ElectronicpSupplemontary Matsnal (68) for Organic Fonderistry Frontiers.

Supplementary Information

Site-selective olefinic C-H cyanation via alkenyl sulfonium salts

Juan Ma,^{a,b} Jie Lin,^{a,b} Zilong Huang,^{a,b} Ping Wu,^a Yong-Gui Zhou,^{*a} and Zhengkun Yu^{*a,c}

^a Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

^c State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China

E-mail: zkyu@dicp.ac.cn; ygzhou@dicp.ac.cn

Experimental procedures and analytical data

Contents:

1. General considerations	S 2
2. Experimental procedures	S2
3. X-Ray crystallographic studies	S5
4. Analytical data	S 11
5. References	S37
6. Copies of NMR spectra	S39

1. General considerations

The solvents were dried and distilled prior to use by the literature methods. ¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker DRX-400 spectrometer and all chemical shift values refer to $\delta_{TMS} = 0.00$ ppm, CDCl₃ (δ (¹H), 7.26 ppm and δ (¹³C), 77.16 ppm), or DMSO-d₆ (δ (¹H), 2.50 ppm and δ (¹³C), 39.50 ppm). X-Ray crystallographic analysis was achieved by the Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. The HRMS analysis was obtained on a Waters GC-TOF CA156 mass spectrometer. Known compounds **1a-1b**,¹ **1a**',^{2a} **1e**,¹ **1h**,¹ **1j**,¹ **1n**,¹ **1p**,¹ **1t-1u**,³ **3a**,¹ **3m**,¹ **3r**,¹ **3t-3v**⁴ and **Int-Pd'**^{2b} were prepared by the literature procedures and their spectroscopic features are in good agreement with those reported in the literature.

2. Experimental procedures

2.1 Optimization of the reaction conditions

A mixture of substrate **1a**, CuCN, catalyst, ligand, and base in the reaction solvent was vigorously stirred for 12 h under nitrogen atmosphere. After cooling to ambient temperature, the reaction mixture was filtered through a short pad of celite, and rinsed with 10 mL of CH_2Cl_2 . The combined filtrate was concentrated under reduced pressure. The resultant mixture was used to measure the yield by ¹H NMR spectroscopy using MeNO₂ as the internal standard.

		Ph S ⁺ +	[Pd] (mol %) ligand (mol %) base (equiv) solvent (2 mL)	→ Ph Ph CN		
		1a	N ₂ , 60 °C, 12 h	2a		
Entres	נרטו	Ligand	CuCN	Base	C = less = t	Yield of
Entry	[Pa]	(mol %)	(equiv)	(equiv)	Solvent	$2a^{b}(\%)$
1	Pd(PPh ₃) ₄	Xphos (6)	1.2	Na ₂ CO ₃ (1.5)	EtOAc	39
2	Pd(PPh ₃) ₄	dppe (6)	1.2	Na ₂ CO ₃ (1.5)	EtOAc	54
3	Pd(PPh ₃) ₄	dppp (6)	1.2	Na ₂ CO ₃ (1.5)	EtOAc	99(98) ^c
4	PdCl ₂	dppp (6)	1.2	Na ₂ CO ₃ (1.5)	EtOAc	6
5	Pd(OAc) ₂	dppp (6)	1.2	Na ₂ CO ₃ (1.5)	EtOAc	trace
6	Pd(PPh ₃) ₄	dppp (6)	1.2	$K_2CO_3(1.5)$	EtOAc	53
7	Pd(PPh ₃) ₄	dppp (6)	1.2	Na ₂ CO ₃ (1.5)	toluene	19
8	Pd(PPh ₃) ₄	dppp (6)	1.2	Na ₂ CO ₃ (1.5)	DCE	99
9^d	Pd(PPh ₃) ₄	dppp (6)	1.2	Na ₂ CO ₃ (1.5)	EtOAc	58
10^{e}	Pd(PPh ₃) ₄	dppp (6)	1.2	Na ₂ CO ₃ (1.5)	EtOAc	0
11^f	Pd(PPh ₃) ₄	dppp (6)	1.2	Na ₂ CO ₃ (1.5)	EtOAc	53
12	Pd(PPh ₃) ₄	dppp (5)	1.2	Na ₂ CO ₃ (1.5)	EtOAc	63
13	Pd(PPh ₃) ₄	dppp (6)	1.0	Na ₂ CO ₃ (1.5)	EtOAc	92
14		dppp (6)	1.2	Na ₂ CO ₃ (1.5)	EtOAc	0
15	Pd(PPh ₃) ₄		1.2	Na ₂ CO ₃ (1.5)	EtOAc	22

Table S1. Optimization of the reaction conditions^a

16	Pd(PPh ₃) ₄	dppp (6)	1.2		EtOAc	23
17^{g}	Pd(PPh ₃) ₄	dppp (6)	1.2	$Na_2CO_3(1.5)$	EtOAc	0
18 ^h	Pd(PPh ₃) ₄	dppp (6)	1.2	Na ₂ CO ₃ (1.5)	EtOAc	99(96) ^c

^{*a*} Conditions: **1a** (0.2 mmol), CuCN (0.2-0.24 mmol), [Pd] (0-5 mol %), ligand (0-6 mol %), base (0-1.5 equiv), solvent (2 mL), 60 °C, N₂, 12 h. ^{*b*} Determined by ¹H NMR analysis of the crude product using MeNO₂ as the internal standard. ^{*c*} Isolated yields given in parentheses. ^{*d*} Using TMSCN. ^{*e*} Using K4[Fe(CN)₆]·3H₂O. ^{*f*} 3 mol % Pd(PPh₃)₄. ^{*g*} Air atmosphere. ^{*h*} **1a** (0.3 mmol), CuCN (0.36 mmol), Na₂CO₃ (0.45 mmol). Xphos = 2-dicyclohexylphosphino-2',4',6'-tri-i-propyl-1,1'-bipheny; dppe = 1,2-bis(diphenylphosphino)ethane.

2.2 Synthesis of sulfonium salts

A typical procedure for the synthesis of sulfonium salts 1, 3 and 5 — Synthesis of 1a: A mixture of tetrahydrothiophene 1-oxide (1.10 g, 10.2 mmol) in CH₂Cl₂ (50 mL) was cooled to -50 °C under N₂ atmosphere and Tf₂O (1.02 equiv) was added dropwise. After the reaction mixture was stirred for 15 min, 1,1-diphenylethylene (1.80 g, 10.0 mmol) was added. The mixture was allowed to warm up to ambient temperature, and stirred for 6 h. After 1,1-diphenylethylene was completely consumed by TLC monitoring on silica gel, the resultant mixture was evaporated all the volatiles under reduced pressure. The residue was purified by silica gel column chromatography (eluent: CH₂Cl₂/methanol = 20:1, v/v), affording **1a** (3.40 g, 82%) as a white solid.

2.3 Synthesis of alkenyl nitriles (2)

A typical procedure for the synthesis of compounds (2) — Synthesis of 2a: A mixture of 1-(2,2-diphenylvinyl)tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonate (1a) (125 mg, 0.3 mmol), CuCN (32 mg, 0.36 mmol), Pd(PPh₃)₄ (17.3 mg, 0.015 mmol) and Na₂CO₃ (48 mg, 0.45 mmol) in EtOAc (2 mL) was stirred at 60 °C for 12 h under nitrogen atmosphere. After 1a was completely consumed by TLC monitoring on silica gel, the reaction mixture was filtered through a short pad of celite, and rinsed with 15 mL of CH₂Cl₂. The combined filtrate was concentrated under reduced pressure. The resultant residue was purified by column chromatography on silica gel (eluent: petroleum ether (60-90 °C)/EtOAc = 35:1, v/v), affording 2a (59 mg, 96%) as pale yellow liquid.

2.4 Gram-scale preparation and derivatization of alkenyl nitriles

Gram-scale preparation of compounds 4m and 4m1: A mixture of **3m** (1.99 g, 4 mmol), CuCN (430 mg, 4.8 mmol), Pd(PPh₃)₄ (231 mg, 0.2 mmol) and Na₂CO₃ (636 mg, 6 mmol) in EtOAc (27 mL) was stirred at 60 °C for 12 h under nitrogen atmosphere. After cooled to ambient temperature, the resultant mixture was filtered through a short pad of celite, followed by rinsing with 25 mL of CH₂Cl₂. The combined filtrate was concentrated under reduced pressure. The resultant residue was purified by column chromatography on silica gel (eluent: petroleum ether (60-90 °C)/CH₂Cl₂ = 4:1, v/v), affording **4m** (0.54 g, 47%) and **4m1** (0.57 g, 49%) as white solids.

Synthesis of 7: Under nitrogen atmosphere, a mixture of SOMe₃I (132 mg, 0.6 mmol) and NaH (24 mg, 0.6 mmol) in DMSO (1.0 mL) was stirred until gas evolution ceased. (*E*)-3-(*p*-Tolyl)-2-(4-(trifluoromethyl)phenyl)acrylonitrile (**4m**) (86 mg, 0.3 mmol) in DMSO (1.0 mL) was then added and the resulting mixture was stirred at 30 °C for 5 h. After **4m** was completely consumed by TLC monitoring on silica gel, the reaction was quenched with water (10 mL), and extracted with CH₂Cl₂ (3×20 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The resultant residue was purified by column chromatography on silica gel (eluent: petroleum ether (60-90 °C)/CH₂Cl₂ = 4:1, v/v), affording **7** (68 mg, 75%) as a white solid.

Synthesis of 9: A mixture of (Z)-3-(p-tolyl)-2-(4-(trifluoromethyl)phenyl)acrylonitrile (4m1) (86 mg, 0.3 mmol) and K₂CO₃ (9 mg, 0.06 mmol) in DMSO (1 mL) was stirred until the mixture was homogeneous. At this point H₂O₂ (84 μ L, 0.6 mmol) was added and the resulting mixture was stirred at ambient temperature for 12 h. After 4m1 was completely consumed by TLC monitoring on silica gel, the reaction was quenched with water (10 mL), and extracted with CH₂Cl₂ (3×20 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The resultant residue was purified by column chromatography on silica gel (eluent: petroleum ether (60-90 °C)/EtOAc = 2:1, v/v), affording **9** (59.5 mg, 65%) as a white solid.

Table S2. Unsuccessful cyanation of alkenyl sulfonium salts^a

^{*a*} Conditions: alkenyl sulfonium salts (0.3 mmol), CuCN (0.36 mmol), Pd(PPh₃)₄ (5 mol %), dppp (6 mol %), Na₂CO₃ (0.45 mmol), EtOAc (2 mL), 70 °C, N₂, 48 h. ^{*b*} Isolated yield.

2.5 Radical trapping study

1,1-Diphenylethylene and BHT-trapping radical experiments: A mixture of **1a** (125 mg, 0.3 mmol), CuCN (32 mg, 0.36 mmol), Pd(PPh₃)₄ (17.3 mg, 0.015 mmol), Na₂CO₃ (48 mg, 0.45 mmol) and 1,1-diphenylethylene (1.5 equiv) or BHT (1.5 equiv) in EtOAc (2 mL) was stirred at 60 °C for 12 h under nitrogen atmosphere. After cooled to ambient temperature, the reaction mixture was filtered through a short pad of celite, and rinsed with 15 mL of CH₂Cl₂. The combined filtrate was concentrated under reduced pressure. The resultant mixture was determined by ¹H NMR analysis of the crude product using MeNO₂ as the internal standard.

3. X-Ray crystallographic studies

Single crystal X-ray diffraction studies for compounds **3m**, **5b**, **4m**, **4m1**, **6b** and **6c** were carried out on a SMART APEX diffractometer with graphite-monochromated Mo K α radiation (λ = 0.71073 Å). Cell parameters were obtained by global refinement of the positions of all collected reflections. Intensities were corrected for Lorentz and polarization effects and empirical absorption. The structures were solved by direct methods and refined by full-matrix least squares on F^2 . All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions.

Structure solution and refinement were performed by using the SHELXL-97 package. The X-ray crystallographic files, in CIF format, are available from the Cambridge Crystallographic Data Centre on quoting the deposition numbers CCDC 2208095 for **3m**, 2164693 for **5b**, 2208092 for **4m**, 2208089 for **4m1**, 2164690 for **6b** and 2164692 for **6c**. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 IEZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www. ccdc.cam.ac.uk).

Figure S1. Molecular structure of compound 3m.

Table S3. Crysta	l data and	structure refir	nement for con	npound 3m
------------------	------------	-----------------	----------------	------------------

Identification code	mj-255_compound3m		
Empirical formula	$C_{21}H_{20}F_6O_3S_2\\$		
Formula weight	498.49		
Temperature	293(2) K		
Wavelength	1.54184 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 9.5403(4) Å	$\alpha = 86.284(4)^{\circ}$	
	b = 10.9206(5) Å	$\beta=87.563(4)^\circ$	
	c = 11.0143(5) Å	$\gamma=78.588(4)^\circ$	
Volume	1121.96(9) Å ³		
Ζ	2		
Density (calculated)	1.476 Mg/m^3		
Absorption coefficient	2.806 mm ⁻¹		
F(000)	512		
Crystal size	$0.170 \text{ x } 0.140 \text{ x } 0.120 \text{ mm}^3$		
Theta range for data collection	4.024 to 67.176°		
Index ranges	-9<=h<=11, -13<=k<=12, -13<	<=l<=13	
Reflections collected	11883		
Independent reflections	3975 [R(int) = 0.0284]		
Completeness to theta = 67.684°	98.1 %		
Absorption correction	Semi-empirical from equivaler	nts	
Max. and min. transmission	1.0000 and 0.5867		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3975 / 36 / 318		
Goodness-of-fit on F ²	1.017		
Final R indices [I>2sigma(I)]	R1 = 0.0442, wR2 = 0.1197		

Figure S2. Molecular structure of compound 5b.

Table S4. Crystal data and structure refinement for compound 5b

Identification code mj-242_compound5b		
Empirical formula	$C_{24}H_{20}F_6O_3S_2$	
Formula weight	534.52	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P n a 21	
Unit cell dimensions	a = 20.002(4) Å	$\alpha = 90^{\circ}$
	b = 9.008(3) Å	$\beta=90^\circ$
	c = 26.434(9) Å	$\gamma=90^\circ$
Volume	4763(2) Å ³	
Ζ	8	
Density (calculated)	1.491 Mg/m ³	
Absorption coefficient	0.295 mm ⁻¹	
F(000)	2192	
Crystal size	0.200 x 0.150 x 0.110 mm ³	
Theta range for data collection	2.920 to 24.997°	
Index ranges	-23<=h<=18, -6<=k<=10, -21	<=l<=29
Reflections collected	7677	
Independent reflections	5566 [R(int) = 0.1057]	
Completeness to theta = 25.242°	90.2 %	
Absorption correction	Semi-empirical from equivale	ents
Max. and min. transmission	1.0000 and 0.7768	
Refinement method	Full-matrix least-squares on F	72
Data / restraints / parameters	5566 / 6 / 631	
Goodness-of-fit on F ²	1.012	
Final R indices [I>2sigma(I)]	R1 = 0.0839, wR2 = 0.1640	
R indices (all data)	R1 = 0.2208, wR2 = 0.2565	
Absolute structure parameter	0.0(3)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.307 and -0.309 e.Å ⁻³	

Figure S3. Molecular structure of compound 4m.

Table S5. Crys	stal data and	structure refinen	nent for comp	ound 4m
----------------	---------------	-------------------	---------------	---------

Identification code	MJ-2_compound4m			
Empirical formula	$C_{17}H_{12}F_{3}N$			
Formula weight	287.28			
Temperature	100(2) K			
Wavelength	1.34139 Å			
Crystal system	Triclinic			
Space group	P -1			
Unit cell dimensions	a = 8.0544(4) Å	$\alpha = 108.761(2)$		
	b = 8.6353(5) Å	$\beta = 92.933(2)^{\circ}$		
	c = 12.0033(6) Å	$\gamma = 115.474(2)$		
Volume	695.89(6) Å ³			
Z	2			
Density (calculated)	1.371 Mg/m ³			
Absorption coefficient	0.587 mm ⁻¹			
F(000)	296			
Crystal size	0.170 x 0.130 x 0.110 m	m ³		
Theta range for data collection	3.469 to 56.997°			
Index ranges	-10<=h<=9, -10<=k<=10	0, -14<=l<=14		
Reflections collected	6838			
Independent reflections	2713 [R(int) = 0.0434]			
Completeness to theta = 53.594°	95.4 %			
Absorption correction	Semi-empirical from equ	ivalents		
Max. and min. transmission	0.7513 and 0.5391			
Refinement method	Full-matrix least-squares	s on F ²		
Data / restraints / parameters	2713 / 0 / 191	2713 / 0 / 191		
Goodness-of-fit on F ²	1.054			
Final R indices [I>2sigma(I)]	R1 = 0.0502, wR2 = 0.13	R1 = 0.0502, $wR2 = 0.1345$		
R indices (all data)	R1 = 0.0564, wR2 = 0.13	R1 = 0.0564, wR2 = 0.1386		
Extinction coefficient	n/a	n/a		
Largest diff. peak and hole	0.289 and -0.329 e.Å ⁻³			

Figure S4. Molecular structure of compound 4m1.

Tab	le. So	6 Cr	ystal da	ta and	l structure	refinemen	t for	compoun	d 4 n	n1
							• •			

Identification code	20220422dL_0m_compound4m1		
Empirical formula	$C_{17}H_{12}F_{3}N$		
Formula weight	287.28		
Temperature	293(2) K		
Wavelength	1.34139 Å		
Crystal system	Monoclinic		
Space group	C 2/c		
Unit cell dimensions	a = 31.110(4) Å	$\alpha=90^\circ$	
	b = 7.1135(11) Å	$\beta=91.471(8)^\circ$	
	c = 12.8170(17) Å	$\gamma=90^\circ$	
Volume	2835.5(7) Å ³		
Z	8		
Density (calculated)	1.346 Mg/m ³		
Absorption coefficient	0.576 mm ⁻¹		
F(000)	1184		
Crystal size	0.180 x 0.130 x 0.110 mm ³		
Theta range for data collection	4.949 to 53.936°		
Index ranges	-33<=h<=37, -5<=k<=8, -13<=	=l<=15	
Reflections collected	8816		
Independent reflections	2533 [R(int) = 0.0669]		
Completeness to theta = 53.594°	97.8 %		
Absorption correction	Semi-empirical from equivaler	nts	
Max. and min. transmission	0.7507 and 0.5141		
Refinement method	Full-matrix least-squares on F ²	1	
Data / restraints / parameters	2533 / 39 / 218		
Goodness-of-fit on F ²	1.029		
Final R indices [I>2sigma(I)]	R1 = 0.0763, wR2 = 0.2153		
R indices (all data)	R1 = 0.1060, wR2 = 0.2472		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.298 and -0.434 e.Å ⁻³		

Figure S5. Molecular structure of compound 6b.

Table S7.	Crystal	data and	structure	refinement	for	compound 6b	
	~						

Identification code	MI-244 compound6b	
Empirical formula	CaoH12F2N	
Formula weight	323 31	
Temperature	293(2) K	
Wavelength	0 71073 Å	
Crystal system	Monoclinic	
Space group	$\mathbf{P} 21/c$	
Unit coll dimensions	r = 15.061(2) Å	$\alpha = 00^{\circ}$
onit cen dimensions	a = 13.901(3) A b = 7.6248(15) Å	$\alpha = 90$ $\beta = 02.204(10)^{\circ}$
	0 = 7.0248(13) A	p = 93.304(19)
X/1 mark	c = 13.249(2) A	$\gamma = 90^{\circ}$
volume	1609.7(5) A ³	
	4	
Density (calculated)	1.334 Mg/m ³	
Absorption coefficient	0.102 mm^{-1}	
F(000)	664	
Crystal size	$0.190 \ge 0.160 \ge 0.130 \text{ mm}^3$	
Theta range for data collection	3.084 to 24.994°	
Index ranges	-13<=h<=18, -7<=k<=9, -10<	<=l<=15
Reflections collected	4214	
Independent reflections	2608 [R(int) = 0.0245]	
Completeness to theta = 25.242°	89.6 %	
Absorption correction	Semi-empirical from equivale	ents
Max. and min. transmission	1.0000 and 0.9213	
Refinement method	Full-matrix least-squares on F	72
Data / restraints / parameters	2608 / 36 / 245	
Goodness-of-fit on F ²	1.039	
Final R indices [I>2sigma(I)]	R1 = 0.0503, wR2 = 0.1210	
R indices (all data)	R1 = 0.0973, wR2 = 0.1652	
Extinction coefficient	0.030(3)	
Largest diff. peak and hole	0.127 and -0.120 e.Å ⁻³	

Figure S6. Molecular structure of compound 6c.

Identification code	mi-235 compound6c	
	$C_{18}H_{13}NS$	
Formula weight	275.35	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P n a 21	
Unit cell dimensions	a = 8.055(2) Å	$\alpha = 90^{\circ}$
	b = 11.224(2) Å	$\beta = 90^{\circ}$
	c = 15.398(2) Å	$\gamma=90^{\circ}$
Volume	1392.1(5) Å ³	
Ζ	4	
Density (calculated)	1.314 Mg/m^3	
Absorption coefficient	0.220 mm ⁻¹	
F(000)	576	
Crystal size	0.190 x 0.150 x 0.110 mm ³	
Theta range for data collection	3.383 to 25.498°	
Index ranges	-7<=h<=9, -13<=k<=11, -18<=l<=15	
Reflections collected	4012	
Independent reflections	2228 [R(int) = 0.0377]	
Completeness to theta = 25.242°	99.4 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.0000 and 0.2410	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2228 / 1 / 183	
Goodness-of-fit on F ²	1.039	
Final R indices [I>2sigma(I)]	R1 = 0.0450, wR2 = 0.0939	
R indices (all data)	R1 = 0.0649, wR2 = 0.1046	
Absolute structure parameter	0.02(7)	
Extinction coefficient	0.106(6)	
Largest diff. peak and hole	0.164 and -0.214 e.Å ⁻³	

Table S8. Crystal data and structure refinement for compound 6c

4. Analytical data

(*E*)-1-(2-Phenyl-2-(*m*-tolyl)vinyl)tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound 1c was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 35:1, v/v). 1.40 g, 71%; white solid, m.p.: 92–94 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53–6.99 (m, 8 H), 6.97–6.81 (m, 2 H), 3.73–3.57 (m, 2 H), 3.57–3.40 (m, 2 H), 2.61–2.40 (m, 2 H), 2.28 (d, *J* = 28.0 Hz, 3 H), 2.24–2.06 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) 162.3, 139.4, 137.2, 135.8, 131.3 (d, J = 5.4 Hz), 129.9, 129.2, 129.0, 128.9, 126.6, 120.8 (q, J = 320.5 Hz), 111.3, 48.8, 29.2, and 21.4. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.4. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₉H₂₁S 281.1358; Found 281.1357.

(*E*)-1-(2-Phenyl-2-(3-(trifluoromethyl)phenyl)vinyl)tetrahydro-1*H*-thiophen-1-iu m trifluoromethanesulfonate: Following the general procedure, compound 1d was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 0.50 g, 68%; white solid, m.p.: 133–134 °C. ¹H NMR (400 MHz, DMSO-d6) δ 8.15–7.95 (m, 2 H), 7.95–7.73 (m, 3 H), 7.46–7.20 (m, 3 H), 7.05 (d, *J* = 7.4 Hz, 2 H), 3.94–3.73 (m, 2 H), 3.73–3.49 (m, 2 H), 2.16–1.88 (m, 2 H), 1.75–1.55 (m, 2 H). ¹³C{¹H} NMR (100 MHz, DMSO-d6) δ 144.9, 134.8, 132.6, 132.1, 131.3, 130.7 (q, *J* = 32.3 Hz), 130.6, 130.0, 128.8, 127.3 (dd, *J* = 10.2, 3.7 Hz), 124.3, 123.6 (q, *J* = 271.4 Hz), 115.9, 45.1, and 28.3. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₉H₁₈F₃S 335.1076; Found 335.1077.

(*Z*)-1-(2-(3,4-Dichlorophenyl)-2-phenylvinyl)tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound 1f was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 30:1, v/v). 1.70 g, 90%; white solid, m.p.: 117–118 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 1 H), 7.51–7.35 (m, 5 H), 7.33 (d, *J* = 2.0 Hz, 1 H), 7.21 (dd, *J* = 8.2, 2.0 Hz, 1 H), 7.03 (s, 1 H), 3.80–3.61 (m, 4 H), 2.68–2.52 (m, 2 H), 2.34–2.18 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) 159.9, 136.5, 135.7, 135.2, 133.9, 131.9, 131.6, 131.2, 129.3, 129.2, 129.1, 112.6, 48.9, and 29.4. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.3. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₈H₁₇Cl₂S 335.0423; Found 335.0426.

(*E*)-1-(2-(3,5-Difluorophenyl)-2-phenylvinyl)tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound 1g was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 35:1, v/v). 0.90 g, 64%; white solid, m.p.: 119–120 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.18 (m, 5 H), 7.04 (d, *J* = 15.4 Hz, 1 H), 6.99–6.76 (m, 3 H), 3.86–3.68 (m, 2 H), 3.68–3.53 (m, 2 H), 2.65–2.47 (m, 2 H), 2.37–2.14 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) 164.6 (d, *J* = 12.9 Hz), 162.1 (d, *J* = 12.8 Hz), 159.2, 138.8 (t, *J* = 9.5 Hz), 136.1, 134.8, 131.7, 130.8, 129.5 (d, *J* = 16.8 Hz), 129.0 (d, *J* = 29.0 Hz), 120.7 (q, *J* = 320.2 Hz), 114.8, 113.3–112.5 (m), 112.2 (d, *J* = 26.8 Hz), 105.8 (t, *J* = 25.0 Hz), 48.8, and 29.4. ${}^{19}F{}^{1}H$ NMR (376 MHz, CDCl₃) δ -78.4, -106.5, -108.1. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₈H₁₇F₂S 303.1014; Found 303.1037.

(*Z*)-1-(2-(2-Fluorophenyl)-2-phenylvinyl)tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound 1i was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 50:1, v/v). 1.90 g, 72%; white solid, m.p.: 112–113 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.40 (m, 1 H), 7.37–7.13 (m, 7 H), 7.08 (td, *J* = 7.5, 1.6 Hz, 1 H), 7.05 (s, 1 H), 3.72–3.60 (m, 2 H), 3.55–3.43 (m, 2 H), 2.57–2.41 (m, 2 H), 2.27–2.12 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) 160.3, 157.8, 155.0, 136.2, 132.6 (d, *J* = 8.4 Hz), 131.3 (d, *J* = 7.5 Hz), 128.9, 128.5, 125.2 (d, *J* = 3.4 Hz), 122.9 (d, *J* = 14.9 Hz), 120.6 (q, *J* = 318.4 Hz), 116.4 (d, *J* = 21.6 Hz), 113.6, 48.0, and 29.0. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.3, -113.4. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₈H₁₈FS 285.1108; Found 285.1107.

1-(2,2-Bis(4-methoxyphenyl)vinyl)tetrahydro-1*H***-thiophen-1-ium trifluoromethanesulfonate:** Following the general procedure, compound **1k** was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 25:1, v/v). 1.90 g, 80%; white solid, m.p.: 106–107 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.9 Hz, 2 H), 7.12 (d, *J* = 8.7 Hz, 2 H), 6.98 (d, *J* = 8.7 Hz, 2 H), 6.83 (d, *J* = 8.9 Hz, 2 H), 6.66 (s, 1 H), 3.83 (s, 3 H), 3.77 (s, 3 H), 3.74–3.63 (m, 2 H), 3.58–3.45 (m, 2 H), 2.63–2.46 (m, 2 H), 2.31–2.17 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) 162.2, 161.9, 161.3, 131.4, 131.1, 129.9, 128.0, 120.8 (q, *J* = 318.6 Hz), 114.6, 114.2, 107.4, 55.5, 55.5, 48.9, and 29.1. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.2. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₂₀H₂₃O₂S 327.1413; Found 327.1415.

1-(2,2-Bis(4-fluorophenyl)vinyl)tetrahydro-1*H***-thiophen-1-ium trifluoromethane-sulfonate:** Following the general procedure, compound **1**I was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 1.60 g, 78%; white solid, m.p.: 173–174 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, *J* = 8.8, 5.2 Hz, 1 H), 7.31–7.19 (m, 4 H), 7.06 (t, *J* = 8.6 Hz, 1 H), 6.96 (s, 1 H), 3.88–3.71 (m, 2 H), 3.71–3.56 (m, 2 H), 2.75–2.49 (m, 2 H), 2.40–2.19 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.6 (d, *J* = 81.1 Hz), 163.1 (d, *J* = 79.5 Hz), 160.1, 133.4 (d, *J* = 3.1 Hz), 131.9 (d, *J* = 8.6 Hz), 131.7 (d, *J* = 3.4 Hz), 131.5 (d, *J* = 8.8 Hz), 120.8 (q, *J* = 320.2 Hz), 116.7 (d, *J* = 22.0 Hz), 116.2 (d, *J* = 21.9 Hz), 111.5, 48.9, and 29.4.

¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.4, -107.7, -108.9. HRMS (ESI-TOF) m/z: $[M-OTf]^+$ Calcd for C₁₈H₁₇F₂S 303.1014; Found 303.1015.

1-(2,2-Bis(4-bromophenyl)vinyl)tetrahydro-1*H***-thiophen-1-ium** trifluoromethanesulfonate: Following the general procedure, compound **1m** was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 0.80 g, 71%; white solid, m.p.: 112–113 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.4 Hz, 2 H), 7.44 (d, *J* = 8.7 Hz, 2 H), 7.27 (d, *J* = 8.7 Hz, 2 H), 7.13 (d, *J* = 8.4 Hz, 2 H), 6.99 (s, 1 H), 3.80–3.67 (m, 2 H), 3.67–3.44 (m, 2 H), 2.68–2.44 (m, 2 H), 2.23–2.20 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.6, 135.8, 134.1, 132.7, 132.1, 131.2, 130.6, 126.2, 125.1, 120.7, 112.5 (q, *J* = 318.4 Hz), 48.8, and 29.3. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.3. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₈H₁₇Br₂S 422.9412; Found 422.9424.

(*E*)-1-(2-(4-Methoxyphenyl)-2-(3-(trifluoromethyl)phenyl)vinyl)tetrahydro-1*H*-th iophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound 1q was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 1.00 g, 32% (*E*/*Z* = 1.2:1); white solid, m.p.: 114–116 °C. ¹H NMR (400 MHz, CDCl₃) 7.75–7.51 (m, 2 H), 7.48–7.33 (m, 2 H), 7.24 (s, 1 H), 7.09 (d, *J* = 8.6 Hz, 1 H), 6.93 (d, *J* = 8.6 Hz, 1 H), 6.90–6.70 (m, 2 H), 3.74 (s, 2 H), 3.72–3.42 (m, 5 H), 2.55–2.40 (m, 2 H), 2.18–2.10 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.0, 161.2, 159.8, 159.5, 138.4, 136.5, 132.9, 132.3, 131.1, 130.5, 129.8, 129.3, 128.7, 127.2, 126.9, 126.6, 125.7, 125.4, 123.4 (q, *J* = 271.0 Hz), 120.4 (q, *J* = 318.6 Hz), 114.5, 114.0, 112.3, 109.6, 77.4, 55.1, 48.5 (d, *J* = 6.2 Hz), and 28.8 (d, *J* = 10.7 Hz). ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.6, -62.7, -78.4. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₂₀H₂₀F₃OS 365.1181; Found 365.1184.

(*E*)-1-(2-(2-Fluorophenyl)-2-(4-methoxyphenyl)vinyl)tetrahydro-1*H*-thiophen-1-i um trifluoromethanesulfonate: Following the general procedure, compound 1r was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 1.70 g, 77%; white solid, m.p.: 127–128 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56–7.42 (m, 1 H), 7.35 (d, *J* = 8.9 Hz, 2 H), 7.29–7.23 (m, 1 H), 7.20 (t, *J* = 9.1 Hz, 1 H), 7.12 (td, *J* = 7.5, 1.7 Hz, 1 H), 7.00 (s, 1 H), 6.82 (d, *J* = 9.0 Hz, 2 H), 3.74 (s, 3 H), 3.68 (dt, *J* = 13.6, 6.9 Hz, 2 H), 3.59–3.41 (m, 2 H), 2.65–2.46 (m, 2 H), 2.34–2.16 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.2, 159.0 (d, *J* = 246.9 Hz), 154.6, 132.5 (d, J = 8.3 Hz), 131.3 (d, J = 1.9 Hz), 130.3, 128.5, 125.1 (d, J = 3.5 Hz), 123.1 (d, J = 15.1 Hz), 120.7 (d, J = 318.6 Hz), 116.3 (d, J = 21.8 Hz), 114.3, 110.4, 55.4, 48.0, and 28.9. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.3, -113.7. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₉H₂₀FOS 315.1213; Found 315.1229.

(*Z*)-1-(2-(3,4-Dimethoxyphenyl)-2-(3,5-dimethoxyphenyl)vinyl)tetrahydro-1*H*-thi ophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound 1s was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 25:1, v/v). 2.70 g, 42%; white solid, m.p.: 125–126 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.15 (s, 1 H), 6.89 (s, 1 H), 6.78 (d, *J* = 8.5 Hz, 1 H), 6.72 (d, *J* = 8.5 Hz, 1 H), 6.51 (s, 1 H), 6.28 (d, *J* = 1.9 Hz, 2 H), 3.85 (s, 3 H), 3.81 (s, 3 H), 3.75 (s, 6 H), 3.66–3.47 (m, 4 H), 2.67–2.46 (m, 2 H), 2.30–2.11 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) 161.3 (d, *J* = 1.6 Hz), 151.9, 149.2, 137.9, 128.9, 123.6, 120.6 (q, *J* = 320.5 Hz), 110.5 (d, *J* = 3.5 Hz), 108.8, 107.4, 101.3, 56.3, 55.9, 55.5, 48.5, and 29.1. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.4. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₂₂H₂₇O₄S 387.1625; Found 387.1630.

(*E*)-1-(3,4-Dichlorostyryl)tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound 1v was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 30:1, v/v). 3.60 g, 74%; white solid, m.p.: 94–95 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 1.9 Hz, 1 H), 7.50–7.33 (m, 3 H), 7.10 (d, *J* = 15.3 Hz, 1 H), 3.91–3.67 (m, 2 H), 3.61–2.46 (m, 2 H), 2.64–2.40 (m, 2 H), 2.37–2.20 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.1, 135.7, 133.3, 132.4, 131.2, 130.4, 127.9, 120.7 (q, *J* = 318.3 Hz), 114.7, 47.9, and 29.0. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.2. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₂H₁₃Cl₂S 259.0110; Found 259.0113.

(Z)-1-(2-Cyclopropyl-2-phenylvinyl)tetrahydro-1*H*-thiophen-1-ium trifluorome-

thanesulfonate: Following the general procedure, compound **1w** was obtained by column chromatography on silica gel (CH₂Cl₂/methanol = 20:1, v/v). 1.00 g, 12%; white solid, m.p.: 140–142 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.37 (m, 3 H), 7.18–7.02 (m, 2 H), 6.51 (s, 1 H), 3.65–3.53 (m, 2 H), 3.53–3.40 (m, 2 H), 2.67–2.45 (m, 2 H), 2.34–2.14 (m, 2 H), 2.07–1.92 (m, 1 H), 1.09–0.89 (m, 2 H), 0.77–0.59 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 134.1, 129.9, 129.2, 128.1, 109.3, 48.2, 29.1, 20.0, and 8.6. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₅H₁₉S 231.1202; Found 231.1204.

1-((4-(Propan-2-ylidene)cyclohexa-2,5-dien-1-ylidene)methyl)tetrahydro-1*H***-thio phen-1-ium trifluoromethanesulfonate:** Following the general procedure, compound **1x** was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 2.20 g, 39%; white solid, m.p.: 148–149 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.2 Hz, 2 H), 7.20 (d, *J* = 8.0 Hz, 2 H), 6.46 (s, 1 H), 3.95–3.80 (m, 2 H), 3.50–3.37 (m, 2 H), 2.58–2.44 (m, 5 H), 2.40–2.26 (m, 5 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.0, 141.7, 134.8, 129.8, 126.7, 109.6, 48.4, 29.1, 21.5, and 19.4. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.3. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₄H₁₉S 219.1202; Found 219.1215.

(*E*)-1-(1-Phenyl-2-(*p*-tolyl)vinyl)tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound **3b** was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 3.30 g, 63%; white solid, m.p.: 150–152 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71–7.48 (m, 4 H), 7.39–7.27 (m, 2 H), 6.95 (d, *J* = 7.7 Hz, 2 H), 6.87 (d, *J* = 8.0 Hz, 2 H), 4.06–3.82 (m, 2 H), 3.53–3.34 (m, 2 H), 2.23 (s, 3 H), 2.16–1.97 (m, 2 H), 1.72–1.51 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 148.0, 142.0, 131.1, 130.8, 130.7, 130.4, 130.0, 129.5, 122.4, 119.2, 45.0, 28.8, and 21.5. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.1. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₉H₂₁S 281.1358; Found 281.1357.

(*E*)-1-(2-(4-Methoxyphenyl)-1-phenylvinyl)tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound 3c was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 3.00 g, 68%; yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.41 (m, 4 H), 7.34–7.20 (m, 2 H), 6.85 (d, *J* = 8.9 Hz, 2 H), 6.55 (d, *J* = 8.9 Hz, 2 H), 3.88–3.67 (m, 2 H), 3.59 (s, 3 H), 3.44–3.29 (m, 2 H), 2.04–1.85 (m, 2 H), 1.64–1.43 (m, 2 H).¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.4, 147.1, 132.4, 130.7, 130.4, 130.2, 129.7, 124.7, 120.5 (q, *J* = 320.9 Hz), 119.9, 113.9, 55.1, 44.6, and 28.4. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.3. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₉H₂₁OS 297.1308; Found 297.1309.

(*E*)-1-(1-Phenyl-2-(*m*-tolyl)vinyl)tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound 3d was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 2.60 g, 52%; white solid, m.p.: 115–117 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76–7.44 (m, 5 H), 7.44–7.22 (m, 4 H), 7.14 (d, *J* = 15.8 Hz, 1 H), 4.36–3.85 (m, 2 H), 3.73–3.30 (m, 2 H), 2.71–2.27 (m, 7 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.1, 140.4, 136.0, 135.6, 131.4, 129.1, 128.8, 128.3, 128.2, 127.3, 120.8 (q, *J* = 318.8 Hz), 121.4, 120.1, 48.0, 29.0, and 21.4. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.1. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₉H₂₁S 281.1358; Found 281.1359.

(*E*)-1-(1-Phenyl-2-(*o*-tolyl)vinyl)tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound 3e was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 2.30 g, 45%; white solid, m.p.: 101–102 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1 H), 7.55–7.42 (m, 3 H), 7.30 (d, *J* = 3.5 Hz, 2 H), 7.11 (d, *J* = 3.7 Hz, 2 H), 6.89–6.64 (m, 2 H), 4.04–3.87 (m, 2 H), 3.64–3.38 (m, 2 H), 2.40 (s, 3 H), 2.19–2.07 (m, 2 H), 1.83–1.60 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.9, 138.4, 131.3, 130.7, 130.5, 130.4, 130.2, 130.0, 129.5, 129.0, 125.6, 125.4, 120.6 (q, *J* = 306.4 Hz), 44.9, 28.5, and 19.8. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.4. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₉H₂₁S 281.1358; Found 281.1357.

(*E*)-1-(2-Phenyl-1-(4-(trifluoromethyl)phenyl)vinyl)tetrahydro-1*H*-thiophen-1-iu m trifluoromethanesulfonate: Following the general procedure, compound **3f** was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 2.20 g, 64%; white solid, m.p.: 97–98 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.0 Hz, 2 H), 7.75 (s, 1 H), 7.61 (d, J = 7.9 Hz, 2 H), 7.29 (t, J = 7.3 Hz, 1 H), 7.18 (t, J = 7.6 Hz, 2 H), 7.01 (d, J = 7.7 Hz, 2 H), 4.11–3.81 (m, 2 H), 3.65–3.40 (m, 2 H), 2.22–1.99 (m, 2 H), 1.83–1.59 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 148.4, 134.0, 132.9 (q, J = 33.3 Hz), 132.0, 131.4, 131.3, 130.6, 128.9, 127.4 (q, J =3.6 Hz), 124.8, 122.4, 120.7 (q, J = 318.5 Hz), 45.2, and 28.8. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₉H₁₈F₃S 335.1076; Found 335.1077.

(*E*)-1-(1-(4-Fluorophenyl)-2-phenylvinyl)tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound 3g was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 2.50 g, 68%; white solid, m.p.: 88–89 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 5.1 Hz, 1 H), 7.61–7.56 (m, 1 H), 7.45–7.40 (m, 1 H), 7.39–7.32 (m, 1 H), 7.32–7.22 (m, 2 H), 7.17 (t, J = 7.7 Hz, 1 H), 7.05–6.99 (m, 2 H), 6.83 (t, J = 8.6 Hz, 1 H), 3.98–3.87 (m, 2 H), 3.56–3.44 (m, 2 H), 2.17–2.02 (m, 2 H), 1.77–1.59 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.0, 162.5, 148.1, 146.3, 132.9 (d, J = 8.9 Hz), 132.5 (d, J = 53.8 Hz), 130.9 (d, J = 63.5 Hz), 129.1 (d, J = 82.6 Hz), 128.7 (d, J = 3.2 Hz), 125.8 (d, J = 3.7 Hz), 123.4 (d, J = 2.2 Hz), 120.7 (q, J = 320.6 Hz), 117.9 (d, J = 21.9 Hz), 115.9 (d, J = 21.8 Hz), 44.9, and 28.6. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.1, -107.3. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₈H₁₈FS 285.1108; Found 285.1116.

(*E*)-1-(2-Phenyl-1-(3-(trifluoromethyl)phenyl)vinyl)tetrahydro-1*H*-thiophen-1-iu m trifluoromethanesulfonate: Following the general procedure, compound 3h was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 0.80 g, 52%; white solid, m.p.: 149–150 °C. ¹H NMR (400 MHz, DMSO-d₆) δ 8.15–7.95 (m, 2 H), 7.95–7.73 (m, 3 H), 7.46–7.20 (m, 3 H), 7.05 (d, *J* = 7.4 Hz, 2 H), 3.94-3.73 (m, 2 H), 3.73–3.49 (m, 2 H), 2.16–1.88 (m, 2 H), 1.75–1.55 (m, 2 H). ¹³C{¹H} NMR (100 MHz, DMSO-d₆) δ 144.9, 134.8, 132.6, 132.1, 131.3, 130.7 (q, *J* = 32.3 Hz), 130.6, 130.0, 128.8, 127.3 (dd, *J* = 10.2, 3.7 Hz), 124.3, 123.6 (q, *J* = 271.4 Hz), 115.9, 45.1, and 28.3. ¹⁹F{¹H} NMR (376 MHz, DMSO-d₆) δ -61.2, -77.9. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₉H₁₈F₃S 335.1076; Found 335.1075.

(*Z*)-1-(1-(2,6-Difluorophenyl)-2-(*p*-tolyl)vinyl)tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound **3**j was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 30:1, v/v). 4.40 g, 72%; white solid, m.p.: 92–95 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1 H), 7.72–7.60 (m, 1 H), 7.16 (t, *J* = 8.1 Hz, 2 H), 7.01 (d, *J* = 8.1 Hz, 2 H), 6.90 (d, *J* = 8.2 Hz, 2 H), 4.06–3.88 (m, 2 H), 3.52–3.33 (m, 2 H), 2.34–2.12 (m, 5 H), 1.94–1.73 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.1 (d, *J* = 5.3 Hz), 158.1 (d, *J* = 5.6 Hz), 153.0, 143.0, 134.8 (t, *J* = 10.2 Hz), 129.9 (d, *J* = 5.8 Hz), 129.1, 120.7 (q, *J* = 320.5 Hz), 113.3 (dd, *J* = 22.0, 2.9 Hz), 110.8, 107.7 (t, *J* = 20.6 Hz), 45.4 (d, *J* = 4.2 Hz), 29.0, and 21.4. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.2, -108.4. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₉H₁₉F₂S 317.1170; Found 317.1169.

(*E*)-1-(2-(4-Methoxyphenyl)-1-(*p*-tolyl)vinyl)tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound 3k was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 2.80 g, 61%; white solid, m.p.: 157–159 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1 H), 7.38 (d, *J* = 7.8 Hz, 2 H), 7.19 (d, *J* = 7.9 Hz, 2 H), 6.95 (d, *J* = 8.8 Hz, 2 H), 6.67 (d, *J* = 8.8 Hz, 2 H), 3.92 (dt, *J* = 12.8, 6.4 Hz, 2 H), 3.73 (s, 3 H), 3.38 (dt, *J* = 12.8, 6.4 Hz, 2 H), 2.44 (s, 3 H), 2.17–2.02 (m, 2 H), 1.78–1.54 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.9, 147.8, 141.6, 132.8, 131.5, 130.4, 127.0, 125.1, 120.4, 114.3, 55.5, 45.0, 28.9, and 21.6. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.2. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₂₀H₂₃OS 311.1464; Found 311.1463.

(*E*)-1-(2-(4-(Methylthio)phenyl)-1-(*p*-tolyl)vinyl)tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound 3l was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 30:1, v/v). 1.40 g, 23%; white solid, m.p.: 162–163 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 1 H), 7.38 (d, *J* = 7.8 Hz, 2 H), 7.21 (d, *J* = 7.9 Hz, 2 H), 6.98 (d, *J* = 8.6 Hz, 2 H), 6.92 (d, *J* = 8.6 Hz, 2 H), 3.92 (dt, *J* = 12.9, 6.5 Hz, 2 H), 3.43 (dt, *J* = 12.9, 6.4 Hz, 2 H), 2.54–2.43 (m, 3 H), 2.40 (s, 3 H), 2.22–2.02 (m, 2 H), 1.80–1.54 (m, 2 H).¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.2, 143.7, 141.6, 131.4, 131.0, 130.2, 128.6, 126.9, 125.3, 122.5, 119.2, 45.0, 28.8, 21.6, and 14.7. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.2. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₂₀H₂₃S₂ 327.1236; Found 327.1237.

(*E*)-1-(2-(*p*-Tolyl)-1-(3-(trifluoromethyl)phenyl)vinyl)tetrahydro-1*H*-thiophen-1-i um trifluoromethanesulfonate: Following the general procedure, compound 3n was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 30:1, v/v). 4.20 g, 83%; white solid, m.p.: 147–148 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.8 Hz, 1 H), 7.75 (t, *J* = 7.7 Hz, 1 H), 7.68 (d, *J* = 10.6 Hz, 2 H), 7.57 (s, 1 H), 6.94 (d, *J* = 8.1 Hz, 2 H), 6.83 (d, *J* = 8.2 Hz, 2 H), 3.93 (dt, *J* = 13.2, 6.5 Hz, 2 H), 3.46 (dt, *J* = 12.9, 6.3 Hz, 2 H), 2.21 (s, 3 H), 2.15–1.95 (m, 2 H), 1.77–1.57 (m, 2 H).¹³C{¹H} NMR (100 MHz, CDCl₃) δ 148.5, 142.2, 134.5, 132.6 (d, *J* = 32.9 Hz), 131.6, 131.4, 130.7, 129.6, 129.2, 127.7 (q, *J* = 3.5 Hz), 127.0 (q, *J* = 3.6 Hz), 123.2 (q, *J* = 271.2 Hz), 120.7 (q, *J* = 318.5 Hz), 120.7, 45.2, 28.7, and 21.4.¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.7, -78.2. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₂₀H₂₀F₃S 349.1232; Found 349.1237.

(*E*)-1-(2-(*p*-Tolyl)-1-(2-(trifluoromethyl)phenyl)vinyl)tetrahydro-1*H*-thiophen-1-i um trifluoromethanesulfonate: Following the general procedure, compound **30** was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 3.20 g, 82%; white solid, m.p.: 136–137 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (t, *J* = 7.6 Hz, 2 H), 7.77 (t, *J* = 7.7 Hz, 1 H), 7.72 (s, 1 H), 7.65 (d, *J* = 7.6 Hz, 1 H), 6.96 (d, *J* = 8.1 Hz, 2 H), 6.80 (d, *J* = 8.1 Hz, 2 H), 4.21 (dt, *J* = 14.1, 7.2 Hz, 1 H), 3.98–3.82 (m, 1 H), 3.75 (dt, *J* = 13.1, 6.5 Hz, 1 H), 2.99 (dt, *J* = 13.5, 6.9 Hz, 1 H), 2.35–2.06 (m, 6 H), 1.97 (dt, *J* = 12.8, 6.7 Hz, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.9, 142.3, 134.6, 132.7, 131.9, 130.6, 129.8 (q, *J* = 30.1 Hz), 129.6, 129.5, 128.5, 128.3 (q, *J* = 4.8 Hz), 123.2 (q, *J* = 272.6 Hz), 120.8 (q, *J* = 318.5 Hz), 119.6, 49.4, 43.5, 28.9, 28.7, and 21.4. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -59.2, -78.2. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₂₀H₂₀F₃S 349.1232; Found 349.1233.

(*E*)-1-(1-(4-(Methoxycarbonyl)phenyl)-2-(*p*-tolyl)vinyl)tetrahydro-1*H*-thiophen-1 -ium trifluoromethanesulfonate: Following the general procedure, compound **3p** was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 30:1, v/v). 3.50 g, 69%; white solid, m.p.: 97–99 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.2 Hz, 2 H), 7.66 (s, 1 H), 7.47 (d, *J* = 8.2 Hz, 2 H), 6.93 (d, *J* = 8.2 Hz, 2 H), 6.85 (d, *J* = 8.2 Hz, 2 H), 4.04–3.85 (m, 5 H), 3.48 (dt, *J* = 12.9, 6.4 Hz, 2 H), 2.21 (s, 3 H), 2.09 (td, *J* = 13.4, 7.5 Hz, 2 H), 1.73–1.58 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.8, 148.0, 141.9, 134.7, 132.2, 131.3, 130.8, 130.6, 129.4, 129.3, 122.3 (q, *J* = 318.7 Hz), 121.2, 52.5, 45.0, 28.6, and 21.3. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₂₁H₂₃O₂S 339.1413; Found 339.1416.

(*E*)-1-(1-(3,5-Dichlorophenyl)-2-(*p*-tolyl)vinyl)tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound 3q was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 3.00 g, 53%; white solid, m.p.: 143–144 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 1 H), 7.55 (t, *J* = 1.7 Hz, 1 H), 7.30 (d, *J* = 1.8 Hz, 2 H), 7.02 (d, *J* = 8.1 Hz, 2 H), 6.92 (d, *J* = 8.1 Hz, 2 H), 4.06–3.92 (m, 2 H), 3.56–3.36 (m, 2 H), 2.27 (s, 3 H), 2.25–2.12 (m, 2 H), 1.91–1.72 (m, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 148.8, 142.4, 137.3, 133.6, 131.3, 130.8, 129.8, 129.2, 128.8, 120.8 (J = 318.4 Hz), 119.4, 45.4, 28.8, and 21.6. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.5. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₁₉H₁₉Cl₂S 349.0579; Found 349.0578.

1-(2-(*o***-Tolyl)-1-(4-(trifluoromethyl)phenyl)vinyl)tetrahydro-1***H***-thiophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound 3s** was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 2.40 g, 64% (*E*/*Z* = 2.2:1); white solid, m.p.: 136–137 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 0.3 H), 7.74 (d, *J* = 8.1 Hz, 2 H), 7.65–7.55 (m, 2 H), 7.55–7.44 (m, 2 H), 7.32 (d, *J* = 16.6 Hz, 1 H), 7.12 (s, 0.3 H), 6.78 (d, *J* = 16.7 Hz, 0.7 H), 6.69 (d, *J* = 7.8 Hz, 0.3 H), 4.12–3.87 (m, 2 H), 3.67 (dt, *J* = 12.8, 6.3 Hz, 1.37 H), 3.57 (dt, *J* = 13.0, 6.3 Hz, 0.63 H), 2.60–2.47 (m, 1.4 H), 2.47–2.30 (m, 4.3 H), 2.23–2.07 (m, 0.9 H), 1.85–1.70 (m, 0.6 H).¹³C{¹H} NMR (100 MHz, CDCl₃) δ 146.4, 140.4, 140.1, 138.9, 138.5, 138.4, 135.5, 133.9, 131.4, 131.2, 130.8, 130.7, 130.5, 130.4, 129.2, 127.5, 127.0 (q, *J* = 3.6 Hz), 126.0, 125.9 (q, *J* = 3.9 Hz), 125.4, 125.3 (d, *J* = 1.9 Hz), 124.2, 122.6 (q, *J* = 37.6 Hz), 48.3, 45.3, 29.2, 28.8, 20.7, and 20.0. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.6, -63.0, -78.3. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₂₀H₂₀F₃S 349.1232; Found 349.1233.

(*E*)-1-(1-(4-(Trifluoromethyl)styryl)naphthalen-2-yl)tetrahydro-1*H*-thiophen-1-iu m trifluoromethanesulfonate: Following the general procedure, compound 5a was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 1.40 g, 51%; white solid, m.p.: 167–169 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, *J* = 8.5 Hz, 1 H), 8.40 (d, *J* = 8.2 Hz, 1 H), 8.21 (d, *J* = 16.1 Hz, 1 H), 8.10 (q, *J* = 8.1 Hz, 2 H), 7.98 (d, *J* = 8.1 Hz, 2H), 7.90–7.78 (m, 2 H), 7.72 (t, *J* = 10.2 Hz, 2 H), 7.47 (d, *J* = 16.1 Hz, 1 H), 4.21–4.04 (m, 4 H), 2.50–2.31 (m, 4 H). ¹³C{¹H} NMR (100 MHz, DMSO-d6) δ 140.8, 139.9, 133.5, 131.6, 131.3, 129.4, 129.0 (q, *J* = 31.6 Hz), 128.5, 128.3, 128.1, 126.6, 125.9 (q, *J* = 3.6 Hz), 125.7, 124.6 (q, *J* = 231.0 Hz), 124.0, 122.7, 121.0 (q, *J* = 319.4 Hz), 47.7, and 29.1. ¹⁹F{¹H} NMR (376 MHz, DMSO-d6) δ -56.3, -73.1. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₂₃H₂₀F₃S 385.1232; Found 385.1252.

(*E*)-1-(2-(4-(Trifluoromethyl)styryl)naphthalen-1-yl)tetrahydro-1*H*-thiophen-1-iu m trifluoromethanesulfonate: Following the general procedure, compound **5b** was obtained by column chromatography on silica gel (eluent: CH_2Cl_2 /methanol = 20:1,

v/v). 3.10 g, 68%; white solid, m.p.: 203–205 °C. ¹H NMR (400 MHz, DMSO) δ 8.45 (d, *J* = 8.7 Hz, 1 H), 8.24 (d, *J* = 8.0 Hz, 1 H), 8.19 (d, *J* = 4.7 Hz, 1 H), 8.16 (d, *J* = 12.1 Hz, 1 H), 8.09 (d, *J* = 8.6 Hz, 1 H), 8.00 (d, *J* = 8.1 Hz, 2 H), 7.95–7.89 (m, 1 H), 7.86 (d, *J* = 8.2 Hz, 2 H), 7.79 (t, *J* = 7.5 Hz, 1 H), 7.70 (d, *J* = 16.0 Hz, 1 H), 4.30–4.18 (m, 2 H), 4.18–4.00 (m, 2 H), 2.87–2.72 (m, 2 H), 2.49–2.30 (m, 2 H). ¹³C{¹H} NMR (100 MHz, DMSO-d6) δ 143.4, 140.2, 135.6, 135.2, 133.8, 130.5, 130.2, 129.9, 128.1, 127.7, 127.3, 125.8 (q, *J* = 3.5 Hz), 125.4, 123.0, 115.7, 43.8, and 28.5. ¹⁹F{¹H} NMR (376 MHz, DMSO-d6) δ -62.6, -78.2. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₂₃H₂₀F₃S 385.1232; Found 385.1234.

(*E*)-1-(2-(4-Methylstyryl)benzo[*b*]thiophen-3-yl)tetrahydro-1*H*-thiophen-1-ium trifluoromethanesulfonate: Following the general procedure, compound 5c was obtained by column chromatography on silica gel (eluent: CH₂Cl₂/methanol = 20:1, v/v). 3.30 g, 78%; yellow solid, m.p.: 230–232 °C. ¹H NMR (400 MHz, DMSO-d6) δ 8.22 (d, *J* = 7.0 Hz, 1 H), 7.89 (s, 1 H), 7.86 (d, *J* = 9.9 Hz, 1 H), 7.69 (d, *J* = 8.0 Hz, 2 H), 7.64–7.55 (m, 2 H), 7.49 (d, *J* = 15.9 Hz, 1 H), 7.31 (d, *J* = 7.9 Hz, 2 H), 4.15–4.02 (m, 2 H), 4.02–3.90 (m, 2 H), 2.80–7.67 (d, *J* = 9.4 Hz, 2 H), 2.47–2.38 (m, 2 H), 2.36 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.7, 139.8, 137.2, 136.8, 134.1, 132.5, 129.7, 127.7, 126.7, 124.2, 121.5, 119.1, 117.6, 108.6, 43.9, 29.0, and 21.0. ¹⁹F{¹H} NMR (376 MHz, DMSO-d6) δ -77.8. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₂₁H₂₁S₂ 337.1079; Found 337.1089.

CN CN

3,3-Diphenylacrylonitrile:⁵ Following the general procedure, compound **2a** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 35:1, v/v). 59 mg, 96%; pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.42 (m, 6 H), 7.42–7.35 (m, 2 H), 7.35–7.28 (m, 2 H), 5.75 (s, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.9, 138.7, 137.0, 130.4, 129.9, 129.4, 128.6, 128.5, 128.4, 117.8, and 94.8.

3-Phenyl-3-(*p***-tolyl**)**acrylonitrile:**⁵ Following the general procedure, compound **2b** was obtained by thin layer chromatography (eluent: petroleum ether (60–90 °C)/EtOAc = 10:1, v/v). 65 mg, 98%; colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.43 (m, 3 H), 7.40–7.25 (m, 4 H), 7.22–7.17 (m, 2 H), 5.72 (s, 0.58 H), 5.68 (s, 0.42 H), 2.42 (s, 1.44 H), 2.40 (s, 1.56 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.3, 163.2, 141.0, 140.4, 139.3, 137.3, 136.1, 134.3, 130.4, 130.0, 129.7, 129.5, 129.3, 128.7, 128.7, 128.6, 128.5, 118.3, 118.2, 94.3, 94.0, 21.5, and 21.4.

3-Phenyl-3-(*m*-tolyl)acrylonitrile:⁵ Following the general procedure, compound 2c was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 30:1, v/v). 59 mg, 90%; yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.09 (m, 7.7 H), 7.01–6.91 (m, 1.3 H), 5.59 (s, 1 H), 5.58 (s, 1 H), 2.25 (s, 1 H), 2.21 (s, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.2, 138.9, 138.9, 138.4, 138.2, 137.1, 137.0, 131.2, 130.8, 130.4, 130.0, 129.9, 129.5, 129.0, 128.6, 128.5, 128.5, 128.4, 128.4, 126.7, 125.7, 118.0, 94.7, 21.4, and 21.3.

F₃C

3-Phenyl-3-(3-(trifluoromethyl)phenyl)acrylonitrile:⁵ Following the general procedure, compound **2d** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/CH₂Cl₂ = 4:1, v/v). 76 mg, 93%; colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.8 Hz, 1 H), 7.69 (d, *J* = 7.8 Hz, 1 H), 7.65–7.55 (m, 2 H), 7.51–7.35 (m, 3 H), 7.33–7.21 (m, 2 H), 5.84 (s, 1 H), 5.77 (s, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.6, 138.1, 137.9, 133.0, 131.2 (q, *J* = 32.6 Hz), 131.0, 129.6, 129.4, 129.1, 128.9, 128.4, 126.8 (q, *J* = 3.7 Hz), 126.4 (q, *J* = 3.8 Hz), 125.2, 125.2 (q, *J* = 270.8 Hz), 117.4, 96.6, and 96.3. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.6, -62.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₁F₃N 274.0838; Found 274.0839.

3-(3,4-Dimethylphenyl)-3-phenylacrylonitrile:⁶ Following the general procedure, compound **2e** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 20:1, v/v). 65 mg, 93%; colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.27 (m, 5 H), 7.22–7.17 (m, 1 H), 7.15–6.96 (m, 2 H), 5.70 (s, 0.64 H), 5.65 (s, 0.36 H), 2.31 (s, 1.38 H), 2.29 (s, 1.71 H), 2.28 (s, 1.10 H), 2.24 (s, 1.95 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.4, 163.3, 139.7, 139.3, 139.0, 137.4, 137.1, 136.9, 136.5, 134.7, 130.6, 130.3, 130.0, 129.9, 129.8, 129.6, 129.5, 128.6, 128.6, 128.5, 127.2, 126.1, 118.2, 94.1, 93.8, 19.8, and 19.8.

(Z)-3-(3,4-Dichlorophenyl)-3-phenylacrylonitrile:⁷ Following the general procedure, compound **2f** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 30:1, v/v). 72 mg, 96%; white solid, m.p.: 78–79 °C. ¹H NMR (400 MHz, CDCl₃) 7.55 (d, J = 8.3 Hz, 1 H), 7.50–7.45 (m, 2 H), 7.43–7.38 (t, J = 7.6 Hz, 2 H), 7.34 (dd, J = 8.3, 1.7 Hz, 1 H), 7.28 (d, J = 7.8 Hz, 2 H), 5.79 (s, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.7, 137.9, 137.0, 134.5, 133.2, 131.4, 131.0, 130.8, 129.1, 128.9, 128.4, 117.3, and 96.2.

3-(3,5-Difluorophenyl)-3-phenylacrylonitrile: Following the general procedure, compound **2g** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 30:1, v/v). 62 mg, 86%; yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.26 (m, 4 H), 7.19 (d, *J* = 7.5 Hz, 1 H), 6.93–6.69 (m, 3 H), 5.72 (s, 1 H), 5.66 (s, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.2 (dd, *J* = 12.9, 1.6 Hz), 161.7 (dd, *J* = 12.6, 2.2 Hz), 160.6 (dt, *J* = 9.4, 2.3 Hz), 142.1 (t, *J* = 9.2 Hz), 140.1 (t, *J* = 9.6 Hz), 137.6, 135.9, 131.0, 130.6, 129.5, 129.0, 128.9, 128.3, 117.1 (d, *J* = 11.9 Hz), 112.9–112.7 (m), 111.8–111.5 (m), 106.0, 105.8, 105.5, 105.3, 97.0, and 96.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₀F₂N 242.0776; Found 242.0777.

(*E*)-3-Phenyl-3-(*o*-tolyl)acrylonitrile and (*Z*)-3-phenyl-3-(*o*-tolyl)acrylonitrile:⁵ Following the general procedure, compound 2h and 2h' was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/CH₂Cl₂ = 2:1, v/v). 16 mg, 24%; white solid, m.p.: 104–106 °C, and 21.8 mg, 33%; colorless liquid. 2h: ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.38 (m, 2 H), 7.36–7.29 (m, 3 H), 7.25 (t, *J* = 7.4 Hz, 1 H), 7.18 (t, *J* = 7.2 Hz, 1 H), 7.12 (t, *J* = 7.4 Hz, 2 H), 5.41 (s, 1 H), 1.91 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.7, 139.7, 137.2, 136.2, 131.0, 130.4, 129.6, 129.5, 128.8, 126.1, 117.8, 96.9, and 20.4. 2h': ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.33 (m, 4 H), 7.33–7.22 (m, 5 H), 5.98 (s, 1 H), 2.09 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.2, 137.5, 136.8, 136.0, 130.9, 130.7, 129.5, 129.3, 129.0, 127.2, 126.3, 117.5, 96.4, and 19.8.

(Z)-3-(2-Fluorophenyl)-3-phenylacrylonitrile:⁷ Following the general procedure, compound **2i** was obtained by thin layer chromatography (eluent: petroleum ether (60–90 °C)/EtOAc = 10:1, v/v). 44 mg, 66%; colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.52–7.42 (m, 2 H), 7.42–7.35 (m, 3 H), 7.35–7.30 (m, 2 H), 7.30–7.24 (m, 1 H), 7.23–7.15 (m, 1 H), 5.97 (s, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.6 (d, *J* = 249.0 Hz), 157.4, 137.5, 131.9 (d, *J* = 8.3 Hz), 131.3 (d, *J* = 2.6 Hz), 130.8, 128.9, 127.3, 124.8 (d, *J* = 14.6 Hz), 124.5 (d, *J* = 3.6 Hz), 117.1, 116.4 (d, *J* = 21.2 Hz), and 97.8. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -111.6.

3,3-Di-*p*-tolylacrylonitrile:⁶ Following the general procedure, compound **2j** was obtained by column chromatography on silica gel (eluent: petroleum ether

(60-90 °C)/EtOAc = 10:1, v/v). 66 mg, 94%; white solid, m.p.: 103–104 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.33 (m, 2 H), 7.33–7.26 (m, 2 H), 7.26–7.17 (m, 4 H), 5.69 (s, 1 H), 2.45 (s, 3 H), 2.42 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.2, 140.8, 140.3, 136.4, 134.4, 129.6, 129.4, 129.3, 128.6, 118.4, 93.4, 21.5, and 21.4.

3,3-Bis(4-methoxyphenyl)acrylonitrile:⁸ Following the general procedure, compound **2k** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 20:1, v/v). 68 mg, 86%; white solid, m.p.: 94–95 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 8.7 Hz, 2 H), 7.15 (d, *J* = 8.8 Hz, 2 H), 6.85 (d, *J* = 8.7 Hz, 2 H), 6.78 (d, *J* = 8.8 Hz, 2 H), 5.44 (s, 1 H), 3.75 (s, 3 H), 3.73 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.3, 161.5, 161.0, 131.6, 131.3, 130.2, 129.5, 118.8, 114.0, 113.8, 91.5, 55.4, and 55.4.

3,3-Bis(4-fluorophenyl)acrylonitrile:⁶ Following the general procedure, compound **21** was obtained by thin layer chromatography (eluent: petroleum ether (60–90 °C)/EtOAc = 50:1, v/v). 72 mg, 99%; white solid, m.p.: 74–75 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (dd, J = 8.7, 5.3 Hz, 2 H), 7.22 (dd, J = 8.7, 5.3 Hz, 2 H), 7.08 (t, J = 8.6 Hz, 2 H), 7.01 (t, J = 8.6 Hz, 2 H), 5.61 (s, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.2 (d, J = 252.1 Hz), 163.7 (d, J = 251.1 Hz), 160.9, 134.9 (d, J = 3.1 Hz), 132.9 (d, J = 3.3 Hz), 131.7 (d, J = 8.6 Hz), 130.5 (d, J = 8.5 Hz), 117.7, 115.9 (d, J = 21.9 Hz), 115.9 (d, J = 21.9 Hz), and 94.9. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -109.32, -109.67.

Br CN Br

3,3-Bis(4-bromophenyl)acrylonitrile:⁶ Following the general procedure, compound **2m** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 10:1, v/v). 64 mg, 59%; colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.66–7.55 (m, 2 H), 7.55–7.46 (m, 2 H), 7.36–7.27 (m, 2 H), 7.21–7.10 (m, 2 H), 5.74 (s, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.8, 137.3, 135.4, 132.2, 132.1, 131.2, 130.0, 125.4, 124.9, 117.4, and 95.8.

3,3-Bis(3-(trifluoromethyl)phenyl)acrylonitrile:⁹ Following the general procedure, compound **2n** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 20:1, v/v). 96 mg, 94%; white solid, m.p.: 77–78 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.61 (m, 5 H), 7.60–7.52 (m, 2 H), 7.46 (d, *J* = 7.8 Hz, 1 H), 5.90 (s, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.1, 139.0, 137.2, 132.9, 131.8, 132.2–130.9 (m), 129.7 (d, *J* = 4.2 Hz), 127.7 (d, *J* = 6.5

Hz), 127.5 (q, J = 3.6 Hz), 127.2 (q, J = 3.6 Hz), 126.3 (q, J = 3.8 Hz), 125.3–124.8 (m), 122.3 (d, J = 6.6 Hz), 119.6 (d, J = 6.5 Hz), 116.8, and 98.1. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.8, -62.9.

3-(4-Fluorophenyl)-3-(4-methoxyphenyl)acrylonitrile:¹⁰ Following the general procedure, compound **2p** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/CH₂Cl₂ = 2:1, v/v). 47 mg, 62% (*E*/*Z* = 1.2:1); white solid, m.p.: 54–55 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.36 (m, 2 H), 7.33–7.27 (m, 1 H), 7.25–7.20 (m, 1 H), 7.13 (t, *J* = 8.6 Hz, 1 H), 7.06 (t, *J* = 8.6 Hz, 1 H), 6.96 (d, *J* = 8.8 Hz, 1 H), 6.89 (d, *J* = 8.8 Hz, 1 H), 5.65 (s, 0.52 H), 5.56 (s, 0.47 H), 3.86 (s, 1.43 H), 3.84 (s, 1.57 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.06 (d, *J* = 249.9 Hz), 163.63 (d, *J* = 248.9 Hz), 161.7, 161.6, 161.3, 135.6 (d, *J* = 3.4 Hz), 133.4 (d, *J* = 3.2 Hz), 131.7 (d, *J* = 8.5 Hz), 131.3, 131.0, 130.7 (d, *J* = 8.6 Hz), 130.1, 129.1, 118.4, 118.3, 115.8 (d, *J* = 21.7 Hz), 115.7 (d, *J* = 21.7 Hz), 114.2, 114.0, 93.3, 92.9, 55.5, and 55.4. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ ¹⁹F NMR (376 MHz, CDCl₃) δ -110.0, -110.4.

3-(4-Methoxyphenyl)-3-(3-(trifluoromethyl)phenyl)acrylonitrile: Following the general procedure, compound **2q** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/CH₂Cl₂ = 4:1, v/v). 86 mg, 95%; white solid, m.p.: 80–81 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77–7.36 (m, 6 H), 7.31 (d, *J* = 8.8 Hz, 0.72 H), 7.12 (d, *J* = 8.8 Hz, 1.28 H), 6.87 (d, *J* = 8.8 Hz, 0.72 H), 6.80 (d, *J* = 8.8 Hz, 1.28 H), 5.65 (s, 0.65 H), 5.53 (s, 0.35 H), 3.75 (s, 2 H), 3.72 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.9, 161.4, 161.2, 161.0, 140.4, 138.2, 132.9, 132.0, 131.2 (q, *J* = 32.5 Hz), 131.0 (q, *J* = 32.5 Hz), 130.2, 129.9, 129.3, 128.5, 126.9 (q, *J* = 3.6 Hz), 126.6 (q, *J* = 3.6 Hz), 126.3 (q, *J* = 3.8 Hz), 125.3 (q, *J* = 3.8 Hz), 123.8 (q, *J* = 270.9 Hz), 123.7 (q, *J* = 270.9 Hz), 117.9, 117.8, 114.4, 114.2, 94.9, 94.0, 55.5, and 55.4. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.6, 62.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₃F₃NO 304.0944; Found 304.0945.

3-(2-Fluorophenyl)-3-(4-methoxyphenyl)acrylonitrile: Following the general procedure, compound **2r** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 20:1, v/v). 45 mg, 58%; colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.28 (m, 1 H), 7.23 (td, *J* = 7.4, 1.7 Hz, 1 H), 7.18–7.09 (m, 3 H), 7.05 (t, *J* = 9.1 Hz, 1 H), 6.76 (d, *J* = 8.9 Hz, 2 H), 5.75 (s, 1 H), 3.68 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.7, 160.7, 158.2, 156.5, 131.6 (d, *J* = 8.4 Hz), 131.2 (d, *J* = 2.7 Hz), 129.6, 128.9, 125.0 (d, *J* = 14.8 Hz), 124.4 (d, *J* = 3.7 Hz), 117.6, 116.4, 116.2, 114.2, 95.2, and 55.4. ¹⁹F{¹H} NMR (376 MHz, CDCl₃)

δ 112.1. HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for C₁₆H₁₃FNO 254.0976; Found 254.0979.

CN

(*Z*)-3-(3,4-Dimethoxyphenyl)-3-(3,5-dimethoxyphenyl)acrylonitrile:¹¹ Following the general procedure, compound 2s was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 4:1, v/v). 94.3 mg, 97%; white solid, m.p.: 101–103 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.87 (d, *J* = 8.2 Hz, 1 H), 6.81 (d, *J* = 7.6 Hz, 2 H), 6.53 (s, 3 H), 5.65 (s, 1 H), 3.88 (s, 3 H), 3.81 (s, 3 H), 3.76 (s, 6 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.5, 160.6, 151.1, 148.8, 139.0, 131.0, 122.2, 118.1, 110.9, 110.7, 107.7, 102.1, 93.2, 56.0, and 55.5.

Cinnamonitrile:¹² Following the general procedure, compound **2t** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 25:1, v/v). 31 mg, 79%; colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.36 (m, 6 H), 5.88 (d, *J* = 16.7 Hz, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 150.6, 133.6, 131.3, 129.2, 127.4, 118.2, and 96.4.

(*E*)-3-(4-(*tert*-Butyl)phenyl)acrylonitrile:¹³ Following the general procedure, compound **2u** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 20:1, v/v). 30 mg, 53%; colorless liquid. ¹H NMR (400 MHz, CDCl₃) 7.45–7.35 (m, 5 H), 5.84 (d, J = 16.6 Hz, 1 H), 1.33 (s, 9 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.0, 150.4, 130.8, 127.3, 126.1, 118.5, 95.3, 35.0, and 31.1.

CI CN

(*E*)-3-(3,4-Dichlorophenyl)acrylonitrile:¹¹ Following the general procedure, compound 2v was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/CH₂Cl₂ = 2:1, v/v). 40.1 mg, 67%; white solid, m.p.: 89–90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 2.0 Hz, 1 H), 7.46 (d, *J* = 8.4 Hz, 1 H), 7.32–7.28 (m, 1 H), 7.26 (s, 1 H), 5.89 (d, *J* = 16.7 Hz, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.8, 135.2, 133.5, 133.4, 131.1, 129.0, 126.4, 117.5, and 98.5.

C

(Z)-3-Cyclopropyl-3-phenylacrylonitrile:¹⁴ Following the general procedure, compound **2w** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/CH₂Cl₂ = 2:1, v/v). 42 mg, 83%; colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.56–7.36 (m, 5 H), 5.20 (s, 1 H), 1.85–1.69 (m, 1 H),

1.08–0.92 (m, 2 H), 0.80–0.62 (m, 2 H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 167.9, 137.1, 129.4, 128.4, 127.6, 117.7, 92.1, 18.5, and 8.7.

2-(4-(Propan-2-ylidene)cyclohexa-2,5-dien-1-ylidene)acetonitrile: Following the general procedure, compounds **2x** were obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/CH₂Cl₂ = 4:1, v/v). 13 mg, 28%; yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.3 Hz, 2 H), 7.21 (d, *J* = 8.0 Hz, 2 H), 5.59 (d, *J* = 1.0 Hz, 1 H), 2.45 (d, *J* = 1.0 Hz, 3 H), 2.38 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.6, 140.7, 135.3, 129.6, 125.8, 118.0, 94.5, 21.3, and 20.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₁H₁₁N 157.0891; Found 157.0889.

(*E*)-2,3-Diphenylacrylonitrile:¹² Following the general procedure, compound 4a was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 20:1, v/v). 54 mg, 88%; colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.21 (m, 6 H), 7.21–7.16 (m, 1 H), 7.13 (t, *J* = 7.4 Hz, 2 H), 7.06 (d, *J* = 7.3 Hz, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.2, 133.6, 132.7, 129.9, 129.8, 129.4, 129.1, 128.9, 128.6, 120.2, and 114.4.

(*E*)-2-Phenyl-3-(*p*-tolyl)acrylonitrile: Following the general procedure, compound **4b** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 35:1, v/v). 40 mg, 97%; yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.19 (m, 5 H), 7.17 (s, 1 H), 6.90 (q, *J* = 8.4 Hz, 4 H), 2.17 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.3, 140.4, 132.9, 130.7, 129.9, 129.3, 129.2, 129.1, 128.9, 120.4, 113.2, and 21.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₄N 220.1121; Found 220.1123.

(*E*)-3-(4-Methoxyphenyl)-2-phenylacrylonitrile: Following the general procedure, compound 4c was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/CH₂Cl₂ = 4:1, v/v). 72 mg, 96%; white solid, m.p.: 117–118 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.23 (m, 5 H), 7.17 (s, 1 H), 7.01 (d, J = 8.8 Hz, 2 H), 6.63 (d, J = 8.8 Hz, 2 H), 3.67 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.9, 143.9, 133.2, 131.7, 129.2, 129.1, 128.9, 126.1, 120.7, 114.0, 111.5, and 55.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₄NO 236.1070; Found 236.1071.

(*E*)-2-Phenyl-3-(*m*-tolyl)acrylonitrile: Following the general procedure, compound 4d was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/CH₂Cl₂ = 3:1, v/v). 27.2 mg, 41%; yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.30 (m, 4.1 H), 7.30–7.12 (m, 3.4 H), 7.10 (d, *J* = 4.9 Hz, 1.2 H), 6.88–7.02 (m, 1.3 H), 2.32 (s, 1.1 H), 2.23 (s, 1.9 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.5, 144.1, 139.1, 138.4, 133.7, 133.6, 132.9, 132.6, 130.8, 130.7, 130.1, 129.9, 129.9, 129.4, 129.3, 129.1, 129.0, 129.0, 128.6, 128.5, 126.9, 126.0, 120.4, 114.6, 114.2, 21.4, and 21.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₄N 220.1121; Found 220.1123.

(*E*)-2-Phenyl-3-(*o*-tolyl)acrylonitrile and (*Z*)-2-phenyl-3-(*o*-tolyl)acrylonitrile:¹⁵ Following the general procedure, compound 4e and 4e' was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/Et₂O = 50:1, v/v). 18.0 mg, 27%; colorless liquid, and 6.9 mg, 10%; colorless liquid. 4e: ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1 H), 7.26–7.15 (m, 5 H), 7.15–7.06 (m, 2 H), 6.95–6.82 (m, 2 H), 2.24 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.3, 137.1, 133.2, 132.4, 130.7, 129.6, 129.2, 129.0, 128.9, 128.8, 125.9, 120.1, 115.6, and 20.0. 4e': ¹H NMR (400 MHz, CDCl₃) δ 7.29 (s, 1 H), 7.26–7.03 (m, 7 H), 6.91 (d, *J* = 7.6 Hz, 2 H), 2.20 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.4, 136.4, 133.7, 132.4, 131.1, 130.2, 129.9, 129.6, 129.2, 128.7, 127.0, 119.8, 113.1, and 19.5.

(E)-3-Phenyl-2-(4-(trifluoromethyl)phenyl)acrylonitrile and (Z)-3-Phenyl-2-(4-(trifluoromethyl)phenyl)acrylonitrile:¹⁵ Following the general procedure. compound 4f and 4f' was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/CH₂Cl₂ = 4:1, v/v). 46 mg, 56%; white solid, m.p.: 81–83 ^oC, and 35 mg, 43%; white solid, m.p.: 133–134 ^oC. 4f: ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.2 Hz, 2 H), 7.40 (d, J = 8.2 Hz, 2 H), 7.36 (s, 1 H), 7.25–7.19 (m, 1 H), 7.19–7.12 (m, 3 H), 7.04 (d, J = 7.4 Hz, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.8, 136.4, 133.0, 131.3 (q, J = 32.8 Hz), 130.4, 129.8, 129.5, 128.9, 126.1 (q, J = 3.7 Hz), 123.8 (q, J = 272.4 Hz), 119.6, and 113.0. **4f':** ¹H NMR (400 MHz, CDCl₃) δ 7.98–7.86 (m, 2 H), 7.79 (d, J = 8.2 Hz, 2 H), 7.70 (d, J = 8.3 Hz, 2 H), 7.62 (s, 1 H), 7.58–7.40 (m, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.3, 138.0, 133.3, 131.3, 131.1 (q, J = 32.9 Hz), 129.6, 129.2, 126.4, 126.2 (q, J = 3.7 Hz), 123.9 (q, J = 270.6 Hz), 117.6, and 110.3.

2-(4-Fluorophenyl)-3-phenylacrylonitrile:¹⁵ Following the general procedure, compound **4g** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 30:1, v/v). 66 mg, 98%; white solid, m.p.: 101–103 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.23 (m, 6 H), 7.22–7.11 (m, 2 H), 7.07 (t, *J* = 8.5 Hz, 0.49 H), 6.94 (t, *J* = 8.6 Hz, 1.51 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.5, 164.3, 162.0, 161.8, 144.4, 142.9, 133.4, 132.5, 131.9 (d, *J* = 8.3 Hz), 130.9 (d, *J* = 8.4 Hz), 130.0, 129.7 (d, *J* = 3.0 Hz), 129.5, 129.3, 128.8, 128.7, 120.0 (d, *J* = 8.2 Hz), 116.4, 116.2, 115.9, 115.7, 114.2, and 113.3. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -109.1, -110.8.

3-Phenyl-2-(3-(trifluoromethyl)phenyl)acrylonitrile:¹⁶ Following the general procedure, compound **4h** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 35:1, v/v). 58 mg, 71%; white solid, m.p.: 46–47 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.8 Hz, 2 H), 7.60 (d, *J* = 7.8 Hz, 1 H), 7.53 (d, *J* = 7.6 Hz, 1 H), 7.49 (s, 1 H), 7.35 (t, *J* = 7.3 Hz, 1 H), 7.28 (t, *J* = 7.5 Hz, 2 H), 7.16 (d, *J* = 7.5 Hz, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.8, 133.6, 133.0, 132.4, 131.7 (q, *J* = 32.8 Hz), 130.5, 129.8 (d, *J* = 2.2 Hz), 128.9, 126.2 (q, *J* = 3.7 Hz), 126.0 (q, *J* = 3.8 Hz), 123.7 (q, *J* = 270.9 Hz), 119.6, and 112.9. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.7, -62.9.

(*Z*)-2-(2,6-Difluorophenyl)-3-(*p*-tolyl)acrylonitrile: Following the general procedure, compound 4j was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 35:1, v/v). 33 mg, 43%; yellow solid, m.p.: 86–90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1 H), 7.41 (ddd, *J* = 14.7, 8.3, 6.5 Hz, 1 H), 7.15–6.91 (m, 6 H), 2.32 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.5 (d, *J* = 6.4 Hz), 159.0 (d, *J* = 6.3 Hz), 149.7, 141.6, 131.7 (t, *J* = 10.0 Hz), 130.9, 129.7, 129.3, 129.0, 118.8, 112.3 (dd, *J* = 19.6, 5.2 Hz), 110.6 (t, *J* = 19.6 Hz), 99.6, and 21.6. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -109.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₂F₂N 256.0932; Found 256.0930.

(Z)-3-(4-Methoxyphenyl)-2-(*p*-tolyl)acrylonitrile:¹⁷ Following the general procedure, compound 4k was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/CH₂Cl₂ = 4:1, v/v). 67 mg, 92%; colorless liquid.

¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 8.1 Hz, 2 H), 7.24 (s, 1 H), 7.18 (d, *J* = 8.0 Hz, 2 H), 7.15 (d, *J* = 8.8 Hz, 2 H), 6.76 (d, *J* = 8.9 Hz, 2 H), 3.79 (s, 3 H), 2.39 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.8, 143.4, 139.2, 131.7, 130.2, 129.8, 128.7, 126.3, 120.8, 114.0, 111.6, 55.3, and 21.4.

(*Z*)-3-(4-(Methylthio)phenyl)-2-(*p*-tolyl)acrylonitrile: Following the general procedure, compound 4l was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/CH₂Cl₂ = 4:1, v/v). 63 mg, 80%; yellow solid, m.p.: 59–60 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.16 (d, *J* = 8.1 Hz, 2 H), 7.11 (s, 1 H), 7.05 (d, *J* = 8.0 Hz, 2 H), 6.96 (q, *J* = 8.6 Hz, 4 H), 2.32 (s, 3 H), 2.26 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.9, 141.6, 139.3, 130.1, 129.9, 129.8, 128.6, 125.3, 120.5, 113.1, 21.4, and 14.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₆NS 266.0998; Found 266.1002.

(*E*)-3-(*p*-Tolyl)-2-(4-(trifluoromethyl)phenyl)acrylonitrile and (*Z*)-3-(*p*-tolyl)-2-(4-(trifluoromethyl)phenyl)acrylonitrile: Following the general procedure, compound 4m and 4m1 was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 35:1, v/v). 42 mg, 49%; white solid, m.p.: 76–77 °C, and 41 mg, 48%; white solid, m.p.: 146–148 °C. 4m: ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.2 Hz, 2 H), 7.42 (d, *J* = 8.2 Hz, 2 H), 7.32 (s, 1 H), 6.96 (q, *J* = 8.4 Hz, 4 H), 2.23 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.9, 141.1, 136.7, 131.1 (q, *J* = 32.7 Hz), 130.2, 129.9, 129.6, 126.1 (q, *J* = 3.6 Hz), 123.9 (q, *J* = 270.7 Hz), 119.8, 111.8, and 21.4. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.8. 4m1: ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.1 Hz, 2 H), 7.67 (d, *J* = 8.3 Hz, 2 H), 7.58 (d, *J* = 8.4 Hz, 2 H), 7.47 (s, 1 H), 7.18 (d, *J* = 8.0 Hz, 2 H), 2.32 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.3, 142.1, 138.2, 130.9 (q, *J* = 32.8 Hz), 130.6, 129.9, 129.7, 126.3, 126.1 (q, *J* = 3.7 Hz), 124.0 (q, *J* = 272.2 Hz), 117.8, 109.0, and 21.7. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₃F₃N 288.0995; Found 288.0996.

(*E*)-3-(*p*-Tolyl)-2-(3-(trifluoromethyl)phenyl)acrylonitrile and (*Z*)-3-(*p*-tolyl)-2-(3-(trifluoromethyl)phenyl)acrylonitrile: Following the general procedure, compound **4n** and **4n**' was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/CH₂Cl₂ = 4:1, v/v). 58 mg, 67%; white solid, m.p.: 64–65 °C, and 27 mg, 31%; white solid, m.p.: 88–89 °C. **4n**: ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1 H),

7.72 (d, J = 7.8 Hz, 1 H), 7.66 (d, J = 7.8 Hz, 1 H), 7.57 (t, J = 7.8 Hz, 1 H), 7.49 (s, 1 H), 7.13 (q, J = 8.4 Hz, 4 H), 2.40 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.8, 141.2, 133.9, 132.4, 131.7 (q, J = 32.8 Hz), 130.1, 129.9, 129.8, 129.6, 126.0 (dq, J = 7.8, 3.7 Hz), 125.0, 123.9 (q, J = 270.9 Hz), 119.9, 111.6, and 21.5. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.9. **4n**': ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1 H), 7.93 (t, J = 8.7 Hz, 3 H), 7.73 (d, J = 7.6 Hz, 1 H), 7.70–7.58 (m, 2 H), 7.38 (d, J = 7.9 Hz, 2 H), 2.51 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.0, 142.0, 135.7, 131.7 (q, J = 32.7 Hz), 130.6, 129.9, 129.8, 129.7, 129.4, 125.7 (q, J = 3.8 Hz), 123.9 (q, J = 270.9 Hz), 122.7 (q, J = 3.8 Hz), 117.9, 109.0, and 21.7. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₃F₃N 288.0995; Found 288.0996.

(E)-3-(p-Tolyl)-2-(2-(trifluoromethyl)phenyl)acrylonitrile: Following the general procedure, compound 40 and 40' was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 35:1, v/v). 32 mg, 38%; yellow liquid, and 21 mg, 25%; yelllow solid, m.p.: 72-74 °C. 40: ¹H NMR (400 MHz, CDCl₃) δ 7.69–7.62 (m, 4 H), 7.58 (d, J = 7.7 Hz, 1 H), 7.44 (d, J = 7.6 Hz, 1 H), 7.30 (d, J = 7.7 Hz, 1 H), 7.27 (s, 1 H), 7.17 (d, J = 16.6 Hz, 1 H), 2.45 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.0, 139.7, 137.8, 135.3, 134.8, 131.8, 130.3 (q, J = 32.5 Hz), 127.8, 127.2, 126.1, 125.8 (q, J = 3.8 Hz), 124.2 (q, J = 270.2 Hz), 122.9, 119.1, 111.2, and 20.7. ${}^{19}F{}^{1}H{}$ NMR (376 MHz, CDCl₃) δ -62.6. **40'**: 8.06 (d, J = 7.8Hz, 1 H), 7.89 (d, J = 2.0 Hz, 1 H), 7.77 (d, J = 7.8 Hz, 1 H), 7.68 (t, J = 7.7 Hz, 1 H), 7.62 (d, J = 8.3 Hz, 2 H), 7.54 (t, J = 7.7 Hz, 1 H), 7.29 (d, J = 8.0 Hz, 2 H), 2.42 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.3, 137.1 (d, J = 1.2 Hz), 132.7 (d, J = 1.7Hz), 132.3, 130.6, 130.0, 129.9, 129.6, 128.7 (q, J = 30.0 Hz), 126.2 (q, J = 5.4 Hz), 126.2, 124.0 (q, J = 272.2 Hz), 117.2, 116.6, and 21.3. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -59.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₃F₃N 288.0995; Found 288.0997.

Methyl (*E*)-4-(1-cyano-2-(*p*-tolyl)vinyl)benzoate and methyl (*Z*)-4-(1-cyano-2-(*p*-tolyl)vinyl)benzoate: Following the general procedure, compound 4**p** and 4**p**' was obtained by column chromatography on silica gel (eluent: petroleum ether $(60-90 \text{ °C})/\text{CH}_2\text{Cl}_2 = 4:1$, v/v). 58 mg, 70%; white solid, m.p.: 96–99 °C. 13 mg, 10%; white solid, m.p.: 112–114 °C. 4**p**: ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.3 Hz, 2 H), 7.38 (d, *J* = 8.3 Hz, 2 H), 7.31 (s, 1 H), 6.95 (s, 4 H), 3.85 (s, 3 H), 2.23 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.4, 145.7, 141.0, 137.6, 130.8, 130.4, 130.3, 129.9, 129.5, 129.1, 119.9, 112.3, 52.4, and 21.5. 4**p**': ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.5 Hz, 2 H), 7.83 (d, *J* = 8.1 Hz, 2 H), 7.74 (d, *J* = 8.5 Hz, 2 H), 7.60 (s, 1 H), 7.29 (d, J = 8.0 Hz, 2 H), 3.94 (s, 3 H), 2.42 (s, 3 H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 166.5, 144.1, 142.0, 139.0, 130.8, 130.5, 130.4, 129.9, 129.7, 125.9, 117.9, 109.6, 52.4, and 21.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₈H₁₆NO₂ 278.1176; Found 278.1175.

(*E*)-2-(3,5-Dichlorophenyl)-3-(*p*-tolyl)acrylonitrile and (*Z*)-2-(3,5-dichlorophenyl)-3-(*p*-tolyl)acrylonitrile: Following the general procedure, compound 4q and 4q' was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 35:1, v/v). 77 mg, 89%; white solid, m.p.: 89–90 °C. and 8 mg, 9%; white solid, m.p.: 134–135 °C. 4q: ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.1 Hz, 2 H), 7.45 (d, *J* = 1.6 Hz, 2 H), 7.41 (s, 1 H), 7.27 (s, 1 H), 7.20 (d, *J* = 8.0 Hz, 2 H), 2.34 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.4, 142.3, 137.7, 135.9, 130.3, 130.0, 129.8, 128.9, 124.4, 117.5, 107.8, and 21.8. 4q': ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.26 (m, 2 H), 7.20 (d, *J* = 1.8 Hz, 2 H), 6.99 (q, *J* = 8.3 Hz, 4 H), 2.26 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 146.3, 141.5, 135.9, 130.0, 129.8, 129.7, 129.5, 127.4, 119.5, 110.3, and 21.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₂Cl₂N 288.0341; Found 288.0343.

(E)-3-(m-Tolyl)-2-(4-(trifluoromethyl)phenyl)acrylonitrile and (Z)-3-(m-tolyl)-2-(4-(trifluoromethyl)phenyl)acrylonitrile: Following the general procedure, compound 4r and 4r' was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/CH₂Cl₂ = 4:1, v/v). 35 mg, 41%; white solid, m.p.: 63–64 °C, and 31 mg, 36%; white solid, m.p.: 87–88 °C. **4r**: ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.2 Hz, 2 H), 7.43 (d, J = 8.2 Hz, 2 H), 7.35 (s, 1 H), 7.05 (d, J = 5.2 Hz, 2 H), 6.89 (s, 1 H), 6.83 (d, J = 3.9 Hz, 1 H), 2.17 (s, 3 H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) § 146.2, 138.7, 136.6, 133.0, 131.5, 131.3, 130.7, 129.6, 128.8, 126.8, 126.1 (q, J = 3.8 Hz), 123.8 (q, J = 270.5 Hz), 119.7, 112.8, and 21.3. ¹⁹F{¹H} NMR (376) MHz, CDCl₃) δ -62.9. **4r'**: ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.55 (m, 6 H), 7.50 (s, 1 H), 7.30 (t, J = 7.6 Hz, 1 H), 7.24–7.14 (m, 1 H), 2.34 (s, 3 H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃) δ 144.5, 139.0, 138.1, 133.3, 132.2, 131.1 (q, J = 32.7 Hz), 130.3, 129.1, 126.7, 126.4, 126.2 (q, J = 3.7 Hz), 123.9 (q, J = 270.6 Hz), 117.7, 110.0, and 21.5. ${}^{19}F{}^{1}H{}$ NMR (376 MHz, CDCl₃) δ -62.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₃F₃N 288.0995; Found 288.0991.

(trifluoromethyl)phenyl)acrylonitrile: Following the general procedure, compound **4s** and **4s**' was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/CH₂Cl₂ = 4:1, v/v). 17 mg, 20%; white solid, m.p.: 66–67 °C, and 14 mg, 16%; white solid, m.p.: 103–105 °C. **4s**: ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1 H), 7.45 (d, *J* = 8.3 Hz, 2 H), 7.34 (d, *J* = 8.2 Hz, 2 H), 7.17 (d, *J* = 3.8 Hz, 2 H), 6.97–6.89 (m, 1 H), 6.83 (d, *J* = 7.7 Hz, 1H), 2.27 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.3, 137.2, 136.0, 132.5, 131.1 (q, *J* = 32.6 Hz), 130.9, 130.1, 129.4, 128.9, 126.2, 125.8 (q, *J* = 3.8 Hz), 123.8 (q, *J* = 270.5 Hz), 119.4, 114.3, and 20.0. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.5. **4s**': ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.5 Hz, 1 H), 7.90 (s, 1 H), 7.83 (d, *J* = 8.2 Hz, 2 H), 7.73 (d, *J* = 8.3 Hz, 2 H), 7.47–7.25 (m, 3 H), 2.45 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.1, 137.9, 137.8, 132.6, 131.0 (q, *J* = 32.6 Hz), 130.8, 130.7, 128.1, 126.5, 126.4, 126.1 (q, *J* = 3.7 Hz), 123.9 (q, *J* = 270.4 Hz), 117.3, 112.4, and 19.9. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₃F₃N 288.0995; Found 288.0998.

CN

3,4-Dihydronaphthalene-2-carbonitrile:¹⁸ Following the general procedure, compound **4t** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/CH₂Cl₂ = 4:1, v/v). 46 mg, 99%; yellow solid, m.p.: 55–56 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.25–7.11 (m, 2 H), 7.11–6.95 (m, 3 H), 2.80 (t, *J* = 8.3 Hz, 2 H), 2.43 (td, *J* = 8.3, 1.4 Hz, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.7, 135.4, 131.2, 130.3, 128.0, 127.2, 119.7, 109.6, 26.7, and 24.7.

CN

1*H*-indene-2-carbonitrile:¹⁹ Following the general procedure, compound 4u was obtained by thin layer chromatography (eluent: petroleum ether (60–90 °C)/EtOAc = 35:1, v/v). 23.6 mg, 56%; yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1 H), 7.54–7.50 (m, 2 H), 7.43–7.35 (m, 2 H), 3.69 (d, J = 1.5 Hz, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 146.3, 143.2, 141.5, 128.5, 127.6, 124.2, 123.4, 117.2, 114.3, and 41.0.

CN Me

(*E*)-2-Methyl-3-phenylacrylonitrile:¹³ Following the general procedure, compound 4v was obtained by thin layer chromatography (eluent: petroleum ether (60–90 °C)/EtOAc = 35:1, v/v). 26.8 mg, 62%; colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.35 (m, 3 H), 7.35–7.29 (d, *J* = 8.4 Hz, 2 H), 7.20 (s, 1 H), 2.14 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.4, 134.0, 129.3, 129.3, 128.7, 121.3, 109.6, and 16.8.

(E)-1-(4-(Trifluoromethyl)styryl)-2-naphthonitrile: Following the general

procedure, compound **6a** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 20:1, v/v). 50.7 mg, 52%; yellow solid, m.p.: 129–130 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (t, *J* = 7.0 Hz, 2 H), 7.93 (d, *J* = 11.6 Hz, 1 H), 7.90 (d, *J* = 3.0 Hz, 1 H), 7.76 (d, *J* = 7.6 Hz, 1 H), 7.74–7.62 (m, 6 H), 7.24 (d, *J* = 16.0 Hz, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.2, 139.8, 133.3, 132.8, 132.4, 131.0, 130.4 (q, *J* = 32.6 Hz), 128.7, 127.9, 127.3, 126.8, 126.1, 126.0 (q, *J* = 3.8 Hz), 124.2 (q, *J* = 270.4 Hz), 124.5, 122.9, 118.1, and 110.0. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₀H₁₃F₃N 324.0995; Found 324.0990.

(*E*)-2-(4-(Trifluoromethyl)styryl)-1-naphthonitrile: Following the general procedure, compound **6b** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 20:1, v/v). 96 mg, 99%; white solid, m.p.: 154–156 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.3 Hz, 1 H), 7.97 (d, *J* = 8.8 Hz, 1 H), 7.79–7.89 (m, 2 H), 7.73–7.59 (m, 6 H), 7.56 (t, *J* = 7.3 Hz, 1 H), 7.34 (d, *J* = 16.2 Hz, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.7, 139.5, 133.0, 132.9, 132.5, 132.3, 130.5 (q, *J* = 32.4 Hz), 129.1, 128.5, 127.7, 127.4, 127.1, 125.9 (q, *J* = 3.7 Hz), 125.6, 124.1 (q, *J* = 270.2 Hz), 121.8, 116.7, and 108.8. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₀H₁₃F₃N 324.0995; Found 324.0990.

(*E*)-2-(4-Methylstyryl)benzo[*b*]thiophene-3-carbonitrile: Following the general procedure, compound **6c** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 20:1, v/v). 62 mg, 75%; yellow solid, m.p.: 150–151 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.8 Hz, 1 H), 7.72 (d, *J* = 7.8 Hz, 1 H), 7.49–7.31 (m, 5 H), 7.23–7.09 (m, 3 H), 2.36 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 154.0, 139.9, 138.1, 136.5, 136.1, 132.5, 129.7, 127.4, 126.4, 126.0, 122.4, 122.2, 117.9, 114.5, 103.9, and 21.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₈H₁₄NS 276.0841; Found 276.0849.

2-(*p***-Tolyl)-1-(4-(trifluoromethyl)phenyl)cyclopropane-1-carbonitrile:** Following the general procedure, compound 7 was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 35:1, v/v). 68 mg, 75%; white solid, m.p.: 108–109 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.3 Hz, 2 H), 7.47 (d, J = 8.3 Hz, 2 H), 7.21 (s, 4 H), 2.80 (t, J = 8.5 Hz, 1 H), 2.36 (s, 3 H), 2.26 (dd, J = 7.7, 6.7 Hz, 1 H), 2.03 (dd, J = 9.0, 6.4 Hz, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ

140.5, 138.1, 131.3, 129.9 (q, J = 32.8 Hz), 129.6, 128.0, 126.1 (q, J = 3.7 Hz), 125.7, 124.0 (q, J = 270.5 Hz), 119.4, 36.4, 23.8, 22.6, and 21.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₈H₁₅F₃N 302.1151; Found 302.1154.

3,3-Diphenylacrylamide:²⁰ Following the general procedure, compound **8a** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 1:1, v/v). 48 mg, 72%; white solid, m.p.: 146–147 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.28 (m, 3 H), 7.28–7.06 (m, 7 H), 6.28 (s, 1 H), 5.97 (s, 1 H), 5.11 (s, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.8, 151.1, 140.7, 138.2, 129.3, 129.1, 128.9, 128.8, 128.5, 128.01, and 121.8.

Cinnamamide:²⁰ Following the general procedure, compound **8b** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 1:1, v/v). 35 mg, 78%; white solid, m.p.: 143–144 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 15.7 Hz, 1 H), 7.51 (dd, *J* = 6.6, 2.9 Hz, 2 H), 7.44–7.29 (m, 3 H), 6.47 (d, *J* = 15.7 Hz, 1 H), 5.87 (d, *J* = 67.2 Hz, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.1, 142.6, 134.6, 130.1, 129.0, 128.1, and 119.7.

(*Z*)-3-(*p*-Tolyl)-2-(4-(trifluoromethyl)phenyl)acrylamide: Following the general procedure, compound **9** was obtained by column chromatography on silica gel (eluent: petroleum ether (60–90 °C)/EtOAc = 4:1, v/v). 59 mg, 65%; white solid, m.p.: 180–181 °C. ¹H NMR (400 MHz, DMSO-d6) δ 7.91 (s, 1 H), 7.89 (d, *J* = 8.4 Hz, 2 H), 7.81 (d, *J* = 8.3 Hz, 2 H), 7.56 (s, 1 H), 7.38 (d, *J* = 7.9 Hz, 2 H), 7.19 (d, *J* = 7.8 Hz, 2 H), 4.33 (s, 1 H), 2.32 (s, 3 H). ¹³C{¹H} NMR (100 MHz, DMSO) δ 167.0, 140.9, 137.7, 131.1, 129.2 (q, *J* = 31.7 Hz), 128.7, 127.7, 126.4, 125.3 (q, *J* = 3.6 Hz), 124.2 (q, *J* = 270.4 Hz), 66.5, 66.0, and 20.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₅F₃NO 306.1100; Found 306.1104.

(2,2-Diphenylvinyl)triphenylphosphonium trifluoromethanesulfonate: Following the general procedure, compound Int-P was obtained by column chromatography on silica gel (CH₂Cl₂/methanol = 20:1, v/v). 128 mg, 72%; white solid, m.p.: 144–145 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76–7.67 (m, 3 H), 7.67–7.52 (m, 12 H), 7.50–7.38 (m, 5 H), 7.14 (t, *J* = 7.5 Hz, 1 H), 7.03 (d, *J* = 18.0 Hz, 1 H), 6.94 (t, *J* = 7.7 Hz, 2 H), 6.77 (d, *J* = 7.4 Hz, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.7 (d, *J* = 2.3 Hz), 139.6 (d, *J* = 17.0 Hz), 135.8 (d, *J* = 6.7 Hz), 134.7 (d, *J* = 2.9 Hz), 133.3 (d, *J* = 10.5

Ph Ph ⁻OTf ⁺PPh₃
Hz), 131.9, 131.9 (t, J = 9.8 Hz), 130.4, 130.3, 129.9, 128.9, 128.9, 128.8, 128.5, 128.4, 128.4, 120.9 (q, J = 321.1 Hz), 119.4 (d, J = 90.3 Hz), and 102.5 (d, J = 93.0 Hz). ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -78.0. ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 13.2. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₃₂H₂₆P 441.1767; Found 441.1770.

5. References

- Y. He, Z. L. Huang, J. Ma, J. Lin, Y.-G. Zhou and Z. K. Yu, Transition-Metal-Free Olefinic C–H Azidoalkylthiolation *via* C(sp³)–S Bond Cleavage of Vinylsulfonium Salts, *Adv. Synth. Catal.*, 2022, **364**, 3023–3034.
- (a) A. Desaintjean, S. Belrhomari, L. Rousseau, G. Lefevre and P. Knochel, Iron-Catalyzed Cross-Coupling of Functionalized Benzylmanganese Halides with Alkenyl Iodides, Bromides, and Triflates, *Org. Lett.*, 2019, 21, 8684–8688; (b) J. Lin, Z. L. Huang, J. Ma, B.-H. Xu, Y.-G. Zhou, and Z. K. Yu, Tunable Construction of Multisubstituted 1,3-Dienes and Allenes *via* a 1,4-Palladium Migration/Carbene Insertion Cascade, *J. Org. Chem.*, 2022, 87, 12019–12035.
- 3 Y.-L. Zhang, L. Yang, J. Wu, C. Y. Zhu and P. Wang, Vinyl Sulfonium Salts as the Radical Acceptor for Metal-Free Decarboxylative Alkenylation, *Org. Lett.*, 2020, **22**, 7768–7772.
- 4 L.-H. Zou, B. Liu, C. Wang, Z. Y. Shao, J. Q. Zhou, A. D. Shao and J. Wen, Selective Synthesis of Alkyl Amines and *N*-Vinylazoles from Vinyl Sulfonium Salts with *N*-Nucleophiles, *Org. Chem. Front.*, 2022, **9**, 3231–3236.
- 5 X. S. Lu and Y. H. Huang, Stereospecific Cyanation of the Olefinic C–H Bond Enabled by 1,4-Rhodium Migration. *Org. Chem. Front.*, 2021, **8**, 3008–3013.
- 6 L. Hao, F. Wu, Z.-C. Ding, S.-X. Xu, Y.-L. Ma, L. Chen and Z.-P. Zhan, Synthesis of Acrylonitriles Through an FeCl₃-Catalyzed Domino Propargylic Substitution/ Aza-Meyer-Schuster Rearrangement Sequence, *Chem. Eur. J.*, 2012, **18**, 6453–6456.
- 7 Q. Z. Yan, D. Y. Kong, M. N. Li, G. H. Hou and G. F. Zi, Highly Efficient Rh-Catalyzed Asymmetric Hydrogenation of α,β -Unsaturated Nitriles, *J. Am. Chem. Soc.*, 2015, 137, 10177–10181.
- 8 S. Lucks and H. Brunner, *In Situ* Generated Palladium on Aluminum Phosphate as Catalytic System for the Preparation of β , β -Diarylated Olefins by Matsuda-Heck Reaction, *Org. Process Res. Dev.*, 2017, **21**, 1835–1842.
- 9 P. W. Groundwater and J. T. Sharp, Electrocyclic Aromatic Substitution by Nitrile Ylides to give 3*H*-2-Benzazepines: Substituent Effects and Mechanism, *Tetrahedron*, 1992, 48, 7951–7964.
- 10 S. J. Taylor and M. R. Netherton, Synthesis of the Benzhydryl Motif *via* a Suzuki-Miyaura Coupling of Arylboronic Acids and 3-Chloroacrylonitriles, *J. Org. Chem.*, 2006, **71**, 397–400.
- 11 Y. C. Mu, T. T. Nguyen, M. J. Koh, R. R. Schrock and A. H. Hoveyda, *E* and *Z*-, Di- and Tri-Substituted Alkenyl Nitriles Through Catalytic Cross-Metathesis, *Nat. Chem.*, 2019, **11**, 478–487.
- 12 W. Zhou, J. J. Xu, L. R. Zhang and N. Jiao, An Efficient Transformation from Benzyl or Allyl Halides to Aryl and Alkenyl Nitriles, *Org. Lett.*, 2010, **12**, 2888–2891.
- 13 P. K. Hota, G. Vijaykumar, A. Pariyar, S. C. Sau, T. K. Sen and S. K. Mandal, An Abnormal *N*-Heterocyclic Carbene-Based Palladium Dimer: Aqueous Oxidative Heck Coupling Under

Ambient Temperature, Adv. Synth. Catal., 2015, 357, 3162-3170.

- 14 J. B. Metternich, D. G. Artiukhin, M. C. Holland, M. Bremen-Kühne, J. Neugebauer and R. Gilmour, Photocatalytic E→Z Isomerization of Polarized Alkenes Inspired by the Visual Cycle: Mechanistic Dichotomy and Origin of Selectivity, J. Org. Chem., 2017, 82, 9955–9977.
- 15 K. Paudel, S. Xu and K. Y. Ding, Switchable Cobalt-Catalyzed α -Olefination and α -Alkylation of Nitriles with Primary Alcohols, *Org. Lett.*, 2021, **23**, 5028–5032.
- 16 B. Zupancic and M. Kokalj, Aromatic α,β -Unsaturated Nitriles *via* Polyethylene Glycol-Catalyzed Two-Phase Aldol-Type Condensation, *Synthesis*, 1981, **11**, 913–915.
- 17 S. Raouafi, F. Aloui, A. Raouafi and B. B. Hassine, Synthesis and Characterization of Phenanthrene Derivatives for Optoelectronic Applications, *C. R. Chimie*, 2017, **20**, 697–703.
- 18 Y. Gan, G. N. Wang, X. Xie and Y. H. Liu, Nickel-Catalyzed Cyanation of Phenol Derivatives with Zn(CN)₂ Involving C–O Bond Cleavage, J. Org. Chem., 2018, 83, 14036–14048.
- 19 X. Wang and A. Studer, Metal-Free Direct C–H Cyanation of Alkenes, *Angew. Chem. Int. Ed.*, 2018, **57**, 11792–11796.
- 20 S. Ghosh and C. K. Jana, Aminofluorene-Mediated Biomimetic Domino Amination-Oxygenation of Aldehydes to Amides, *Org. Lett.*, 2016, **18**, 5788–5791.

6. Copies of NMR spectra

mj-14912, 176 1H NMR in CDCl3 (400 MHz)

Figure S7. ¹H NMR spectrum of compound 1c (CDCl₃, 25 °C, 400 MHz).

Figure S8. ¹³C{¹H} NMR spectrum of compound 1c (CDCl₃, 25 °C, 100 MHz).

11556, 176 19F NMR in CDCl3 (376 MHz)

Figure S10. ¹H NMR spectrum of compound 1d (DMSO-d₆, 25 °C, 400 MHz).

mj-14856, 166 13C NMR in CDCl3 (100 MHz)

Figure S11. ¹³C{¹H} NMR spectrum of compound 1d (DMSO-d₆, 25 °C, 100 MHz).

Figure S12. ¹H NMR spectrum of compound 1f (CDCl₃, 25 °C, 400 MHz).

mj-14904, 122 13C NMR in CDCl3 (100 MHz)

Figure S13. ¹³C{¹H} NMR spectrum of compound 1f (CDCl₃, 25 °C, 100 MHz).

Figure S14. ¹⁹F{¹H} NMR spectrum of compound 1f (CDCl₃, 25 °C, 376 MHz).

mj-14307, 172 1H NMR in CDCl3 (400 MHz)

Figure S15. ¹H NMR spectrum of compound 1g (CDCl₃, 25 °C, 400 MHz).

Figure S16. ¹³C{¹H} NMR spectrum of compound 1g (CDCl₃, 25 °C, 100 MHz).

mj-14309, 172 19F NMR in CDCl3 (376 MHz)

Figure S18. ¹H NMR spectrum of compound 1i (CDCl₃, 25 °C, 400 MHz).

mj-14305, 98 13C NMR in CDCl3 (100 MHz)

Figure S19. ¹³C{¹H} NMR spectrum of compound 1i (CDCl₃, 25 °C, 100 MHz).

Figure S20. ¹⁹F{¹H} NMR spectrum of compound 1i (CDCl₃, 25 °C, 376 MHz).

mj-14139, 144 1H NMR in CDCl3 (400 MHz)

Figure S22. ¹³C{¹H} NMR spectrum of compound 1k (CDCl₃, 25 °C, 100 MHz).

mj-14141, 144 19F NMR in CDCl3 (376 MHz)

5.5 5.0 fl (ppm) 2.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 4.5 4.0 3.5 3.0 2.0 1.5 1.0 0.5 0.0

Figure S24. ¹H NMR spectrum of compound 11 (CDCl₃, 25 °C, 400 MHz).

mj-14301, 106 1H NMR in CDCl3 (400 MHz)

Figure S25. ¹³C{¹H} NMR spectrum of compound 11 (CDCl₃, 25 °C, 100 MHz).

Figure S26. ¹⁹F{¹H} NMR spectrum of compound 1l (CDCl₃, 25 °C, 376 MHz).

mj-14155, 93 1H NMR in CDCl3 (400 MHz)

Figure S27. ¹H NMR spectrum of compound 1m (CDCl₃, 25 °C, 400 MHz).

Figure S28. ¹³C{¹H} NMR spectrum of compound 1m (CDCl₃, 25 °C, 100 MHz).

mj-14156, 93 1H NMR in CDCl3 (400 MHz)

Figure S30. ¹H NMR spectrum of compound 1q (CDCl₃, 25 °C, 400 MHz).

mj-10502, 469 13C NMR in CDCl3 (100 MHz)

Figure S31. ¹³C{¹H} NMR spectrum of compound 1q (CDCl₃, 25 °C, 100 MHz).

Figure S32. ¹⁹F{¹H} NMR spectrum of compound 1q (CDCl₃, 25 °C, 376 MHz).

mj-9476, 161 1H NMR in CDCl3 (400 MHz)

Figure S33. ¹H NMR spectrum of compound 1r (CDCl₃, 25 °C, 400 MHz).

Figure S34. ¹³C{¹H} NMR spectrum of compound 1r (CDCl₃, 25 °C, 100 MHz).

mj-9478, 161 19F NMR in CDCl3 (376 MHz)

Figure S36. ¹H NMR spectrum of compound 1s (CDCl₃, 25 °C, 400 MHz).

mj-14515, 533 13C NMR in CDCl3 (100 MHz)

Figure S37. ¹³C{¹H} NMR spectrum of compound 1s (CDCl₃, 25 °C, 100 MHz).

mj-14516, 533 19F NMR in CDCl3 (376 MHz) ---78.3546 [–] OTf OMe MeO ÓМе ÓМе 1s 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 fl (ppm) 10 -130 -150 -170 -190 -210

Figure S38. ¹⁹F{¹H} NMR spectrum of compound 1s (CDCl₃, 25 °C, 376 MHz).

mj-14130, 326 1H NMR in CDCl3 (400 MHz)

Figure S40. ¹³C{¹H} NMR spectrum of compound 1v (CDCl₃, 25 °C, 100 MHz).

mj-14132, 326 19F NMR in CDCl3 (376 MHz)

Figure S41. ¹⁹F{¹H} NMR spectrum of compound 1v (CDCl₃, 25 °C, 376 MHz).

Figure S42. ¹H NMR spectrum of compound 1w (CDCl₃, 25 °C, 400 MHz).

Figure S43. NOE spectrum of compound 1w.

Figure S44. ¹³C{¹H} NMR spectrum of compound 1w (CDCl₃, 25 °C, 100 MHz).

mj-9618 1H NMR in CDCl3 (400 MHz)

Figure S45. ¹H NMR spectrum of compound 1x (CDCl₃, 25 °C, 400 MHz).

Figure S46. ¹³C{¹H} NMR spectrum of compound 1x (CDCl₃, 25 °C, 100 MHz).

mj-9609 1H NMR in CDCl3 (400 MHz)

Figure S48. ¹H NMR spectrum of compound 3b (CDCl₃, 25 °C, 400 MHz).

mj-14129, 274 13C NMR in CDCl3 (100 MHz)

Figure S49. ¹³C{¹H} NMR spectrum of compound 3b (CDCl₃, 25 °C, 100 MHz).

Figure S50. ¹⁹F{¹H} NMR spectrum of compound **3b** (CDCl₃, 25 °C, 376 MHz).

Figure S51. ¹H NMR spectrum of compound 3c (CDCl₃, 25 °C, 400 MHz).

Figure S52. ¹³C{¹H} NMR spectrum of compound 3c (CDCl₃, 25 °C, 100 MHz).

Figure S54. ¹H NMR spectrum of compound 3d (CDCl₃, 25 °C, 400 MHz).

Figure S55. ¹³C{¹H} NMR spectrum of compound 3d (CDCl₃, 25 °C, 100 MHz).

Figure S56. ¹⁹F{¹H} NMR spectrum of compound 3d (CDCl₃, 25 °C, 376 MHz).

mj-14842, 446 1H NMR in CDCl3 (400 MHz)

Figure S57. ¹H NMR spectrum of compound 3e (CDCl₃, 25 °C, 400 MHz).

Figure S58. ¹³C{¹H} NMR spectrum of compound 3e (CDCl₃, 25 °C, 100 MHz).

Figure S60. ¹H NMR spectrum of compound 3f (CDCl₃, 25 °C, 400 MHz).

mj-15127, 816 13C NMR in CDCl3 (100 MHz)

Figure S61. ¹³C{¹H} NMR spectrum of compound 3f (CDCl₃, 25 °C, 100 MHz).

Figure S62. ¹H NMR spectrum of compound 3g (CDCl₃, 25 °C, 400 MHz).

Figure S63. ¹³C{¹H} NMR spectrum of compound **3g** (CDCl₃, 25 °C, 100 MHz).

Figure S64. ¹⁹F{¹H} NMR spectrum of compound 3g (CDCl₃, 25 °C, 376 MHz).

mj-6266, 208 1H NMR in DMSO (400 MHz)

Figure S65. ¹H NMR spectrum of compound 3h (DMSO-d6, 25 °C, 400 MHz).

Figure S66. ¹³C{¹H} NMR spectrum of compound **3h** (DMSO-d6, 25 °C, 100 MHz).

Figure S68. ¹H NMR spectrum of compound 3j (CDCl₃, 25 °C, 400 MHz).

mj-7822, 289 13C NMR in CDCl3 (100 MHz)

Figure S69. ${}^{13}C{}^{1}H$ NMR spectrum of compound 3j (CDCl₃, 25 °C, 100 MHz).

Figure S70. ¹⁹F{¹H} NMR spectrum of compound 3j (CDCl₃, 25 °C, 376 MHz).

mj-7871, 281 1H NMR in CDCl3 (400 MHz)

Figure S72. ¹³C{¹H} NMR spectrum of compound 3k (CDCl₃, 25 °C, 100 MHz).

mj-8644, 281 19F NMR in CDCl3 (376 MHz)

Figure S74. ¹H NMR spectrum of compound 3l (CDCl₃, 25 °C, 400 MHz).
mj-8043, 300 13C NMR in CDCl3 (100 MHz)

90

80

70

60 50

40

30

20 10

0

110 100 fl (ppm)

mj-11626, 300 19F NMR in CDCl3 (376 MHz)

170 160

150

140 130

120

200

190 180

Figure S76. ${}^{19}F{}^{1}H$ NMR spectrum of compound 3l (CDCl₃, 25 °C, 376 MHz).

mj-11644, 1H NMR in CDCl3 (400 MHz)

Figure S78. ¹³C{¹H} NMR spectrum of compound **3n** (CDCl₃, 25 °C, 100 MHz).

mj**-**11646, 19F NMR in CDCl3 (376 MHz)

10

0 -10 -20 -30 -40 -50 -60 -70 -80

-130

-150

-170

-190

-210

Figure S80. ¹H NMR spectrum of compound 30 (CDCl₃, 25 °C, 400 MHz).

mj-8064, 295 1H NMR in CDCl3 (400 MHz)

Figure S81. ¹³C{¹H} NMR spectrum of compound **30** (CDCl₃, 25 °C, 100 MHz).

mj-11629, 295 19F NMR in CDCI3 (376 MHz) f_{g} f_{g} f

Figure S82. ¹⁹F{¹H} NMR spectrum of compound **30** (CDCl₃, 25 °C, 376 MHz).

8849, mj-316 1H NMR in CDCl3 (400 MHz)

Figure S83. ¹H NMR spectrum of compound **3p** (CDCl₃, 25 °C, 400 MHz).

Figure S84. ¹³C{¹H} NMR spectrum of compound **3p** (CDCl₃, 25 °C, 100 MHz).

mj-6753, 236 1H NMR in CDCl3 (400 MHz)

Figure S86. ¹³C{¹H} NMR spectrum of compound 3q (CDCl₃, 25 °C, 100 MHz).

mj-11461, 236 19F NMR in CDCl3 (376 MHz)

-130

-150

-170

-190

-210

-90

mj-8218, 308 1H NMR in CDCl3 (400 MHz)

-10 -20 -30 -40 -50 -60 -70 -80

10 0

Figure S88. ¹H NMR spectrum of compound 3s (CDCl₃, 25 °C, 400 MHz).

mj-8219, 308 13C NMR in CDCl3 (100 MHz)

Figure S89. ¹³C{¹H} NMR spectrum of compound 3s (CDCl₃, 25 °C, 100 MHz).

mj-8220, 308 19F NMR in CDCl3 (376 MHz)

Figure S90. ¹⁹F{¹H} NMR spectrum of compound **3s** (CDCl₃, 25 °C, 376 MHz).

Figure S92. ¹³C{¹H} NMR spectrum of compound 5a (DMSO-d6, 25 °C, 100 MHz).

Figure S93. ¹⁹F{¹H} NMR spectrum of compound **5a** (DMSO-d6, 25 °C, 376 MHz).

Figure S94. ¹H NMR spectrum of compound 5b (DMSO-d6, 25 °C, 400 MHz).

7316, mj-242 13C NMR in DMSO (100 MHz)

Figure S95. ¹³C{¹H} NMR spectrum of compound 5b (DMSO-d6, 25 °C, 100 MHz).

Figure S96. ¹⁹F{¹H} NMR spectrum of compound **5b** (DMSO-d6, 25 °C, 376 MHz).

6718, mj-234 1H NMR in DMSO (400 MHz)

Figure S97. ¹H NMR spectrum of compound 5c (DMSO-d6, 25 °C, 400 MHz).

Figure S98. ¹³C{¹H} NMR spectrum of compound 5c (DMSO-d6, 25 °C, 100 MHz).

14232, mj-234 19F NMR in DMSO (376 MHz)

Figure S99. ¹⁹F{¹H} NMR spectrum of compound **5c** (DMSO-d6, 25 °C, 376 MHz).

Figure S100. ¹H NMR spectrum of compound 2a (CDCl₃, 25 °C, 400 MHz).

mj-9822, 92 13C NMR in CDCl3 (100 MHz)

Figure S101. ¹³C{¹H} NMR spectrum of compound 2a (CDCl₃, 25 °C, 100 MHz).

mj-11736, 111 1H NMR in CDCl3 (400 MHz)

Figure S102. ¹H NMR spectrum of compound 2b (CDCl₃, 25 °C, 400 MHz).

mj-11797, 111 13C NMR in CDCl3 (100 MHz)

Figure S103. ¹³C{¹H} NMR spectrum of compound 2b (CDCl₃, 25 °C, 100 MHz).

Figure S104. ¹H NMR spectrum of compound 2c (CDCl₃, 25 °C, 400 MHz).

11935, mj-560 13C NMR in CDCl3 (100 MHz)

Figure S105. ¹³C{¹H} NMR spectrum of compound 2c (CDCl₃, 25 °C, 100 MHz).

mj-10259, 460 13C NMR in CDCl3 (100 MHz)

Figure S107. ¹³C{¹H} NMR spectrum of compound 2d (CDCl₃, 25 °C, 100 MHz).

Figure S108. ¹⁹F NMR spectrum of compound 2d (CDCl₃, 25 °C, 376 MHz).

mj-11726, 115 1H NMR in CDCl3 (400 MHz)

Figure S110. ¹³C{¹H} NMR spectrum of compound 2e (CDCl₃, 25 °C, 100 MHz).

5018, mj-127 1H NMR in CDCl3 (400 MHz)

Figure S111. ¹H NMR spectrum of compound 2f (CDCl₃, 25 °C, 400 MHz).

Figure S112. ¹³C{¹H} NMR spectrum of compound 2f (CDCl₃, 25 °C, 100 MHz).

11890, mj-556 1H NMR in CDCl3 (400 MHz)

Figure S114. ¹³C{¹H} NMR spectrum of compound 2g (CDCl₃, 25 °C, 100 MHz).

Figure S115. ¹⁹F{¹H} NMR spectrum of compound **2g** (CDCl₃, 25 °C, 376 MHz).

-110 fl (ppm)

-130

-150

-170

-190

-210

-90

11832, mj-556 1H NMR in CDCl3 (400 MHz)

10 0

-10 -20 -30

-40 -50 -60 -70 -80

11533, mj-1 13C NMR in CDCl3 (100 MHz)

Figure S117. ¹³C{¹H} NMR spectrum of compound 2h (CDCl₃, 25 °C, 100 MHz).

Figure S118. ¹H NMR spectrum of compound 2h' (CDCl₃, 25 °C, 400 MHz).

11519, 167b mj-2 13C NMR in CDCl3 (100 MHz)

Figure S119. ¹³C{¹H} NMR spectrum of compound 2h' (CDCl₃, 25 °C, 100 MHz).

Figure S120. ¹H NMR spectrum of compound 2i (CDCl₃, 25 °C, 400 MHz).

mj-4585, 100 13C NMR in CDCl3 (100 MHz)

Figure S121. ¹³C{¹H} NMR spectrum of compound 2i (CDCl₃, 25 °C, 100 MHz).

Figure S122. ¹⁹F NMR spectrum of compound 2i (CDCl₃, 25 °C, 376 MHz).

mj-4587, 103 1H NMR in CDCl3 (400 MHz)

Figure S123. ¹H NMR spectrum of compound 2j (CDCl₃, 25 °C, 400 MHz).

Figure S124. ¹³C{¹H} NMR spectrum of compound 2j (CDCl₃, 25 °C, 100 MHz).

mj-11680, 155 1H NMR in CDCl3 (400 MHz)

Figure S125. ¹H NMR spectrum of compound 2k (CDCl₃, 25 °C, 400 MHz).

Figure S126. ¹³C{¹H} NMR spectrum of compound 2k (CDCl₃, 25 °C, 100 MHz).

mj-11701, 109 1H NMR in CDCl3 (400 MHz)

Figure S127. ¹H NMR spectrum of compound 2l (CDCl₃, 25 °C, 400 MHz).

Figure S128. ¹³C{¹H} NMR spectrum of compound 2l (CDCl₃, 25 °C, 100 MHz).

Figure S130. ¹H NMR spectrum of compound 2m (CDCl₃, 25 °C, 400 MHz).

mj-4857, 96-1 13C NMR in CDCl3 (100 MHz)

Figure S131. ¹³C{¹H} NMR spectrum of compound 2m (CDCl₃, 25 °C, 100 MHz).

Figure S132. ¹H NMR spectrum of compound 2n (CDCl₃, 25 °C, 400 MHz).

11798, mj-148 13C NMR in CDCl3 (100 MHz)

Figure S133. ¹³C{¹H} NMR spectrum of compound 2n (CDCl₃, 25 °C, 100 MHz).

Figure S134. ¹⁹F{¹H} NMR spectrum of compound 2n (CDCl₃, 25 °C, 376 MHz).

Figure S135. ¹H NMR spectrum of compound 2p (CDCl₃, 25 °C, 400 MHz).

Figure S136. ¹³C{¹H} NMR spectrum of compound **2p** (CDCl₃, 25 °C, 100 MHz).

mj-10258, 444 19F NMR in CDCl3 (376 MHz)

Figure S137. ${}^{19}F{}^{1}H$ NMR spectrum of compound 2p (CDCl₃, 25 °C, 376 MHz).

Figure S138. ¹H NMR spectrum of compound 2q (CDCl₃, 25 °C, 400 MHz).

11933, mj-557 13C NMR in CDCl3 (100 MHz)

Figure S139. ¹³C{¹H} NMR spectrum of compound 2q (CDCl₃, 25 °C, 100 MHz).

Figure S140. ¹⁹F{¹H} NMR spectrum of compound 2q (CDCl₃, 25 °C, 376 MHz).

Figure S141. ¹H NMR spectrum of compound 2r (CDCl₃, 25 °C, 400 MHz).

Figure S142. ¹³C{¹H} NMR spectrum of compound 2r (CDCl₃, 25 °C, 100 MHz).

mj-14299, 170 19F NMR in CDCl3 (376 MHz)

Figure S144. ¹H NMR spectrum of compound 2s (CDCl₃, 25 °C, 400 MHz).

mj-11585, 543 13C NMR in CDCl3 (100 MHz)

Figure S146. ¹H NMR spectrum of compound 2t (CDCl₃, 25 °C, 400 MHz).

9719, mj-156 C in CDCl3

Figure S148. ¹H NMR spectrum of compound 2u (CDCl₃, 25 °C, 400 MHz).

11957, mj-137 13C NMR in CDCl3 (100 MHz)

Figure S149. ¹³C{¹H} NMR spectrum of compound 2u (CDCl₃, 25 °C, 100 MHz).

Figure S150. ¹H NMR spectrum of compound 2v (CDCl₃, 25 °C, 400 MHz).

mj-11641, 559 13C NMR in CDCl3 (100 MHz)

Figure S151. ¹³C{¹H} NMR spectrum of compound 2v (CDCl₃, 25 °C, 100 MHz).

Figure S152. ¹H NMR spectrum of compound 2w (CDCl₃, 25 °C, 400 MHz).

11120, 172b-1 13C NMR in CDCl3 (100 MHz)

Figure S153. ¹³C{¹H} NMR spectrum of compound 2w (CDCl₃, 25 °C, 100 MHz).

Figure S154. ¹H NMR spectrum of compound 2x (CDCl₃, 25 °C, 400 MHz).

12739, mj-538 C in CDCl3 13C NMR in CDCl3 (100 MHz)

Figure S155. ¹³C{¹H} NMR spectrum of compound 2x (CDCl₃, 25 °C, 100 MHz).

Figure S156. ¹H NMR spectrum of compound 4a (CDCl₃, 25 °C, 400 MHz).

mj-5201, 141 13C NMR in CDCl3 (100 MHz)

Figure S157. ¹³C{¹H} NMR spectrum of compound 4a (CDCl₃, 25 °C, 100 MHz).

Figure S158. ¹H NMR spectrum of compound 4b (CDCl₃, 25 °C, 400 MHz).

mj-7625, 275 13C NMR in CDCl3 (100 MHz)

Figure S159. ¹³C{¹H} NMR spectrum of compound 4b (CDCl₃, 25 °C, 100 MHz).

Figure S160. ¹H NMR spectrum of compound 4c (CDCl₃, 25 °C, 400 MHz).

mj-7828, 285 13C NMR in CDCl3 (100 MHz)

Figure S161. ¹³C{¹H} NMR spectrum of compound 4c (CDCl₃, 25 °C, 100 MHz).

Figure S162. ¹H NMR spectrum of compound 4d (CDCl₃, 25 °C, 400 MHz).

mj-11684, 462 13C NMR in CDCl3 (100 MHz)

Figure S163. ¹³C{¹H} NMR spectrum of compound 4d (CDCl₃, 25 °C, 100 MHz).

Figure S164. ¹H NMR spectrum of compound 4e (CDCl₃, 25 °C, 400 MHz).

11741, mj-181-1 13C NMR in CDCl3 (100 MHz)

Figure S165. ¹³C{¹H} NMR spectrum of compound 4e (CDCl₃, 25 °C, 100 MHz).

Figure S166. ¹H NMR spectrum of compound 4e' (CDCl₃, 25 °C, 400 MHz).

11753, mj-182-2 1H NMR in CDCl3 (400 MHz)

Figure S167. ¹³C{¹H} NMR spectrum of compound 4e' (CDCl₃, 25 °C, 100 MHz).

Figure S168. ¹H NMR spectrum of compound 4f (CDCl₃, 25 °C, 400 MHz).

mj-15114

Figure S169. ¹³C{¹H} NMR spectrum of compound 4f (CDCl₃, 25 °C, 100 MHz).

Figure S170. ¹H NMR spectrum of compound 4f' (CDCl₃, 25 °C, 400 MHz).

mj-15112 13C NMR in CDCl3 (100 MHz)

Figure S171. ¹³C{¹H} NMR spectrum of compound 4f' (CDCl₃, 25 °C, 100 MHz).

Figure S172. ¹H NMR spectrum of compound 4g (CDCl₃, 25 °C, 400 MHz).

mj-6435, 224 13C NMR in CDCl3 (100 MHz)

Figure S173. ¹³C{¹H} NMR spectrum of compound 4g (CDCl₃, 25 °C, 100 MHz).

Figure S174. ¹⁹F{¹H} NMR spectrum of compound 4g (CDCl₃, 25 °C, 376 MHz).

6791, mj-217 1H NMR in CDCl3 (400 MHz)

Figure S175. ¹H NMR spectrum of compound 4h (CDCl₃, 25 °C, 400 MHz).

Figure S176. ¹³C{¹H} NMR spectrum of compound 4h (CDCl₃, 25 °C, 100 MHz).

10660, mj-217 19F NMR in CDCl3 (376 MHz)

Figure S177. ¹⁹F{¹H} NMR spectrum of compound 4h (CDCl₃, 25 °C, 376 MHz).

Figure S178. ¹H NMR spectrum of compound 4j (CDCl₃, 25 °C, 400 MHz).

mj-11773, 296 13C NMR in CDCl3 (100 MHz)

Figure S179. ¹³C{¹H} NMR spectrum of compound 4j (CDCl₃, 25 °C, 100 MHz).

Figure S180. ¹⁹F{¹H} NMR spectrum of compound 4j (CDCl₃, 25 °C, 376 MHz).

mj-8342, 325 1H NMR in CDCl3 (400 MHz)

Figure S181. ¹H NMR spectrum of compound 4k (CDCl₃, 25 °C, 400 MHz).

Figure S182. ¹³C{¹H} NMR spectrum of compound 4k (CDCl₃, 25 °C, 100 MHz).

mj-8060, 311 1H NMR in CDCl3 (400 MHz)

Figure S183. ¹H NMR spectrum of compound 4l (CDCl₃, 25 °C, 400 MHz).

Figure S184. ¹³C{¹H} NMR spectrum of compound 4l (CDCl₃, 25 °C, 100 MHz).

S127

Figure S185. ¹H NMR spectrum of compound 4m (CDCl₃, 25 °C, 400 MHz).

Figure S186. ¹³C{¹H} NMR spectrum of compound 4m (CDCl₃, 25 °C, 100 MHz).

Figure S187. ¹⁹F{¹H} NMR spectrum of compound **4m** (CDCl₃, 25 °C, 376 MHz).

Figure S188. ¹H NMR spectrum of compound 4m1 (CDCl₃, 25 °C, 400 MHz).

mj-8345, 256-1 13C NMR in CDCl3 (100 MHz)

Figure S189. ${}^{13}C{}^{1}H$ NMR spectrum of compound 4m1 (CDCl₃, 25 °C, 100 MHz).

Figure S190. ¹⁹F{¹H} NMR spectrum of compound 4m1 (CDCl₃, 25 °C, 376 MHz).

mj-8040, 304-2 1H NMR in CDCl3 (400 MHz)

Figure S191. ¹H NMR spectrum of compound 4n (CDCl₃, 25 °C, 400 MHz).

Figure S192. ¹³C{¹H} NMR spectrum of compound 4n (CDCl₃, 25 °C, 100 MHz).

-130

-150

-170

-190

-210

-90

10 0 -10 -20 -30

-40 -50 -60 -70 -80

Figure S194. ¹H NMR spectrum of compound 4n' (CDCl₃, 25 °C, 400 MHz).

mj-8039, 304-1

200

190 180

170

160 150

140 130 120

Figure S195. ¹³C{¹H} NMR spectrum of compound **4n'** (CDCl₃, 25 °C, 100 MHz).

90

80

70

60 50

40

30

20

10

0

110 100 f1 (ppm)

Figure S196. ¹⁹F{¹H} NMR spectrum of compound **4n'** (CDCl₃, 25 °C, 376 MHz).

Figure S198. ¹³C{¹H} NMR spectrum of compound 40 (CDCl₃, 25 °C, 100 MHz).

mj-8426, 331-2 19F NMR in CDCl3 (376 MHz)

10 0

-10 -20 -30

-40 -50 -60 -70 -80

-110 fl (ppm)

-130

-150

-170

-190

-210

-90

Figure S200. ¹H NMR spectrum of compound 40' (CDCl₃, 25 °C, 400 MHz).

mj-14148, 331-1 13C NMR in CDCl3 (100 MHz)

Figure S201. ¹³C{¹H} NMR spectrum of compound 40' (CDCl₃, 25 °C, 100 MHz).

Figure S202. ¹⁹F{¹H} NMR spectrum of compound **40'** (CDCl₃, 25 °C, 376 MHz).

mj-8947, 361-2 1H NMR in CDCl3 (400 MHz)

Figure S203. ¹H NMR spectrum of compound 4p (CDCl₃, 25 °C, 400 MHz).

Figure S204. ¹³C{¹H} NMR spectrum of compound 4p (CDCl₃, 25 °C, 100 MHz).

mj-4952, 361-1 1H NMR in CDCl3 (400 MHz)

Figure S206. ¹³C{¹H} NMR spectrum of compound 4p' (CDCl₃, 25 °C, 100 MHz).

11776, mj-243-2 1H NMR in CDCl3 (400 MHz)

Figure S208. ¹³C{¹H} NMR spectrum of compound 4q (CDCl₃, 25 °C, 100 MHz).

11594, mj-243-1 1H NMR in CDCl3 (400 MHz)

Figure S210. ${}^{13}C{}^{1}H$ NMR spectrum of compound 4q' (CDCl₃, 25 °C, 100 MHz).

mj-8215, 297-2 1H NMR in CDCl3 (400 MHz)

Figure S212. ¹³C{¹H} NMR spectrum of compound 4r (CDCl₃, 25 °C, 100 MHz).

Figure S213. ¹⁹F{¹H} NMR spectrum of compound 4r (CDCl₃, 25 °C, 376 MHz).

-110 fl (ppm)

-130

-150

-170

-190

-210

-90

10 0

-10 -20 -30

-40 -50 -60 -70 -80

Figure S214. ¹H NMR spectrum of compound 4r' (CDCl₃, 25 °C, 400 MHz).

mj-8015, 297-1 13C NMR in CDCl3 (100 MHz)

200

190 180 170

160 150 140 130

120

Figure S215. ¹³C{¹H} NMR spectrum of compound 4r' (CDCl₃, 25 °C, 100 MHz).

90

80

70

60 50 40

30

20

10

0

mj-10662, 297-1 19F NMR in CDCl3 (376 MHz) ---62.6898 CN Me F_3C 4r') -110 fl (ppm) 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -130 -150 -170 -190 -210

Figure S216. ¹⁹F{¹H} NMR spectrum of compound **4r'** (CDCl₃, 25 °C, 376 MHz).

mj-15352, 310-2 1H NMR in CDCl3 (400 MHz)

Figure S218. ¹³C{¹H} NMR spectrum of compound 4s (CDCl₃, 25 °C, 100 MHz).

Figure S219. ¹⁹F{¹H} NMR spectrum of compound 4s (CDCl₃, 25 °C, 376 MHz).

) -110 fl (ppm)

-130

-150

-170

-190

-210

-90

10 0

-10 -20 -30 -40 -50 -60 -70 -80

Figure S220. ¹H NMR spectrum of compound 4s' (CDCl₃, 25 °C, 400 MHz).

mj-15202, 310-1 13C NMR in CDCl3 (100 MHz)

Figure S221. ¹³C{¹H} NMR spectrum of compound 4s' (CDCl₃, 25 °C, 100 MHz).

Figure S222. ¹⁹F{¹H} NMR spectrum of compound 4r' (CDCl₃, 25 °C, 376 MHz).

mj-9367, 375 1H NMR in CDCl3 (400 MHz)

Figure S224. ¹³C{¹H} NMR spectrum of compound 4t (CDCl₃, 25 °C, 100 MHz).

mj-6253, 218 1H NMR in CDCl3 (400 MHz)

Figure S225. ¹H NMR spectrum of compound 4u (CDCl₃, 25 °C, 400 MHz).

Figure S226. ¹³C{¹H} NMR spectrum of compound 4u (CDCl₃, 25 °C, 100 MHz).

mj-12487, 602 1H NMR in CDCl3 (400 MHz)

Figure S228. ¹³C{¹H} NMR spectrum of compound 4v (CDCl₃, 25 °C, 100 MHz).

12818, mj-613 C in CDCl3 1H NMR in CDCl3 (400 MHz)

Figure S230. ¹³C{¹H} NMR spectrum of compound 6a (CDCl₃, 25 °C, 100 MHz).

Figure S231. ¹⁹F{¹H} NMR spectrum of compound 6a (CDCl₃, 25 °C, 376 MHz).

Figure S232. ¹H NMR spectrum of compound 6b (CDCl₃, 25 °C, 400 MHz).

mj-7225, 244 13C NMR in CDCl3 (100 MHz)

Figure S233. ¹³C{¹H} NMR spectrum of compound 6b (CDCl₃, 25 °C, 100 MHz).

mj-12835, 244 19F NMR in CDCl3 (376 MHz)

Figure S234. ¹⁹F{¹H} NMR spectrum of compound 6b (CDCl₃, 25 °C, 376 MHz).

mj-6709, 235 1H NMR in CDCl3 (400 MHz)

Figure S235. ¹H NMR spectrum of compound 6c (CDCl₃, 25 °C, 400 MHz).

Figure S236. ¹³C{¹H} NMR spectrum of compound 6c (CDCl₃, 25 °C, 100 MHz).

Figure S237. ¹H NMR spectrum of compound 7 (CDCl₃, 25 °C, 400 MHz).

Figure S238. ¹³C{¹H} NMR spectrum of compound 7 (CDCl₃, 25 °C, 100 MHz).

Figure S239. ¹⁹F{¹H} NMR spectrum of compound **7** (CDCl₃, 25 °C, 376 MHz).

Figure S240. ¹H NMR spectrum of compound 8a (CDCl₃, 25 °C, 400 MHz).

Figure S241. ¹³C{¹H} NMR spectrum of compound 8a (CDCl₃, 25 °C, 100 MHz).

Figure S242. ¹H NMR spectrum of compound 8b (CDCl₃, 25 °C, 400 MHz).

Figure S243. ¹³C{¹H} NMR spectrum of compound 8b (CDCl₃, 25 °C, 100 MHz).

Figure S244. ¹H NMR spectrum of compound 9 (DMSO-d6, 25 °C, 400 MHz).

Figure S245. ¹³C{¹H} NMR spectrum of compound 9 (DMSO-d6, 25 °C, 100 MHz).

Figure S246. ¹⁹F{¹H} NMR spectrum of compound 9 (DMSO-d6, 25 °C, 376 MHz).

Figure S247. ¹H NMR spectrum of compound Int-P (CDCl₃, 25 °C, 400 MHz).

Figure S248. ¹³C{¹H} NMR spectrum of compound **Int-P** (CDCl₃, 25 °C, 100 MHz).

Figure S249. ¹⁹F{¹H} NMR spectrum of compound Int-P (CDCl₃, 25 °C, 376 MHz).

Figure S250. ³¹P{¹H} NMR spectrum of compound Int-P (CDCl₃, 25 °C, 162 MHz).