Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Fluoroarylation of gem-Difluorostyrenes through Pd-Catalyzed Aryl C–H Bond Activation Cascade

Lei Chen,^a Jun Pu,^a Peng Ye,^a Shuang Wang,^a Yang-Jie Mao,^a Zhen-Yuan Xu,^a Shao-Jie Lou,^{*a} and Dan-Qian Xu,^{*a}

^aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.

E-mail: chrc@zjut.edu.cn (D.-Q. Xu); loushaojie@zjut.edu.cn (S.-J. Lou)

Content

I.	General	1
II.	Preparation of the starting materials	1
III.	General procedure for the palladium-catalyzed fluoroarylation	2
IV.	Gram scale-up experiment of 1a	2
V.	Conditions screening for fluoroheteroarylation of gem-difluoroalkenes	3
VI.	Deuterium-labeling experiments	3
VII.	Characterization of all products	8
VIII	X-Ray data for 2q and 2x	20
IX.	References	22
X.	NMR spectra	23

I. General

Unless otherwise stated, all experiments were carried out under nitrogen atmosphere. The reagents and solvents were purchased from commercial suppliers and used without further purification unless noted. ¹H NMR and ¹³C NMR spectra were obtained on Bruker AVANCE III 400 instrument in CDCl₃ using TMS as an internal standard, operating at 400 MHz and 101 MHz, respectively. Chemical shifts (δ) are expressed in ppm and coupling constants *J* are given in Hz. For CDCl₃, the chemical shifts are reported as parts per million (ppm) to residual protium or carbon of the solvents; CHCl₃ δ H (7.28 ppm) and CDCl₃ δ C (77.03 ppm). ¹⁹F NMR were recorded on a Bruker AVANCE III 400. Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartlet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of doublets, m = multiplet. GC experiments were carried out using Agilent 7890B GC. GC-MS experiments that used dodecane as an internal standard were performed with a Thermo DSQ II, Trace GC Ultra. High resolution mass spectra [HRMS (ESI-TOF)] were obtained on an Agilent 6545 Q-TOF LCMS spectrometer equipped with an ESI source.

II. Preparation of the starting materials

1. General procedure for the synthesis of 1

X = Br or I

To a solution of **S1'-1** (5.0 mmol, 1 equiv.) and **S1'-2** (5.5 mmol, 1.1 equiv.) in toluene (8 mL), ethanol (2 mL) and water (2 mL), Pd(PPh₃)₄ (3 mol%) and K₂CO₃ (12.5 mmol, 2.5 equiv.) were added. The resulting mixture was reflux overnight under a nitrogen atmosphere. After completion of the reaction, the mixture was extracted three times with diethyl ether. The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography to deliver **S1'**.¹

In a 50 mL oven-dried round-bottom flask with a stir bar, the **S1'** (1.0 equiv.), triphenyl phosphine (8 mmol, 2.0 equiv.) were dissolved in NMP (25 mL), then the mixture was heated to 100 °C. To the reaction mixture at 100 °C was added sodium 2-chloro-2,2-difluoroacetate (8 mmol, 2.0 equiv.) slowly (**Caution**: gas evolution observed). After the reaction finished according to the TLC, the reaction mixture was cooled to room temperature, quenched with water and extracted with EtOAc. The combined organic layers were washed with H_2O_2 (30 wt% in water, 10 mL), brine (50 mL × 4) and dried over Na₂SO₄. After solvent was removed under reduced pressure, the crude residue was purified by column chromatography on silica gel to afford the 1.²

III. General procedure for the palladium-catalyzed fluoroarylation

In an oven-dried 10 mL Schlenk tube equipped with a stir bar, $Pd(OAc)_2$ (10 mol%), AgOAc (0.5 equiv.), AgF (1.2 equiv.), **1** (0.2 mmol) and anhydrous HFIP (1.0 mL) were added under N₂ atmosphere and then the reaction tube was capped. After stirring at 60 °C for 4 h, the mixture was passed through a short pad of celite and rinsed with EtOAc. The filtrate was evaporated to dryness under reduced pressure and the crude residue was purified by column chromatography on silica gel to afford the desired product **2**.

IV. Gram scale-up experiment of 1a

In an oven-dried 50 mL Schlenk tube equipped with a stir bar, $Pd(OAc)_2$ (0.11g, 10 mol%), AgOAc (0.42g, 0.5 equiv.), AgF (0.76g, 1.2 equiv.), **1a** (1.08g, 5.0 mmol) and anhydrous HFIP (10.0 mL) were added under N₂ atmosphere and then the reaction tube was capped. After stirring at 60 °C for 12 h, the mixture was passed through a short pad of celite and rinsed with EtOAc. The filtrate was evaporated to dryness under reduced pressure and the crude residue was purified by column chromatography on silica gel (petroleum ether-EtOAc = 100:1) to afford the desired product **2a** (0.85g, 3.65mmol, 73%).

V. Conditions screening for fluoroheteroarylation of gem-difluoroalkenes

Ph	F + (S H a	[Pd] (10 Ag <mark>F (1.5</mark> dditive (1. solvent,	mol%) equiv.) 0 equiv.) T, N₂ Pł	S F	+ Ph	F
	3a	4			5a		5a'
Entry	[Cat.]	Additive	T.	Ligand	Solvent	Yield ^a	5a:5a'b
1	[allylPdCl] ₂	/	80	XPhos	cyclohexane	N.R.	/
2	[allylPdCl] ₂	/	100	XPhos	cyclohexane	N.R.	/
3	[allylPdCl]2	/	100	XPhos	1,4-dioxane	N.R.	/
4	[allylPdCl] ₂	AgOAc	60	/	HFIP	72	77:23
5	$Pd(OAc)_2$	AgOAc	60	/	HFIP	72	80:20
6	Pd(Ph ₃ P) ₂ Cl ₂	AgOAc	60	/	HFIP	63	80:20
7	$Pd(TFA)_2$	AgOAc	60	/	HFIP	65	78:22
8	Pd(CH ₃ CN) ₂ Cl ₂	AgOAc	60	/	HFIP	67	75:25
9	$Pd(OAc)_2$	AgOAc	40	/	HFIP	30	85:15
10	$Pd(OAc)_2$	AgOAc	25	/	HFIP	17	84:16
11	$Pd(OAc)_2$	AgOAc	80	/	HFIP	75	75:25
12	$Pd(OAc)_2$	Ag ₂ CO ₃	60	/	HFIP	34	76:24
13	$Pd(OAc)_2$	AgOAc	60	Ph ₃ P	HFIP	65	78:22
14	$Pd(OAc)_2$	AgOAc	60	XPhos	HFIP	70	80:20
15	$Pd(OAc)_2$	AgOAc	60	Xantphos	HFIP	68	75:25
16	$Pd(OAc)_2$	AgOAc	60	/	TFE	trace	/
17	$Pd(OAc)_2$	AgOAc	60	/	IPA	N.R.	/

Table S1. Reaction con	dition o	ptimization
------------------------	----------	-------------

^aReaction conditions: **3a** (0.2 mmol), **4** (0.3 mmol), [Pd] (10 mol%), AgF (1.5 equiv.), additive (1.0 equiv.), Solvent (1 mL), under N₂, 12h, GC-MS yield. ^bRegioselectivity was determined by GC-MS.

VI. Deuterium-labeling experiments

1. Synthesis of 1-bromobenzene-2-d

1-Bromo-2-iodobenzene (10 mmol, 1 equiv.) was dissolved in a mixture of THF and Et₂O (50 mL, 1:1) under argon atmosphere and cooled to -78 °C. 5.1 mL (10.2 mmol, 1.02 equiv.) isopropyl magnesium chloride (2 M in THF) were added dropwise under vigorous stirring over 15 minutes. The reaction mixture was stirred for 2 h at -78 °C before adding 1.2 mL methanol- d_4 and slowly warming it up to room temperature. After the addition of 50 mL 10% aq. HCl and stirring the mixture for 30 minutes, the organic layer was removed and the aqueous layer was extracted 3 times with 10

mL Et₂O and the combined organic layers were dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was used directly for the next step without further purification.¹

To a solution of boronic acid (5.0 mmol, 1 equiv.) and $S1-d_1$ or $S1-d_5$ (5.5 mmol, 1.1 equiv.) in toluene (8 mL), ethanol (2 mL) and water (2 mL), Pd(PPh₃)₄ (3 mol%) and K₂CO₃ (12.5 mmol, 2.5 equiv.) were added. The resulting mixture was reflux overnight under a nitrogen atmosphere. After completion of the reaction, the mixture was extracted three times with diethyl ether. The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography to deliver $S1'-d_1$ or $S1'-d_5$.¹

In a 50 mL oven-dried round-bottom flask with a stir bar, the **S1'-** d_1 or **S1'-** d_5 (1.0 equiv.), triphenyl phosphine (8 mmol, 2.0 equiv.) were dissolved in NMP (25 mL), then the mixture was heated to 100 °C. To the reaction mixture at 100 °C was added sodium 2-chloro-2,2-difluoroacetate (8 mmol, 2.0 equiv.) slowly (**Caution**: gas evolution observed). After the reaction finished according to the TLC, the reaction mixture was cooled to room temperature, quenched with water and extracted with EtOAc. The combined organic layers were washed with H₂O₂ (30 wt% in water, 10 mL), brine (50 mL × 4) and dried over Na₂SO₄. After solvent was removed under reduced pressure, the crude residue was purified by column chromatography on silica gel to afford the **1a**- d_1 or **1a**- d_5 .

2-(2,2-difluorovinyl)-1,1'-biphenyl-2'-d1 (**1a**-*d*₁): ¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.6 Hz, 1H), 7.55-7.31 (m, 7H), 5.26 (dd, *J* = 26.1, 4.2 Hz, 1H).

2-(2,2-difluorovinyl)-1,1'-biphenyl-2',3',4',5',6'-d₅ (**1a**-*d*₅): ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.6 Hz, 1H), 7.44-7.29 (m, 3H), 5.27 (dd, *J* = 26.1, 4.2 Hz, 1H).

Figure S2. ¹H NMR spectrum of $1a-d_5$

2. Intramolecular KIE experiments

In an oven-dried 10 mL Schlenk tube equipped with a stir bar, $Pd(OAc)_2$ (10 mol%), AgOAc (0.5 equiv.), AgF (1.2 equiv.), **1a**- d_1 (0.2 mmol) and anhydrous HFIP (1.0 mL) were added under N₂ atmosphere and then the reaction tube was capped. After stirring at 60 °C for 4 h, the mixture was passed through a short pad of celite and rinsed with EtOAc. The filtrate was evaporated to dryness under reduced pressure and the crude residue was purified by column chromatography on silica gel (PE:EtOAc = 100:1) to afford the desired product **2a**- d_1 and **2a** (white solid, 0.036g , 78% yield). The 2.6:1 ratio of **2a**- d_1 to **2a** indicated that the current palladium-catalyzed fluoroarylation reaction may involve the aromatic C–H activation pathway.

Fig S3. ¹H NMR spectrum of mixture $2a/2a-d_1$

3. Intermolecular competing KIE experiments

In an oven-dried 10 mL Schlenk tube equipped with a stir bar, $Pd(OAc)_2$ (10 mol%), AgOAc (0.5 equiv.), AgF (1.2 equiv.), **1a**-ds (0.1 mmol), **1a** (0.1 mmol) and anhydrous HFIP (1.0 mL) were added under N₂ atmosphere and then the reaction tube was capped. After stirring at 60 °C for 30 min, the mixture was passed through a short pad of celite and rinsed with EtOAc. The filtrate was evaporated to dryness under reduced pressure and the crude residue was purified by column chromatography on silica gel (PE:EtOAc = 100:1) to afford the desired product **2a**-d₄ and **2a** (white solid, 0.023g , 50% yield). The 2.6:1 ratio of **2a** to **2a**-d₄ demonstrated that the cleavage of the aromatic C–H bond in **1a** is involved in the rate-determining step.

4. Radical trapping experiments

Table S2. Radical trapping experiments with radical scavengers

In an oven-dried 10 mL Schlenk tube equipped with a stir bar, $Pd(OAc)_2$ (10 mol%), AgOAc (0.5 equiv.), AgF (1.2 equiv.), additive (1.2 equiv.), **1a** (0.1 mmol) and anhydrous HFIP (1.0 mL) were added under N₂ atmosphere and then the reaction tube was capped. After stirring at 60 °C for 4 h. The yields were determined by GC-MS. Radical trapping experiments demonstrated that the reaction mechanism does not involve radical process.

VII. Characterization of all products

9-(trifluoromethyl)-9H-fluorene (2a): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2a** (38.3mg, 82% yield) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 7.6 Hz, 2H), 7.74 (d, J = 7.6 Hz, 2H), 7.51 (t, J = 7.5 Hz, 2H), 7.40 (tt, J = 7.5, 1.1 Hz, 2H), 4.63 (q, J = 9.4 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 142.2, 137.3 (q, J = 2.2 Hz), 129.1, 127.7 (q, J = 278.5 Hz), 127.6, 125.9 (d, J = 1.5 Hz), 120.2, 51.3 (q, J = 29.3 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.75 (s, 3F) ppm; HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₄H₈F₃: 233.0584; found: 233.0588.

2-phenyl-9-(trifluoromethyl)-9H-fluorene (2b): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2b** (39.6 mg, 64% yield) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.91-7.83 (m, 2H), 7.81-7.75 (m, 2H), 7.74 (d, J = 1.3 Hz, 1H), 7.72 (s, 1H), 7.59-7.52 (m, 3H), 7.49-7.41 (m, 2H), 4.69 (q, J = 9.4 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 141.9, 141.3, 141.0, 140.9, 138.1 (q, J = 2.1 Hz), 137.6 (q, J = 2.1 Hz), 129.2, 128.9, 128.3, 127.7, 127.6, 127.3,

126.4 (q, J = 278.8 Hz), 126.0, 125.0, 120.5, 120.3, 51.4 (q, J = 29.2 Hz) ppm; ¹⁹**F** NMR (376 MHz, CDCl₃) δ -67.50 (d, J = 3.6 Hz, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻Calcd. for C₂₀H₁₂F₃: 309.0897; found: 309.0897.

2-methoxy-9-(trifluoromethyl)-9H-fluorene (2c): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 50:1) gave **2c** (40.6 mg, 77% yield) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.76-7.64 (m, 3H), 7.47 (t, *J* = 7.6 Hz, 1H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.28 (s, 1H), 7.05 (dd, *J* = 8.4, 2.4 Hz, 1H), 4.57 (q, *J* = 9.5 Hz, 1H), 3.91 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 159.8, 142.2, 139.0 (q, *J* = 2.0 Hz), 136.8 (q, *J* = 2.3 Hz), 135.0, 129.0, 126.5, 126.3 (q, *J* = 278.7 Hz), 125.8 (d, *J* = 1.6 Hz), 120.9, 119.4, 115.0, 111.8 (d, *J* = 1.5 Hz), 55.6, 51.3 (q, *J* = 29.2 Hz) ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -67.84 (s, 3F) ppm; HRMS (ESI-TOF) m/z: [M - H]⁻Calcd. for C₁₅H₁₀F₃O: 263.0689; found: 263.0683.

2-ethoxy-9-(trifluoromethyl)-9H-fluorene (2d): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 50:1) gave **2d** (46.1 mg, 83% yield) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.65 (m, 3H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.04 (dd, *J* = 8.4, 2.3 Hz, 1H), 4.57 (q, *J* = 9.5 Hz, 1H), 4.21-4.07 (m, 2H), 1.49 (t, *J* = 7.0 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 159.1, 142.2, 139.0 (q, *J* = 2.1 Hz), 136.8 (q, *J* = 2.0 Hz), 134.9, 129.0, 126.4, 126.3 (q, *J* = 278.7 Hz), 125.8, 120.9, 119.4, 115.5, 112.3, 63.9, 51.2 (q, *J* = 29.2 Hz), 14.8 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.83 (s, 3F) ppm; HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₆H₁₂F₃O: 277.0846; found: 277.0848.

2-methyl-9-(trifluoromethyl)-9H-fluorene (**2e**): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2e** (43.1 mg, 87% yield) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.6 Hz, 1H), 7.70 (t, *J* = 8.0 Hz, 2H), 7.54 (s, 1H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.41-7.34 (m, 1H), 7.32 (d, *J* = 7.8 Hz, 1H), 4.58 (q, *J* = 9.5 Hz, 1H), 2.49 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 142.2, 139.5, 137.6, 137.5 (q, *J* = 2.3 Hz), 137.1 (d, *J* = 2.4 Hz), 129.8, 128.9, 127.1, 126.5, 126.4 (q, *J* = 278.7 Hz), 125.9, 119.9, 119.9, 51.1 (q, *J* = 29.2 Hz), 21.6 ppm; ¹⁹F NMR (376 MHz,

CDCl₃) δ -67.73 (s, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₅H₁₀F₃: 247.0740; found: 247.0747.

2-(tert-butyl)-9-(trifluoromethyl)-9H-fluorene (2f): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2f** (46.4 mg, 80% yield) as white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.85-7.66 (m, 4H), 7.54 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 1H), 4.59 (q, *J* = 9.5 Hz, 1H), 1.42 (s, 9H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 151.1, 142.2, 139.5, 137.4 (d, *J* = 2.4 Hz), 137.3 (d, *J* = 2.3 Hz), 129.0, 127.1, 126.4 (q, *J* = 278.7 Hz), 126.2, 125.8, 122.8 (d, *J* = 1.2 Hz), 119.9, 119.7, 51.3 (q, *J* = 29.1 Hz), 35.0, 31.5 ppm; ¹⁹**F NMR** (376 MHz, CDCl₃) δ - 67.72 (s, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻Calcd. for C₁₈H₁₆F₃: 289.1210; found: 289.1215.

2-fluoro-9-(trifluoromethyl)-9H-fluorene (**2g**): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2g** (34.7 mg, 69% yield) as white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.79-7.66 (m, 3H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.43 (d, *J* = 8.6 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.24-7.17 (m, 1H), 4.60 (q, *J* = 9.3 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 163.8, 161.3, 141.3, 138.2 (d, *J* = 2.6 Hz), 137.1 (t, *J* = 2.0 Hz), 129.2, 126.0 (q, *J* = 278.8 Hz), 127.3, 125.9, 121.2 (d, *J* = 8.8 Hz), 119.9, 116.3 (d, *J* = 22.9 Hz), 113.6 (d, *J* = 23.0 Hz), 51.3 (q, *J* = 29.5 Hz) ppm; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.88 (s, 3F), -113.67 (s, 1F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₄H₆F₄: 251.0489; found: 251.0492.

2,9-bis(trifluoromethyl)-9H-fluorene (2h): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2h** (37.4 mg, 62% yield) as white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.87 (dd, *J* = 13.6, 7.8 Hz, 2H), 7.81-7.74 (m, 2H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.51-7.44 (m, 1H), 4.68 (q, *J* = 9.2 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 145.6, 140.7, 137.9 (q, *J* = 2.2 Hz), 137.7 (q, *J* = 2.4 Hz), 129.9, 129.4, 128.9, 126.5 (q, *J* = 3.8 Hz), 126.1, 125.9 (d, *J* = 278.9 Hz), 125.5, 122.9 (q, *J* = 5.1 Hz), 121.0, 120.4, 51.3 (q, *J* = 29.8 Hz) ppm; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.03 (s, 3F), -67.67 (s, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₅H₆F₆: 301.0457; found: 301.0455.

2-(trifluoromethoxy)-9-(trifluoromethyl)-9H-fluorene (2i): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2i** (39.4 mg, 62% yield) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.76 (m, 2H), 7.73 (d, *J* = 7.7 Hz, 1H), 7.58 (d, *J* = 2.2 Hz, 1H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.43 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.41-7.35 (m, 1H), 4.63 (q, *J* = 9.3 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 148.7 (d, *J* = 1.5 Hz), 140.9, 140.8, 138.9 (d, *J* = 2.2 Hz), 137.4 (q, *J* = 1.9 Hz), 129.3, 128.0, 126.0 (d, *J* = 1.6 Hz), 125.9 (q, *J* = 278.8 Hz), 122.1, 121.0, 120.6 (q, *J* = 257.4 Hz), 120.4, 119.2, 51.3 (q, *J* = 29.8 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -58.0 (s, 3F), -67.8 (s, 3F) ppm; HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₅H₆F₆O: 317.0407; found: 317.0408.

2-phenoxy-9-(trifluoromethyl)-9H-fluorene (2j): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 50:1) gave **2j** (48.9 mg, 75% yield) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 1.9 Hz, 1H), 7.75-7.69 (m, 2H), 7.50 (t, J = 7.5 Hz, 1H), 7.44-7.34 (m, 4H), 7.24-7.07 (m, 4H), 4.60 (q, J = 9.4 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 157.2, 157.2, 141.7, 139.1 (q, J = 2.2 Hz), 137.4, 137.2 (q, J = 2.0 Hz), 129.9, 129.2, 127.0, 126.2 (q, J = 278.8 Hz), 125.9 (d, J = 1.5 Hz), 123.5, 121.1, 119.8, 118.9, 116.9 (d, J = 1.4 Hz), 51.3 (q, J = 29.4 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.81 (s, 3F) ppm; HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₂₀H₁₂F₃O: 325.0846; found: 325.0843.

methyl 9-(trifluoromethyl)-9H-fluorene-2-carboxylate (**2k**): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 50:1) gave **2k** (37.3 mg, 64% yield) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 8.26-8.17 (m, 1H), 7.91-7.81 (m, 2H), 7.75 (d, J = 7.6 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.49-7.41 (m, 1H), 4.66 (q, J = 9.3 Hz, 1H), 3.98 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 146.6, 141.0, 138.3 (d, J = 2.1 Hz), 137.3 (d, J = 2.2 Hz), 131.0, 129.4, 129.3, 128.8, 127.1 (d, J = 1.6 Hz), 126.1, 126.0 (q, J = 278.9 Hz), 121.1, 120.0, 52.2, 51.2 (q, J = 29.6 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.61 (s, 3F) ppm; HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₆H₁₀F₃O₂: 291.0638; found: 291.0633.

4-methyl-9-(trifluoromethyl)-9H-fluorene (2l): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2l** (36.2 mg, 73% yield) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.8 Hz, 1H), 7.77 (d, *J* = 7.6 Hz, 1H), 7.60 (d, *J* = 6.1 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.32-7.27 (m, 2H), 4.61 (q, *J* = 9.4 Hz, 1H), 2.76 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 143.2, 140.2, 137.6 (q, *J* = 2.2 Hz), 133.4, 131.5, 129.0, 127.2, 126.9, 126.4 (q, *J* = 278.8 Hz), 125.9, 123.4, 123.4 (d, J = 1.8 Hz), 51.1 (q, *J* = 28.9 Hz), 21.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.76 (s, 3F) ppm; HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₅H₁₀F₃: 247.0740; found: 247.0744.

4-chloro-9-(trifluoromethyl)-9H-fluorene (2m): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2m** (18.7 mg, 35% yield) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 7.6 Hz, 1H), 7.66-7.62 (m, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.50-7.42 (m, 2H), 7.37-7.27 (m, 1H), 4.64 (q, J = 9.3 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 139.5 (q, J = 2.1 Hz), 138.9, 137.3 (q, J = 2.1 Hz), 130.8, 129.2, 129.1, 128.1, 128.1, 126.0 (q, J = 279.0 Hz), 125.6, 124.2, 51.3 (q, J = 29.3 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.73 (s, 3F) ppm; HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₄H₇F₃Cl: 267.0914; found: 267.0919.

4-isopropyl-9-(trifluoromethyl)-9H-fluorene (2n): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2n** (38.6 mg, 70% yield) as white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, J = 7.9 Hz, 1H), 7.77 (d, J = 7.5 Hz, 1H), 7.60 (d, J = 8.3 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.47 (d, J = 7.7 Hz, 1H), 7.42-7.35 (m, 2H), 4.60 (q, J = 9.4 Hz, 1H), 3.94 -3.76 (m, 1H), 1.45 (dd, J = 14.0, 6.8 Hz, 6H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 144.7, 142.6, 139.0, 137.8 (p, J = 2.0 Hz), 129.0, 127.6, 126.8, 126.4 (q, J = 279.0 Hz), 125.9 (d, J = 1.7 Hz), 125.6, 123.9, 123.3 (d, J = 1.8 Hz), 51.0 (q, J = 28.8 Hz), 29.5, 22.9, 22.6 ppm; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.70 (s, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₇H₁₄F₃: 275.1053; found: 275.1051.

7-(trifluoromethyl)-7H-benzo[c]fluorene (20): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave 20 (42.6 mg, 75% yield) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 8.5 Hz, 1H), 8.42 (d, J = 7.9 Hz, 1H), 8.01 (d, J = 8.1 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.88-7.82 (m, 2H), 7.74-7.68 (m, 1H), 7.62 (t, J = 7.5 Hz, 2H), 7.49-7.42 (m, 1H), 4.67 (q, J = 9.3 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 138.2, 137.6, 136.1, 134.5, 129.3, 129.3, 129.2, 128.7, 127.1, 126.8, 126.5 (q, J = 279.2 Hz), 126.1, 125.8, 123.9, 123.3, 123.0, 51.5 (q, J = 28.9 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.03 (s, 3F) ppm; HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₈H₁₀F₃: 283.0740; found: 283.0745.

1,3-di-tert-butyl-9-(trifluoromethyl)-9H-fluorene (2p): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2p** (58.1 mg, 84% yield) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.6 Hz, 1H), 7.68 (d, *J* = 1.8 Hz, 1H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.56 (d, *J* = 1.9 Hz, 1H), 7.47 (t, *J* = 7.3 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 5.21 (q, *J* = 7.5 Hz, 1H), 1.57 (s, 9H), 1.46 (s, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 151.8, 148.9, 143.3, 142.3, 138.8 (d, *J* = 1.9 Hz), 131.4 (q, *J* = 2.1 Hz), 128.7, 126.9, 126.2 (q, *J* = 280.6 Hz), 125.9, 125.4 (d, *J* = 1.6 Hz), 119.6, 114.8, 52.2 (q, *J* = 27.2 Hz), 37.7, 34.9, 32.4 (d, *J* = 1.9 Hz), 31.4 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -65.43 (s, 3F) ppm; HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₂₂H₂₄F₃: 345.1836; found: 345.1835.

1,3-dimethyl-9-(trifluoromethyl)-9H-fluorene (2q): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2q** (42.4 mg, 81% yield) as white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 7.5 Hz, 1H), 7.65-7.44 (m, 2H), 7.45-7.32 (m, 1H), 7.05 (s, 1H), 4.61 (q, *J* = 8.2 Hz, 1H), 2.51 (s, 3H), 2.48 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 143.0, 142.4, 139.1, 138.3 (d, *J* = 2.1 Hz), 136.0, 133.2, 130.9, 129.0, 127.2, 126.8 (q, *J* = 280.0 Hz), 126.2, 120.0, 118.5, 50.7 (q, *J* = 29.0 Hz), 21.4, 20.0 (q, *J* = 4.0 Hz) ppm; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.50 (d, *J* = 3.6 Hz, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₆H₁₂F₃: 261.0897; found: 261.0893.

11-(trifluoromethyl)-11H-benzo[b]fluorene (2r): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2r** (48.8 mg, 86% yield) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 8.5 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.97-7.88 (m, 2H), 7.83 (d, J = 7.6 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.67-7.58 (m, 1H), 7.57-7.49 (m, 2H), 7.46-7.37 (m, 1H), 5.04 (q, J = 8.1 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 142.8, 141.2, 138.5, 133.7, 133.4 (q, J = 1.7 Hz), 130.9, 130.7, 129.1, 129.1, 127.2, 127.0, 126.3 (q, J = 281.5 Hz), 126.1 (d, J = 1.9 Hz), 125.6, 125.1 (q, J = 4.2 Hz), 120.0, 118.4, 51.2 (q, J = 29.2 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -65.66 (s, 3F) ppm; HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₈H₁₀F₃: 283.0740; found: 283.0747.

3-isopropyl-9-(trifluoromethyl)-9H-fluorene (2s): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2s** (45.2 mg, 82% yield) as white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.6 Hz, 1H), 7.73 (d, *J* = 7.6 Hz, 1H), 7.70-7.63 (m, 2H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.39 (t, *J* = 8.1 Hz, 1H), 7.29 (dd, *J* = 7.9, 1.6 Hz, 1H), 4.59 (q, *J* = 9.5 Hz, 1H), 3.31-2.94 (m, 1H), 1.39 (d, *J* = 6.9 Hz, 6H) ppm; ¹³C **NMR** (101 MHz, CDCl₃) δ 150.2, 142.4, 142.3, 137.7 (q, *J* = 2.2 Hz), 134.9 (q, *J* = 2.2 Hz), 129.0, 127.4, 126.5 (q, *J* = 278.7 Hz), 126.1, 125.9, 125.7, 120.1, 118.1, 51.0 (q, *J* = 29.2 Hz), 34.3, 24.1 ppm; ¹⁹F **NMR** (376 MHz, CDCl₃) δ -67.81 (s, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻Calcd. for C₁₇H₁₄F₃: 275.1053; found: 275.1058.

3-methyl-9-(trifluoromethyl)-9H-fluorene (2t): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2t** (43.1 mg, 87% yield) as white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 7.6 Hz, 1H), 7.61 (d, *J* = 9.6 Hz, 2H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.21 (d, *J* = 7.7 Hz, 1H), 4.58 (q, *J* = 9.4 Hz, 1H), 2.50 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 142.3 (d, *J* = 3.9 Hz), 139. 0, 137.7 (q, *J* = 2.3 Hz), 134.5 (q, *J* = 2.3 Hz), 129.0, 128.5, 127.5, 126.4 (q, *J* = 278.7 Hz), 125.9 (d, *J* = 1.5 Hz), 125.6, 120.8, 120.1, 117.8, 51.0 (q, *J* = 29.3 Hz), 21.6 ppm; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.94 (s, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₅H₁₀F₃: 247.0740; found: 247.0746.

3-ethyl-9-(trifluoromethyl)-9H-fluorene (**2u**): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2u** (46.1 mg, 88% yield) as white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.6 Hz, 1H), 7.73 (d, *J* = 7.6 Hz, 1H), 7.64 (d, *J* = 8.8 Hz, 2H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.25 (d, *J* = 7.5 Hz, 1H), 4.59 (q, *J* = 9.5 Hz, 1H), 2.81 (q, *J* = 7.6 Hz, 2H), 1.37 (t, *J* = 7.6 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 145.5, 142.3, 137.7 (q, *J* = 2.1 Hz), 134.7 (q, *J* = 2.1 Hz), 129.0, 127.5 (d, *J* = 2.5 Hz), 126.4 (q, *J* = 278.7 Hz), 125.9 (d, *J* = 0.9 Hz), 125.68 (d, *J* = 0.9 Hz), 120.1, 119.6, 51.0 (q, *J* = 29.2 Hz), 29.0, 15.7 ppm; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.86 (s, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₆H₁₂F₃: 261.0897; found: 261.0899.

3-bromo-9-(trifluoromethyl)-9H-fluorene (2v): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2v** (21.7 mg, 35% yield) as white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (d, *J* = 1.6 Hz, 1H), 7.74 (dd, *J* = 17.5, 7.6 Hz, 2H), 7.64-7.48 (m, 3H), 7.42 (t, *J* = 7.5 Hz, 1H), 4.57 (q, *J* = 9.3 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 144.3, 140.9, 137.6 (d, *J* = 2.0 Hz), 136.0, 130.8, 129.3, 128.4, 127.3, 127.1 (q, *J* = 275.7 Hz), 126.0, 123.6, 123.5, 120.5, 51.0 (q, *J* = 29.6 Hz) ppm; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.83 (s, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₄H₇F₃Br: 310.9689; found: 310.9694.

3,9-bis(trifluoromethyl)-9H-fluorene (2w): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2w** (40.4 mg, 67% yield) as white solid; ¹**H** NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 1.7 Hz, 1H), 7.84 (t, *J* = 8.0 Hz, 2H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 1H), 4.68 (q, *J* = 9.3 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 143.0, 140.8, 137.4 (q, *J* = 2.1 Hz), 131.7 (q, *J* = 32.4 Hz), 130.1, 129.4, 128.6, 127.3, 126.3, 126.0, 124.4 (q, *J* = 3.7 Hz), 122.8 (q, *J* = 272.4 Hz), 120.7, 117.1 (q, *J* = 3.8 Hz), 51.4 (q, *J* = 29.7 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.45 (s, 3F), -67.60 (s, 3F) ppm; HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₅H₇F₆: 301.0457; found: 301.0451.

2,3-dimethyl-9-(trifluoromethyl)-9H-fluorene (2x): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2x** (42.9 mg, 82% yield) as white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 7.5 Hz, 1H), 7.58 (s, 1H), 7.53-7.45 (m, 2H), 7.36 (t, *J* = 7.5 Hz, 1H), 4.56 (q, *J* = 9.5 Hz, 1H), 2.40 (d, *J* = 5.6 Hz, 6H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 142.5, 140.0, 137.6, 137.4 (q, *J* = 2.2 Hz), 136.4, 135.0 (q, *J* = 2.3 Hz), 128.9, 127.0, 126.9, 126.5 (q, *J* = 278.6 Hz), 125.8 (d, *J* = 1.5 Hz), 121.3, 119.8, 51.0 (q, *J* = 29.2 Hz), 20.2, 20.1 ppm; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.87 (s, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₆H₁₂F₃: 261.0897; found: 261.0899.

10-(trifluoromethyl)-2,3-dihydro-10H-fluoreno[2,3-b][1,4]dioxine (**2y**): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 50:1) gave **2y** (39.7 mg, 68% yield) as white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.78-7.58 (m, 2H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.39-7.28 (m, 1H), 7.27 (s, 1H), 7.22 (s, 1H), 4.51 (q, *J* = 9.4 Hz, 1H), 4.33 (s, 4H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 144.6, 143.5, 142.1, 137.4 (q, *J* = 2.3 Hz), 135.7, 130.3 (q, *J* = 2.2 Hz), 129.0, 126.7, 126.3 (q, *J* = 278.7 Hz), 125.7, 119.5, 115.0, 108.9, 64.4, 64.4, 50.8 (q, *J* = 29.3 Hz) ppm; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -68.23 (s, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₆H₁₀F₃O₂: 291.0638; found: 291.0633.

2,9-bis(trifluoromethyl)-9H-fluorene (2z): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 50:1) gave **2z** (38.6 mg, 64% yield) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.87 (dd, *J* = 12.1, 7.8 Hz, 3H), 7.77 (dd, *J* = 8.0, 3.1 Hz, 3H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.50 – 7.45 (m, 2H), 4.67 (q, *J* = 9.3 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 140.7, 137.8 (d, *J* = 2.1 Hz), 137.7 (q, *J* = 2.2 Hz), 129.7 (q, *J* = 32.4 Hz), 129.4, 128.9, 126.5 (q, *J* = 3.9 Hz), 126.1 (d, *J* = 1.5 Hz), 125.9 (d, *J* = 278.9 Hz), 125.5, 122.9 (q, *J* = 5.1 Hz), 121.0, 120.4, 51.3 (q, *J* = 29.7 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.98 (s, 3F), -67.67 (d, *J* = 9.4 Hz, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻Calcd. for C₁₅H₇F₆: 301.0457; found: 301.0452.

4-fluoro-9-(trifluoromethyl)-9H-fluorene (**2aa**): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 50:1) gave **2aa** (39.3 mg, 78% yield) as white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.6 Hz, 1H), 7.72 (d, *J* = 7.5 Hz, 1H), 7.57-7.48 (m, 2H), 7.42 (td, *J* = 7.6, 1.2 Hz, 1H), 7.35 (td, *J* = 7.9, 5.1 Hz, 1H), 7.24-7.16 (m, 1H), 4.67 (q, *J* = 9.3 Hz, 1H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 159.5, 157.0, 139.8 (dd, *J* = 6.1, 2.2 Hz), 139.3 (d, *J* = 3.1 Hz), 136.6 (q, *J* = 2.3 Hz), 129.4, 128.9 (d, *J* = 7.2 Hz), 127.8, 126.0 (q, *J* = 278.8 Hz), 125.7, 123.8 (d, *J* = 6.1 Hz), 121.7 (dd, *J* = 3.3, 1.4 Hz), 116.3 (d, *J* = 19.7 Hz), 51.7 (q, *J* = 29.5, 28.8 Hz) ppm; ¹⁹**F NMR** (376 MHz, CDCl₃) δ - 67.81 (d, *J* = 9.3 Hz, 1F), -119.53 (dd, *J* = 9.8, 5.0 Hz, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₄H₇F₄: 251.0489; found: 251.0482.

2-(tert-butyl)-6-methyl-9-(trifluoromethyl)-9H-fluorene (2ab): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 100:1) gave **2ab** (49.8 mg, 82% yield) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 2.0 Hz, 1H), 7.69-7.63 (m, 2H), 7.56-7.50 (m, 2H), 7.29 (d, J = 7.4 Hz, 1H), 4.55 (q, J = 9.6 Hz, 1H), 2.47 (s, 3H), 1.42 (s, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 150.6, 139.6, 139.5, 137.6 (d, J = 2.5 Hz), 137.2 (d, J = 2.2 Hz), 137.1, 129.8, 126.5, 126.5 (q, J = 278.6 Hz), 126.1, 122.8 (d, J = 1.5 Hz), 119.7, 119.3, 51.1 (q, J = 29.0 Hz), 35.0, 31.5, 21.6 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.69 (s, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₉H₁₈F₃: 303.1366; found: 303.1369.

2-methoxy-7,9-bis(trifluoromethyl)-9H-fluorene (**2ac**): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 50:1) gave **2ac** (35.2 mg, 53% yield) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.87 (dd, *J* = 12.1, 7.8 Hz, 2H), 7.77 (dd, *J* = 8.0, 3.1 Hz, 2H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.50-7.45 (m, 1H), 4.67 (q, *J* = 9.3 Hz, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 160.6, 145.6, 139.7 (q, J = 2.0 Hz), 137.1 (q, *J* = 2.1 Hz), 133.5, 128.6 (q, J = 141.5 Hz), 126.6 (q, *J* = 278.7 Hz), 126.5 (q, *J* = 3.8 Hz), 122.8, 121.9, 119.5, 115.5, 111.7, 55.7, 51.2 (q, *J* = 29.7 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.85 (s, 3F), -67.75 (d, *J* = 9.3 Hz, 3F) ppm; HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₆H₉F₆O: 331.0563; found: 3310561.

2-(1-([1,1'-biphenyl]-4-yl)-2,2,2-trifluoroethyl)thiophene (5a): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 50:1) gave **5a** (47.0 mg, 74% yield) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (t, *J* = 7.2 Hz, 4H), 7.59-7.45 (m, 4H), 7.43-7.31 (m, 2H), 7.23- 7.01 (m, 2H), 5.00 (q, *J* = 9.3 Hz, 0.8H, Major isomer), 4.86 (q, *J* = 9.5 Hz, 0.2H, Minor isomer) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 140.4, 137.1, 133.8, 129.5, 128.9, 127.6, 127.6, 127.5, 127.2, 127.0, 125.9, 123.9, 51.0 (q, *J* = 29.2 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.51 (s, 3F) ppm; HRMS (ESI-TOF) m/z: [M - H]⁻Calcd. for C₁₈H₁₂F₃S: 317.0617; found: 317.0612.

2-(1-([1,1'-biphenyl]-4-yl)-2,2,2-trifluoroethyl)-5-methylthiophene (**5b**): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 50:1) gave **5b** (47.0 mg, 74% yield) as white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.76–7.33 (m, 9H), 6.93 (s, 1H), 6.69 (s, 1H), 4.89 (q, *J* = 9.5 Hz, 0.88H, Major isomer), 4.80 (d, *J* = 9.8 Hz, 0.12H, Minor isomer), 2.49 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 141.3, 140.6, 140.4, 134.5, 134.0, 129.4, 128.9, 127.6, 127.5, 127.5, 127.2, 125.1, 123.1 (d, *J* = 224.8 Hz), 51.1 (q, *J* = 29.0 Hz), 15.2 ppm; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.88 (s, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₉H₁₄F₃S: 331.0774; found: 331.0778.

2-(2,2,2-trifluoro-1-(naphthalen-2-yl)ethyl)thiophene (**5c**): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 50:1) gave **5c** (32.1 mg, 55% yield) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.05-7.80 (m, 4H), 7.69-7.45 (m, 3H), 7.40-7.02 (m, 3H), 5.12 (q, *J* = 9.3 Hz, 0.8H, Major isomer), 4.98 (q, *J* = 9.6 Hz, 0.2H, Minor isomer) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 137.2, 133.3, 133.1, 132.3, 128.7, 128.5, 128.2, 127.7, 127.6, 127.0, 126.7, 126.6, 126.4, 126.0, 51.4 (q, *J* = 29.2 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.51 (s, 3F) ppm; HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₆H₁₀F₃S: 291.0461; found: 291.0465.

2-(1-(4-(benzyloxy)phenyl)-2,2,2-trifluoroethyl)thiophene (5d): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 30:1) gave **5d** (54.2 mg, 78% yield) as white solid; ¹**H NMR** (400

MHz, CDCl₃) δ 7.62-6.93 (m, 11H), 5.10 (s, 2H), 4.89 (q, J = 9.3 Hz, 0.87H, Major isomer), 4.75 (q, J = 9.6 Hz, 0.13H, Minor isomer) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 137.6, 136.8, 130.3, 128.7, 128.1, 127.6, 127.3, 126.9, 125.7, 124.3, 122.6 (d, J = 213.8 Hz), 115.1, 70.1, 50.5 (q, J = 29.1 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.55 (s, 3F) ppm; HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₉H₁₄F₃SO: 347.0723; found: 347.0727.

6-(2,2,2-trifluoro-1-(thiophen-2-yl)ethyl)-2,3-dihydrobenzo[b][1,4]dioxine (5e): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 30:1) gave **5e** (31.2 mg, 52% yield) as white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.40-7.22 (m, 1H), 7.15-6.82 (m, 5H), 4.82 (q, *J* = 9.3 Hz, 0.85H, Major isomer), 4.68 (q, *J* = 9.7 Hz, 0.15H, Minor isomer), 4.28 (s, 4H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 143.8, 143.6, 137.4, 127.9, 127.3, 126.9, 125.7, 123.6 (d), 122.2 (d, *J* = 16.3 Hz), 118.0, 117.5, 64.4, 64.3, 50.5 (q, *J* = 29.2 Hz) ppm; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -67.86 (s, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₄H₁₀F₃SO₂: 299.0359; found: 299.0364.

2-(1-([1,1'-biphenyl]-4-yl)-2,2,2-trifluoroethyl)benzo[b]thiophene (**5f**): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 50:1) gave **5f** (49.3 mg, 60% yield) as white solid; ¹**H NMR** (400 MHz, CDCl₃) δ 8.14-7.34 (m, 14H), 5.15 (q, J = 9.3 Hz, 0.7H, Major isomer), 5.05 (q, J = 9.3 Hz, 0.2H, Minor isomer) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 141.4, 140.4, 140.0, 138.1, 132.8, 129.8, 129.6, 128.8, 127.6, 127.5, 127.1, 124.7, 124.4, 123.8, 122.9, 121.7, 49.6 (q, J = 28.6 Hz) ppm; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -66.60 (s, 3F) ppm; **HRMS** (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₂₂H₁₄F₃S: 367.0774; found: 367.0778.

2-(1-(4-butoxyphenyl)-2,2,2-trifluoroethyl)-5-methylthiophene (5g): Flash column chromatography on a silica gel (petroleum ether-EtOAc = 30:1) gave 5g (37.6 mg, 60% yield) as white solid ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.2 Hz, 2H), 7.11-6.79 (m, 3H), 6.67 (d, J = 3.6 Hz, 1H), 4.79 (q, J = 9.7 Hz, 1H), 4.00 (t, J = 6.3 Hz,2H), 2.47 (s, 3H), 1.93-1.70 (m, 2H), 1.54 (q, J = 7.4 Hz, 2H), 1.02 (t, J = 7.3 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 140.3, 135.2, 130.1, 127.1, 126.9, 125.0, 124.4, 114.7, 67.7, 50.6 (q, J = 29.1 Hz), 31.3, 19.3, 15.2, 13.9 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -67.93 (s, 3F) ppm; HRMS (ESI-TOF) m/z: [M - H]⁻ Calcd. for C₁₇H₁₈F₃SO: 327.1036; found: 327.1038.

VIII.X-Ray data for 2q and 2x

X-ray for 2q

Fig S5. X-ray structure of 2q

Identification code	A
Empirical formula	C16H13F3
Formula weight	262.26
Temperature/K	193.00
Crystal system	monoclinic
Space group	P21/c
a/Å	12.8122(6)
b/Å	4.8770(2)
c/Å	20.0701(9)
α/°	90
β/°	98.304(2)
γ/°	90
Volume/Å3	1240.93(10)
Z	4
pcalcg/cm3	1.404
μ/mm-1	0.604
F(000)	544.0
Crystal size/mm3	$0.13 \times 0.12 \times 0.1$
Radiation	$GaK\alpha (\lambda = 1.34139)$
2Θ range for data collection/°	6.066 to 120.762
Index ranges	$-16 \le h \le 14, -6 \le k \le 6, -23 \le l \le 25$
Reflections collected	7925
Independent reflections	2603 [Rint = 0.0400, Rsigma = 0.0394]
Data/restraints/parameters	2603/0/174
Goodness-of-fit on F2	1.100
Final R indexes [I>= 2σ (I)]	R1 = 0.0578, wR2 = 0.1846
Final R indexes [all data]	R1 = 0.0647, wR2 = 0.1934

X-ray for **2x**

Fig S6. X-ray structure of **2x**

Identification code	A			
Empirical formula	C16H13F3			
Formula weight	262.26			
Temperature/K	193.00			
Crystal system	triclinic			
Space group	P-1			
a/Å	4.8272(4)			
b/Å	9.3359(8)			
c/Å	14.3768(13)			
α/°	87.031(4)			
β/°	80.964(4)			
γ/°	77.047(3)			
Volume/Å3	623.49(9)			
Z	2			
pcalcg/cm3	1.397			
μ/mm-1	0.601			
F(000)	272.0			
Crystal size/mm3	$0.13 \times 0.12 \times 0.1$			
Radiation	$GaK\alpha (\lambda = 1.34139)$			
2Θ range for data collection/°	9.968 to 120.3			
Index ranges	$-6 \le h \le 6, -11 \le k \le 12, -18 \le l \le 18$			
Reflections collected	6808			
Independent reflections	2690 [Rint = 0.0497, Rsigma = 0.0551]			
Data/restraints/parameters	2690/0/175			
Goodness-of-fit on F2	1.088			
Final R indexes [I>= 2σ (I)]	R1 = 0.0715, $wR2 = 0.2043$			
Final R indexes [all data]	R1 = 0.0776, wR2 = 0.2135			
Largest diff. peak/hole / e Å-30.41/-0.46				

IX. References

- 1. H. Guo, S. Zhang, X.-J. Feng, X. Yu, Y. Yamamoto, and M. Bao, Org. Lett. 2022, 24, 2596.
- 2. H.-J. Tang, L.-Z. Lin, C. Feng, and T.-P. Loh, Angew. Chem. Int. Ed. 2017, 56, 9872.

¹H NMR spectrum of **2b** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2b** (376 MHz, CDCl₃)

S26

¹⁹F NMR spectrum of **2d** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2e** (101 MHz, CDCl₃)

¹⁹F NMR spectrum of **2f** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2g** (101 MHz, CDCl₃)

¹⁹F NMR spectrum of **2h** (376 MHz, CDCl₃)

1

¹H NMR spectrum of **2j** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2j** (376 MHz, CDCl₃)

S38

¹⁹F NMR spectrum of **2l** (376 MHz, CDCl₃)

S41

¹⁹F NMR spectrum of **2n** (376 MHz, CDCl₃)

S44

¹⁹F NMR spectrum of **2p** (376 MHz, CDCl₃)

¹H NMR spectrum of **2r** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **2r** (376 MHz, CDCl₃)

¹⁹F NMR spectrum of **2t** (376 MHz, CDCl₃)

S54

¹⁹F NMR spectrum of **2v** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2w** (101 MHz, CDCl₃)

¹⁹F NMR spectrum of **2x** (376 MHz, CDCl₃)

1

S62

¹⁹F NMR spectrum of **2ab** (376 MHz, CDCl₃)

¹³C NMR spectrum of **2ac** (101 MHz, CDCl₃)

¹H NMR spectrum of **5a** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **5a** (376 MHz, CDCl₃)

¹³C NMR spectrum of **5b** (101 MHz, CDCl₃)

CL-C-F-NMR-0825-5.1.fid

¹⁹F NMR spectrum of **5c** (376 MHz, CDCl₃)

¹³C NMR spectrum of **5d** (101 MHz, CDCl₃)

¹⁹F NMR spectrum of **5e** (376 MHz, CDCl₃)

 1 H NMR spectrum of **5g** (400 MHz, CDCl₃)

¹⁹F NMR spectrum of **5g** (376 MHz, CDCl₃)