7, 137.0, 136.8, 134.0, 133.5, 131.0, 129.9, 129.7, 128.8, 128.6, 128.3, 128.2, 127.5, 127.4, 126.8, 126.7, 126.4, 125.5, 123.4, 122.5, 121.7, 110.1, 50.1, 42.9, 39.2, 31.3, 21.7.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for C₃₆H₂₇ClN₂O₃SNa 625.1323, 627.1310; found: 625.1332, 627.1320.

Tert-butyl 2'-oxo-1a-(*p*-tolyl)-3-tosyl-1a,2,3,7b-tetrahydrospiro[cyclopropa[*c*]quinoline-1,3'indoline]-1'-carboxylate (6i)

White solid, 118.4 mg, 98% yield; m.p. 179.4 - 180.5 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.3 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.38 (t, J = 7.2 Hz, 1H), 7.25 – 7.14 (m, 5H), 7.06 (d, J = 7.7 Hz, 2H), 6.95 (d, J = 7.3 Hz, 2H), 6.82 (t, J = 7.6 Hz, 1H), 6.60 (s, 2H), 5.91 (d, J = 7.5 Hz, 1H), 4.89 (d, J = 16.2 Hz, 1H), 4.21 (d, J = 16.1 Hz, 1H), 3.63 (s, 1H), 2.42 (s, 3H), 2.33 (s, 3H), 1.51 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.4, 148.9, 143.6, 140.5, 137.1, 136.8, 136.8, 135.4, 131.0, 129.7, 128.8, 128.7, 128.6, 127.4, 127.4, 126.5, 126.0, 125.3, 123.6, 123.3, 122.3, 114.7, 84.1, 49.8, 43.1, 39.8, 31.6, 28.0, 21.6, 21.3.

HRMS (ESI) m/z: [M + Na]⁺ Calcd. for C₃₆H₃₄N₂O₅SNa 629.2081; found: 629.2086.

Tert-butyl 1a-(4-(tert-butyl)phenyl)-2'-oxo-3-tosyl-1a,2,3,7b-tetrahydrospiro[cyclopropa[c] quinoline-1,3'-indoline]-1'-carboxylate (6j)

White solid, 126.5 mg, 98% yield; m.p. 109.8 - 110.5 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.2 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.43 – 7.35 (m, 1H), 7.24 – 7.18 (m, 3H), 7.17 – 7.08 (m, 4H), 7.02 (d, J = 7.8 Hz, 2H), 6.82 (t, J = 7.6 Hz, 1H), 6.61 (s, 2H), 5.90 (d, J = 7.7 Hz, 1H), 4.91 (d, J = 16.2 Hz, 1H), 4.22 (d, J = 16.2 Hz, 1H), 3.65 (s, 1H), 2.43 (s, 3H), 1.47 (s, 9H), 1.33 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.2, 149.8, 149.0, 143.3, 140.5, 137.0, 136.9, 135.1, 130.9, 129.7, 128.6, 128.3, 127.4, 127.3, 126.6, 126.4, 125.4, 124.8, 123.6, 123.3, 122.2, 114.7, 83.9, 49.7, 43.2, 39.5, 34.5, 31.4, 31.2, 28.0, 21.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for $C_{39}H_{40}N_2O_5SNa$ 671.2550; found: 671.2559.

Tert-butyl 1a-(4-fluorophenyl)-2'-oxo-3-tosyl-1a,2,3,7b-tetrahydrospiro [cyclopropa[*c*]quinoline-1,3'-indoline]-1'-carboxylate (6k)

White solid, 121.9 mg, 99% yield; m.p. 181.0 - 182.1 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.2 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.25 – 7.15 (m, 5H), 7.09 (d, J = 7.8 Hz, 2H), 6.83 (t, J = 7.2 Hz, 3H), 6.68 (s, 2H), 5.91 (d, J = 7.7 Hz, 1H), 4.84 (d, J = 16.2 Hz, 1H), 4.22 (d, J = 16.2 Hz, 1H), 3.61 (s, 1H), 2.43 (s, 3H), 1.51 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 161.8 (d, J = 246.4 Hz, 1C) 148.8, 143.7, 140.5, 137.0, 137.0, 134.3 (d, J = 3.2 Hz, 1C), 131.0, 130.4 (d, J = 7.2 Hz, 1C) 129.8, 128.8, 127.6, 127.3, 126.7, 126.2, 125.1, 123.4, 123.2, 122.3, 115.0 (d, J = 21.9 Hz, 1C), 114.8, 84.3, 49.6, 43.0, 39.1, 31.8, 28.0, 21.6. HRMS (ESI) m/z: [M + Na]⁺ Calcd. for C₃₅H₃₁FN₂O₅SNa 633.1830; found: 633.1837.

Tert-butyl 1a-(4-bromophenyl)-2'-oxo-3-tosyl-1a,2,3,7b-tetrahydrospiro [cyclopropa[*c*]quinoline-1,3'-indoline]-1'-carboxylate (6l)

White solid, 134.0 mg, 99% yield; m.p. 131.7 – 132.5 °C ¹**H NMR (400 MHz, CDCl**₃) δ 7.93 (d, *J* = 8.2 Hz, 1H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.30 – 7.14 (m, 7H), 7.08 (d, *J* = 7.9 Hz, 2H), 6.82 (t, *J* = 7.6 Hz, 1H), 6.60 (s, 2H), 5.91 (d, *J* = 7.7 Hz, 1H), 4.80 (d, *J* = 16.2 Hz, 1H), 4.21 (d, *J* = 16.2 Hz, 1H), 3.60 (s, 1H), 2.44 (s, 3H), 1.52 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 148.8, 143.9, 140.5, 137.5, 137.0, 136.9, 131.2, 130.9, 130.4, 129.8, 128.8, 127.7, 127.3, 126.7, 126.2, 124.8, 123.4, 123.1, 122.3, 121.2, 114.9, 84.4, 49.3, 43.0, 39.0, 31.5, 28.0, 21.7.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for $C_{35}H_{31}BrN_2O_5SNa$ 693.1029, 695.1014; found: 693.1034, 695.1020.

Tert-butyl 1a-(3-fluorophenyl)-2'-oxo-3-tosyl-1a,2,3,7b-tetrahydrospiro [cyclopropa[*c*]quinoline-1,3'-indoline]-1'-carboxylate (6m)

White solid, 119.6 mg, 98% yield; m.p. 176.9 - 178.3 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.2 Hz, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.25 – 7.05 (m, 8H), 6.94 – 6.77 (m, 2H), 6.59 (s, 1H), 6.12 (s, 1H), 5.91 (d, J = 7.6 Hz, 1H), 4.84 (d, J = 16.3 Hz, 1H), 4.23 (d, J = 16.3 Hz, 1H), 3.58 (s, 1H), 2.43 (s, 3H), 1.51 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.3, 162.2 (d, J = 244.9 Hz), 148.8, 144.2, 141.1 (d, J = 7.6 Hz), 140.6, 136.9 (d, J = 22.7 Hz), 130.9, 129.9, 128.9, 127.7, 127.3, 126.8, 126.5, 124.9, 124.3, 123.4, 123.1, 122.3, 116.0 (d, J = 22.4 Hz), 114.9, 114.3 (d, J = 21.1 Hz), 84.3, 49.4, 43.1, 39.0, 31.6, 28.0, 21.6. HRMS (ESI) m/z: [M + Na]⁺ Calcd. for C₃₅H₃₁FN₂O₅SNa 633.1830; found: 633.1828.

Tert-butyl 1a-(3-chlorophenyl)-2'-oxo-3-tosyl-1a,2,3,7b-tetrahydrospiro [cyclopropa[*c*]quinoline-1,3'-indoline]-1'-carboxylate (6n)

White solid, 124.9 mg, 99% yield; m.p. 181.8 - 182.5 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.26 – 7.06 (m, 9H), 6.83 (t, J = 7.6 Hz, 1H), 6.79 – 6.27 (m, 2H), 5.91 (d, J = 7.6 Hz, 1H), 4.89 (d, J = 16.3 Hz, 1H), 4.23 (d, J = 16.3 Hz, 1H), 3.59 (s, 1H), 2.44 (s, 3H), 1.51 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.3, 148.8, 144.0, 140.7, 140.6, 136.9, 136.6, 133.8, 131.0, 129.9, 129.6, 129.0, 128.9, 127.7, 127.6, 127.3, 127.0, 126.8, 126.4, 124.9, 123.4, 123.0, 122.4, 114.9, 84.4, 49.3, 43.1, 39.0, 31.5, 28.0, 21.8.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for $C_{35}H_{31}ClN_2O_5SNa$ 649.1534, 651.1521; found: 649.1534, 651.1525.

Tert-butyl 1a-([1,1'-biphenyl]-4-yl)-2'-oxo-3-tosyl-1a,2,3,7b-tetrahydrospiro[cyclopropa[c] quinoline-1,3'-indoline]-1'-carboxylate (60)

White solid, 130.1 mg, 97% yield;

¹**H** NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.2 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.61 (d, J = 7.5 Hz, 2H), 7.47 (t, J = 7.4 Hz, 2H), 7.44 – 7.32 (m, 4H), 7.25 – 7.16 (m, 5H), 7.06 (d, J = 7.9 Hz, 2H), 6.92 – 6.63 (m, 3H), 5.94 (d, J = 7.6 Hz, 1H), 4.95 (d, J = 16.2 Hz, 1H), 4.27 (d, J = 16.2 Hz, 1H), 3.69 (s, 1H), 2.40 (s, 3H), 1.49 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.4, 149.0, 143.7, 140.8, 140.6, 140.0, 137.5, 137.1, 136.9, 131.1, 129.8, 129.2, 128.9, 128.8, 127.6, 127.5, 127.1, 126.8, 126.7, 126.3, 125.3, 123.5, 123.4, 122.4, 114.9, 84.3, 49.7, 43.3, 39.6, 31.7, 28.1, 21.7.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for C₄₁H₃₆N₂O₅SNa 691.2237; found: 691.2242.

Tert-butyl 1a-(naphthalen-2-yl)-2'-oxo-3-tosyl-1a,2,3,7b-tetrahydrospiro [cyclopropa[c]quinoline-1,3'-indoline]-1'-carboxylate (6p)

White solid, 128.0 mg, 99% yield; m.p. 197.0 - 198.0 °C

¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.2 Hz, 1H), 7.83 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 7.0 Hz, 1H), 7.73 – 7.51 (m, 2H), 7.51 – 7.35 (m, 3H), 7.30 – 7.16 (m, 3H), 7.15 – 6.60 (m, 7H), 5.97 (d, J = 7.7 Hz, 1H), 5.04 (d, J = 16.2 Hz, 1H), 4.32 (d, J = 16.2 Hz, 1H), 3.79 (s, 1H), 2.33 (s, 3H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 148.8, 143.5, 140.6, 137.1, 136.8, 132.8, 132.7, 131.1, 129.7, 128.8, 128.3, 127.7, 127.5, 127.3, 126.7, 126.2, 126.1, 126.0, 125.2, 123.5, 123.4, 122.4, 114.8, 84.2, 49.6, 40.0, 31.7, 28.0, 21.7.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd. for $C_{39}H_{34}N_2O_5SNa$ 665.2081; found: 665.2087.

5. Procedure for the synthesis of epoxypropane-fused tetrahydroquinolines 8

Substrate **1** (0.24 mmol), substrate **5** (0.20 mmol), Cs_2CO_3 (0.24 mmol) and 2.0 mL of toluene were successively added to a vial. The resulting mixture was stirred at room temperature for indicated time. After completion of the reaction (monitored by TLC), the reaction mixture was directly subjected to flash column chromatography (petroleum ether/ethyl acetate (20:1)) on silica gel to afford the corresponding product **6**.

1a-Phenyl-3-tosyl-1a,2,3,7b-tetrahydrooxireno[2,3-c]quinoline (8a)

White solid, 46.0 mg, 61% yield; m.p. 164.3 - 165.5 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.1 Hz, 1H), 7.41 (d, J = 8.1 Hz, 2H), 7.36 – 7.16 (m, 7H), 7.15 – 7.07 (m, 3H), 4.74 (d, J = 15.2 Hz, 1H), 3.79 (d, J = 15.3 Hz, 1H), 3.57 (s, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 136.1, 135.6, 135.5, 129.8, 129.6, 129.1, 128.9, 128.7, 128.1, 127.2, 126.3, 126.0, 125.5, 69.0, 59.0, 46.5, 21.8.

HRMS (ESI) m/z: $[M+Na]^+$ Calcd. for $C_{22}H_{19}NO_3SNa 400.0978$; found: 400.0976.

1a-(p-Tolyl)-3-tosyl-1a,2,3,7b-tetrahydrooxireno[2,3-c]quinoline (8b)

White solid, 24.2 mg, 31% yield; m.p. 149.5 - 150.3 °C

¹**H NMR (400 MHz, CDCl**₃) δ 7.79 (d, *J* = 8.2 Hz, 1H), 7.40 (d, *J* = 7.9 Hz, 2H), 7.30 (t, *J* = 7.7 Hz, 1H), 7.20 (d, *J* = 7.4 Hz, 1H), 7.15 – 7.01 (m, 7H), 4.72 (d, *J* = 15.2 Hz, 1H), 3.75 (d, *J* = 15.2 Hz, 1H), 3.55 (s, 1H), 2.28 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 143.5, 138.6, 135.7, 135.5, 133.1, 129.8, 129.5, 129.4, 129.1, 128.1, 127.3, 126.3, 126.0, 125.5, 69.0, 59.0, 46.5, 21.8, 21.3.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₃H₂₁NO₃SNa 414.1134; found: 414.1127.

1a-(4-(*Tert*-butyl)phenyl)-3-tosyl-1a,2,3,7b-tetrahydrooxireno[2,3-c]quinoline (8c)

White solid, 28.0 mg, 33% yield; m.p. 159.4 - 198.0 °C

¹**H NMR (400 MHz, CDCl**₃) δ 7.80 (d, *J* = 8.1 Hz, 1H), 7.40 (d, *J* = 7.9 Hz, 2H), 7.36 – 7.27 (m, 3H), 7.23 – 7.15 (m, 3H), 7.14 – 7.06 (m, 3H), 4.74 (d, *J* = 15.3 Hz, 1H), 3.78 (d, *J* = 15.2 Hz, 1H), 3.57 (s, 1H), 2.29 (s, 3H), 1.24 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 151.9, 143.5, 135.7, 135.5, 133.2, 129.7, 129.5, 129.1, 128.1, 127.3, 126.3, 126.0, 125.8, 125.3, 68.9, 59.1, 46.4, 34.8, 31.4, 21.8.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₆H₂₇NO₃SNa 456.1604; found: 456.1612.

1a-([1,1'-Biphenyl]-4-yl)-3-tosyl-1a,2,3,7b-tetrahydrooxireno[2,3-c]quinoline (8d)

White solid, 42.2 mg, 47% yield; m.p. 173.0 - 173.6 °C

¹**H NMR (400 MHz, CDCl₃)** δ 7.90 (d, *J* = 8.2 Hz, 1H), 7.60 (t, *J* = 8.2 Hz, 4H), 7.51 (d, *J* = 7.8 Hz, 2H), 7.49 – 7.35 (m, 6H), 7.31 (d, *J* = 7.4 Hz, 1H), 7.24 – 7.16 (m, 3H), 4.87 (d, *J* = 15.2 Hz, 1H), 3.92 (d, *J* = 15.2 Hz, 1H), 3.70 (s, 1H), 2.39 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.5, 141.7, 140.5, 135.7, 135.5, 135.1, 129.8, 129.6, 129.2, 129.0, 128.1, 127.8, 127.6, 127.2, 127.1, 126.3, 126.0, 126.0, 68.8, 59.2, 46.4, 21.8.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₈H₂₃NO₃SNa 476.1291; found: 476.1297.

1a-(4-Fluorophenyl)-3-tosyl-1a,2,3,7b-tetrahydrooxireno[2,3-c]quinoline (8e)

White solid, 32.5 mg, 41% yield; m.p. 190.0 - 190.7 °C

¹**H NMR (400 MHz, CDCl**₃) δ 7.87 (d, *J* = 8.2 Hz, 1H), 7.48 (d, *J* = 7.8 Hz, 2H), 7.40 (t, *J* = 7.7 Hz, 1H), 7.34 – 7.27 (m, 3H), 7.23 – 7.13 (m, 3H), 7.06 (t, *J* = 8.3 Hz, 2H), 4.78 (d, *J* = 15.2 Hz, 1H), 3.82 (d, *J* = 15.2 Hz, 1H), 3.62 (s, 1H), 2.37 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 162.9 (d, *J* = 247.9 Hz, 1C), 143.6, 135.6, 135.4, 132.0, 132.0, 129.7 (d, *J* = 10.4 Hz, 1C), 129.2, 128.0, 127.5 (d, *J* = 8.4 Hz, 1C), 126.9, 126.3, 126.1, 115.9 (d, *J* = 21.7 Hz, 1C), 68.6, 59.0, 46.5, 21.8.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₂H₁₈FNO₃SNa 418.0884; found: 418.0892.

1a-(4-Bromophenyl)-3-tosyl-1a,2,3,7b-tetrahydrooxireno[2,3-c]quinoline (8f)

White solid, 62.0 mg, 68% yield; m.p. 145.2 - 146.0 °C

¹**H NMR (400 MHz, CDCl**₃) δ 7.85 (d, *J* = 8.2 Hz, 1H), 7.52 – 7.43 (m, 4H), 7.39 (t, *J* = 7.7 Hz, 1H), 7.27 (d, *J* = 7.5 Hz, 1H), 7.23 – 7.14 (m, 5H), 4.76 (d, *J* = 15.2 Hz, 1H), 3.82 (d, *J* = 15.2 Hz, 1H), 3.60 (s, 1H), 2.36 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.6, 135.6, 135.4, 135.1, 132.0, 129.8, 129.7, 129.1, 128.0, 127.2, 126.8, 126.3, 126.1, 122.8, 68.5, 59.1, 46.2, 21.7.

HRMS (ESI) m/z: $[M+Na]^+$ Calcd. for C₂₂H₁₈BrNO₃SNa 478.0083, 480.0064; found: 478.0084, 480.0065.

1a-(3-Fluorophenyl)-3-tosyl-1a,2,3,7b-tetrahydrooxireno[2,3-c]quinoline (8g)

White solid, 48.1 mg, 61% yield; m.p. 143.4 - 143.9 °C

¹**H NMR (400 MHz, CDCl**₃) δ 7.87 (d, J = 8.2 Hz, 1H), 7.47 (d, J = 8.0 Hz, 2H), 7.44 – 7.32 (m, 2H), 7.31 – 7.24 (m, 1H), 7.19 (t, J = 7.5 Hz, 3H), 7.12 (d, J = 7.7 Hz, 1H), 7.08 – 6.97 (m, 2H), 4.79 (d, J = 15.2 Hz, 1H), 3.86 (d, J = 15.2 Hz, 1H), 3.62 (s, 1H), 2.38 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.1 (d, J = 247.3 Hz), 143.6, 138.7, 138.6, 135.6, 135.4, 130.6 (d, J = 8.3 Hz), 129.8, 129.7, 129.2, 128.0, 126.7, 126.3, 126.1, 121.2 (d, J = 3.0 Hz), 115.7 (d, J = 21.1 Hz), 112.6 (d, J = 22.9 Hz), 68.4 (d, J = 2.0 Hz), 59.3, 46.2, 21.7.

HRMS (ESI) m/z: $[M+Na]^+$ Calcd. for $C_{22}H_{18}FNO_3SNa$ 418.0884; found: 418.0888.

1a-(Naphthalen-2-yl)-3-tosyl-1a,2,3,7b-tetrahydrooxireno[2,3-c]quinoline (8h)

White solid, 47.8 mg, 56% yield; m.p. 165.8 - 166.2 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.2 Hz, 1H), 7.89 – 7.79 (m, 4H), 7.52 (d, J = 7.2 Hz, 4H), 7.46 – 7.37 (m, 2H), 7.32 (d, J = 7.4 Hz, 1H), 7.25 – 7.16 (m, 3H), 4.93 (d, J = 15.2 Hz, 1H), 3.99 (d, J = 15.2 Hz, 1H), 3.75 (s, 1H), 2.39 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.5, 135.7, 135.5, 133.5, 133.3, 133.1, 129.8, 129.7, 129.2, 128.8, 128.1, 127.9, 127.1, 126.8, 126.7, 126.3, 126.0, 125.1, 122.9, 69.2, 59.2, 46.6, 21.8.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₆H₂₁NO₃SNa 450.1134; found: 450.1127.

6-Chloro-1a-phenyl-3-tosyl-1a,2,3,7b-tetrahydrooxireno[2,3-c]quinoline (8i)

White solid, 47.2 mg, 57% yield; m.p. 153.6 - 154.2 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.7 Hz, 1H), 7.47 (d, J = 7.8 Hz, 2H), 7.41 – 7.32 (m, 4H), 7.31 – 7.27 (m, 2H), 7.25 (s, 1H), 7.20 (d, J = 7.9 Hz, 2H), 4.78 (d, J = 15.3 Hz, 1H), 3.83 (d, J = 15.3 Hz, 1H), 3.57 (s, 1H), 2.37 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.7, 135.5, 135.2, 134.0, 131.2, 129.5, 129.2, 128.9, 128.0, 127.6, 125.5, 69.0, 58.3, 46.3, 21.7.

HRMS (**ESI**) m/z: [M+Na]⁺ Calcd. for C₂₂H₁₈ClNO₃SNa 434.0588, 436.0565; found: 434.0591, 436.0570.

6-Bromo-1a-phenyl-3-tosyl-1a,2,3,7b-tetrahydrooxireno[2,3-c]quinoline (8j)

White solid, 42.3 mg, 46% yield; m.p. 162.5 – 163.3 °C

¹**H NMR (400 MHz, CDCl**₃) δ 7.76 (d, J = 8.7 Hz, 1H), 7.53 – 7.44 (m, 3H), 7.42 – 7.34 (m, 4H), 7.33 – 7.27 (m, 2H), 7.21 (d, J = 7.9 Hz, 2H), 4.79 (d, J = 15.3 Hz, 1H), 3.83 (d, J = 15.3 Hz, 1H), 3.57 (s, 1H), 2.39 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.8, 135.6, 135.2, 134.6, 132.5, 132.4, 129.3, 129.2, 128.9, 128.0, 127.9, 125.5, 119.0, 69.1, 58.2, 46.4, 21.7.

HRMS (ESI) m/z: $[M+Na]^+$ Calcd. for $C_{22}H_{18}BrNO_3SNa$ 478.0083, 480.0064; found: 478.0088, 480.0069.

7-Bromo-1a-phenyl-3-tosyl-1a,2,3,7b-tetrahydrooxireno[2,3-c]quinoline (8k)

White solid, 30.3 mg, 33% yield; m.p. 166.4 – 166.9 °C

¹**H NMR (400 MHz, CDCl**₃) δ 8.06 (s, 1H), 7.51 (d, *J* = 8.0 Hz, 2H), 7.40 – 7.34 (m, 3H), 7.33 – 7.27 (m, 3H), 7.21 (d, *J* = 7.8 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 1H), 4.79 (d, *J* = 15.3 Hz, 1H), 3.84 (d, *J* = 15.3 Hz, 1H), 3.62 (s, 1H), 2.38 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.9, 136.6, 135.7, 135.2, 130.8, 129.3, 129.1, 129.0, 128.9, 128.1, 126.1, 125.5, 123.1, 69.0, 58.5, 46.3, 21.8.

HRMS (ESI) m/z: $[M+Na]^+$ Calcd. for $C_{22}H_{18}BrNO_3SNa$ 478.0083, 480.0064; found: 478.0084, 480.0065.

4-methyl-1a-phenyl-3-tosyl-1a,2,3,7b-tetrahydrooxireno[2,3-c]quinoline (81)

White solid, 43.2 mg, 55% yield; m.p. 148.5 – 148.8 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 7.7 Hz, 2H), 7.38 – 7.29 (m, 4H), 7.26 – 7.11 (m, 6H), 4.56 (d, J = 15.4 Hz, 1H), 3.73 (d, J = 15.4 Hz, 1H), 3.61 (s, 1H), 2.51 (s, 3H), 2.41 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.2, 138.4, 136.6, 136.1, 134.3, 132.7, 129.2, 129.0, 128.8, 128.6, 128.5, 127.3, 126.9, 125.6, 66.9, 58.8, 47.4, 21.7, 20.2.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₃H₂₁NO₃SNa 414.1134; found: 414.1136.

6. Procedure for the synthesis of 3-phenylquinoline 9

In a dry round-bottom flask, the 1-(methylsulfonyl)-3-phenyl-1,2-dihydroquinoline **3i** (57.1 mg, 0.2 mmol) was added under Ar atmosphere, followed by anhydrous THF (3.5 mL) and *t*-BuOH (90 μ L), *t*-BuOK (45 mg) at 25 °C The mixture was stirred at room temperature for 16 h. Upon reaction completion, 10% NaOH (10 mL) was added and the mixture was extracted with EtOAc, washed with water and brine, dried over Mg₂SO₄, filtered, and concentrated to afford the crude product. The product was purified by flash chromatography with MTBE/PE to provide the desired compound in 99% yield (42.2 mg) as a white solid.

White solid, 42.2 mg, 99% yield; m.p. 51.7 – 52.4 °C

¹**H NMR (300 MHz, CDCl**₃) δ 9.19 (s, 1H), 8.28 (s, 1H), 8.15 (d, *J* = 8.4 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.78 – 7.66 (m, 3H), 7.62 – 7.48 (m, 3H), 7.47 – 7.38 (m, 1H).

¹³C NMR (**75 MHz, CDCl**₃) δ 150.0, 147.4, 137.9, 133.9, 133.3, 129.5, 129.3, 129.2, 128.2, 128.1, 127.5, 127.1.

HRMS (ESI) m/z: $[M + H]^+$ Calcd. for C₁₅H₁₂N 206.0964; found: 206.0970.

7. Procedure for the synthesis of 3-phenyl-1-tosyl-1,2,3,4-tetrahydroquinoline 10

To the substrate **3a** (108.5 mg, 0.3 mmol) in a dry hydrogenation reactor was added anhydrous THF (3.0 mL) and 10% Pd/C (32.4 mg). The mixture was stirred at room temperature under a H_2 atmosphere (0.8 MPa) for 18 h. Filtered with diatomite, and concentrated to afford the crude product. The product was purified by flash chromatography with MTBE/PE to provide the title compound in 99% yield (107.8 mg) as a white solid.

White solid, 107.8 mg, 99% yield; m.p. 127.0 - 127.6 °C

¹**H NMR (300 MHz, CDCl**₃) δ 7.88 (d, *J* = 8.3 Hz, 1H), 7.52 (d, *J* = 8.2 Hz, 2H), 7.36 – 7.28 (m, 2H), 7.27 – 7.17 (m, 4H), 7.15 – 7.00 (m, 4H), 4.39 – 4.28 (m, 1H), 3.47 – 3.34 (m, 1H), 2.81 – 2.62 (m, 3H), 2.40 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃) δ 143.9, 141.9, 136.7, 136.4, 130.1, 129.8, 129.3, 128.9, 127.3, 127.0, 126.8, 125.1, 124.7, 52.3, 38.2, 34.5, 21.7.

HRMS (ESI) m/z: [M + Na]⁺ Calcd. for C₂₂H₂₁NO₂SNa 386.1185; found: 386.1189.

8. Procedure for the synthesis of 3,7-diphenyl-1-tosyl-1,2,3,4-tetrahydroquinoline 11

Under Ar nitrogen atmosphere, compound **3f** (88.0 mg, 0.2 mmol), phenylboronic acid (36.6 mg, 0.3 mmol, 1.5 equiv), Cs_2CO_3 (130.0 mg, 0.4 mmol, 2.0 equiv), $Pd(OAc)_2$ (0.20 equiv), and butyl di-1adamantylphosphine (0.24 equiv) were successively added to a dried sealedtube, followed by the addition of 2.0 mL of DME. The resulting mixture was stirred at 80 °C for 38 h until almost full consumption of **3f** (monitored by thin layer chromatography), and then the reaction mixture was directly subjected to flash column chromatography on silica gel to afford the corresponding product **6** in 96% yield (84.1 mg) as a white solid.

White solid, 84.1 mg, 96% yield; m.p. 152.0 - 152.9 °C

¹**H NMR (400 MHz, CDCl**₃) δ 8.10-8.05 (m, 1H), 7.71 (d, *J* = 7.4 Hz, 2H), 7.52 – 7.46 (m, 3H), 7.43 – 7.33 (m, 4H), 7.32 – 7.27 (m, 2H), 7.22 (d, *J* = 8.2 Hz, 2H), 7.10 (d, *J* = 7.9 Hz, 1H), 6.93 (d, *J* = 8.1 Hz, 2H), 6.37 (s, 1H), 4.85 (s, 2H), 2.29 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.5, 140.8, 140.1, 137.5, 135.8, 134.8, 134.5, 129.5, 129.1, 129.0, 128.8, 128.4, 127.8, 127.4, 127.3, 127.1, 125.5, 125.4, 125.2, 121.1, 47.8, 21.6.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₈H₂₃NO₂SNa 460.1342; found: 460.1343.

9. Crystal data and structure refinement

Single crystals of compound **3f** were prepared through dissolving the sample in mixture solvent of EtOH/DCM (5/1) at room temperature and crystalizing by slow evaporation of solvent. A suitable crystal was selected for structure determination on a 'Oxford Gemini E' diffractometer. The crystal was kept at 293 K during data collection. Using Olex2¹, the structure was solved with the ShelXT² structure solution program using Intrinsic Phasing and refined with the ShelXL³ refinement package using Least Squares minimisation.

Br Ph Ts	CCDC 1954608
Identification code	3f
Empirical formula	$C_{22}H_{18}BrNO_2S$
Formula weight	440.34
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	13.8433(6)
b/Å	14.8254(6)
c/Å	9.4672(4)
$\alpha^{\prime \circ}$	90
β/°	90.436(4)
$\gamma^{/\circ}$	90
Volume/Å ³	1942.93(14)
Z	4
$\rho_{calc}g/cm^3$	1.505
μ/mm^{-1}	4.023
F(000)	896.0
Crystal size/mm ³	$0.13 \times 0.1 \times 0.09$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.74 to 134.158
Index ranges	$-16 \le h \le 16, -17 \le k \le 12, -11 \le l \le 9$
Reflections collected	7440
Independent reflections	3462 [$R_{int} = 0.0361$, $R_{sigma} = 0.0489$]
Data/restraints/parameters	3462/0/233
Goodness-of-fit on F ²	1.038
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0482, wR_2 = 0.1235$
Final R indexes [all data]	$R_1 = 0.0685, wR_2 = 0.1389$
Largest diff. peak/hole / e Å ⁻³	0.37/-0.42

- 1. Dolomanov, O. V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. *J. Appl. Cryst.* **2009**, *42*, 339-341.
- 2. Sheldrick, G. M. Acta Cryst. 2008. A64, 112-122.
- 3. Sheldrick, G. M. Acta Cryst. 2015. C71, 3-8

Single crystals of compound **6b** were prepared through dissolving the sample in mixture solvent of EtOH/DCM (4/1) at room temperature and crystalizing by slow evaporation of solvent. A suitable crystal was selected for structure determination on a 'Oxford Gemini E' diffractometer. The crystal was kept at 293 K during data collection. Using Olex2¹, the structure was solved with the ShelXT² structure solution program using Intrinsic Phasing and refined with the ShelXL³ refinement package using Least Squares minimisation.

H, NO H, NO	CCDC: 2255452		
Identification code	6b		
Empirical formula	$C_{37}H_{30}N_2O_3S$		
Formula weight	582.69		
Temperature/K	293(2)		
Crystal system	monoclinic		
Space group	P2 ₁ /n		
a/Å	13.5153(3)		
b/Å	7.31558(19)		
c/Å	30.8108(7)		
$\alpha/^{\circ}$	90		
β/°	98.412(2)		
γ/°	90		
Volume/Å ³	3013.55(12)		
Ζ	4		
$\rho_{calc}g/cm^3$	1.284		
μ/mm ⁻¹	1.271		
F(000)	1224.0		
Crystal size/mm ³	$0.15 \times 0.12 \times 0.09$		
Radiation	$CuK\alpha \ (\lambda = 1.54184)$		
2Θ range for data collection/°	6.82 to 134.156		
Index ranges	$-16 \le h \le 13, -8 \le k \le 5, -34 \le l \le 36$		
Reflections collected	10849		
Independent reflections	5374 [$R_{int} = 0.0289$, $R_{sigma} = 0.0414$]		
Data/restraints/parameters	5374/0/389		
Goodness-of-fit on F ²	1.017		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0533, wR_2 = 0.1361$		
Final R indexes [all data]	$R_1 = 0.0797, wR_2 = 0.1571$		
Largest diff. peak/hole / e Å ⁻³	0.18/-0.27		

- 1. Dolomanov, O. V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. J. Appl. Cryst. **2009**, *42*, 339-341.
- 2. Sheldrick, G. M. Acta Cryst. 2008. A64, 112-122.
- 3. Sheldrick, G. M. Acta Cryst. 2015. C71, 3-8

Single crystals of compound **8a** were prepared through dissolving the sample in mixture solvent of EtOH/DCM (1/1) at room temperature and crystalizing by slow evaporation of solvent. A suitable crystal was selected for structure determination on a 'Oxford Gemini E' diffractometer. The crystal was kept at 293 K during data collection. Using Olex2¹, the structure was solved with the ShelXT² structure solution program using Intrinsic Phasing and refined with the ShelXL³ refinement package using Least Squares minimisation.

Identification code	80
Empirical formula	oa CarHuNOaS
Formula weight	377 44
Temperature/K	293(2)
Crystal system	triclinic
Space group	P_1
a/Å	8 3137(4)
b/Å	10 2800(9)
c/Å	11.9158(9)
a/°	67.229(8)
β/°	81.908(5)
$\gamma/^{\circ}$	89.234(5)
Volume/Å ³	928.71(13)
Ζ	2
$\rho_{calc}g/cm^3$	1.350
μ/mm^{-1}	1.733
F(000)	396.0
Crystal size/mm ³	0.18 imes 0.12 imes 0.1
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	8.136 to 134.14
Index ranges	$-5 \le h \le 9, -12 \le k \le 11, -14 \le l \le 14$
Reflections collected	6490
Independent reflections	3313 [$R_{int} = 0.0222, R_{sigma} = 0.0323$]
Data/restraints/parameters	3313/0/246
Goodness-of-fit on F ²	1.036
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0441, wR_2 = 0.1236$
Final R indexes [all data]	$R_1 = 0.0533, wR_2 = 0.1340$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.25

 Dolomanov, O. V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.

2. Sheldrick, G. M. Acta Cryst. 2008. A64, 112-122.

3. Sheldrick, G. M. Acta Cryst. 2015. C71, 3-8

10. ¹H, ¹³C NMR spectra for compounds 3, 6, 8, 9, 10, and 11

¹H NMR (300 MHz, CDCl₃) of 3a

¹³C NMR (75 MHz, CDCl₃) of **3b**

¹H NMR (300 MHz, CDCl₃) of 3d

¹³C NMR (75 MHz, CDCl₃) of **3e**

S28

¹H NMR (300 MHz, CDCl₃) of **3g**

¹³C NMR (101 MHz, CDCl₃) of **3h**

¹³C NMR (75 MHz, CDCl₃) of **3i**

¹³C NMR (101 MHz, CDCl₃) of **3j**

 ^{13}C NMR (101 MHz, CDCl₃) of 3k

S34

¹³C NMR (75 MHz, CDCl₃) of **3n**

S38

 ^{13}C NMR (101 MHz, CDCl₃) of 3q

¹³C NMR (75 MHz, CDCl₃) of **3r**

¹³C NMR (75 MHz, CDCl₃) of **3s**

¹H NMR (300 MHz, CDCl₃) of **3u**

 13 C NMR (75 MHz, CDCl₃) of 3u

S47

¹H NMR (400 MHz, CDCl₃) of **6g**

 ^{13}C NMR (101 MHz, CDCl₃) of $\mathbf{6g}$

¹³C NMR (101 MHz, CDCl₃) of **6h**

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

S58

¹H NMR (400 MHz, CDCl₃) of 8a

¹H NMR (400 MHz, CDCl₃) of **8b**

fl (ppm)

¹H NMR (400 MHz, CDCl₃) of 8c

¹H NMR (400 MHz, CDCl₃) of 8d

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm) ¹H NMR (400 MHz, CDCl₃) of 8e

fl (ppm)

¹H NMR (400 MHz, CDCl₃) of **8f**

fl (ppm)

¹H NMR (400 MHz, CDCl₃) of **8h**

¹H NMR (400 MHz, CDCl₃) of 8i

f1 (ppm)

¹H NMR (400 MHz, CDCl₃) of 8k

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹³C NMR (75 MHz, CDCl₃) of **9**

¹H NMR (300 MHz, CDCl₃) of **9**

¹H NMR (300 MHz, CDCl₃) of **10**

¹H NMR (400 MHz, CDCl₃) of **11**

Ts 130.0 129.5 129.0 128.5 128.0 127.5 127.0 126.5 126.0 125.5 125.0 124.5 f1 (ppm) f1 (ppm)