Visible-light-promoted CO₂ Oxidative 1,2-Thiosulfonylation of Styrenes with Sodium Sulfinates and Thiophenols

Shiwei Xia,¹ Linna Wu,¹ Guizhi Zhai,¹ Zechao Wang,^{1,*} and Junliang Wu^{1,*}

¹Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China. Email: wujl@zzu.edu.cn (J.W.)

Table of Contents

1. General Information	S2
2. General Procedure of Product 4	S2
4. Substrates 1	S3
5. Substrates 2	S4
6. Substrates 3	S4
7. Screening of Catalysts	S5
8. Screening of Solvents	S5
9. Screening of Bases	S6
10. Screening of FeCl₃ Loading	S6
11. Investigation of Reaction Mechanism	S6
11.1. BHT Trapping Experiment	S6
11.2. TEMPO Trapping Experiment	S7
11.3. Radical Clock Experiment	S7
12. Component of Gas Phase	S8
13. Proposed Mechanism for CO_2 Reduction to CO and CH_4	S10
14. Stern-Volmer Quenching Experiments	S10
15. Apparent Quantum Yield	S11
16. X-ray Crystallographic Data of 4f	S12
17. Characterisation of Products 4, 6a, and 7a	S13
18. Reference	S24
19. NMR Spectra	S25

1. General Information

All air- and moisture-insensitive reactions were carried out under an ambient atmosphere and monitored by thinlayer chromatography (TLC). Concentration under reduced pressure was performed by rotary evaporation at 40-50 °C at an appropriate pressure. Purified compounds were further dried under high vacuum. Yields refer to purified and spectroscopically pure compounds, unless otherwise stated. All air- and moisture-sensitive manipulations were performed using oven-dried glassware (120 °C for a minimum of 15 h), including standard Schlenk techniques under an atmosphere of argon. Irradiation of photochemical reactions were carried out using 40 W blue LEDs (450-470 nm, Wuhan GeAo Chemical Ltd.).

Solvents

All solvents were purchased from Titan and dried by distillation. All deuterated solvents were purchased from J&K Scientific.

Spectroscopy and Instruments

¹H NMR spectra were recorded on Bruker Avance II 400 MHz spectrophotometers. Chemical shifts (δ) were reported in ppm from the resonance of tetramethyl silane as the internal standard (TMS: 0.00 ppm). Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. For ¹H NMR: CDCl₃, 7.26; For ¹³C NMR: CDCl₃, 77.16; ¹³C NMR spectra were recorded on 101 Hz with complete proton decoupling spectrophotometers. ¹⁹F NMR spectra were observed in the ¹H-decoupled mode. NMR yield was determined by ¹H NMR using 1.1.2.2 - tetrachloroethane as an internal standard before working up the reaction. High-resolution mass spectra were obtained using Shimadzu LCMS-IT-TOF mass spectrometer and DIONEX UltiMate 3000 & Bruker Compact TOF mass spectrometer. Gas chromatography analysis was performed on a 7820 (Zhongkehuifen China) instrument.

2. General Procedure of Product 4

In a 25 mL Schlenk tube styrenes **1** (0.2 mmol, 1 equiv), sodium sulfinates **2** (0.3 mmol, 1.5 equiv), thiophenols **3** (0.3 mmol, 1.5 equiv), Ru(phen)₃(PF₆)₂ (0.004 mmol, 2 mol%), FeCl₃ (0.06 mmol, 30 mol%), Cs₂CO₃ (0.4 mmol, 2 equiv) were added. Then it was evacuated by CO₂ cycles for three times. After that DMSO (2 mL) was added into the Schlenk tube under CO₂. The reaction mixture was placed under 40 W blue LEDs at room temperature. After 20 h, the reaction was completed and quenched upon the addition of water (10 mL). The mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were dried using MgSO₄ and then concentrated in vacuo. The crude product was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate as the eluent to give the pure product **4**.

3. General Procedure of Gram-Scale Reaction

In a 350 mL Schlenk tube styrenes **1b** (417 mg, 4 mmol, 1 equiv), sodium sulfinates **2a** (1.0 g, 6.0 mmol, 1.5 equiv), thiophenols **3a** (740 mg, 6 mmol, 1.5 equiv), Ru(phen)₃(PF₆)₂ (74 mg, 0.08 mmol, 4 mol%), FeCl₃ (195 mg, 1.2 mmol, 30 mol%), Cs₂CO₃ (2.6 g, 8 mmol, 2 equiv) were added. Then it was evacuated by CO₂ cycles for three

times. After that DMSO (40 mL) was added into the Schlenk tube under CO₂. The reaction mixture was placed under 40 W blue LEDs at room temperature. After 20 h, the reaction was completed and quenched upon the addition of water (100 mL). The mixture was extracted with CH_2Cl_2 (3 x 100 mL). The combined organic layers were dried using MgSO₄ and then concentrated in vacuo. The crude product was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate as the eluent to give the pure product **4b** (0.76 g, 52%).

4. Substrates 1

All substrates 1 are commercially available. Inside the parentheses are the corresponding product number.

Substrates 1 below could not afford the corresponding products.

5. Substrates 2

All substrates 2 are commercially available. Inside the parentheses are the corresponding product number.

Substrates 2 below could not afford the corresponding products.

6. Substrates 3

All substrates **3** are commercially available. Inside the parentheses are the corresponding product number.

Substrates 3 below could not afford the corresponding products.

7. Screening of Catalysts

		FeCl ₃ , Cs ₂ CO ₃ Ac, rt, CO ₂ , a LEDs, 20 h	
1a	2a 3a	4a	
Entry	PC	Yields(%)	
1	$lr[dF(CF_3)bpy)_2(dtbbpy)]PF_6$ 41		
2	lr[(bpy) ₂ (dtbbpy)]PF ₆ 667		
3	4CzIPN 31		
4	lr(ppy) ₃ NR		
5	Acid Red 94 trace		
6	Solvent Red 43 62		
7	[Ru(phen) ₃](PF ₆) ₂ 81		
8	$Ru(bpy)_3Cl_2 \cdot 6H_2O$ 44		
9	Eosin Y NR		
10	Rhodamine B	NR	

Reaction conditions: **1a** (0.2 mmol, 1 equiv), **2a** (0.3 mmol, 1.5 equiv), **3a** (0.3 mmol, 1.5 equiv), [PC] (2 mol%), FeCl₃ (30 mol%), Cs₂CO₃ (0.4 mmol, 2 equiv), DMAc (2 mL), rt, 20 h, CO₂, isolated yield.

8. Screening of Solvents

	. SONa	+ SH (Ru), So Blu	I, FeCl ₃ , Cs ₂ CO ₃ olvent, rt, CO ₂ , lue LEDs, 20 h
1a	2a	3a	4a
Entry		Solvent	Yields(%)
1		MeCN	35
2		NMP	64
3		DMSO	85
4		DMF	50
5		THF	11
6		DCM	0

Reaction conditions: **1a** (0.2 mmol, 1 equiv), **2a** (0.3 mmol, 1.5 equiv), **3a** (0.3 mmol, 1.5 equiv), Ru(phen)₃(PF₆)₂ (2 mol%), FeCl₃ (30 mol%), Cs₂CO₃ (0.4 mmol, 2 equiv), solvent (2 mL), rt, 20 h, CO₂, isolated yield.

9. Screening of Bases

Entry	Base	Yields(%)
1	NaO ^t Bu	64
2	LiO ^t Bu	64
3	KO ^t Bu	42
4	Cs ₂ CO ₃	85
5	DMAP	61
6	НСООК	70
7	K ₂ CO ₃	50
8	Na ₂ CO ₃	78
9		60

Reaction conditions: **1a** (0.2 mmol, 1 equiv), **2a** (0.3 mmol, 1.5 equiv), **3a** (0.3 mmol, 1.5 equiv), Ru(phen)₃(PF₆)₂ (2 mol%), FeCl₃ (30 mol%), base (0.4 mmol, 2 equiv), DMSO (2 mL), rt, 20 h, CO₂, isolated yield.

10. Screening of FeCl₃ Loading

Reaction conditions: **1a** (0.2 mmol, 1 equiv), **2a** (0.3 mmol, 1.5 equiv), **3a** (0.3 mmol, 1.5 equiv), Ru(phen)₃(PF₆)₂ (2 mol%), FeCl₃, Cs₂CO₃ (0.4 mmol, 2 equiv), DMSO (2 mL), rt, 20 h, CO₂, isolated yield.

11. Investigation of Reaction Mechanism

11.1. BHT Trapping Experiment

In a 25 mL Schlenk tube **1a** (0.2 mmol, 1 equiv), **2a** (0.3 mmol, 1.5 equiv), **3a** (0.3 mmol, 1.5 equiv), Ru(phen)₃(PF₆)₂ (0.004 mmol, 2 mol%), FeCl₃ (0.06 mmol, 30 mol%), Cs₂CO₃ (0.4 mmol, 2 equiv) and **BHT** (0.6 mmol, 3 equiv) were added and it was evacuated by CO₂ cycles for three times. Then DMSO (2 mL) was added into the Schlenk tube under CO₂. The reaction was placed under 40 W blue LEDs at room temperature. After 20 h, the reaction was completed and quenched upon the addition of water (10 mL). The mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were dried using MgSO₄ and then concentrated in vacuo. The crude product was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate (3/1) as the eluent to give the pure product **4a** (76%) as white solid.

11.2. TEMPO Trapping Experiment

In a 25 mL Schlenk tube **1a** (0.2 mmol, 1 equiv), **2a** (0.3 mmol, 1.5 equiv), **3a** (0.3 mmol, 1.5 equiv), Ru(phen)₃(PF₆)₂ (0.004 mmol, 2 mol%), FeCl₃ (0.06 mmol, 30 mol%), Cs₂CO₃ (0.4 mmol, 2 equiv) and **TEMPO** (0.6 mmol, 3 equiv) were added and it was evacuated by CO₂ cycles for three times. Then DMSO (2 mL) was added into the Schlenk tube under CO₂. The reaction was placed under 40 W blue LEDs at room temperature. After 20 h, the reaction was completed and quenched upon the addition of water (10 mL). The mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were dried using MgSO₄ and then concentrated in vacuo. The crude product was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate (3/1) as the eluent to give the pure product **4a** (11%) as white solid and **6a** (45%) as yellow oil.

11.3. Radical Clock Experiment

In a 25 mL Schlenk tube **5a** (0.2 mmol, 1 equiv), **2a** (0.3 mmol, 1.5 equiv), **3a** (0.3 mmol, 1.5 equiv), Ru(phen)₃(PF₆)₂ (0.004 mmol, 2 mol%), FeCl₃ (0.06 mmol, 30 mol%) and Cs₂CO₃ (0.4 mmol, 2 equiv) were added and it was evacuated by CO₂ cycles for three times. Then DMSO (2 mL) was added into the Schlenk tube under CO₂. The reaction was placed under 40 W blue LEDs at room temperature. After 20 h, the reaction was completed and quenched upon the addition of water (10 mL). The mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were dried using MgSO₄ and then concentrated in vacuo. The crude product was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate (3/1) as the eluent to give the pure product **7a** (30%) as white solid.

12. Component of Gas Phase

Gas phase component detected by GC. The signal of air means contamination during sampling. (a) Component of gas phase at the beginning of the reaction.

(b) Component of gas phase after the reaction was completed.

(c) Component of gas phase after the reaction was completed (MeCN as solvent).

(d) Component of gas phase after the reaction was completed (NMP as solvent).

Table S1. Concentration of CO and CH₄ changed with reaction time (NMP as solvent).

Time	CO	CH₄	Time	CO	CH ₄
0	0	0	10	20.2	55.8
1	21.8	6.1	11	18.4	64
2	22.2	14.7	12	15.9	64.1
3	24.9	21.1	13	18	63.4
4	19.9	24.4	14	16.3	68.8
5	19.1	31	15	17.9	66.5
6	19.9	38.5	16	17.9	70.8
7	18.8	45.9	17	16.9	70
8	18.3	51.8	18	17.5	74.6
9	21.5	53.7	19	18.1	75.2

In a 25 mL Schlenk tube **1a** (0.2 mmol, 1 equiv), **2a** (0.3 mmol, 1.5 equiv), **3a** (0.3 mmol, 1.5 equiv), Ru(phen)₃(PF₆)₂ (0.004 mmol, 2 mol%), FeCl₃ (0.06 mmol, 30 mol%), Cs₂CO₃ (0.4 mmol, 2 equiv) were added and it was evacuated by CO₂ cycles for three times. Then NMP (2 mL) was added into the Schlenk tube under CO₂. After that the Schlenk tube was charged with a CO₂ gas bag. The reaction was placed under 40 W blue LEDs at room temperature. Subsequently, 3 mL gas from the system was extracted by syringe to detect the component every hour. Extra CO₂ was added from the CO₂ gas bag to balance the pressure in the reaction system. Calibrated data of gas concentration were calculated as follows (500 ppm per 1100 peak area):

$$c(t+1) = \Delta c(t) + c(t);$$

$$\Delta c(t) = [c(t+1) \times v - c(t) \times (v-3)] \div v; (t \ge 1)$$

c: Concentration of gas (ppm);

t: reaction time (h);

 Δc : The increase in gas concentration per unit time (ppm);

v: Volume of gas (Volume of reaction vessel, mL).

Time	CO	CH ₄	Time	CO	CH₄
0	0.00	0.00	10	34.92	78.47
1	21.80	6.10	11	34.71	91.08
2	23.92	15.18	12	33.66	96.23
3	28.37	22.74	13	37.02	100.59
4	25.34	27.71	14	36.74	111.00
5	26.11	36.23	15	39.63	114.13
6	28.42	46.18	16	41.04	123.68
7	28.89	56.62	17	41.45	128.47
8	29.87	66.14	18	43.39	138.59
9	34.52	72.13	19	45.37	145.08

Table S2. Calibrated concentration of CO and CH₄ changed with reaction time (NMP as the solvent).

13. Proposed Mechanism for CO₂ Reduction to CO and CH₄

We proposed a plausible mechanism of CO₂ reduction to CO and CH₄.^[1] We draw detailedly this process in Figure S1. Firstly, the starting Fe(III) is reduced with three electrons to the Fe(0). The Fe(0) reduces CO₂, with the resultant Fe(I) regenerated through electron transfer from the excited photosensitizer *Ru(phen)₃²⁺. The produced CO binds to Fe(II) and is further reduced with a total of six electrons (transferred from the excited photosensitizer *Ru(phen)₃²⁺. The produced CO binds to Fe(II) and is further reduced with a total of six electrons (transferred from the excited photosensitizer *Ru(phen)₃²⁺) and six protons to generate CH₄. The consume ration of electron and hole is 1.

Figure S1. Proposed mechanism for CO₂ reduction to CO and CH₄

14. Stern-Volmer Quenching Experiments

Stern-Volmer fluorescence quenching experiments are run with freshly prepared solution of $5x10^{-5}$ M solution of Ru(phen)₃(PF₆)₂ in DMSO added the appropriate amount of a quencher in a screw-top quartz cuvette at room temperature. The solutions are irradiated at 450 nm and fluorescence is measured from 470 nm to 750 nm. Figure S2 shows an obvious linear relationship between the fluorescence intensities and the concentrations of **2a** and FeCl₃. All these results suggest that the excited state of the photocatalyst is quenched by FeCl₃.

Figure S2. Luminescence quenching study: (a) The emission spectra of a $5x10^{-5}$ M solution of photocatalyst Ru(phen)₃(PF₆)₂ with reactants in DMSO excited at 450 nm; The solubility of FeCl₃ in DMSO is limited, so we used 5mM solution of FeCl₃; (b) The emission spectra of a $5x10^{-5}$ M solution of Ru(phen)₃(PF₆)₂ with various concentrations of **2a** in DMSO excited at 450 nm; (c) The emission spectra of a $5x10^{-5}$ M solution of Ru(phen)₃(PF₆)₂ with various concentrations of FeCl₃ in DMSO excited at 450 nm; (c) The emission spectra of a $5x10^{-5}$ M solution of Ru(phen)₃(PF₆)₂ with various concentrations of FeCl₃ in DMSO excited at 450 nm; (d) The linear relationship between I₀ /I and the increasing concentration of **2a**; (e) The linear relationship between I₀ /I and the increasing concentration of FeCl₃.

15. Apparent Quantum Yield

The apparent quantum yield (AQE) was measured using a 40 W blue LED with band pass filter of 450 nm. The AQY was calculated by the following equation:

$$AQY = \frac{Number of reacted electrons}{Number of incident of photos} = \frac{(2*M_{CO}+8*M_{CH_4})*N_A}{I*A*T*(\frac{\lambda}{h}*C)}$$

where M_{CO} and M_{CH4} are the amounts of CO and CH₄, respectively. I, A, T and λ are the light density, light irradiation area, irradiation time, and light wavelength, respectively. AQY is 0.14% after 20 h of irradiation.

16. X-ray Crystallographic Data of 4f

The product **4f** (CCDC number 2277380) was crystallized from ethyl acetate. The atoms are depicted with 50% probability ellipsoids. The crystallographic data are summarized in the following table.

Identification code	4f
Empirical formula	C ₂₂ H ₂₂ O ₃ S ₂
Formula weight	398.10
Temperature/K	300
Crystal system	triclinic
Space group	P1
a/Å	5.750(13)
b/Å	14.69(3)
c/Å	22.89(5)
α/°	91.75(11)
β/°	91.21(12)
γ/°	92.01(11)
Volume/Å3	1931(7)
Z	1
pcalcg/cm3	1.285
μ/mm-1	0.293
F(000)	747
Crystal size/mm3	0.19 × 0.15 × 0.05
Radiation	ΜοΚα (λ = 0.71073)
2 range for data collection/°	4.446 to 58.042
Index ranges	$-7 \le h \le 7$, $-19 \le k \le 19$, $-30 \le I \le 30$
Reflections collected	166470
Independent reflections	18339 [Rint = 0.7039, Rsigma = 0.4727]
Data/restraints/parameters	18339/3/982
Goodness-of-fit on F2	1.042
Final R indexes $[I \ge 2\sigma (I)]$	R1 = 0.1767, wR2 = 0.2815
Final R indexes [all data]	R1 = 0.4146, wR2 = 0.3937
Largest diff. peak/hole / e Å-3	0.35/-0.39
Flack parameter	0.23(19)

17. Characterisation of Products 4, 6a, and 7a

(1-(Naphthalen-2-yl)-2-(phenylsulfonyl)(*p*-tolyl)sulfane (4a): The reaction was conducted on 0.2 mmol scale. The product 4a (71.2 mg, 85% yield) as white solid (mp 140.6-141.0 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.68 (m, 1H), 7.59 (dd, *J* = 13.6, 7.3 Hz, 2H), 7.44 (dd, *J* = 13.8, 6.3 Hz, 5H), 7.24 – 7.16 (m, 4H), 7.11 – 6.94 (m, 4H), 4.74 (dd, *J* = 10.7, 3.8 Hz, 1H), 3.94 (dd, *J* = 14.8, 10.7 Hz, 1H), 3.74 (dd, *J* = 14.7, 3.8 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.3, 139.0, 134.6, 134.0, 133.1, 133.0, 132.9, 130.2, 128.9, 128.7, 128.6, 127.9, 127.9, 127.6 (2C), 126.4, 126.3, 125.3, 60.7, 48.1, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₂₂O₂S₂Na 441.0959; Found 441.0958.

(1-Phenyl-2-(phenylsulfonyl)ethyl)(*p*-tolyl)sulfane (4b): The reaction was conducted on 0.2 mmol scale. The product 4b (65.5 mg, 89% yield) as white solid (mp 135.2-135.6 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.51 (m, 2H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.29 (t, *J* = 7.8 Hz, 2H), 7.19 (d, *J* = 8.1 Hz, 2H), 7.15 – 7.01 (m, 7H), 4.59 (dd, *J* = 10.5, 3.7 Hz, 1H), 3.85 (dd, *J* = 14.7, 10.6 Hz, 1H), 3.66 (dd, *J* = 14.7, 3.8 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.4, 138.9, 137.4, 133.9, 133.4, 130.1, 129.0, 128.9, 128.6, 128.1, 128.0, 127.9, 60.6, 47.8, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₂₀O₂S₂Na 391.0803; Found 391.0796.^[2]

(2-(PhenyIsulfonyI)-1-(p-tolyI)ethyI)(*p*-tolyI)sulfane (4c): The reaction was conducted on 0.2 mmol scale. The product 4c (55.1 mg, 72% yield) as white solid (mp 145.2-146.0 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.44 (m, 3H), 7.29 (dd, *J* = 8.4, 7.4 Hz, 2H), 7.20 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 7.01 – 6.87 (m, 4H), 4.56 (dd, *J* = 10.7, 3.6 Hz, 1H), 3.82 (dd, *J* = 14.7, 10.7 Hz, 1H), 3.62 (dd, *J* = 14.7, 3.7 Hz, 1H), 2.34 (s, 3H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.4, 138.7, 137.8, 134.3, 133.7, 133.2, 130.1, 129.29,129.28, 128.9, 128.0, 127.9, 60.7, 47.4, 21.2 (2C). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₂O₂S₂Na 405.0959; Found 405.0962.

(1-([1,1'-Biphenyl]-4-yl)-2-(phenylsulfonyl)ethyl)(*p*-tolyl)sulfane (4d): The reaction was conducted on 0.2 mmol scale. The product 4d (73.8 mg, 83% yield) as white solid (mp 116.9-117.7 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.40 (m, 7H), 7.37 – 7.33 (m, 1H), 7.30 – 7.22 (m, 6H), 7.09 (d, *J* = 8.1 Hz, 4H), 4.63 (dd, *J* = 10.9, 3.6 Hz, 1H), 3.88 (dd, *J* = 14.8, 10.9 Hz, 1H), 3.68 (dd, *J* = 14.8, 3.6 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.8, 140.6, 139.4, 139.0, 136.2, 134.0, 133.2, 130.2, 128.95, 128.93, 128.91, 128.5, 128.0, 127.6, 127.2, 127.0, 60.7, 47.6, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₇H₂₄O₂S₂Na 467.1116; Found 467.1110.

(1-4-(2-(Phenylsulfonyl)-1-(*p*-tolylthio)ethyl)phenyl acetate (4e): The reaction was conducted on 0.2 mmol scale. The product 4e (52 mg, 61% yield) as white solid (130.5-130.9 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 3H), 7.34 – 7.30 (m, 2H), 7.23 – 7.15 (m, 2H), 7.08 – 7.01 (m, 4H), 6.87 – 6.78 (m, 2H), 4.59 (dd, *J* = 10.6, 3.8 Hz, 1H), 3.79 (dd, *J* = 14.8, 10.5 Hz, 1H), 3.65 (dd, *J* = 14.8, 3.8 Hz, 1H), 2.33 (s, 3H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 150.2, 139.2, 139.0, 135.0, 134.1, 133.6, 130.2, 129.1, 129.0, 128.7, 127.9, 121.7, 60.7, 47.2, 21.3 (2C). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₂₂O₄S Na 449.0858; Found 449.0856.

(1-(4-Methoxyphenyl)-2-(phenylsulfonyl)ethyl)(*p*-tolyl)sulfane (4f): The reaction was conducted on 0.2 mmol scale. The product 4f (51 mg, 64% yield) as white solid (mp 163.7-165.0 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.41 (m, 3H), 7.31 (t, *J* = 7.7 Hz, 2H), 7.19 (d, *J* = 7.8 Hz, 2H), 7.08 (d, *J* = 7.9 Hz, 2H), 6.98 (d, *J* = 8.7 Hz, 2H), 6.63 (d, *J* = 8.7 Hz, 2H), 4.56 (dd, *J* = 10.8, 3.7 Hz, 1H), 3.85 – 3.77 (m, 1H), 3.74 (s, 3H), 3.62 (dd, *J* = 14.7, 3.7 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 139.6, 138.8, 133.8, 133.3, 130.2, 129.33, 129.30, 129.2, 128.9, 128.0, 114.0, 60.8, 55.4, 47.2, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₂O₃S₂Na 421.0908; Found 421.0906.

(2-(Phenylsulfonyl)-1-(4-(trifluoromethyl)phenyl)ethyl)(*p*-tolyl)sulfane (4g): The reaction was conducted on 0.2 mmol scale. The product 4g (34.9 mg, 40% yield) as white solid (mp 135.0-136.7 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.44 (m, 4H), 7.34 – 7.26 (m, 4H), 7.18 – 7.08 (m, 6H), 4.60 (dd, *J* = 10.9, 3.7 Hz, 1H), 3.82 (dd, *J* = 14.7, 10.8 Hz, 1H), 3.69 (dd, *J* = 14.7, 3.7 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.6, 139.4, 139.1, 134.2, 133.5, 130.2, 130.0 (q, *J*_{C-F} = 32.3 Hz), 129.5, 129.0, 128.4, 128.0, 127.8, 125.4 (q, *J*_{C-F} = 3.7 Hz), 123.8 (q, *J*_{C-F} = 270.3 Hz), 60.3, 47.4, 21.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₁₉F₃O₂S₂Na 459.0677; Found 459.0676.

MeOOC

Methyl 4-(2-(Phenylsulfonyl)-1-(*p***-tolylthio)ethyl)benzoate (4h):** The reaction was conducted on 0.2 mmol scale. The product **4h** (47.8 mg, 56% yield) as white solid (mp 141.5-142.5 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.73 (m, 2H), 7.55 (dd, *J* = 8.3, 1.4 Hz, 2H), 7.49 (m, 1H), 7.31 (t, *J* = 7.9 Hz, 2H), 7.15 – 6.98 (m, 6H), 4.58 (dd, *J* = 10.4, 3.9 Hz, 1H), 3.90 (s, 3H), 3.81 (dd, *J* = 14.7, 10.5 Hz, 1H), 3.68 (dd, *J* = 14.7, 3.9 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 143.1, 139.4, 139.3, 134.3, 133.6, 130.2, 129.9, 129.8, 129.1, 128.4, 128.12, 128.06, 60.5, 52.3, 47.6, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₂₂O₄S₂Na 449.0858; Found 449.0846.

(1-(4-Fluorophenyl)-2-(phenylsulfonyl)ethyl)(*p*-tolyl)sulfane (4i): The reaction was conducted on 0.2 mmol scale. The product 4i (51.8 mg, 67% yield) as white solid (mp 137.2-138.0 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.51 (m, 2H), 7.51 – 7.46 (m, 1H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.17 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 7.9 Hz, 2H), 7.04 – 6.99 (m, 2H), 6.78 (t, *J* = 8.6 Hz, 2H), 4.57 (dd, *J* = 10.8, 3.7 Hz, 1H), 3.78 (dd, *J* = 14.7, 10.8 Hz, 1H), 3.64 (dd, *J* = 14.7, 3.7 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (d, *J*_{C-F} = 246.0 Hz), 139.3, 139.1, 134.1, 133.5, 133.31 (d, *J*_{C-F} = 3.2 Hz), 130.2, 129.8 (d, *J*_{C-F} = 8.3 Hz), 129.0, 128.6, 127.9, 115.5 (d, *J*_{C-F} = 21.7Hz), 60.6, 47.0, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₁₉FO₂S₂Na 409.0708; Found 409.0702.

(1-(4-Chlorophenyl)-2-(phenylsulfonyl)(*p*-tolyl)sulfane (4j): The reaction was conducted on 0.2 mmol scale. The product 4j (55.6 mg, 69% yield) as white solid (mp 128.0-128.7 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.45 (m, 3H), 7.36 – 7.30 (m, 2H), 7.21 – 7.15 (m, 2H), 7.12 – 7.01 (m, 4H), 6.97 – 6.90 (m, 2H), 4.52 (dd, *J* = 10.7, 3.7 Hz, 1H), 3.78 (dd, *J* = 14.8, 10.7 Hz, 1H), 3.64 (dd, *J* = 14.8, 3.7 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.5, 139.3, 139.1, 134.2, 133.6, 130.2, 129.8, 129.0, 128.3, 128.1, 127.7, 126.3, 60.2, 47.4, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₁₉ClO₂S₂Na 425.0413; Found 425.0406.

(2-(PhenyIsulfonyI)-1-(o-tolyI)ethyI)(*p*-tolyI)**sulfane (4k):** The reaction was conducted on 0.2 mmol scale. The product 4k (51.2 mg, 67% yield) as white solid (mp 111.1-112.0 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.38 (m, 3H), 7.26 – 7.18 (m, 4H), 7.10 – 7.00 (m, 4H), 6.87 – 6.75 (m, 2H), 4.82 (dd, *J* = 10.9, 3.7 Hz, 1H), 3.91 (dd, *J* = 14.7, 10.9 Hz, 1H), 3.64 (dd, *J* = 14.8, 3.7 Hz, 1H), 2.39

(s, 3H), 2.33 (s, 3H). 13 C NMR (101 MHz, CDCl₃) δ 139.4, 138.9, 136.3, 134.9, 134.1, 133.3, 130.7, 130.2, 129.1, 128.9, 127.8, 127.7, 126.7, 126.2, 60.1, 43.3, 21.3, 19.5. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₂O₂S₂Na 405.0959; Found 405.0948.

(1-(2-Methoxyphenyl)-2-(phenylsulfonyl)ethyl)(*p*-tolyl)sulfane (4I): The reaction was conducted on 0.2 mmol scale. The product **4I** (44.6 mg, 56% yield) as pale yellow oil was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.50 (m, 2H), 7.49 – 7.41 (m, 1H), 7.34 – 7.25 (m, 2H), 7.20 (d, *J* = 8.1 Hz, 2H), 7.16 – 7.03 (m, 3H), 6.95 (dd, *J* = 7.6, 1.7 Hz, 1H), 6.72 (td, *J* = 7.5, 1.1 Hz, 1H), 6.60 (dd, *J* = 8.3, 1.0 Hz, 1H), 4.87 (dd, *J* = 10.8, 3.8 Hz, 1H), 4.12 (dd, *J* = 14.7, 10.8 Hz, 1H), 3.71 (s, 3H), 3.65 (dd, *J* = 14.7, 3.8 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.8, 139.2, 138.4, 133.6, 133.2, 130.05, 130.00, 129.3, 129.1, 128.6, 128.0, 125.5, 120.6, 110.9, 59.5, 55.4, 44.2, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₂O₃S₂Na 421.0908; Found 421.0907.

(1-(3-Chlorophenyl)-2-(phenylsulfonyl)ethyl)(*p*-tolyl)sulfane (4m): The reaction was conducted on 0.2 mmol scale. The product 4m (41.1 mg, 51% yield) as white solid (107.8-109.3 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.46 (m, 3H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.17 (d, *J* = 8.1 Hz, 2H), 7.10 – 7.04 (m, 4H), 6.99 – 6.91 (m, 2H), 4.51 (dd, *J* = 10.6, 3.8 Hz, 1H), 3.77 (dd, *J* = 14.8, 10.6 Hz, 1H), 3.64 (dd, *J* = 14.8, 3.8 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.6, 139.3, 139.25, 134.4, 134.3, 133.7, 130.3, 129.8, 129.0, 128.4, 128.2, 128.1, 128.0, 126.4, 60.4, 47.4, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₁₉ClO₂S₂Na 425.0413; Found 425.0407.

5-(2-(Phenylsulfonyl)-1-(*p***-tolylthio)ethyl)-1-tosyl-1H-indole (4n):** The reaction was conducted on 0.2 mmol scale. The product **4n** (57.3 mg, 51% yield) as white solid (mp 167.2-169.0 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.4 Hz, 2H), 7.69 (d, *J* = 8.6 Hz, 1H), 7.52 (d, *J* = 3.7 Hz, 1H), 7.42 – 7.32 (m, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.13 – 7.00 (m, 5H), 6.90 (t, *J* = 7.9 Hz, 2H), 6.43 (d, *J* = 3.7 Hz, 1H), 4.65 (dd, *J* = 10.9, 3.6 Hz, 1H), 3.85 (dd, *J* = 14.8, 10.9 Hz, 1H), 2.35 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.3, 139.2, 138.9, 135.4, 134.2, 133.8, 132.2, 130.8, 130.2, 130.0, 129.12, 129.07, 128.4, 127.7, 127.1, 126.9, 124.6, 121.0, 113.6, 108.8, 60.9, 47.9, 21.7, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₀H₂₇NO₄S₃Na 584.1000; Found 584.0994.

(1-Phenyl-2-(phenylsulfonyl)propyl)(*p*-tolyl)sulfane (4o): The reaction was conducted on 0.2 mmol scale. The product 4o (50.5 mg, 66% yield) as white solid (85.3-86.3 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, *J* = 8.2, 1.4 Hz, 2H), 7.61 – 7.52 (m, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.27 – 7.20 (m, 2H), 7.19 – 7.11 (m, 3H), 7.08 (d, *J* = 8.1 Hz, 2H), 6.96 (d, *J* = 8.0 Hz, 2H), 4.82 (d, *J* = 5.0 Hz, 1H), 3.58 (qd, *J* = 7.1, 4.9 Hz, 1H), 2.24 (s, 3H), 1.56 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.0, 138.5, 137.6, 133.5, 132.6, 130.1, 129.7, 129.0, 128.9, 128.5, 128.4, 127.6, 66.2, 53.5, 21.2, 10.9. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₂O₂S₂Na 405.0959; Found 405.0960.

(2-(Phenylsulfonyl)-2,3-dihydro-1H-inden-1-yl)(*p*-tolyl)sulfane (4p): The reaction was conducted on 0.2 mmol scale. The product 4p (54.8 mg, 70% yield) as white solid (mp 144.3-145.1 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.62 – 7.53 (m, 1H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.36 – 7.28 (m, 1H), 7.22 – 7.12 (m, 2H), 7.12 – 7.04 (m, 3H), 6.99 (d, *J* = 7.9 Hz, 2H), 4.99 (d, *J* = 2.5 Hz, 1H), 3.91 (dt, *J* = 8.7, 2.8 Hz, 1H), 3.43 (dd, *J* = 17.8, 2.9 Hz, 1H), 3.23 (dd, *J* = 17.5, 8.7 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.2, 140.0, 138.4, 137.4, 133.7, 133.4, 129.9, 129.1, 128.9, 128.7, 128.5, 127.5, 125.1, 124.4, 69.2, 53.1, 31.8, 21.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₀O₂S₂Na 403.0803; Found 403.0805.

(2-(Phenylsulfonyl)-1,2,3,4-tetrahydronaphthalen-1-yl)(*p*-tolyl)sulfane (4q): The reaction was conducted on 0.2 mmol scale. The product 4q (54.4mg, 69% yield) as white solid (mp 160.3-161.2 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.58 (m, 3H), 7.48 – 7.40 (m, 2H), 7.37 – 7.31 (m, 1H), 7.18 (dd, *J* = 5.8, 3.3 Hz, 2H), 7.07 (m, 1H), 7.03 (m, 2H), 6.97 (m, 2H), 4.73 (m, 1H), 3.50 (m, 1H), 3.13 (m, 1H), 2.80 (m, 1H), 2.70 – 2.53 (m, 1H), 2.42 – 2.35 (m, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.4, 138.0, 136.5, 133.6, 133.0, 131.8, 130.5, 130.1, 129.9, 129.2, 128.9, 128.6, 127.8, 126.3, 62.5, 45.6, 25.2, 21.3, 18.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₂₂O₂S₂Na 417.0959; Found 417.0951.

(2-Phenyl-1-(phenylsulfonyl)propan-2-yl)(*p*-tolyl)sulfane (4r): The reaction was conducted on 0.2 mmol scale. The product 4r (25.2 mg, 33% yield) as white solid (mp 141.0-142.3 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.42 (m, 3H), 7.29 – 7.17 (m, 6H), 7.12 – 7.03 (m, 5H), 4.23 (d, *J* = 14.7 Hz, 1H), 3.67 (d, *J* = 14.6 Hz, 1H), 2.35 (s, 3H), 2.01 (s, 3H). ¹³C NMR (101 MHz, CDCl₃)

δ 140.6, 140.3, 140.0, 137.6, 133.1, 129.8, 129.0, 128.1, 127.8, 127.5, 127.2, 127.1, 67.0, 51.8, 24.8, 21.4. HRMS (ESI) m/z: [M+Na]⁺ Calcd for $C_{22}H_{22}O_2S_2Na$ 405.0959; Found 405.0960.

(1,1-Diphenyl-2-(phenylsulfonyl)ethyl)(*p*-tolyl)sulfane (4s): The reaction was conducted on 0.2 mmol scale. The product 4s (84.5 mg, 95% yield) as white solid (mp 148.0-149.0 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.36 (m, 5H), 7.24 – 7.14 (m, 10H), 6.93 (d, *J* = 7.8 Hz, 2H), 6.80 – 6.73 (m, 2H), 4.33 (s, 2H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.5, 140.8, 140.1, 137.4, 132.7, 129.9, 129.5, 128.8, 127.7, 127.5, 127.3, 126.9, 66.7, 60.8, 21.4. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₇H₂₄O₂S₂Na 467.1116; Found 467.1123.

(1-(Naphthalen-2-yl)-2-tosylethyl)(*p*-tolyl)sulfane (4t): The reaction was conducted on 0.2 mmol scale. The product 4t (56.2 mg, 65% yield) as white solid (mp 131.1-132.2 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.69 (m, 1H), 7.61 – 7.50 (m, 2H), 7.43 (dt, *J* = 6.2, 3.4 Hz, 2H), 7.35 – 7.27 (m, 3H), 7.26 – 7.17 (m, 3H), 7.07 (d, *J* = 7.8 Hz, 2H), 6.76 (d, *J* = 8.0 Hz, 2H), 4.73 (dd, *J* = 10.9, 3.6 Hz, 1H), 3.93 (dd, *J* = 14.7, 10.9 Hz, 1H), 3.72 (dd, *J* = 14.8, 3.6 Hz, 1H), 2.32 (s, 3H), 2.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 138.9, 136.1, 134.5, 134.0, 132.94, 132.89, 130.1, 129.2, 128.9, 128.5, 127.8, 127.5, 127.4, 126.24, 126.22, 125.5, 60.5, 48.1, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₆H₂₄O₂S₂Na 455.1116; Found 455.1111.

(2-((4-(Tert-butyl)phenyl)sulfonyl)-1-(naphthalen-2-yl)ethyl)(p-tolyl)sulfane (4u): The reaction was conducted on 0.2 mmol scale. The product 4u (53.2 mg, 56% yield) as white solid (mp 151.4-152.0 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.64 (m, 1H), 7.61 (dt, J = 8.1, 2.9 Hz, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.44 – 7.39 (m, 3H), 7.33 (d, J = 8.5 Hz, 2H), 7.23 (d, J = 7.7 Hz, 2H), 7.15 (dd, J = 8.5, 1.9 Hz, 1H), 7.08 (d, J = 7.9 Hz, 2H), 7.02 – 6.94 (m, 2H), 4.78 (dd, J = 11.1, 3.4 Hz, 1H), 3.95 (dd, J = 14.8, 11.1 Hz, 1H), 3.73 (dd, J = 14.8, 3.4 Hz, 1H), 2.33 (s, 3H), 1.07 (s, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 157.0, 138.9, 136.0, 134.5, 134.0, 133.0, 132.8, 130.2, 129.0, 128.4, 127.9, 127.8, 127.7, 127.6, 126.4, 126.3, 125.5, 125.2, 60.5, 48.2, 35.0, 30.9, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₉H₃₀O₂S₂ 497.1585; Found 497.1582.

(2-((4-Methoxyphenyl)sulfonyl)-1-(naphthalen-2-yl)ethyl)(*p*-tolyl)sulfane (4v): The reaction was conducted on 0.2 mmol scale. The product 4v (46.6 mg, 52% yield) as white solid (mp 115.1-116.1 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.67 (m, 1H), 7.66 – 7.54 (m, 2H), 7.48 – 7.39 (m, 2H), 7.36 – 7.30 (m, 3H), 7.26 – 7.19 (m, 3H), 7.07 (d, *J* = 7.9 Hz, 2H), 4.73 (dd, *J* = 10.9, 3.6 Hz, 1H), 3.91 (dd, *J* = 14.7, 10.9 Hz, 1H), 3.72 (dd, *J* = 14.7, 3.6 Hz, 1H), 3.50 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.2, 138.9, 134.6, 134.0, 133.0, 132.9, 130.6, 130.1, 130.0, 129.0, 128.5, 127.9, 127.52, 127.48, 126.3, 126.2, 125.5, 113.7, 60.7, 55.4, 48.2, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₆H₂₄O₃S₂Na 471.1065; Found 471.1059.

4-((2-(Naphthalen-2-yl)-2-(*p***-tolylthio)ethyl)sulfonyl)benzonitrile (4w):** The reaction was conducted on 0.2 mmol scale. The product **4w** (48.8 mg, 55% yield) as white solid (mp 157.7-158.7 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.71 (m, 1H), 7.64 – 7.45 (m, 4H), 7.44 – 7.37 (m, 2H), 7.31 (d, *J* = 1.8 Hz, 1H), 7.25 (d, *J* = 4.3 Hz, 2H), 7.17 – 7.03 (m, 5H), 4.70 (dd, *J* = 11.2, 3.7 Hz, 1H), 3.94 (dd, *J* = 15.0, 11.2 Hz, 1H), 3.76 (dd, *J* = 15.0, 3.7 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.4, 139.4, 134.3, 133.8, 133.0, 132.8, 132.0, 130.4, 128.8, 128.6, 128.3, 127.8, 127.6 (2C), 127.2, 127.0, 125.3, 116.8, 116.4, 61.0, 48.2, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₆H₂₁NO₂S₂Na 466.0912; Found 441.0958.

(1-(Naphthalen-2-yl)-2-((4-(trifluoromethyl)phenyl)sulfonyl)ethyl)(*p*-tolyl)sulfane (4x): The reaction was conducted on 0.2 mmol scale. The product 4x (45.7 mg, 47% yield) as white solid (mp 103.1-104.1 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.65 (m, 1H), 7.59 – 7.56(m, 1H), 7.51 – 7.40 (m, 5H), 7.38 (d, *J* = 1.9 Hz, 1H), 7.25 (d, *J* = 5.8 Hz, 2H), 7.15 – 7.07 (m, 5H), 4.73 (dd, *J* = 11.2, 3.6 Hz, 1H), 3.96 (dd, *J* = 14.9, 11.2 Hz, 1H), 3.77 (dd, *J* = 15.0, 3.6 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.7, 139.3, 134.5 (q, *J*_{C-F} = 33.8 Hz), 134.1, 133.7, 132.8, 132.7, 130.1, 128.58, 128.55, 128.3, 127.7, 127.5, 127.47, 126.6, 126.58, 125.4 (q, *J*_{C-F} = 3.8 Hz), 124.8, 122.8 (q, *J*_{C-F} = 271.0 Hz), 60.7, 48.2, 21.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -63.43. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₆H₂₁F₃O₂S₂Na 509.0833; Found 509.0829.

Methyl-4-((2-(naphthalen-2-yl)-2-(*p***-tolylthio)ethyl)sulfonyl)benzoate (4y):** The reaction was conducted on 0.2 mmol scale. The product **4y** (35.3 mg, 37% yield) as white solid (mp 144.2-145.5 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.65 (m, 1H), 7.64 – 7.51 (m, 4H), 7.48 – 7.38 (m, 4H), 7.29 (d, *J* = 1.8 Hz, 1H), 7.28 – 7.18 (m, 3H), 7.08 (d, *J* = 8.0 Hz, 2H), 4.70 (dd, *J* = 11.0, 3.6 Hz, 1H), 4.00 – 3.91 (m, 1H), 3.85 (s, 3H), 3.75 (dd, *J* = 14.9, 3.6 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 143.0, 139.2, 134.2 (2C), 134.0, 133.0, 132.9, 130.3, 129.6, 128.8, 128.7, 127.9, 127.8, 127.65, 127.60, 126.42, 126.39, 125.4, 60.7, 52.6, 48.1, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₇H₂₄O₄S₂Na 499.1014; Found 499.1010.

(2-((2-Chlorophenyl)sulfonyl)-1-(naphthalen-2-yl)ethyl)(*p*-tolyl)sulfane (4z): The reaction was conducted on 0.2 mmol scale. The product 4z (28.1 mg, 31% yield) as white solid (mp 113.8-114.3 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.56 (m, 2H), 7.50 (d, *J* = 8.6 Hz, 1H), 7.45 – 7.39 (m, 4H), 7.35 – 7.20 (m, 3H), 7.16 – 7.04 (m, 3H), 6.92 (td, *J* = 7.7, 1.7 Hz, 1H), 6.68 (td, *J* = 7.7, 1.2 Hz, 1H), 4.74 (dd, *J* = 11.2, 3.6 Hz, 1H), 4.46 (dd, *J* = 14.9, 11.2 Hz, 1H), 3.83 (dd, *J* = 14.9, 3.6 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.0, 136.5, 134.05, 134.01, 133.7, 132.9, 132.7, 132.0, 131.3, 131.0, 130.2, 128.8, 128.5, 127.8, 127.4 (2C), 126.4, 126.3, 126.2, 125.1, 58.3, 48.4, 21.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₂₁ClO₂S₂Na 475.0569; Found 475.0557.

2-((2-(Naphthalen-2-yl)-2-(*p***-tolylthio)ethyl)sulfonyl)thiophene (4aa):** The reaction was conducted on 0.2 mmol scale. The product **4aa** (26.3 mg, 31% yield) as white solid (mp 141.0-142.3 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.72 (m, 1H), 7.66 (d, *J* = 8.6 Hz, 2H), 7.50 – 7.41 (m, 3H), 7.35 – 7.27 (m, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 3.8, 1H), 7.07 (d, *J* = 7.9 Hz, 2H), 6.61 (dd, *J* = 5.0, 3.8 Hz, 1H), 4.78 (dd, *J* = 10.5, 3.7 Hz, 1H), 4.03 (dd, *J* = 14.8, 10.5 Hz, 1H), 3.82 (dd, *J* = 14.8, 3.8 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 139.0, 134.9, 134.6, 134.05, 134.02, 133.1, 133.0, 130.2, 129.0, 128.6, 128.0, 127.7, 127.5, 127.4, 126.4 (2C), 125.3, 62.0, 48.3, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₂₀O₂S₃Na 447.0523; Found 447.0525.

(2-(Cyclohexylsulfonyl)-1-(naphthalen-2-yl)ethyl)(*p*-tolyl)sulfane (4ab): The reaction was conducted on 0.2 mmol scale. The product 4ab (27.2 mg, 32% yield) as white solid (mp 79.4-81.2 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.74 (m, 4H), 7.54 – 7.46 (m, 3H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 7.8 Hz, 2H), 4.84 (dd, *J* = 10.1, 4.0 Hz, 1H), 3.74 (dd, *J* = 14.7, 10.2 Hz, 1H), 3.43 (dd, *J* = 14.7, 3.9 Hz, 1H), 2.31 (s, 3H), 2.01 (m, 1H), 1.91 (dt, *J* = 12.8, 3.2 Hz, 1H), 1.83 – 1.67 (m, 2H), 1.61 (dd, *J* = 14.7, 10.2 Hz, 1H), 1.61 (dd, J = 14.7, 10.2 Hz,

13.6, 3.5 Hz, 1H), 1.50 – 1.42 (m, 1H), 1.32 (m, 3H), 1.00 (m, 1H), 0.73 (m, 1H), 0.54 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.9, 136.1, 133.8, 133.2, 133.1, 130.2, 129.2, 129.0, 128.0, 127.8, 127.4, 126.7, 126.6, 125.3, 61.5, 54.8, 48.0, 25.7, 25.0, 24.9, 24.7, 23.6, 21.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₂₈O₂S₂Na 447.1429; Found 447.1427. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₂₈O₂S₂Na 447.1427.

(2-(Methylsulfonyl)-1-(naphthalen-2-yl)ethyl)(*p*-tolyl)sulfane (4ac): The reaction was conducted on 0.2 mmol scale. The product 4ac (24.2 mg, 34% yield) as white solid (mp 127.8-129.3 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.5 Hz, 1H), 7.83 (dd, *J* = 6.2, 3.3 Hz, 1H), 7.79 (dd, *J* = 6.1, 3.4 Hz, 1H), 7.74 (d, *J* = 1.8 Hz, 1H), 7.52 (td, *J* = 6.3, 5.8, 2.7 Hz, 3H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 7.8 Hz, 2H), 4.82 (dd, *J* = 10.4, 4.0 Hz, 1H), 3.76 (dd, *J* = 14.9, 10.4 Hz, 1H), 3.62 – 3.47 (m, 1H), 2.32 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.2, 135.5, 134.1, 133.2, 133.2, 130.3, 129.4, 128.8, 128.1, 127.9, 127.6, 126.9, 126.8, 125.1, 60.3, 48.4, 42.4, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₂₀O₂S₂Na 379.0803; Found 379.0803.

(2-(IsopropyIsulfonyI)-1-(naphthalen-2-yI)ethyI)(*p*-tolyI)sulfane (4ad): The reaction was conducted on 0.2 mmol scale. The product 4ad (39.2 mg, 51% yield) as white solid (mp 98.2-99.1 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.71 (m, 4H), 7.49 (m, 3H), 7.27 (d, *J* = 7.7 Hz, 2H), 7.07 (d, *J* = 7.7 Hz, 2H), 4.86 (dd, *J* = 9.9, 4.1 Hz, 1H), 3.77 (dd, *J* = 14.7, 9.9 Hz, 1H), 3.47 (dd, *J* = 14.7, 4.1 Hz, 1H), 2.49 (m, 1H), 2.30 (s, 3H), 1.13 (dd, *J* = 20.0, 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 138.9, 136.0, 133.8, 133.2, 133.1, 130.2, 129.1, 129.0, 128.1, 127.8, 127.4, 126.62, 126.55, 125.2, 54.7, 53.6, 47.9, 21.3, 15.7, 14.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₄O₂S₂Na 407.1116; Found 407.1111.

(4-Methoxyphenyl)(1-(naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)sulfane (4ae): The reaction was conducted on 0.2 mmol scale. The product **4ae** (60 mg, 69% yield) as white solid (125.6-126.5 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.68 (m, 1H), 7.58 (t, *J* = 8.0 Hz, 2H), 7.47 – 7.40 (m, 4H), 7.34 (d, *J* = 1.9 Hz, 1H), 7.24 – 7.15 (m, 4H), 7.05 (t, *J* = 7.8 Hz, 2H), 6.76 (d, *J* = 8.7 Hz, 2H), 4.65 (dd, *J* = 10.6, 3.9 Hz, 1H), 3.94 (dd, *J* = 14.7, 10.6 Hz, 1H), 3.77 (s, 3H), 3.77 – 3.69 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 139.3, 136.6, 134.7, 133.1, 132.9, 132.8, 128.7, 128.6, 128.5, 127.9, 127.8, 127.6, 127.5, 126.3, 126.2 125.3, 122.7, 60.5, 55.4, 48.7. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₂₂O₃S₂Na 457.0908; Found 457.0903.

(4-Fluorophenyl)(1-(naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)sulfane (4af): The reaction was conducted on 0.2 mmol scale. The product 4af (63.4 mg, 75% yield) as white solid (mp 104.1-105.1 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.67 (m, 1H), 7.58 (m, 2H), 7.5 – 7.38 (m, 4H), 7.33 (d, *J* = 1.9 Hz, 1H), 7.24 (m, 3H), 7.18 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.08 (t, *J* = 7.9 Hz, 2H), 6.91 (t, *J* = 8.6 Hz, 2H), 4.72 (dd, *J* = 10.3, 4.1 Hz, 1H), 3.93 (dd, *J* = 14.7, 10.3 Hz, 1H), 3.74 (dd, *J* = 14.7, 4.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.2 (d, *J*_{C-F} = 248.0), 139.2, 136.5 (d, *J*_{C-F} = 8.3 Hz), 134.5, 133.3, 132.9 (d, *J*_{C-F} = 3.6 Hz), 128.74 (2C), 128.68, 127.9 (3C), 127.59, 127.55, 126.46, 126.42, 125.1, 116.4 (d, *J*_{C-F} = 21.6 Hz), 60.5, 48.5. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₄H₁₉FO₂S₂Na 445.0708; Found 445.0708.

(1-(Naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)(4-(trifluoromethyl)phenyl)sulfane (4ag): The reaction was conducted on 0.2 mmol scale. The product **4ag** (48.2 mg, 75% yield) as white solid (mp 102.1-103.3 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.69 (m, 1H), 7.62 (m, 2H), 7.58 – 7.51 (m, 2H), 7.50 – 7.41 (m, 5H), 7.37 (m, 2H), 7.31 – 7.23 (m, 2H), 7.12 (m, 2H), 4.95 (dd, *J* = 10.1, 4.0 Hz, 1H), 3.96 (dd, *J* = 14.8, 10.1 Hz, 1H), 3.74 (dd, *J* = 14.8, 4.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 139.2, 138.2, 134.2, 133.3, 133.0, 132.9, 131.6, 129.8 (q, *J*_{C-F} = 32.4 Hz), 128.9, 128.8, 127.9, 127.6, 127.5, 126.6, 126.5, 126.0 (q, *J*_{C-F} = 3.6 Hz), 124.9, 123.8 (q, *J*_{C-F} = 270.7 Hz), 60.7, 46.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.73. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₁₉F₃O₂S₂Na 495.0677; Found 495.0676.

(1-(Naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)(o-tolyl)sulfane (4ah): The reaction was conducted on 0.2 mmol scale. The product 4ah (15.9 mg, 19% yield) as white solid (mp 119.3-120.8 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.69 (m, 1H), 7.60 (m, 2H), 7.51 – 7.42 (m, 5H), 7.38 – 7.31 (m, 1H), 7.24 – 7.16 (m, 4H), 7.13 – 7.05 (m, 3H), 4.74 (dd, *J* = 10.7, 3.6 Hz, 1H), 3.98 (dd, *J* = 14.7, 10.7 Hz, 1H), 3.73 (dd, *J* = 14.8, 3.6 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.1, 139.3, 134.6, 133.9, 133.2, 133.1, 133.0, 132.1, 130.9, 128.73, 128.71, 128.7, 128.0, 127.9, 127.6, 127.5, 126.9, 126.41, 126.38, 125.2, 60.6, 47.0, 20.8. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₂₂O₂S₂Na 441.0959; Found 441.0953.

(3,5-Dimethylphenyl)(1-(naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)sulfane (4ai): The reaction was conducted on 0.2 mmol scale. The product 4ai (26.0 mg, 30% yield) as white solid (mp 122.2-130.7 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (m, 1H), 7.60 (m, 2H), 7.49 – 7.39 (m, 5H), 7.24 – 7.18 (m, 2H), 7.10 – 7.02 (m, 2H), 6.91 (d, *J* = 12.6 Hz, 3H), 4.77 (dd, *J* = 11.3, 3.6 Hz, 1H), 3.96 (dd, *J* = 14.6 Hz, 10.9 Hz, 1H), 3.76 (dd, J = 14.6 Hz, 3.6 Hz 1H), 2.22 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 139.4, 139.0, 134.5, 133.1, 133.04, 133.02, 132.2, 131.1, 130.4, 128.7, 128.6, 127.92, 127.90, 127.65, 127.60, 126.4, 126.3, 125.3, 60.7, 47.7, 21.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₆H₂₄O₂S₂Na 455.1116; Found 455.1111.

(4-Fluoro-2-methylphenyl)(1-(naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)sulfane (4aj): The reaction was conducted on 0.2 mmol scale. The product **4aj** (19.2 mg, 22% yield) as white solid (mp 105.4-106.4 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.68 (m, 1H), 7.59 (m, 2H), 7.49 – 7.41 (m, 4H), 7.34 (s, 1H), 7.30 – 7.23 (m, 4H), 7.18 (m, 1H), 7.09 (m, 2H), 6.88 (m, 1H), 6.77 (m, 1H), 4.62 (dd, J = 10.6, 3.8 Hz, 1H), 4.12 – 3.84 (m, 1H), 3.79 – 3.62 (m, 1H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.0 (d, $J_{C-F} = 247.9$ Hz), 144.8 (d, J = 8.4 Hz), 139.2, 137.2 (d, $J_{C-F} = 8.6$ Hz), 134.5, 133.1, 132.9, 128.6, 128.55, 127.8, 127.5, 127.3, 126.8 (d, $J_{C-F} = 3.1$ Hz), 126.33, 126.32, 124.9, 117.7 (d, $J_{C-F} = 21.6$ Hz), 113.9 (d, $J_{C-F} = 21.3$ Hz), 60.5, 47.7, 21.0. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₂₁FO₂S₂Na 459.0865; Found 459.0858.

2-((1-(Naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)thio)thiophene (4ak): The reaction was conducted on 0.2 mmol scale. The product **4ak** (48.4 mg, 59% yield) as white solid (mp 91.2-91.9 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.68 (m, 1H), 7.64 – 7.54 (m, 2H), 7.50 – 7.39 (m, 4H), 7.35 – 7.31 (m, 2H), 7.24 – 7.15 (m, 2H), 7.07 (m, 2H), 6.93 – 6.89 (m, 2H), 4.64 (dd, *J* = 10.4, 4.1 Hz, 1H), 3.96 (dd, *J* = 14.7, 10.4 Hz, 1H), 3.81 (dd, *J* = 14.7, 4.1 Hz, 1H). δ 139.3, 136.8, 134.2, 133.2, 133.01, 132.97, 131.8, 130.3, 128.7, 128.6, 127.9 (3C), 127.62, 127.61, 126.5, 126.4, 125.2, 60.3, 50.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₁₈O₂S₃Na 33.0367; Found 433.0359.

Benzyl(1-(naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)sulfane (4al): The reaction was conducted on 0.2 mmol scale. The product **4al** (30.1 mg, 36% yield) as white solid (mp 107.4-108.1 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.66 (m, 2H), 7.62 (d, *J* = 8.6 Hz, 1H), 7.57 – 7.39 (m, 5H), 7.35 – 7.20 (m, 5H), 7.19 – 7.04 (m, 4H), 4.36 (dd, *J* = 9.6, 4.6 Hz, 1H), 3.81 (dd, *J* = 14.7, 9.6 Hz, 1H), 3.68 (dd, *J* = 14.7, 4.7 Hz, 1H), 3.60 – 3.41 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 139.3, 137.1, 135.5, 133.1, 132.93, 132.86, 129.0, 128.8, 128.7, 128.6, 127.84, 127.81, 127.7, 127.6, 127.3, 126.4, 126.3, 124.9, 61.2, 43.4, 36.0. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₅H₂₂O₂S₂Na 441.0959; Found 441.0951.

(*E*)-2-(2-(Phenylsulfonyl)vinyl)naphthalene (6a): The reaction was conducted on 0.2 mmol scale. The product 6a (26.5 mg, 45% yield) as white solid was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.3 Hz, 2H), 7.93 (s, 1H), 7.89 – 7.79 (m, 4H), 7.69 – 7.48 (m, 6H), 6.98 (d, J = 15.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.57, 140.9, 134.5, 133.4, 133.2, 130.9, 129.9, 129.4, 129.0, 128.7, 127.8, 127.8, 127.7, 127.4, 127.0, 123.5.^[3]

(*Z*)-(1,4-Diphenyl-5-(phenylsulfonyl)pent-3-en-1-yl)(*p*-tolyl)sulfane (7a): The reaction was conducted on 0.2 mmol scale. The product 7a (29.1 mg, 30% yield) as white solid (mp 141.1-143.0 °C) was purified by flash column chromatography (PE/EA = 5/1); ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.63 (m, 2H), 7.54 – 7.46 (m, 1H), 7.36 (m, 2H), 7.30 – 7.27 (m, 1H), 7.26 – 7.21 (m, 4H), 7.19 – 7.12 (m, 4H), 7.09 – 7.02 (m, 4H), 5.95 (t, *J* = 7.4 Hz, 1H), 4.33 – 3.95 (m, 3H), 2.66 (m, 2H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 140.8, 139.2, 137.7, 134.9, 133.6, 133.3, 130.9, 129.8, 129.8, 129.0, 128.6 (2C), 128.4, 128.0, 127.5, 126.6, 57.9, 53.5, 36.1, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₀H₂₈O₂S₂Na 507.1429; Found 507.1431.

18. Reference

- [1] H. Rao, L. C. Schmidt, J. Bonin and M. Robert, Visible-light-driven methane formation from CO₂ with a molecular iron catalyst, *Nature*, 2017, **548**, 74-77.
- [2] H.-Y. Li, C.-C. Shan, C.-H. Tung, Z.-H Xu, Dual gold and photoredox catalysis: visible light-mediated intermolecular atom transfer thiosulfonylation of alkenes, *Chem. Sci.*, 2017, **8**, 2610-2615.
- [3] A. U. Meyer, S. Jäger, D. P. Hari, B. König, Visible Light-Mediated Metal-Free Synthesis of Vinyl Sulfones from Aryl Sulfinates, *Adv. Synth. Catal.* 2015, **357**, 2050-2054.

19. NMR Spectra

(1-(Nphthalen-2-yl)-2-(phenylsulfonyl)ethyl)(p-tolyl)sulfane (4a): ¹H NMR (400 MHz, CDCl₃)

(1-(Nphthalen-2-yl)-2-(phenylsulfonyl)ethyl)(p-tolyl)sulfane (4a): ¹³C NMR (101 MHz, CDCl₃)

(2-(Phenylsulfonyl)phenyl)(p-tolyl)sulfane (4b): ¹H NMR (400 MHz, CDCl₃)

(2-(Phenylsulfonyl)phenyl)(p-tolyl)sulfane (4b): ¹³C NMR (101 MHz, CDCl₃)

(2-(Phenylsulfonyl)-1-(p-tolyl)ethyl)(p-tolyl)sulfane (4c): ¹H NMR (400 MHz, CDCl₃)

(2-(Phenylsulfonyl)-1-(p-tolyl)ethyl)(p-tolyl)sulfane (4c): ¹³C NMR (101 MHz, CDCl₃)

(1-([1,1'-Biphenyl]-4-yl)-2-(phenylsulfonyl)ethyl)(p-tolyl)sulfane (4d): ¹³C NMR (101 MHz, CDCl₃)

4-(2-(Phenylsulfonyl)-1-(p-tolylthio)ethyl)phenyl acetate (4e): ¹H NMR (400 MHz, CDCl₃)

4-(2-(Phenylsulfonyl)-1-(p-tolylthio)ethyl)phenyl acetate (4e): ¹³C NMR (101 MHz, CDCl₃)

(1-(4-Methoxyphenyl)-2-(phenylsulfonyl)ethyl)(p-tolyl)sulfane (4f): ¹H NMR (400 MHz, CDCl₃)

(1-(4-Methoxyphenyl)-2-(phenylsulfonyl)ethyl)(p-tolyl)sulfane (4f): ¹³C NMR (101 MHz, CDCl₃)

(2-(Phenylsulfonyl)-1-(4-(trifluoromethyl)phenyl)ethyl)(p-tolyl)sulfane (4g): ¹H NMR (400 MHz, CDCl₃)

(2-(Phenylsulfonyl)-1-(4-(trifluoromethyl)phenyl)ethyl)(p-tolyl)sulfane (4g): ¹³C NMR (101 MHz, CDCl₃)

Methyl 4-(2-(Phenylsulfonyl)-1-(p-tolylthio)ethyl)benzoate (4h): ¹H NMR (400 MHz, CDCl₃)

Methyl 4-(2-(Phenylsulfonyl)-1-(p-tolylthio)ethyl)benzoate (4h): ¹³C NMR (101 MHz, CDCl₃)

(1-(4-Fluorophenyl)-2-(phenylsulfonyl)ethyl)(p-tolyl)sulfane (4i): ¹H NMR (400 MHz, CDCl₃)

(1-(4-Fluorophenyl)-2-(phenylsulfonyl)ethyl)(p-tolyl)sulfane (4i): ¹³C NMR (101 MHz, CDCl₃)

(2-(Phenylsulfonyl)-1-(o-tolyl)ethyl)(p-tolyl)sulfane (4k): ¹H NMR (400 MHz, CDCl₃)

(2-(Phenylsulfonyl)-1-(o-tolyl)ethyl)(p-tolyl)sulfane (4k): ¹³C NMR (101 MHz, CDCl₃)

(1-(2-Methoxyphenyl)-2-(phenylsulfonyl)ethyl)(p-tolyl)sulfane (4I): ¹H NMR (400 MHz, CDCl₃)

(1-(2-Methoxyphenyl)-2-(phenylsulfonyl)ethyl)(p-tolyl)sulfane (4I): ¹³C NMR (101 MHz, CDCl₃)

(1-(3-Chlorophenyl)-2-(phenylsulfonyl)ethyl)(p-tolyl)sulfane (4m): ¹H NMR (400 MHz, CDCl₃)

(1-(3-Chlorophenyl)-2-(phenylsulfonyl)ethyl)(p-tolyl)sulfane (4m): ¹³C NMR (101 MHz, CDCl₃)

5-(2-(Phenylsulfonyl)-1-(p-tolylthio)ethyl)-1-tosyl-1H-indole (4n): ¹H NMR (400 MHz, CDCl₃)

(1-Phenyl-2-(phenylsulfonyl)propyl)(p-tolyl)sulfane (4o): ¹H NMR (400 MHz, CDCl₃)

(2-(Phenylsulfonyl)-2,3-dihydro-1H-inden-1-yl)(p-tolyl)sulfane (4p): ¹H NMR (400 MHz, CDCl₃)

(2-(Phenylsulfonyl)-2,3-dihydro-1H-inden-1-yl)(p-tolyl)sulfane (4p): ¹³C NMR (101 MHz, CDCl₃)

(2-(Phenylsulfonyl)-1,2,3,4-tetrahydronaphthalen-1-yl)(p-tolyl)sulfane (4q): ¹H NMR (400 MHz, CDCl₃)

(2-(Phenylsulfonyl)-1,2,3,4-tetrahydronaphthalen-1-yl)(p-tolyl)sulfane (4q): ¹³C NMR (101 MHz, CDCl₃)

(2-Phenyl-1-(phenylsulfonyl)propan-2-yl)(p-tolyl)sulfane (4r): ¹H NMR (400 MHz, CDCl₃)

(2-Phenyl-1-(phenylsulfonyl)propan-2-yl)(p-tolyl)sulfane (4r): ¹³C NMR (101 MHz, CDCl₃)

(1,1-Piphenyl-2-(phenylsulfonyl)ethyl)(p-tolyl)sulfane (4s): ¹³C NMR (101 MHz, CDCl₃)

(1-(Naphthalen-2-yl)-2-tosylethyl)(p-tolyl)sulfane (4t): ¹H NMR (400 MHz, CDCl₃)

(1-(Naphthalen-2-yl)-2-tosylethyl)(p-tolyl)sulfane (4t): ¹³C NMR (101 MHz, CDCl₃)

(2-((4-(Tert-butyl)phenyl)sulfonyl)-1-(naphthalen-2-yl)ethyl)(p-tolyl)sulfane (4u): ¹H NMR (400 MHz, CDCl₃)

(2-((4-(Tert-butyl)phenyl)sulfonyl)-1-(naphthalen-2-yl)ethyl)(p-tolyl)sulfane (4u): ¹³C NMR (101 MHz, CDCl₃)

(2-((4-Methoxyphenyl)sulfonyl)-1-(naphthalen-2-yl)ethyl)(p-tolyl)sulfane (4v): ¹H NMR (400 MHz, CDCl₃)

(2-((4-Methoxyphenyl)sulfonyl)-1-(naphthalen-2-yl)ethyl)(p-tolyl)sulfane (4v): ¹³C NMR (101 MHz, CDCl₃)

4-((2-(Naphthalen-2-yl)-2-(p-tolylthio)ethyl)sulfonyl)benzonitrile (4w): ¹H NMR (400 MHz, CDCl₃)

4-((2-(Naphthalen-2-yl)-2-(p-tolylthio)ethyl)sulfonyl)benzonitrile (4w): ¹³C NMR (101 MHz, CDCl₃)

(1-(Naphthalen-2-yl)-2-((4-(trifluoromethyl)phenyl)sulfonyl)ethyl)(p-tolyl)sulfane (4x): ¹H NMR (400 MHz, CDCl₃)

(1-(Naphthalen-2-yl)-2-((4-(trifluoromethyl)phenyl)sulfonyl)ethyl)(p-tolyl)sulfane (4x): ^{13}C NMR (101 MHz, CDCl₃)

(1-(Naphthalen-2-yl)-2-((4-(trifluoromethyl)phenyl)sulfonyl)ethyl)(p-tolyl)sulfane (4x): ¹⁹F NMR (101 MHz, CDCl₃)

Methyl 4-((2-(naphthalen-2-yl)-2-(p-tolylthio)ethyl)sulfonyl)benzoate (4y): ¹H NMR (400 MHz, CDCl₃)

Methyl 4-((2-(naphthalen-2-yl)-2-(p-tolylthio)ethyl)sulfonyl)benzoate (4y): ¹³C NMR (101 MHz, CDCl₃)

(2-((2-Chlorophenyl)sulfonyl)-1-(naphthalen-2-yl)ethyl)(p-tolyl)sulfane (4z): ¹H NMR (400 MHz, CDCl₃)

(2-((2-Chlorophenyl)sulfonyl)-1-(naphthalen-2-yl)ethyl)(p-tolyl)sulfane (4z): ¹³C NMR (101 MHz, CDCl₃)

2-((2-(Naphthalen-2-yl)-2-(p-tolylthio)ethyl)sulfonyl)thiophene (4aa): ¹³C NMR (101 MHz, CDCl₃)

(2-(Cyclohexylsulfonyl)-1-(naphthalen-2-yl)ethyl)(p-tolyl)sulfane (4ab): ¹H NMR (400 MHz, CDCl₃)

(2-(Cyclohexylsulfonyl)-1-(naphthalen-2-yl)ethyl)(p-tolyl)sulfane (4ab): ¹³C NMR (101 MHz, CDCl₃)

(2-(IsopropyIsulfonyI)-1-(naphthalen-2-yI)ethyI)(p-tolyI)sulfane (4ad): ¹H NMR (400 MHz, CDCI₃)

(2-(IsopropyIsulfonyI)-1-(naphthalen-2-yI)ethyI)(p-tolyI)sulfane (4ad): ¹³C NMR (101 MHz, CDCI₃)

(4-Methoxyphenyl)(1-(naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)sulfane (4ae): ¹H NMR (400 MHz, CDCl₃)

(4-Methoxyphenyl)(1-(naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)sulfane (4ae): ¹³C NMR (101 MHz, CDCl₃)

(4-Fluorophenyl)(1-(naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)sulfane (4af): ¹H NMR (400 MHz, CDCl₃)

(4-Fluorophenyl)(1-(naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)sulfane (4af): ¹³C NMR (101 MHz, CDCl₃)

(1-(Naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)(4-(trifluoromethyl)phenyl)sulfane (4ag): ¹H NMR (400 MHz, $CDCI_3$)

(1-(Naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)(4-(trifluoromethyl)phenyl)sulfane (4ag): ¹³C NMR (101 MHz, CDCl₃)

(1-(Naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)(4-(trifluoromethyl)phenyl)sulfane (4ag): ¹⁹F NMR (377 MHz, CDCl₃)

70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -50 -70 -80 -90 -100 -110 -120 -130 -140 -150 -170 -180 -190 -200 -210 -220 -21

(1-(Naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)(o-tolyl)sulfane (4ah): ¹H NMR (400 MHz, CDCl₃)

(1-(Naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)(o-tolyl)sulfane (4ah): ¹³C NMR (101 MHz, CDCl₃)

(3,5-Dimethylphenyl)(1-(naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)sulfane (4ai): ¹H NMR (400 MHz, CDCl₃)

7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7
 7.7.7

(3,5-Dimethylphenyl)(1-(naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)sulfane (4ai): ¹³C NMR (101 MHz, CDCl₃)

(4-Fuoro-2-methylphenyl)(1-(naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)sulfane (4aj): ¹H NMR (400 MHz, CDCl₃)

(4-Floro-2-methylphenyl)(1-(naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)sulfane (4aj): ¹³C NMR (101 MHz, CDCl₃)

(4-Fuoro-2-methylphenyl)(1-(naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)sulfane (4aj): ¹⁹F NMR (101 MHz, CDCl₃)

2-((1-(Naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)thio)thiophene (4ak): ¹H NMR (400 MHz, CDCl₃)

Benzyl(1-(naphthalen-2-yl)-2-(phenylsulfonyl)ethyl)sulfane (4al): ¹H NMR (400 MHz, CDCl₃)

(E)-2-(2-(Phenylsulfonyl)vinyl)naphthalene (6a): ¹H NMR (400 MHz, CDCl₃)

-8.01 -7.133 -7.133 -7.133 -7.133 -7.134 -7.134 -7.134 -7.134 -7.134 -7.154 -7.154 -7.154 -7.154 -7.155 -7.

(E)-2-(2-(Phenylsulfonyl)vinyl)naphthalene (6a): ¹³C NMR (101 MHz, CDCl₃)

(Z)-(1,4-Diphenyl-5-(phenylsulfonyl)pent-3-en-1-yl)(p-tolyl)sulfane (7a): ¹H NMR (400 MHz, CDCl₃)

(Z)-(1,4-Diphenyl-5-(phenylsulfonyl)pent-3-en-1-yl)(p-tolyl)sulfane (7a): ¹³C NMR (101 MHz, CDCl₃)

(*Z*)-(1,4-DiphenyI-5-(phenyIsulfonyI)pent-3-en-1-yI)(p-tolyI)sulfane (7a): NOE There is NOE effect between protons (H8, H4)

