Supporting Information for

Metal-Free Reductive Acyldifluoroalkylation of Alkenes through Cooperative NHC and Organophotocatalysis

Zhenhui Wang,^{†,§} Xiaofeng Li,^{†,§} Wei Li,[†] Yongyong Cao,^{*,‡} and Huaifeng Li^{*,†}

[†]State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China [‡]College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China

<u>cyy@zjxu.edu.cn</u> <u>huaifengli@gxnu.edu.cn</u>

Table of Contents

General information	S1
Synthesis of substrates	S2
Optimization of the reaction conditions	S4
General procedures for the synthesis of products	S7
Procedure for gram-scale reaction	
Procedure for radical clock experiment	S8
Procedure for searching possible intermediates using acylazonium ions.	S9
Procedure for light on and off experiment	S9
Procedure for fluorescence quenching experiment	S10
Compound characterization	S13
References	S32
NMR spectra	S33
HRMS of TEMPO-trapped product	S94
HRMS of radical clock probe-trapped product	S95

General information

All reactions at elevated temperatures were performed under heating in an oil bath. Unless otherwise noted, all reagents and solvents were obtained commercially and used without further purification. Column chromatography on silica gel (300-400 mesh) was carried out using technical grade 60-90 °C petroleum ether and analytical grade EA (without further purification). ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a 400 MHz or 600 MHz spectrometer. Chemical shifts were reported in ppm. ¹H NMR spectra were referenced to CDCl₃ (7.26 ppm), and ¹³C NMR spectra were referenced to CDCl₃ (77.0 ppm). Peak multiplicities were designated by the following abbreviations: s, singlet; d, doublet; t, triplet; m, multiplet; brs, broad singlet and J, coupling constant in Hz. The HRMS spectrum was measured by micromass QTOF2 Quadrupole/Time of Flight Tandemmass spectrometer with electron spray ionization. The Blue LED strips were purchased from https://item.taobao.com/item.htm?spm=a1z0d.6639537/tb.1997196601.3.7d5a7484Ikj j4H&id=607819098151.

Synthesis of substrates

1b-1t were prepared according to the literature procedure¹ (Taking **1d** as an example):

A Schlenk flask filled with N_2 was added diethylaminodifluorosulfinium tetrafluoroborate (1.0 equiv) and *p*-methoxybenzoic acid in dichloromethane (5 mL/mmol substrate) at room temperature. The triethylamine trihydrofluoride (1.0 equiv) was added and the resulting mixture was stirred for 6 h at room temperature. The reaction was quenched with a 5% NaHCO₃ aqueous solution, stirred until the effervescence ceased. The resulting mixture was extracted three times with DCM. The organic phases were combined, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (PE:EA = 40:1), affording the product aroyl fluorides **1d** (60% yield). HRMS spectra of aroyl fluorides could not be obtained using standard ionization methods due to the lack of stability of these compounds under the experimental conditions.

2t and 2u were prepared according to the literature procedure² (Taking 2u as an example):

In a dry round-bottomed flask, the 3-(4-biphenyl carbonyl) propionic acid (1.27 g, 5.0 mmol), K_2CO_3 (1.04 g, 7.5 mmol) and KI (1.25 g, 7.5 mmol) were placed and DMF (25 mL) was added. Then, 4-chloromethyl styrene (839 mg, 5.5 mmol) was added and stirred overnight. Upon completion of the reaction, EtOAc (50 mL) and H₂O (50 mL) were added. The reaction mixture was extracted and washed three times with H₂O (50 mL). The organic layer was washed with a saturated NaCl solution (100 mL). Then, it was dried with Na₂SO₄, condensed under reduced pressure. The residue was purified by column chromatography to give the target product **2u** (82% yield).

Figure S1. The set-up for the reaction (photographed by X.F. Li)

Optimization of the reaction conditions

Table S1. Screening of the additive^a

^a**1a** (0.40 mmol), **2a** (0.20 mmol), **3** (0.40 mmol),4CzIPN (0.005 mmol), additive (0.40 mmol), NHC-I (0.04 mmol) and DCM (2 mL) ^bYields were determined by ¹⁹F NMR using PhCF₃ as the internal standard. DIPEA = *N*,*N*-diisopropylethylamine, DABCO = 1,4-diazabicyclo[2.2.2]octane, TEA = triethylamine, DIPA = diisopropylamine, TEEDA = *N*,*N*,*N*,*N*tetraethylethylenediamine, TMG = 1,1,3,3-Tetramethylguanidine, PMDETA = *N*,*N*,*N'*,*N''*-pentamethyldiethylenetriamine.

Table S2. Screening of the photocatalyst^a

Ph + Ph + Ph + Ph + 1a + 2a	+ Br <mark>C</mark> F	CF ₂ CO ₂ Et <u>PC, NHC-I, DIPEA</u> 10 W blue LED, DCM 3		Ph Ph CF ₂ CO ₂ Et 4a
	entry	PC	yield ^b (%)	
	1	no	N.R.	
	2	4CzIPN	27	
	3	Ru(bpy) ₃ (PF ₆) ₂	N.R.	
	4	lr(ppy) ₃	N.R.	
	5	TXO	N.R.	
	6	[lr(dtbbpy)(ppy)2]PF6	Trace	
	7	[Acr-Mes]⁺(ClO ₄)⁻	N.R.	
	8	EosinY	Trace	

^a**1a** (0.40 mmol), **2a** (0.20 mmol), **3** (0.40 mmol), PC (0.005 mmol), DIPEA (0.40 mmol), NHC-I (0.04 mmol), and DCM (2 mL) ^bYields were determined by ¹⁹F NMR using PhCF₃ as the internal standard.

Table S3. Screening of the solvent^a

Ph F +	Ph + 2a	BrCF ₂ CO ₂ Et 3	4CzIPN, 10 W blu	NHC-I, DIPEA	Ph Ph 4a
		entry	solvent	yield ^b (%)	
		1	DCM	27	_
		2	DCE	25	
		3	THF	N.R.	
		4	CH ₃ CN	N.R.	
		5	toluene	N.R.	
		6	CH ₃ OH	N.R.	
		7	DMSO	36	
		8	DMF	30	
		9	DMAC	31	
		10	NMP	23	
		11	EA	N.R.	
		12	acetone	N.R.	
		13	^t BuOH	9	
		14	IPA	10	

^a**1a** (0.40 mmol), **2a** (0.20 mmol), **3** (0.40 mmol), 4CzIPN (0.005 mmol), DIPEA (0.40 mmol), ,NHC-I (0.04 mmol) and solvent (2 mL) ^bYields were determined by ¹⁹F NMR using PhCF₃ as the internal standard

Table S4. Screening of the NHC catalyst^a

^a**1a** (0.40 mmol), **2a** (0.20 mmol), **3** (0.40 mmol), 4CzIPN (0.005 mmol), DIPEA (0.40 mmol), NHC (0.04 mmol) and DMSO (2 mL) ^bYields were determined by ¹⁹F NMR using PhCF₃ as the internal standard

Table S5. Screening of the feed ratio

Ph F + Ph + BrCF ₂ CO ₂ Et $\frac{4CZIPN, NHC-IV, DIPEA}{10 W blue LED, DMSO}$ Ph CF_2C 1a 2a 3 4a	©₂Et
entry 1a: 2a: 3 yield ^b (%)	
1 2:1:2 45	
2 2:2:1 54	
3 1:2:2 30	
4 3:2:1 60	
5 2:3:1 54	
6 3:3:1 76	

^aReaction performed on 0.2 mmol scale, 4CzIPN (0.005 mmol), DIPEA (0.40 mmol), NHC-IV (0.04 mmol) and DMSO (2 mL). ^bYields were determined by ¹⁹F NMR using PhCF₃ as the internal standard.

Table S6. Screening of the light source^a

	Ph +	BrCF ₂ C	$O_2Et \frac{4CzIPN}{10 W bb}$	NHC-IV, DIPE	O Ph CE CO Et
1a	2a	3		IE LED, DIVISO	Ph 4a
		entry	LEDs	yield ^b (%)	
		1	no	N.R.	
		2	455nm,10w	76	
		3	white, 10w	N.R.	
		4	395nm, 10w	N.R.	
		5	520nm, 10w	N.R.	
		6	455nm, 30w	40	
		7	455nm, 8w	77	
		8	455nm, 6w	80	
		9	455nm, 4w	84 (79)	
		10	455nm, 2w	40	
		11 ^c	455nm, 4w	30	

^a**1a** (0.60 mmol), **2a** (0.60 mmol), **3** (0.20 mmol), 4CzIPN (0.005 mmol), DIPEA (0.40 mmol), NHC-**IV** (0.04 mmol) and solvent (2 mL). ^bYields were determined by ¹⁹F NMR using PhCF₃ as the internal standard. ^cno N₂.

Table S7. Unsuccessful substrates for the alkenes

tri- and tetrasubstituted styrene derivatives

General procedures for the synthesis of products

Under an N2 atmosphere, a 25 mL sealed tube equipped with a stir bar was charged

with 1 (0.6 mmol), 2 (0.6 mmol), 3 (0.2 mmol, 40.6 mg), NHC-IV (0.04 mmol, 14.5 mg), DIPEA (0.4 mmol, 51.7 mg), 4CzIPN (0.005 mmol, 4.0 mg), and DMSO (2 mL). The reaction mixture was stirred at room temperature under 4 W blue light. After 12 hours, the reaction mixture was quenched with water, extracted with ethyl acetate three times, combined with the organic layer, washed with brine three times, collected the first washed water layer, and extracted with ethyl acetate. The combined organic layer was then dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Finally, the product was purified by silica gel column chromatography (PE/EA = 40:1 to 10:1).

Procedure for gram-scale reaction

Under an N₂ atmosphere, a 100 mL sealed tube equipped with a stir bar was charged with **1a** (14.4 mmol, 1.79 g), **2a** (14.4 mmol, 1.5 g), **3** (4.8 mmol, 974.4 mg), NHC-IV (0.96 mmol, 348 mg), DIPEA (9.6 mmol, 1.24 g), 4CzIPN (0.12 mmol, 96 mg), and DMSO (48 mL). The reaction mixture was stirred at room temperature under 4 W blue light. After 12 hours, the reaction mixture was quenched with water, extracted with ethyl acetate three times, combined with the organic layer, washed with brine three times, collected the first washed water layer, and extracted with ethyl acetate. The combined organic layer was then dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Finally, the product **4a** was purified by silica gel column chromatography (PE/EA = 40:1).

Procedure for radical clock experiment

In an N₂ atmosphere, **1a** (0.60 mmol, 74.4 mg), **2a** (0.6 mmol, 62.5 mg), **3** (0.2 mmol, 40.6 mg), NHC-IV (0.04 mmol, 14.5 mg), DIPEA (0.4 mmol, 51.7 mg), 4CzIPN (0.005 mmol, 4.0 mg), and DMSO (2 mL) were combined with α -cyclopropyl styrene **7** (0.2 mmol, 29 mg). The reaction mixture was stirred at room temperature under 4W blue light. After 12 hours, the reaction mixture was quenched with water, extracted with ethyl acetate three times, combined with the organic layer, washed with brine three times, collected the first washed water layer, and extracted with ethyl acetate. The

combined organic layer was then dried over anhydrous Na_2SO_4 , filtered, and concentrated under reduced pressure. A small number of samples were taken for HRMS analysis. Finally, the residue was purified by silica gel column chromatography to obtain **4a** (20.6 mg, 31% yield) and 8 (12.77 mg, 24% yield).

Procedure for searching possible intermediates using acylazonium ions

In the N₂ atmosphere, compound **9** (0.6 mmol, 210.0 mg), **2a** (0.6 mmol, 62.5 mg), **3** (0.2 mmol, 40.6 mg), DIPEA (0.4 mmol, 51.7 mg), 4CzIPN (0.005 mmol, 4.0 mg), and DMSO (2 mL) were combined. The reaction mixture was stirred at room temperature under 4W blue light. After 12 hours, the reaction mixture was quenched with water, extracted three times with ethyl acetate. The combined organic layers were washed three times with brine, and the first washed water layer was collected. The organic layer was further extracted with ethyl acetate and combined with the previous organic layer. Anhydrous Na₂SO₄ was added for drying, followed by filtration and concentration under reduced pressure. Finally, the product was purified by silica gel column chromatography to afford **4a** (45.8 mg, 69% yield).

Procedure for light on and off experiment

In the N₂ atmosphere, **1a** (0.60 mmol, 74.4 mg), **2a** (0.6 mmol, 62.5 mg), **3** (0.2 mmol, 40.6 mg), NHC-IV (0.04 mmol, 14.5 mg), DIPEA (0.4 mmol, 51.7 mg), 4CzIPN (0.005 mmol, 4.0 mg), and DMSO (2 mL) were combined. PhCF₃ (0.2 mmol, 29.2 mg) was added as the internal standard, and samples were taken every two hours. Simultaneously, the lamp was switched on and off, and each time 150 μ L of reaction liquid was taken and dissolved in CDCl₃ (0.5 mL). The product was then characterized by ¹⁹F NMR, and the yield of product at different times was calculated. The plotted yield transformation curve over time showed no significant change in reaction yield during the period when the light was turned off, indicating that the reaction is not a chain reaction process.

Figure S2. Time profile of the transformation with the light ON/OFF over time

Procedure for fluorescence quenching experiment

4CzIPN (0.01 mmol, 7.89 mg) was dissolved in DCE (1.0 mL), and then 100 μL of the

solution was further dissolved in DCE (900 μ L). Subsequently, 250 μ L of the solution was dissolved in DCE (4.750 mL), and the resulting solution was stored away from light. DIPEA (0.01 mmol, 17.28 μ L) was dissolved in DCE (1.0 mL), and then 50 μ L of the solution was further dissolved in DCE (950 μ L) and stored away from light. BrCF₂COOEt (0.01 mmol, 12.82 μ L) was dissolved in DCE (1.0 mL), and then 50 μ L of the solution was further dissolved in DCE (950 μ L) and stored away from light. A cuvette was further dissolved in DCE (950 μ L) and stored away from light. A cuvette was filled with 4CzIPN solution (2.0 mL) to measure the fluorescence absorption and record the data. Then, DIPEA or BrCF₂COOEt (20 μ L) solution was added successively, and the data were recorded for each addition.

Figure S3. Fluorescence emission spectra of 4CzIPN in DCE with different concentration of 3

Figure S4. Fluorescence emission spectra of 4CzIPN in DCE with different concentration of DIPEA

Figure S5. Stern-Volmer fluorescence quenching studies including substrate 3 and substrate DIPEA.

Compound characterization

ethyl 2,2-difluoro-5-oxo-4,5-diphenylpentanoate (4a). The product (52.5 mg, 79%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 30:1). This compound is known.³ ¹H NMR (400 MHz, CDCl₃) δ 7.88 - 7.86 (m, 2H), 7.41 - 7.37 (m, 1H), 7.29 (t, *J* = 7.6 Hz, 2H), 7.22 - 7.18 (m, 4H), 7.14 - 7.09 (m, 1H), 4.88 (dd, *J* = 8.0, 5.0 Hz, 1H), 4.07 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.95 (dq, *J* = 10.8, 7.2 Hz, 1H), 3.19 (tdd, *J* = 16.7, 14.9, 8.1 Hz, 1H), 2.46 (tdd, *J* = 16.5, 14.9, 5.0 Hz, 1H), 1.12 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl3) δ -104.3 (d, *J* = 34.2 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 197.4, 163.9 (t, *J* = 32.6 Hz), 137.9, 135.9, 133.3, 129.3, 128.9, 128.7, 128.3, 127.8, 115.4 (t, *J* = 250.6 Hz), 63.0, 47.0 (t, *J* = 4.0 Hz), 38.3 (t, *J* = 23.4 Hz), 13.8.

ethyl 2,2-difluoro-5-oxo-4-phenyl-5-(p-tolyl)pentanoate (4b). The product (45 mg, 65%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 30:1). This compound is known.³ ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.3 Hz, 2H), 7.31 - 7.28 (m, 4H), 7.22 - 7.18 (m, 3H), 4.94 (dd, *J* = 7.9, 5.1 Hz, 1H), 4.16 (dq, *J* = 10.8, 7.2 Hz, 1H), 4.04 (dq, *J* = 10.8, 7.2 Hz, 1H), 3.26 (tdd, *J* = 16.7, 15.0, 7.9 Hz, 1H), 2.54 (tdd, *J* = 16.4, 15.0, 5.1 Hz, 1H), 2.35 (s, 3H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, *J* = 35.9 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 197.0, 163.9 (t, *J* = 32.6 Hz), 144.2, 138.1, 133.3, 129.4, 129.3, 129.1, 128.3, 127.7, 115.5 (t, *J* = 250.5 Hz), 63.0, 46.8 (t, *J* = 3.9 Hz), 38.3 (t, *J* = 23.4 Hz), 21.7, 13.8.

ethyl 5-(4-(tert-butyl)phenyl)-2,2-difluoro-5-oxo-4-phenylpentanoate (4c). The product (40.4 mg, 52%) as a pale yellow oily liquid was purified with silica gel

chromatography (PE/EA = 30:1). ¹**H NMR** (500 MHz, CDCl₃) δ 7.92 (d, *J* = 8.1 Hz, 2H), 7.41 (d, *J* = 8.2 Hz, 2H), 7.33 - 7.28 (m, 4H), 7.23 - 7.20 (m, 1H), 4.97 (d, *J* = 5.6 Hz, 1H), 4.17 (dq, *J* = 10.5, 7.2 Hz, 1H), 4.05 (dq, *J* = 10.6, 7.2 Hz, 1H), 3.27 (qd, *J* = 16.1, 7.9 Hz, 1H), 2.54 (qd, *J* = 16.2, 5.0 Hz, 1H), 1.29 (s, 9H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -104.4 (d, *J* = 43.8 Hz, 2F). ¹³**C NMR** (126 MHz, CDCl₃) δ 196.9, 163.9 (t, *J* = 32.5 Hz), 157.1, 138.2, 133.2, 129.3, 128.9, 128.4, 127.7, 125.7, 115.4 (t, *J* = 250.6 Hz), 63.0, 46.8 (t, *J* = 3.9 Hz), 38.4 (t, *J* = 23.3 Hz), 35.2, 31.1, 13.8. **HRMS**: calcd for C₂₃H₂₄F₂O₃⁺ (M+H)⁺: 389.1923; found 389.1932.

ethyl 2,2-difluoro-5-(4-methoxyphenyl)-5-oxo-4-phenylpentanoate (4d). The product (39.1 mg, 54%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 20:1). This compound is known.³ ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.9 Hz, 2H), 7.29 - 7.28 (m, 4H), 7.24 - 7.19 (m, 1H), 6.86 (d, J = 8.8 Hz, 2H), 4.90 (dd, J = 7.9, 5.1 Hz, 1H), 4.16 (dq, J = 10.8, 7.1 Hz, 1H), 4.04 (dq, J = 10.7, 7.2 Hz, 1H), 3.81 (s, 3H), 3.25 (tdd, J = 16.6, 14.9, 7.9 Hz, 1H), 2.53 (tdd, J = 16.3, 14.9, 5.1 Hz, 1H), 1.22 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 104.4 (d, J = 24.0 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 195.8, 163.9 (t, J = 32.6 Hz), 163.7, 138.4, 131.3, 129.3, 128.8, 128.3, 127.7, 115.5 (t, J = 250.6 Hz), 113.9, 63.0, 55.6, 46.6 (t, J = 3.9 Hz), 38.3 (t, J = 23.3 Hz), 13.9.

ethyl 5-([1,1'-biphenyl]-4-yl)-2,2-difluoro-5-oxo-4-phenylpentanoate (4e). The product (60.4 mg, 74%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.1 Hz, 2H), 7.58 (d, J = 8.1 Hz, 2H), 7.53 (d, J = 7.4 Hz, 2H), 7.41 (t, J = 7.4 Hz, 2H), 7.36 - 7.28 (m, 5H), 7.21 (d, J = 7.5 Hz, 1H), 4.98 (dd, J = 8.0, 5.0 Hz, 1H), 4.15 (dq, J = 10.8, 7.1 Hz, 1H), 4.04 (dq, J = 10.8, 7.2 Hz, 1H), 3.29 (qd, J = 16.2, 8.0 Hz, 1H), 2.55 (qd, J = 16.1, 5.0 Hz, 1H), 1.21 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.3 (d, J = 36.7 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 196.9, 163.9 (t, J = 32.5 Hz),

146.0, 139.8, 138.0, 134.5, 131.3, 129.5, 129.4, 129.0, 128.4, 127.8, 127.4, 127.3, 115.4 (t, J = 250.6 Hz), 63.0, 47.0 (t, J = 3.9 Hz), 38.3 (t, J = 23.4 Hz), 13.8. **HRMS**: calcd for C₂₅H₂₃F₂O₃⁺ (M+H)⁺: 409.1610; found 409.1618.

ethyl 2,2-difluoro-5-oxo-4-phenyl-5-(4-(trifluoromethyl)phenyl)pentanoate (4f). The product (44 mg, 55%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 30:1). This compound is known.⁴ ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.1 Hz, 2H), 7.68 (d, *J* = 8.2 Hz, 2H), 7.35 - 7.28 (m, 5H), 4.96 (dd, *J* = 8.2, 4.7 Hz, 1H), 4.21 (dq, *J* = 10.7, 7.1 Hz, 1H), 4.12 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.32 (ddt, *J* = 25.1, 16.9, 8.2 Hz, 1H), 2.56 (qd, *J* = 15.5, 4.7 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2 (s, 3F), -104.5 (d, *J* = 50.4 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 163.9 (t, *J* = 32.5 Hz), 138.7, 137.2, 134.5 (q, *J* = 32.7 Hz), 129.6, 129.2, 128.3, 128.1, 125.8 (q, *J* = 3.8 Hz), 123.6 (q, *J* = 272.7 Hz), 115.2 (t, *J* = 250.9 Hz), 63.2, 47.5 (t, *J* = 3.9 Hz), 38.2 (t, *J* = 23.4 Hz), 13.9.

ethyl 2,2-difluoro-5-oxo-4-phenyl-5-(4-(trifluoromethoxy)phenyl)pentanoate (4g). The product (44.9 mg, 54%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.8 Hz, 2H), 7.23 - 7.18 (m, 4H), 7.17 - 7.11 (m, 3H), 4.83 (dd, J = 8.2, 4.8 Hz, 1H), 4.09 (dq, J = 10.8, 7.1 Hz, 1H), 3.99 (dq, J = 10.8, 7.2 Hz, 1H), 3.19 (ddt, J = 24.9, 16.7, 8.1 Hz, 1H), 2.44 (ddd, J = 31.3, 16.6, 4.8 Hz, 1H), 1.15 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -57.6 (s, 3F), -104.5 (d, J = 38.7 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 195.9, 163.9 (t, J = 32.4 Hz), 152.7 (q, J = 1.8 Hz), 137.5, 134.1, 131.0, 129.5, 128.3, 128.0, 120.4, 120.3 (q, J = 259.0 Hz), 115.3 (t, J = 250.7 Hz), 63.1, 47.2 (t, J = 4.0 Hz), 38.3 (t, J = 23.4 Hz), 13.8. HRMS: calcd for C₂₀H₁₈F₅O₄⁺ (M+H)⁺: 417.1120; found 417.1126.

ethyl 2,2-difluoro-5-(4-fluorophenyl)-5-oxo-4-phenylpentanoate (4h). The product (40.6 mg, 58%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 30:1). ¹H NMR (500 MHz, CDCl₃) δ 8.03 (ddd, J = 8.9, 5.3, 1.4 Hz, 2H), 7.36 - 7.31 (m, 4H), 7.29 - 7.26 (m, 1H), 7.10 (td, J = 8.6, 1.4 Hz, 2H), 4.95 (dd, J = 8.1, 4.9 Hz, 1H), 4.22 (dtd, J = 14.4, 7.8, 7.2, 4.2 Hz, 1H), 4.12 (dtd, J = 13.7, 7.4, 3.9 Hz, 1H), 3.32 (qd, J = 16.1, 8.0 Hz, 1H), 2.57 (qd, J = 16.0, 4.9 Hz, 1H), 1.28 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ 195.9, 165.8 (d, J = 255.5 Hz), 163.9 (t, J = 32.5 Hz), 137.8, 132.3 (d, J = 3.0 Hz), 131.6 (d, J = 9.4 Hz), 129.4, 128.3, 127.9, 115.9 (d, J = 21.9 Hz), 114.4 (d, J = 250.7 Hz), 63.1, 47.0 (t, J = 3.9 Hz), 38.3 (t, J = 23.4 Hz), 13.9. HRMS: calcd for C₁₉H₁₈F₃O₃⁺ (M+H)⁺: 351.1203; found 351.1200.

ethyl 5-(4-chlorophenyl)-2,2-difluoro-5-oxo-4-phenylpentanoate (4i). The product (46.9 mg, 64%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 20:1). This compound is known.³ ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.7 Hz, 2H), 7.39 (d, *J* = 8.6 Hz, 2H), 7.37 - 7.28 (m, 5H), 4.93 (dd, *J* = 8.1, 4.9 Hz, 1H), 4.21 (dq, *J* = 10.9, 7.2 Hz, 1H), 4.11 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.31 (tdd, *J* = 16.9, 14.9, 8.0 Hz, 1H), 2.56 (qd, *J* = 16.2, 15.8, 4.9 Hz, 1H), 1.27 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, *J* = 36.3 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 196.2, 163.8 (t, *J* = 32.5 Hz), 139.8, 137.6, 134.2, 130.3, 129.4, 129.1, 128.3, 128.0, 115.3 (t, *J* = 250.6 Hz), 63.1, 47.1 (t, *J* = 3.9 Hz), 38.2 (t, *J* = 23.4 Hz), 13.9.

ethyl 5-(4-bromophenyl)-2,2-difluoro-5-oxo-4-phenylpentanoate (4j). The product (56.6 mg, 69%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, J = 8.5, 1.4 Hz, 2H), 7.56 (dd, J = 8.5, 1.3 Hz, 2H), 7.36 - 7.27 (m, 5H), 4.93 (dd, J = 8.1, 4.9 Hz, 1H), 4.21 (dq,

J = 10.5, 7.1 Hz, 1H), 4.11 (dq, J = 10.5, 7.1 Hz, 1H), 3.31 (qd, J = 15.8, 8.0 Hz, 1H), 2.56 (qd, J = 16.0, 4.8 Hz, 1H), 1.27 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, J = 39.4 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 196.4, 163.8 (t, J = 32.5Hz), 137.5, 134.6, 132.1, 130.4, 129.4, 128.6, 128.3, 128.0, 115.3 (t, J = 250.7 Hz), 63.1, 47.1 (t, J = 3.9 Hz), 38.1 (t, J = 23.4 Hz), 13.9. HRMS: calcd for C₁₉H₁₈BrF₂O₃⁺ (M+H)⁺: 411.0402; found 411.0402.

ethyl 2,2-difluoro-5-(4-iodophenyl)-5-oxo-4-phenylpentanoate (4k). The product (60.5 mg, 66%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.3 Hz, 2H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.35 - 7.28 (m, 5H), 4.91 (dd, *J* = 8.1, 4.9 Hz, 1H), 4.21 (dq, *J* = 10.7, 7.2 Hz, 1H), 4.11 (dq, *J* = 10.7, 7.2 Hz, 1H), 3.30 (ddt, *J* = 24.9, 16.8, 8.1 Hz, 1H), 2.56 (qd, *J* = 16.1, 4.9 Hz, 1H), 1.28 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 104.4 (d, *J* = 39.4 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 196.7, 163.8 (t, *J* = 32.5 Hz), 138.1, 137.5, 135.1, 130.3, 129.5, 128.3, 128.0, 115.3 (t, *J* = 250.7 Hz), 101.5, 63.1, 47.0 (t, *J* = 4.0 Hz), 38.1 (t, *J* = 23.3 Hz), 13.9. HRMS: calcd for C₁₉H₁₈F₂IO₃⁺ (M+H)⁺: 459.0264; found 459.0266.

ethyl 2,2-difluoro-5-oxo-4-phenyl-5-(m-tolyl)pentanoate (4l). The product (45.7 mg, 66%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 30:1). This compound is known.³ ¹H NMR (400 MHz, CDCl₃) δ 7.77 - 7.73 (m, 2H), 7.30 - 7.28 (m, 6H), 7.22 - 7.18 (m, 1H), 4.95 (dd, J = 8.0, 5.0 Hz, 1H), 4.16 (dq, J = 10.8, 7.2 Hz, 1H), 4.04 (dq, J = 10.8, 7.1 Hz, 1H), 3.26 (tdd, J = 16.9, 15.0, 7.9 Hz, 1H), 2.53 (tdd, J = 16.4, 14.9, 5.0 Hz, 1H), 2.34 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, J = 47.5 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 163.9 (t, J = 32.5 Hz), 138.5, 138.0, 135.9, 134.1, 129.4, 129.3, 128.6, 128.4,

127.7, 126.2, 115.4 (t, *J* = 250.5 Hz), 63.0, 46.9 (t, *J* = 3.9 Hz), 38.3 (t, *J* = 23.4 Hz), 21.4, 13.8.

ethyl 2,2-difluoro-5-oxo-4-phenyl-5-(o-tolyl)pentanoate (4m). The product (39.4 mg, 57%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 30:1). This compound is known.⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.21 - 7.16 (m, 3H), 7.14 - 7.10 (m, 4H), 7.04 (d, *J* = 7.6 Hz, 1H), 4.71 (dd, *J* = 8.3, 4.7 Hz, 1H), 4.11 (dq, *J* = 10.8, 7.2 Hz, 1H), 4.03 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.25 (dtd, *J* = 17.2, 15.3, 8.3 Hz, 1H), 2.44 (tdd, *J* = 16.7, 14.9, 4.8 Hz, 1H), 2.16 (s, 3H), 1.18 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.5 (d, *J* = 33.4 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 201.0, 164.0 (t, *J* = 32.4 Hz), 138.5, 137.7, 137.1, 131.7, 131.3, 129.2, 128.5, 128.1, 127.8, 125.6, 115.5 (t, *J* = 250.8 Hz), 63.1, 49.9 (t, *J* = 3.8 Hz), 37.5 (t, *J* = 23.3 Hz), 20.7, 13.9.

ethyl 2,2-difluoro-5-(2-iodophenyl)-5-oxo-4-phenylpentanoate (4n). The product (50.4 mg, 55%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, J = 7.9, 1.1 Hz, 1H), 7.29 (tdd, J = 7.2, 5.5, 1.6 Hz, 5H), 7.22 - 7.19 (m, 2H), 7.07 (ddd, J = 7.9, 7.1, 2.0 Hz, 1H), 4.77 (t, J = 6.6 Hz, 1H), 4.16 (ddd, J = 11.9, 7.7, 4.1 Hz, 1H), 4.09 (ddd, 1H), 3.31 (dtd, J = 17.1, 15.0, 6.7 Hz, 1H), 2.69 (tdd, J = 16.8, 15.0, 6.5 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.3 (d, J = 259.0 Hz, 1F), -105.1 (d, J = 259.1 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 200.5, 163.9 (t, J = 32.4 Hz), 143.2, 140.8, 135.5, 131.9, 129.2, 129.1, 128.5, 128.1, 127.8, 115.5 (t, J = 250.8 Hz), 92.5, 63.1, 50.5 (t, J = 4.0 Hz), 36.8 (t, J = 23.6 Hz), 13.9. HRMS: calcd for C₁₉H₁₈F₂IO₃⁺ (M+H)⁺: 459.0264; found 459.0261.

ethyl 5-(benzo[d][1,3]dioxol-5-yl)-2,2-difluoro-5-oxo-4-phenylpentanoate (40). The product (39.9 mg, 53%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, J = 8.2, 1.6 Hz, 1H), 7.46 (s, 1H), 7.33 - 7.30 (m, 4H), 7.27 - 7.24 (m, 1H), 6.81 (dd, J = 8.2, 1.2 Hz, 1H), 6.01 (s, 2H), 4.89 (dd, J = 8.1, 5.0 Hz, 1H), 4.20 (dq, J = 10.5, 7.2 Hz, 1H), 4.10 (dq, J = 10.5, 7.1 Hz, 1H), 3.28 (tdd, J = 16.4, 15.0, 8.0 Hz, 1H), 2.55 (qd, J = 16.1, 4.9 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, J= 18.8 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 195.4, 163.9 (t, J = 32.5 Hz), 152.0, 148.3, 138.2, 130.6, 129.3, 128.2, 127.7, 125.3, 115.4 (t, J = 250.6 Hz), 108.7, 108.0, 102.0, 63.0, 46.7 (t, J = 4.0 Hz), 38.4 (t, J = 23.3 Hz), 13.9. HRMS: calcd for C₂₀H₁₉F₂O₅⁺ (M+H)⁺: 377.1196; found 377.1201.

ethyl 5-(3,5-dimethylphenyl)-2,2-difluoro-5-oxo-4-phenylpentanoate (4p). The product (45.4 mg, 63%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 1.7 Hz, 2H), 7.31 - 7.28 (m, 4H), 7.23 - 7.19 (m, 1H), 7.13 (s, 1H), 4.95 (dd, *J* = 8.0, 5.0 Hz, 1H), 4.17 (dq, *J* = 10.8, 7.2 Hz, 1H), 4.05 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.26 (ddd, *J* = 31.6, 16.6, 7.9 Hz, 1H), 2.54 (tdd, *J* = 16.4, 14.9, 5.0 Hz, 1H), 2.31 (s, 6H), 1.23 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, *J* = 57.8 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 163.9 (t, *J* = 32.6 Hz), 138.3, 138.1, 136.0, 135.1, 129.3, 128.4, 127.7, 126.7, 115.4 (t, *J* = 250.5 Hz), 63.0, 46.9 (t, *J* = 3.9 Hz), 38.3 (t, *J* = 23.4 Hz), 21.3, 13.8. HRMS: calcd for C₂₁H₂₃F₂O₃⁺ (M+H)⁺: 361.1610; found 361.1606.

ethyl 2,2-difluoro-5-(naphthalen-2-yl)-5-oxo-4-phenylpentanoate (4q). The product (52.7 mg, 69%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 20:1). This compound is known.⁴ ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.01 (dd, J = 8.5, 1.8 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.82 (dd, J = 8.4, 5.2 Hz, 2H), 7.58 - 7.50 (m, 2H), 7.36 (d, J = 7.5 Hz, 2H), 7.29 (t, J = 7.6 Hz, 2H), 7.20 (t, J = 7.4 Hz, 1H), 5.13 (dd, J = 8.0, 5.1 Hz, 1H), 4.18 (dq, J = 10.9, 7.2 Hz, 1H), 4.06 (dq, J = 10.9, 7.2 Hz, 1H), 3.35 (qd, J = 16.2, 7.9 Hz, 1H), 2.61 (qd, J = 16.2, 5.0 Hz, 1H), 1.23 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.3 (d, J = 39.8 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 197.4, 163.9 (t, J = 32.6 Hz), 138.0, 135.7, 133.2, 132.5, 130.8, 129.8, 129.4, 128.8, 128.6, 128.4, 127.8, 127.8, 126.9, 124.5, 115.5 (t, J = 250.6 Hz), 63.1, 47.1 (t, J = 4.0 Hz), 38.3 (t, J = 23.4 Hz), 13.9.

ethyl 2,2-difluoro-5-(naphthalen-1-yl)-5-oxo-4-phenylpentanoate (4r). The product (54.3 mg, 71%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.33 (dd, J = 8.1, 1.8 Hz, 1H), 7.95 (dd, J = 7.8, 4.4 Hz, 2H), 7.84 (dd, J = 7.4, 2.0 Hz, 1H), 7.56 - 7.47 (m, 3H), 7.34 - 7.28 (m, 4H), 7.23 - 7.19 (m, 1H), 5.03 (dd, J = 8.3, 4.7 Hz, 1H), 4.24 (dt, J = 10.8, 7.2 Hz, 1H), 4.14 (dt, J = 10.8, 7.1 Hz, 1H), 3.49 (dtd, J = 17.2, 15.3, 8.3 Hz, 1H), 2.65 (tdd, J = 16.6, 15.0, 4.7 Hz, 1H), 1.29 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 104.3 (d, J = 44.0 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 200.7, 164.0 (t, J = 32.5 Hz), 137.2, 135.6, 133.9, 132.8, 130.7, 129.2, 128.4, 128.4, 128.0, 127.8, 127.5, 126.5, 125.6, 124.3, 115.5 (t, J = 250.7 Hz), 63.1, 50.4 (t, J = 3.8 Hz), 37.8 (t, J = 23.3 Hz), 13.9. HRMS: calcd for C₂₃H₂₁F₂O₃⁺ (M+H)⁺: 383.1454; found 383.1459.

ethyl 2,2-difluoro-5-(1-methyl-1H-indol-2-yl)-5-oxo-4-phenylpentanoate (4s). The product (50.1 mg, 65%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.1 Hz, 1H), 7.47 - 7.44 (m, 3H), 7.39 - 7.35 (m, 4H), 7.30 - 7.27 (m, 1H), 7.18 (ddd, *J* = 8.0, 6.2, 1.5 Hz, 1H), 5.00 (dd, *J* = 8.3, 5.0 Hz, 1H), 4.24 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.16 (dq, *J* = 10.7, 7.0 Hz, 1H), 4.07 (s, 3H), 3.36 (dtd, *J* = 18.2, 14.7, 8.2 Hz, 1H), 2.65 (dtd, *J* = 17.1, 15.6, 5.0 Hz, 1H), 1.31 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 103.9 (d, *J* = 259.6 Hz, 1F), -105.1 (d, *J* = 259.9 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 191.0, 163.9 (t, *J* = 32.5 Hz), 140.5, 138.7, 133.9, 129.2, 128.1, 127.7, 126.3, 125.8, 123.2, 120.9, 115.4 (t, *J* = 250.8 Hz), 112.4, 110.4, 63.0, 48.2 (t, *J* = 3.7 Hz), 37.8 (t, *J* = 23.3 Hz), 32.3, 13.8. HRMS: calcd for C₂₂H₂₂F₂NO₃⁺ (M+H)⁺: 386.1563; found 386.1552.

ethyl 2,2-difluoro-5-oxo-4-phenyl-5-(thiophen-2-yl)pentanoate (4t). The product (51.4 mg, 76%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 30:1). This compound is known.⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, *J* = 3.9, 1.1 Hz, 1H), 7.59 (d, *J* = 4.9 Hz, 1H), 7.37 - 7.30 (m, 4H), 7.27 - 7.23 (m, 1H), 7.06 (t, *J* = 4.4 Hz, 1H), 4.77 (dd, *J* = 7.9, 5.2 Hz, 1H), 4.18 (dq, *J* = 10.8, 7.2 Hz, 1H), 4.07 (dq, *J* = 10.8, 7.2 Hz, 1H), 3.26 (dtd, *J* = 17.1, 15.4, 7.9 Hz, 1H), 2.56 (tdd, *J* = 16.4, 15.0, 5.2 Hz, 1H), 1.24 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, *J* = 86.2 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 190.2, 163.8 (t, *J* = 32.5 Hz), 142.9, 138.0, 134.4, 133.0, 129.3, 128.3, 128.3, 127.9, 115.3 (t, *J* = 250.7 Hz), 63.1, 48.4 (t, *J* = 3.9 Hz), 38.0 (t, *J* = 23.5 Hz), 13.8.

ethyl 2,2-difluoro-5-oxo-5-phenyl-4-(p-tolyl)pentanoate (5b). The product (44.3 mg, 64%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 30:1). This compound is known.⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.96 - 7.94 (m, 2H), 7.48 (td, J = 7.3, 1.5 Hz, 1H), 7.41 - 7.36 (m, 2H), 7.19 - 7.16 (m, 2H), 7.09 (d, J = 7.6 Hz, 2H), 4.92 (dd, J = 8.0, 5.1 Hz, 1H), 4.17 (dqd, J = 11.8, 7.2, 1.5 Hz, 1H), 4.05 (dqd, J = 12.1, 7.1, 1.5 Hz, 1H), 3.25 (tddd, J = 16.7, 14.8, 8.0, 1.5 Hz, 1H), 2.52 (qdd, J = 16.4, 5.0, 1.5 Hz, 1H), 2.27 (s, 3H), 1.22 (td, J = 7.2, 1.5 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, J = 15.9 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 163.9 (t, J = 32.5 Hz), 137.6, 136.0, 134.9, 133.3, 130.0, 128.9, 128.7, 128.2, 115.5 (t, J = 250.6 Hz), 63.0, 46.6 (t, J = 3.9 Hz), 38.3 (t, J = 23.4 Hz), 21.1, 13.8.

ethyl 4-(4-(tert-butyl)phenyl)-2,2-difluoro-5-oxo-5-phenylpentanoate (5c). The product (41.9 mg, 54%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.2 Hz, 2H), 7.49 (t, *J* = 7.3 Hz, 1H), 7.40 (t, *J* = 7.7 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 4.94 (dd, *J* = 8.1, 5.0 Hz, 1H), 4.14 (dq, *J* = 10.7, 7.2 Hz, 1H), 4.00 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.26 (qd, *J* = 16.0, 8.0 Hz, 1H), 2.55 (tdd, *J* = 16.6, 14.8, 5.0 Hz, 1H), 1.26 (s, 9H), 1.20 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.7 (d, *J* = 258.9 Hz, 1F), -104.9 (d, *J* = 258.9 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 163.9 (t, *J* = 32.6 Hz), 150.7, 136.0, 134.6, 133.3, 129.0, 128.7, 128.0, 126.2, 115.4 (t, *J* = 250.3 Hz), 63.0, 46.4 (t, *J* = 4.0 Hz), 38.4 (t, *J* = 23.4 Hz), 34.6, 31.3, 13.8. HRMS: calcd for C₂₃H₂₇F₂O₃⁺ (M+H)⁺: 389.1923; found 389.1934.

ethyl 2,2-difluoro-4-(4-methoxyphenyl)-5-oxo-5-phenylpentanoate (5d). The product (39.8 mg, 55%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.98 - 7.92 (m, 2H), 7.53 - 7.44 (m, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.24 - 7.17 (m, 2H), 6.85 - 6.78 (m, 2H), 4.91 (dd, J = 7.9, 5.2 Hz, 1H), 4.16 (dq, J = 11.0, 7.2 Hz, 1H), 4.05 (dq, J = 10.8, 7.1 Hz, 1H), 3.72 (s, 3H), 3.23 (tdd, J = 16.8, 14.9, 8.0 Hz, 1H), 2.53 (tdd, J = 16.6, 14.9, 5.2 Hz, 1H), 1.22 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.3 (d, J = 63.5 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 163.9 (t, J = 32.5 Hz), 159.1, 135.9, 133.2, 129.7, 129.5, 128.9, 128.7, 115.5 (t, J = 250.4 Hz), 114.7, 63.0, 55.3, 46.1 (t, J = 4.0 Hz), 38.3 (t, J = 23.3 Hz), 13.8. HRMS: calcd for C₂₀H₂₁F₂O₄⁺ (M+H)⁺: 363.1403; found 363.1415.

ethyl 4-([1,1'-biphenyl]-4-yl)-2,2-difluoro-5-oxo-5-phenylpentanoate (5e). The product (51.4 mg, 63%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.3 Hz, 2H), 7.55 - 7.49 (m, 5H), 7.44 - 7.38 (m, 6H), 7.36 - 7.32 (m, 1H), 5.04 (dd, *J* = 8.0, 5.0 Hz, 1H), 4.19 (dq, *J* = 10.8, 7.2 Hz, 1H), 4.08 (dq, *J* = 10.8, 7.2 Hz, 1H), 3.34 (tdd, *J* = 16.8, 14.9, 7.9 Hz, 1H), 2.62 (tdd, *J* = 16.4, 15.0, 5.0 Hz, 1H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.2 (d, *J* = 48.2 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 197.3, 163.9 (t, *J* = 32.5 Hz), 140.7, 140.3, 136.8, 135.9, 133.4, 129.0, 128.9, 128.8, 128.8, 128.0, 127.6, 127.1, 115.4 (t, *J* = 250.7 Hz), 63.1, 46.6 (t, *J* = 3.9 Hz), 38.3 (t, *J* = 23.4 Hz), 13.8. HRMS: calcd for C₂₅H₂₃F₂O₃⁺ (M+H)⁺: 409.1610; found 409.1615.

ethyl 2,2-difluoro-5-oxo-5-phenyl-4-(4-(trifluoromethyl)phenyl)pentanoate (5f). The product (40 mg, 50%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 30:1). This compound is known.⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.96 - 7.93 (m, 2H), 7.56 (d, *J* = 8.1 Hz, 2H), 7.53 - 7.51 (m, 1H), 7.45 - 7.40 (m, 4H), 5.05 (dd, *J* = 7.8, 5.2 Hz, 1H), 4.19 (dq, *J* = 10.8, 7.2 Hz, 1H), 4.10 (dq, *J* = 10.8, 7.2 Hz, 1H), 3.28 (tdd, *J* = 16.7, 14.9, 7.8 Hz, 1H), 2.54 (tdd, *J* = 16.6, 15.0, 5.2 Hz, 1H), 1.24 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s, 2F), -104.4 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 196.8, 163.7 (t, *J* = 32.4 Hz), 141.9, 135.6, 133.8, 130.2 (q, *J* = 32.7 Hz), 128.9, 128.8, 126.3 (q, *J* = 3.8 Hz), 124.0 (q, *J* = 272.2 Hz), 117.7, 115.2 (t, *J* = 251.0 Hz), 63.2, 46.6 (t, *J* = 3.8 Hz), 38.1 (t, *J* = 23.3 Hz), 13.9.

ethyl 2,2-difluoro-4-(4-fluorophenyl)-5-oxo-5-phenylpentanoate (5g). The product (39.2 mg, 56%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.88 - 7.85 (m, 2H), 7.44 (td, *J* = 7.2, 6.7, 1.1 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.22 - 7.18 (m, 2H), 6.93 - 6.88 (m, 2H), 4.89 (dd, *J* = 7.8, 5.2 Hz, 1H), 4.11 (dq, *J* = 10.8, 7.2 Hz, 1H), 4.01 (dq, *J* = 10.8, 7.2 Hz, 1H), 3.16 (tdd, *J* = 16.8, 14.9, 7.8 Hz, 1H), 2.45 (tdd, *J* = 16.3, 15.0, 5.2 Hz, 1H), 1.16 (t, *J* = 7.3 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, *J* = 12.9 Hz, 2F), -114.3 (s, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 197.3, 164.0 (t, *J* = 32.4 Hz), 163.5, 161.1, 135.7, 133.6 (d, *J* = 3.3 Hz), 133.5, 130.0 (d, *J* = 8.1 Hz), 128.9 (d, *J* = 9.6 Hz), 116.3 (d, *J* = 21.6 Hz), 115.3 (t, *J* = 250.7 Hz), 63.1, 46.1 (t, *J* = 4.0 Hz), 38.3 (t, *J* = 23.4 Hz), 13.9. HRMS: calcd for C₁₉H₁₈F₃O₃⁺ (M+H)⁺: 351.1203; found 351.1215.

ethyl 4-(4-chlorophenyl)-2,2-difluoro-5-oxo-5-phenylpentanoate (5h). The product (46.1 mg, 63%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.86 - 7.84 (m, 2H), 7.43 (td, *J* = 7.2, 1.3 Hz, 1H), 7.32 (dd, *J* = 8.4, 7.0 Hz, 2H), 7.20 - 7.14 (m, 4H), 4.87 (dd, *J* = 7.8, 5.2 Hz, 1H), 4.11 (dq, *J* = 10.7, 7.1 Hz, 1H), 4.01 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.16 (tdd, *J* = 16.8, 15.0, 7.8 Hz, 1H), 2.43 (tdd, *J* = 16.4, 15.0, 5.3 Hz, 1H), 1.15 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 197.1, 163.8 (t, *J* = 32.5 Hz), 136.4, 135.6, 133.8, 133.6, 129.7, 129.5, 128.9, 128.8, 114.0 (d, *J* = 251.0 Hz), 63.2, 46.2 (t, *J* = 3.8 Hz), 38.1 (t, *J* = 23.4 Hz), 13.9. HRMS: calcd for C₁₉H₁₈ClF₂O₃⁺ (M+H)⁺: 361.1615; found 361.1608.

ethyl 4-(4-bromophenyl)-2,2-difluoro-5-oxo-5-phenylpentanoate (5i). The product (46.7 mg, 57%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 20:1). This compound is known.⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 7.0 Hz, 2H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.42 - 7.38 (m, 4H), 7.18 (d, *J* = 8.3 Hz, 2H), 4.94 (dd, *J* = 7.8, 5.2 Hz, 1H), 4.19 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.09 (dq, *J* = 10.9, 7.2 Hz, 1H), 3.24 (qd, *J* = 16.4, 7.8 Hz, 1H), 2.51 (qd, *J* = 16.0, 5.1 Hz, 1H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.3 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 197.0, 163.8 (t, *J* = 32.5 Hz), 136.9, 135.6, 133.6, 132.5, 130.1, 128.9, 128.8, 121.9, 115.3 (t, *J* = 250.9 Hz), 63.1, 46.3 (t, *J* = 3.9 Hz), 38.1 (t, *J* = 23.4 Hz), 13.8.

ethyl 2,2-difluoro-5-oxo-5-phenyl-4-(m-tolyl)pentanoate (5j). The product (44.3 mg,

64%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 8.2, 1.5 Hz, 2H), 7.50 - 7.45 (m, 1H), 7.39 - 7.35 (m, 2H), 7.22 (d, J = 7.5 Hz, 1H), 7.13 (td, J = 7.2, 1.8 Hz, 1H), 7.10 - 7.03 (m, 2H), 5.10 (dd, J = 9.0, 3.5 Hz, 1H), 4.22 (dq, J = 10.6, 7.1 Hz, 1H), 4.10 (dq, J = 10.7, 7.1 Hz, 1H), 3.33 (tdd, J = 17.2, 15.0, 9.0 Hz, 1H), 2.56 (s, 3H), 2.32 (dtd, J = 18.1, 14.7, 3.5 Hz, 1H), 1.24 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 103.7 (d, J = 256.9 Hz, 1F), -105.4 (d, J = 256.8 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 198.1, 164.0 (t, J = 32.5 Hz), 136.5, 136.3, 135.3, 133.2, 131.6, 128.7, 128.6, 127.8, 127.4, 127.0, 115.3 (t, J = 250.5 Hz), 63.1, 43.3 (t, J = 3.9 Hz), 37.7 (t, J = 23.6 Hz), 19.7, 13.8. HRMS: calcd for C₂₀H₂₁F₂O₃⁺ (M+H)⁺: 347.1454; found 347.1459.

ethyl 4-(3-bromophenyl)-2,2-difluoro-5-oxo-5-phenylpentanoate (5k). The product (49.2 mg, 60%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.8 Hz, 2H), 7.44 (t, *J* = 7.4 Hz, 1H), 7.38 (s, 1H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.28 (d, *J* = 6.7 Hz, 1H), 7.18 - 7.15 (m, 1H), 7.08 (t, *J* = 7.8 Hz, 1H), 4.86 (dd, *J* = 8.0, 5.0 Hz, 1H), 4.12 (dq, *J* = 10.7, 7.1 Hz, 1H), 4.02 (dq, *J* = 10.7, 7.2 Hz, 1H), 3.17 (qd, *J* = 16.1, 8.0 Hz, 1H), 2.44 (qd, *J* = 16.2, 15.8, 5.2 Hz, 1H), 1.17 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, *J* = 13.8 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 196.8, 163.7 (t, *J* = 32.5 Hz), 140.1, 135.6, 133.6, 131.2, 131.1, 130.9, 128.9, 128.9, 127.1, 123.3, 115.2 (t, *J* = 250.9 Hz), 63.2, 46.4 (t, *J* = 3.8 Hz), 38.2 (t, *J* = 23.4 Hz), 13.9. HRMS: calcd for C₁₉H₁₈BrF₂O₃⁺ (M+H)⁺: 361.1615; found 361.1623.

ethyl 2,2-difluoro-5-oxo-5-phenyl-4-(o-tolyl)pentanoate (5l). The product (44.3 mg, 64%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA

= 30:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (dd, J = 8.2, 1.5 Hz, 2H), 7.50 - 7.45 (m, 1H), 7.39 - 7.35 (m, 2H), 7.22 (d, J = 7.5 Hz, 1H), 7.13 (td, J = 7.2, 1.8 Hz, 1H), 7.10 - 7.03 (m, 2H), 5.10 (dd, J = 9.0, 3.5 Hz, 1H), 4.22 (dq, J = 10.6, 7.1 Hz, 1H), 4.10 (dq, J = 10.7, 7.1 Hz, 1H), 3.33 (tdd, J = 17.2, 15.0, 9.0 Hz, 1H), 2.56 (s, 3H), 2.32 (dtd, J = 18.1, 14.7, 3.5 Hz, 1H), 1.24 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 103.7 (d, J = 256.9 Hz, 1F), -105.4 (d, J = 256.8 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 198.1, 164.0 (t, J = 32.5 Hz), 136.5, 136.3, 135.3, 133.2, 131.6, 128.7, 128.6, 127.8, 127.4, 127.0, 115.3 (t, J = 250.5 Hz), 63.1, 43.3 (t, J = 3.9 Hz), 37.7 (t, J = 23.6 Hz), 19.7, 13.8. HRMS: calcd for C₂₀H₂₁F₂O₃⁺ (M+H)⁺: 347.1454; found 347.1459.

ethyl 4-(2-chlorophenyl)-2,2-difluoro-5-oxo-5-phenylpentanoate (5m). The product (44.7 mg, 61%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 20:1). This compound is known.⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dt, *J* = 8.3, 1.1 Hz, 2H), 7.52 - 7.48 (m, 1H), 7.43 - 7.38 (m, 3H), 7.19 - 7.14 (m, 3H), 5.49 (dd, *J* = 8.8, 3.9 Hz, 1H), 4.25 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.15 (dq, *J* = 10.9, 7.2 Hz, 1H), 3.28 (tdd, *J* = 16.8, 14.8, 8.8 Hz, 1H), 2.40 (dtd, *J* = 18.0, 14.7, 4.0 Hz, 1H), 1.26 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.7 (d, *J* = 258.9 Hz, 1F), -105.2 (d, *J* = 258.9 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 197.2, 163.9 (t, *J* = 32.4 Hz), 135.7, 135.6, 133.6, 133.4, 130.5, 129.2, 129.0, 128.8, 128.3, 127.7, 115.1 (t, *J* = 251.4 Hz), 63.1, 43.0 (t, *J* = 3.9 Hz), 37.4 (t, *J* = 23.7 Hz), 13.9.

ethyl 2,2-difluoro-4-(naphthalen-1-yl)-5-oxo-5-phenylpentanoate (5n). The product (49.7 mg, 65%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 8.6 Hz, 1H), 7.84 - 7.78 (m, 3H), 7.69 - 7.61 (m, 2H), 7.52 - 7.48 (m, 1H), 7.34 (td, J = 7.4, 1.4 Hz, 1H), 7.24 - 7.13 (m, 4H), 5.65 (dd, J = 9.5, 2.9 Hz, 1H), 4.18 - 4.10 (m, 1H), 4.07 - 3.99 (m, 1H),

3.41 (tdd, J = 17.9, 15.1, 9.4 Hz, 1H), 2.39 (qd, J = 15.2, 2.9 Hz, 1H), 1.13 (t, J = 7.8 Hz, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -103.5 (d, J = 257.0 Hz, 2F), -105.7 (d, J = 257.1 Hz, 2F). ¹³**C NMR** (101 MHz, CDCl₃) δ 197.6, 164.0 (t, J = 32.5 Hz), 136.0, 134.7, 134.2, 133.3, 130.3, 129.5, 128.7, 128.7, 128.6, 127.4, 126.3, 125.9, 125.7, 122.4, 115.4 (t, J = 250.7 Hz), 63.1, 42.5 (t, J = 11.1 Hz), 37.7 (t, J = 23.5 Hz), 13.8. **HRMS**: calcd for C₂₃H₂₁F₂O₃⁺ (M+H)⁺: 383.1454; found 383.1443.

ethyl 2,2-difluoro-4-(naphthalen-2-yl)-5-oxo-5-phenylpentanoate (5o). The product (47.4 mg, 62%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 20:1). This compound is known.⁵ ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.3 Hz, 2H), 7.82 - 7.76 (m, 4H), 7.49 - 7.43 (m, 4H), 7.38 (t, *J* = 7.6 Hz, 2H), 5.15 (dd, *J* = 7.9, 5.0 Hz, 1H), 4.11 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.99 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.39 (qd, *J* = 16.4, 7.9 Hz, 1H), 2.66 (qd, *J* = 16.2, 5.0 Hz, 1H), 1.18 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.2 (d, *J* = 41.7 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) 197.3, 163.9 (t, *J* = 32.5 Hz), 135.9, 135.3, 133.6, 133.4, 132.7, 129.3, 129.0, 128.7, 127.9, 127.7, 127.5, 126.6, 126.4, 125.9, 115.4 (t, *J* = 250.7 Hz), 63.0, 47.1 (t, *J* = 4.0 Hz), 38.3 (t, *J* = 23.4 Hz), 13.8.

ethyl 2,2-difluoro-5-oxo-5-phenyl-4-(thiophen-2-yl)pentanoate (5p). The product (48 mg, 71%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (dd, J = 7.5, 1.6 Hz, 2H), 7.56 - 7.51 (m, 1H), 7.45 - 7.41 (m, 2H), 7.18 (dd, J = 5.0, 1.3 Hz, 1H), 6.92 - 6.88 (m, 2H), 5.28 (dd, J = 8.5, 4.6 Hz, 1H), 4.22 (dq, J = 10.8, 7.1 Hz, 1H), 4.12 (dq, J = 10.8, 7.1 Hz, 1H), 3.31 (tdd, J = 17.0, 15.1, 8.5 Hz, 1H), 2.63 (dtd, J = 17.3, 15.1, 4.6 Hz, 1H), 1.25 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.5 (d, J = 22.3 Hz, 2F).

¹³**C NMR** (101 MHz, CDCl₃) δ 196.2, 163.7 (t, *J* = 32.4 Hz), 139.8, 135.5, 133.6, 129.0, 128.8, 127.3, 126.6, 125.8, 115.1 (t, *J* = 251.0 Hz), 63.2, 41.4 (t, *J* = 4.2 Hz), 38.9 (t, *J* = 23.4 Hz), 13.9. **HRMS**: calcd for C₁₇H₁₇F₂O₃S⁺ (M+H)⁺: 361.1615; found 361.1618.

ethyl 2,2-difluoro-4-methyl-5-oxo-4,5-diphenylpentanoate (5q). The product (47.8 mg, 69%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 20:1). This compound is known.⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.41 - 7.30 (m, 8H), 7.20 (t, *J* = 7.7 Hz, 2H), 4.08 (dq, *J* = 10.8, 7.2 Hz, 1H), 3.95 (dq, *J* = 10.8, 7.2 Hz, 1H), 3.00 (q, *J* = 15.7 Hz, 1H), 2.85 (dt, *J* = 21.4, 14.7 Hz, 1H), 1.85 (s, 3H), 1.25 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -96.7 (d, *J* = 263.6 Hz, 1F), -99.9 (d, *J* = 263.6 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 202.1, 164.0 (t, *J* = 32.6 Hz), 140.9, 136.3, 131.8, 129.4, 129.2, 128.1, 127.9, 126.9, 116.1 (t, *J* = 249.6 Hz), 62.8, 52.5 (d, *J* = 3.6 Hz), 44.3 (t, *J* = 22.5 Hz), 22.3 (t, *J* = 2.7 Hz), 13.9.

ethyl 2,2-difluoro-4-(4-methoxyphenyl)-3-methyl-5-oxo-5-phenylpentanoate (5r). The product (30.8 mg, 41%, dr = 5:1) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, *J* = 7.2, 1.6 Hz, 2H), 7.44 - 7.40 (m, 1H), 7.33 (dd, *J* = 8.4, 6.9 Hz, 2H), 7.21 - 7.18 (m, 2H), 6.71 - 6.69 (m, 2H), 4.63 (d, *J* = 10.5 Hz, 1H), 3.79 - 3.68 (m, 2H), 3.65 (s, 3H), 3.42 (ddt, *J* = 22.5, 10.6, 6.8 Hz, 1H), 1.13 (d, *J* = 7.1 Hz, 3H), 1.09 (d, *J* = 1.7 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.9 (d, *J* = 264.9 Hz, 1F), -115.4 (d, *J* = 264.9 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 163.6 (t, *J* = 33.1 Hz), 159.4, 136.7, 133.4, 131.3, 128.8, 126.6, 117.2 (t, *J* = 248.6 Hz), 117.1, 114.1, 62.6, 55.3, 53.5 (d, *J* = 4.7 Hz), 40.8 (t, *J* = 21.5 Hz), 13.8, 12.4. HRMS: calcd for C₂₁H₂₃F₂O₄⁺ (M+H)⁺: 377.1559; found 377.1564.

ethyl 2-(2-benzoyl-1,2-dihydroacenaphthylen-1-yl)-2,2-difluoroacetate (5s). The product (41.1 mg, 54%, dr = 9:1) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.18 - 8.09 (m, 2H), 7.76 - 7.66 (m, 3H), 7.63 - 7.54 (m, 4H), 7.33 and 7.23 (t, J = 7.6 Hz, 1H), 6.98 and 6.74 (dd, J = 7.0, 1.4 Hz, 1H), 5.83 (d, J = 3.7 Hz, 1H), 5.37 – 5.19 (m, 1H), 4.17 and 3.91 (q, J = 7.2 Hz, 2H), 1.06 and 0.80 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.0 and -107.1 (d, J = 260.4 Hz, 1F), -105.2.4 and -108.6 (d, J = 260.2 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃, Main product) δ 195.9, 163.7 (t, J = 32.9 Hz), 140.2, 138.0, 137.7 (t, J = 3.0 Hz), 136.5, 134.0, 131.8, 129.6, 129.2, 128.4, 127.8, 125.0, 124.6, 122.4, 120.6, 116.0 (t, J = 253.4 Hz), 63.2, 52.7 (t, J = 4.1 Hz), 50.8 (t, J = 23.6 Hz), 13.7. HRMS: calcd for C₂₃H₁₉F₂O₃⁺ (M+H)⁺: 381.1297; found 381.1300.

ethyl 4-(4-(((2-(4-chlorophenoxy)-2-methylpropanoyl)oxy)methyl)phenyl)-2,2difluoro-5-oxo-5-phenylpentanoate--ethyl 4-(4-(((4-([1,1'-biphenyl]-4-yl)-4oxobutanoyl)oxy)methyl)phenyl)-2,2-difluoro-5-oxo-5-phenylpentanoate (1/1) (5t). The product (59.2 mg, 53%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 10:1). ¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, *J* = 7.3 Hz, 2H), 7.42 (t, *J* = 7.4 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 7.9 Hz, 2H), 6.98 (d, *J* = 8.9 Hz, 2H), 6.58 (d, *J* = 8.8 Hz, 2H), 5.02 (s, 2H), 4.90 (dd, *J* = 8.1, 4.9 Hz, 1H), 4.09 (dq, *J* = 10.7, 7.1 Hz, 1H), 3.99 (dq, *J* = 10.7, 7.2 Hz, 1H), 3.19 (qd, *J* = 16.5, 8.0 Hz, 1H), 2.43 (qd, *J* = 16.3, 4.9 Hz, 1H), 1.47 (s, 6H), 1.14 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, J = 4.9 Hz, 2F). ¹³C NMR (151 MHz, CDCl₃) δ 197.1, 173.8, 163.8 (t, J = 32.4 Hz), 154.0, 138.1, 135.7, 134.8, 133.5, 129.2, 129.2, 128.9, 128.8, 128.5, 127.3, 120.5, 115.3 (t, J = 250.7 Hz), 79.5, 66.6, 63.1, 46.5 (t, J = 3.7 Hz), 38.2 (t, J = 23.3 Hz), 25.4, 25.3, 13.8. **HRMS**: calcd for C₃₀H₃₀ClF₂O₆⁺ (M+H)⁺: 559.1694; found 559.1703.

ethyl 4-(4-(((4-([1,1'-biphenyl]-4-yl)-4-oxobutanoyl)oxy)methyl)phenyl)-2,2difluoro-5-oxo-5-phenylpentanoate (5u). The product (73.0 mg, 61%) as a pale yellow soild was purified with silica gel chromatography (PE/EA = 10:1). ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, J = 8.1 Hz, 2H), 7.85 (d, J = 7.8 Hz, 2H), 7.56 (d, J = 8.1Hz, 2H), 7.51 (d, J = 6.9 Hz, 2H), 7.38 - 7.33 (m, 3H), 7.29 - 7.27 (m, 3H), 7.19 (s, 4H), 4.97 (s, 2H), 4.88 (dd, J = 8.1, 4.9 Hz, 1H), 4.06 (dq, J = 10.4, 7.1 Hz, 1H), 3.95 (dq, J = 10.6, 7.1 Hz, 1H), 3.22 (t, J = 6.5 Hz, 2H), 3.19 - 3.13 (m, 1H), 2.69 (t, J = 6.5 Hz, 2H), 2.41 (qd, J = 16.2, 4.8 Hz, 1H), 1.10 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.3 (s, 2F). ¹³C NMR (151 MHz, CDCl₃) δ 197.6, 197.2, 172.8, 163.8 (t, J = 32.5 Hz), 145.9, 139.8, 137.8, 135.7, 135.5, 135.2, 133.4, 129.0, 128.9, 128.7, 128.7, 128.5, 128.3, 127.3, 127.3, 115.3 (t, J = 250.8 Hz), 65.9, 63.0, 53.5, 46.5 (t, J =3.7 Hz), 38.2 (t, J = 23.2 Hz), 33.4, 28.3, 13.8. HRMS: calcd for C₃₆H₃₃F₂O₆⁺ (M+H)⁺: 599.2240; found 599.2246.

ethyl 3-(3,4-dihydronaphthalen-1-yl)-2,2-difluoropropanoate (8). The product (12.77 mg, 24%) as a pale yellow oily liquid was purified with silica gel chromatography (PE/EA = 50:1). This compound is known.⁷ ¹H NMR (400 MHz, CDCl₃) δ 7.25 - 7.12 (m, 4H), 6.08 (t, *J* = 4.7 Hz, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.25 (t, *J* = 15.8 Hz, 2H), 2.74 (t, *J* = 8.0 Hz, 2H), 2.31 - 2.24 (m, 2H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.3 (s, 2F).

References

- Han J.; Zhou W.; Zhang P C.; Wang H.; Zhang R.; Wu H H.; Zhang J. Design and synthesis of WJ-Phos, and application in Cu-catalyzed enantioselective boroacylation of 1,1-disubstituted allenes[J]. ACS Catal. 2019, 9, 6890-6895.
- Granados A.; Dhungana R K.; Sharique M.; Majhi J.; Molander G A. From styrenes to fluorinated benzyl bromides: a photoinduced difunctionalization via Atom Transfer Radical Addition[J]. Org. Lett. 2022, 24, 4750-4755.
- Li J L.; Liu Y Q.; Zou W L.; Zeng R.; Zhang X.; Liu Y.; Han B.; He Y.; Leng H J.; Li Q Z. Radical acylfluoroalkylation of olefins through N-heterocyclic carbene organocatalysis[J]. *Angew. Chem. Int. Ed.* 2020, 132, 1879-1886.
- 4. Xu P.; Hu K.; Gu Z.; Cheng Y.; Zhu C. Visible light promoted carbodifluoroalkylation of allylic alcohols via concomitant 1,2-aryl migration. *Chem. Commun.* **2015**, *51*, 7222-7225.
- 5. Ge D.; Wang X.; Chu X Q. Difluoroalkylation/1,2-aryl migration of allylic alcohols under transition metal-free conditions[J]. *Tetrahedron Lett.* **2021**, *70*, 153002.
- Yang H B.; Wang Z H.; Li J M.; W C. Modular synthesis of α-aryl β-perfluoroalkyl ketones via N-heterocyclic carbene catalysis[J]. *Chem. Commun.* 2020, *56*, 3801-3804.
- Li J.; Chen J.; Jiao W.; Wang G.; Li Y.; Cheng X.; Li G. Difluoroalkylation/C–H Annulation Cascade Reaction Induced by Visible-Light Photoredox Catalysis[J]. J. Org. Chem. 2016, 81, 9992–10001.

4a ¹H NMR (CDCl₃, 400 MHz)

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210

4a ¹³C NMR (CDCl₃, 101 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

$\begin{array}{c} 7.88\\ 7.29\\$

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210

$\begin{array}{c} -2.22\\ -2$

8.07

S46

S49

7.38 7.38 7.37 7.38 7.37 7.37 7.38 7.37 7.37 7.37 7.38 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.38 7.37 7.37 7.37 7.38 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 7.47 <t

$\begin{array}{c} -2.25\\ -2.25\\ -2.25\\ -2.25\\ -2.55\\ -2$

1

S61

$\begin{array}{c} 1.22\\ 1.22\\ 2.22\\$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

$\begin{array}{c} -2.5 \\ -2$

86	88	85		20	84	84	45	43	43	41	41	41	34	32	32	33	30	20	19	18	17	16	16	15	4	89	87	87	85	13	7	10	60	03	02	5	66	46	17	15	14
2	N	N	- 1	-	2	2	N	7	N	2	2	N	N	2	N	N	N	N	5	2	2	2	2	2.	2	4	4	4	4	4	4	4	4	4	4	4	3	N	5	÷.	-

S73

887777777777777777777777777777777777777	0	ω	4	· C	V C	0 0	0 0	Ø	ω	6	2	5	co	3	-	2	0	0	8	4	3	2	-	0	4	2	0	8	8	2	2	3	0	9	4	4	2	9	4	5	co	~
887777777777777777777777777777777777777	3	2	8	α	∞	1 0	- 1	-	~	0	0	0	0	0	0	5	5	2	4	3	3	3	3	2	2	2	2	-	-	-	-	-	0	0	0	-	-	0	0	-	-	-
	œ	ΩÖ.	~	~		- 1	- 1	- 1	~	7	~	~	~	~	~	~	~	~	7	~	~	~	~	~	~	~	2	~	2	7	7	~	S	S	5	4	4	4	4	<u> </u>	-	~

5n ¹³C NMR (CDCl₃, 101 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

01	5	8	00	00	201	5	53	52	52	45	45	44	43	42	41	41	19	19	18	18	92	92	92	91	90	89	89	88	30	28	27	26	22	21	19	14	13	12	26	25	23
œ	φ	ø	2	- 1	- 1	-	2	2	2	N	N	2	N	N	N.	N	N.	N.	Ņ.	17.	0	6	6	O	ю́.	O	O	Ģ	S.	S.	ų.	5	4	4	4	4	4	4	-	-	-

¹H NMR (CDCl₃, 400 MHz)

¹⁹F NMR (CDCl₃, 376 MHz)

Figure S5. HRMS of TEMPO-trapped product

