Supporting information for:

Ligand-Controlled Cobalt-Catalyzed Isomerization and Reductive C-O Bond Cleavage of Allylic Ethers

Lijun Chang, Cheng Cai, Ran Chen, Jianhui Chen,* Yanshu Luo, Yuanzhi Xia*

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China

cjh@wzu.edu.cn; xyz@wzu.edu.cn

Table of Contents:

Entry	Content	Page
Ι	General information	S2
II	Procedures for the synthesis of stating materials	S2
III	Cobalt-catalyzed isomerization of allyl ethers	S11
IV	Cobalt-catalyzed reductive C-O bond cleavage of allyl ethers	S22
V	Gram-scale reactions	S28
VI	Further derivatizations	S28
VII	Preliminary mechanistic studies	S29
VIII	NMR Spectra	S34

I. General information

THF, xylene, anisole, 1,4-dioxane, PhCl and Hexane were purchased from Energy Chemical and used as received. Toluene was distilled from sodium benzophenone ketyl prior to use. HBpin (98%), NaBHEt₃ (1.0 mol/L in THF), Xantphos, DPEPhos and CoCl₂ (99%) were purchased from Energy Chemical and used as received. Bis(2-(diphenylphosphanyl)phenyl)amine (**PNP**),¹ and phosphine-amido-oxazoline ligand (**PAO**)² were prepared according to previously reported procedures, respectively. The other commercially available chemicals were used as received. NMR spectra were recorded on a Bruker-400 or Bruker-500 instrument. ¹H NMR chemical shifts were referenced to tetramethylsilane signal (0 ppm), ¹³C NMR chemical shifts were referenced to the solvent resonance (77.00 ppm, CDCl₃), ¹⁹F NMR chemical shifts were referenced to the solvent resonance. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad, q = quadruplet. High-resolution mass spectra (HRMS) were recorded on a Bruker micrOTOF-Q II instrument (ESI). Melting points were obtained using a X-4 melting point apparatus (Laboratory Devices, beijing taike CO.; LTD.). In this report, all the reactions that require heating were using oil bath as the heating source.

II. Procedures for the synthesis of starting materials

$$Ar^{1} \xrightarrow{O} Br + Ar^{2} - OH \xrightarrow{K_{2}CO_{3}} Ar^{1} \xrightarrow{O} OAr^{2} \xrightarrow{Ph_{3}PMeBr, KOtBu} Ar^{1} \xrightarrow{O} OAr^{2}$$

Step 1: According to a previously reported procedure,³ a 250 mL round bottom flask equipped with a reflux condenser and a dropping funnel was charged with phenol (22 mmol), K_2CO_3 (30 mmol) and acetone (50 mL). The mixture was added dropwisely with a solution of 2-bromoacetophenone (20 mmol in 50 mL of acetone) at room temperature over 30 mins. The resulting suspension was stirred at reflux overnight, cooled to room temperature, filtered and concentrated under reduced pressure. The residue was purified by recrystallization from petroleum ether to give the desired product S1.

Step 2: According to a previously reported procedure,⁴ a 250 mL three-necked flask was charged with PPh₃MeBr (24 mmol), KO*t*Bu (24 mmol) and dried THF (50 mL) under argon. The mixture was stirred at 0 °C for 1 h, added

¹ L. Liang, P. Chien, J. Lin, M. Huang, Y. Huang, J. Liao. Organometallics. 2006, 25, 1399.

² H. Liu, C. Cai, Y. Ding, J. Chen, B. Liu, Y. Xia, ACS Omega. 2020, 5, 11655.

³ T. Mete, D. Laha, R. Bhat, ChemistrySelect 2018, 3, 7656.

⁴ G. Hoang, S. Zhang, J. Takacs, Chem. Commun. 2018, 54, 4838.

dropwisely with a solution of **S1** (20 mmol in 50 mL of dried THF). Then the resulted solution was stirred at room temperature overnight, passed through a pad of silica gel and washed with EA. The filtrate was concentrated and purified by flash column chromatography to give the desired product **S2**.

1-methoxy-4-(3-phenoxyprop-1-en-2-yl)benzene (1a).⁵ White solid was obtained by silica gel column chromatography with PE/EA (50:1). 5.78 g, 24.1 mmol, 60% yield. ¹H NMR: (500 MHz, CDCl₃): δ 7.43 (d, J = 8.5 Hz, 2H), 7.26-7.32 (m, 2H), 6.94-6.99 (m, 3H), 6.89 (d, J = 8.5 Hz, 2H), 5.53 (s, 1H), 5.37 (s, 1H), 4.87 (s, 2H), 3.82 (s, 3H).

(**3-phenoxyprop-1-en-2-yl)benzene** (**1b**).⁶ White solid was obtained by silica gel column chromatography with PE/EA (50:1). 1.51 g, 7.1 mmol, 60% yield. ¹H NMR: (500 MHz, CDCl₃): δ 7.45-7.50 (m, 2H), 7.32-7.38 (m, 2H), 7.25-7.32 (m, 3H), 6.93-6.98 (m, 3H), 5.60 (s, 1H), 5.46 (s, 1H), 4.89 (s, 2H).

1-methyl-4-(3-phenoxyprop-1-en-2-yl)benzene (1c). Colorless oil was obtained by silica gel column chromatography with PE/EA (50:1). 2.40 g, 10.6 mmol, 71% yield. ¹H NMR: (500 MHz, CDCl₃): δ 7.37 (d, J = 8.0 Hz, 2H), 7.25-7.30 (m, 2H), 7.15 (d, J = 8.0 Hz, 2H), 6.93-6.97 (m, 3H), 5.57 (s, 1H), 5.41 (s, 1H), 4.86 (s, 2H), 2.34 (s, 3H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 158.7, 142.9, 137.8, 135.5, 129.4, 129.1, 125.9, 120.9, 115.0, 113.9, 69.8, 21.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₇O⁺ 225.1274, Found 225.1278.

(3-phenoxyprop-1-en-2-yl)-1,1'-biphenyl (1d). White solid was obtained by silica gel column chromatography with PE/EA (50:1). 0.92 g, 3.2 mmol, 38% yield. M. P. 82.2-82.5 °C. ¹H NMR: (500 MHz, CDCl₃) δ 7.63-7.54 (m,

⁵ M. Organ, E. Arvanitis, C. Dixon, J. Cooper, J. Am. Chem. Soc. 2002, 124, 1288.

⁶ M. Czyz, M. Taylor, T. Horngren, A. Polyzos, ACS Catal. 2021, 11, 5472.

6H), 7.41-7.46 (m, 2H), 7.37-7.26 (m, 3H), 7.01 - 6.94 (m, 3H), 5.67 (s, 1H), 5.49 (s, 1H), 4.92 (s, 2H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 158.7, 142.6, 140.8, 140.6, 137.2, 129.5, 128.8, 127.4, 127.2, 126.9, 126.4, 121.1, 115.0, 114.8, 69.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₁₉O⁺ 287.1430, Found 287.1439.

N,*N*-dimethyl-4-(3-phenoxyprop-1-en-2-yl)aniline (1e). White solid was obtained by silica gel column chromatography with PE/EA (80:1). 0.46 g, 1.8 mmol, 46% yield. M. P. 52.7-53.0 °C. ¹H NMR: (400MHz, CDCl₃) δ 7.39 (d, J = 8.4 Hz, 2H), 7.23-7.31 (m, 2H), 6.92-7.00 (m, 3H), 6.70 (d, J = 8.8 Hz, 2H), 5.48 (s, 1H), 5.27 (s, 1H), 4.87 (s, 2H), 2.95 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 150.2, 142.2, 129.3, 126.6, 126.1, 120.8, 114.9, 112.1, 111.1, 69.9, 40.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₂₀NO⁺ 254.1539, Found 254.1537.

methyl(4-(3-phenoxyprop-1-en-2-yl)phenyl)sulfane (1f). White solid was obtained by silica gel column chromatography with PE/EA (50:1). 0.48 g, 1.9 mmol, 38 % yield. M. P. 39.8-40.5 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, J = 8.5 Hz, 2H), 7.26-7.31 (m, 2H), 7.23 (d, J = 8.5 Hz, 2H), 6.93-6.98 (m, 3H), 5.60 (s, 1H), 5.43 (s, 1H), 4.87 (s, 2H), 2.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.5, 142.2, 138.3, 134.9, 129.4, 126.3, 121.0, 114.8, 114.4, 69.7, 15.6; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₇OS⁺ 257.0995, Found 257.0996.

1-fluoro-4-(3-phenoxyprop-1-en-2-yl)benzene (1g). Colorless oil was obtained by silica gel column chromatography with PE/EA (50:1). 2.81 g, 12.2 mmol, 82% yield. ¹H NMR: (500 MHz, CDCl₃): δ 7.41-7.47 (m, 2H), 7.25-7.32 (m, 2H), 7.00-7.06 (m, 2H), 6.92-6.99 (m, 3H), 5.55 (s, 1H), 5.44 (s, 1H), 4.85 (s, 2H); ¹³C NMR (125.8 MHz, CDCl₃) δ 162.6 (d, J = 247.0 Hz), 158.5, 142.2, 134.4 (d, J = 3.5 Hz), 129.5, 127.8 (d, J = 8.0 Hz), 121.1, 115.3 (d, J = 20.0 Hz), 114.9, 69.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.1; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₃FNaO⁺ 251.0843, Found 251.0853.

1-chloro-4-(3-phenoxyprop-1-en-2-yl)benzene (1h). Colorless oil was obtained by silica gel column chromatography with PE/EA (50:1). 2.04 g, 8.3 mmol, 88% yield. ¹H NMR: (500 MHz, CDCl₃): δ 7.40 (d, J = 8.5 Hz, 2H), 7.25-7.33 (m, 4H), 6.91-6.99 (m, 3H), 5.59 (s, 1H), 5.47 (s, 1H), 4.84 (s, 2H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 158.5, 142.1, 136.8, 133.8, 129.5, 128.6, 127.4, 121.2, 115.5, 114.9, 69.8; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₄ClO⁺ 245.0728, Found 245.0728.

1-bromo-4-(3-phenoxyprop-1-en-2-yl)benzene (1i). Colorless oil was obtained by silica gel column chromatography with PE/EA (50:1). 2.71 g, 9.4 mmol, 94% yield. ¹H NMR: (500 MHz, CDCl₃): δ 7.45 (d, J = 8.0 Hz, 2H), 7.23-7.37 (m, 4H), 6.89-7.00 (m, 3H), 5.58 (s, 1H), 5.47 (s, 1H), 4.83 (s, 2H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 158.5, 142.2, 137.2, 131.6, 129.5, 127.7, 122.0, 121.2, 115.6, 114.9, 69.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₄BrO⁺ 289.0223, Found 289.0232.

1-(3-phenoxyprop-1-en-2-yl)-4-(trifluoromethyl)benzene (1j). Colorless oil was obtained by silica gel column chromatography with PE. 0.29 g, 1.0 mmol, 26 % yield. ¹H NMR: (500 MHz, CDCl₃): δ 7.54-7.65 (m, 4H), 7.27-7.34 (m, 2H), 6.91-7.02 (m, 3H), 5.69 (s, 1H), 5.58 (s, 1H), 4.90 (s, 2H); ¹³C NMR (125.8 MHz,) δ 158.4, 142.1 (d, J = 46.5 Hz), 130.0 (d, J = 32.5 Hz), 129.5, 126.5, 125.4 (q, J = 3.5 Hz), 125.2, 123.1, 121.3, 117.1, 114.9, 69.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₄F₃O⁺ 279.0991, Found 279.0987.

1-(methylsulfonyl)-4-(3-phenoxyprop-1-en-2-yl)benzene (1k). White solid was obtained by silica gel column chromatography with PE/EA (5:1). 0.42 g, 1.5 mmol, 48 % yield. M. P. 68.0-68.5 °C. ¹H NMR: (400 MHz, CDCl₃) δ 7.93 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.4 Hz, 2H), 7.28-7.34 (m, 2H), 6.91-7.03 (m, 3H), 5.74 (s, 1H), 5.64 (s, 1H), 4.91 (s, 2H), 3.06 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.2, 143.7, 141.8, 139.6, 129.5, 127.5, 127.0, 121.3, 118.4, 114.8, 69.5, 44.4; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₇O₃S⁺ 289.0893, Found 289.0898.

1-methyl-3-(3-phenoxyprop-1-en-2-yl)benzene (11). Colorless oil was obtained by silica gel column chromatography with PE/EA (80:1). 2.34 g, 10.4 mmol, 70% yield. ¹H NMR: (400 MHz, CDCl₃) δ 7.21 (m, 5H), 7.12 (d, J = 6.8 Hz, 1H), 6.97 (d, J = 8.0 Hz, 3H), 5.58 (s, 1H), 5.44 (s, 1H), 4.87 (s, 2H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.5, 143.0, 138.2, 137.8, 129.3, 128.6, 128.2, 126.6, 123.0, 120.8, 114.8, 114.2, 69.5, 21.4; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₇O⁺ 225.1274, Found 225.1278.

1-methoxy-3-(3-phenoxyprop-1-en-2-yl)benzene (1m). Colorless oil was obtained by silica gel column chromatography with PE/EA (80:1). 2.04 g, 9.8 mmol, 66% yield. ¹H NMR: (500 MHz, CDCl₃): δ 7.20-7.31 (m, 3H), 6.98-7.08 (m, 2H), 6.96 (m, 3H), 6.85 (d, J = 9.0 Hz, 1H), 5.60 (s, 1H), 5.46 (s, 1H), 4.86 (s, 2H), 3.80 (s, 3H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 159.7, 158.6, 139.9, 129.4, 121.0, 118.5, 115.0, 114.9, 113.3, 112.1, 69.8, 55.2; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₁₆NaO₂⁺ 263.1043, Found 263.1045.

1-(benzyloxy)-3-(3-phenoxyprop-1-en-2-yl)benzene (1n). Colorless oil was obtained by silica gel column chromatography with PE/EA (100:1). 0.62 g, 2.0 mmol, 35% yield. ¹H NMR: (400 MHz, CDCl₃) δ 7.21-7.48 (m, 8H), 7.05-7.15 (m, 2H), 7.02-6.90 (m, 4H), 5.59 (s, 1H), 5.46 (s, 1H), 5.06 (s, 2H), 4.85 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 158.4, 142.7, 139.8, 136.8, 129.3, 128.5, 127.8, 127.4, 120.9, 118.6, 114.9, 114.8, 114.0, 112.9, 69.8, 69.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₁O₂⁺ 317.1536, Found 317.1532.

1-fluoro-3-(3-phenoxyprop-1-en-2-yl)benzene (**10**). Colorless oil was obtained by silica gel column chromatography with PE. 1.02 g, 4.5 mmol, 64% yield. ¹H NMR: (500 MHz, CDCl₃): δ 7.21-7.34 (m, 4H), 7.18 (d, J = 10.0 Hz, 1H), 6.90-7.03 (m, 4H), 5.62 (s, 1H), 5.50 (s, 1H), 4.85 (s, 2H); ¹³C NMR (125.8 MHz,) δ 162.9 (d, J = 245.5 Hz), 158.5, 142.2, 140.7 (d, J = 7.5 Hz), 129.9 (d, J = 8.5 Hz), 129.5, 121.7 (d, J = 3.5 Hz), 121.2, 116.0,

115.0, 114.8 (d, J = 21.5 Hz), 113.1 (d, J = 22.5 Hz), 69.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.1; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₃FNaO⁺ 251.0843, Found 251.0853.

1-chloro-3-(3-phenoxyprop-1-en-2-yl)benzene (1p). Colorless oil was obtained by silica gel column chromatography with PE. 0.86 g, 3.5 mmol, 70% yield. ¹H NMR: (500 MHz, CDCl₃): δ 7.46 (s, 1H), 7.32-7.37 (s, 1H), 7.26-7.32 (m, 4H), 6.90-7.00 (m, 3H), 5.61 (s, 1H), 5.50 (s, 1H), 4.85 (s, 2H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 158.5, 142.2, 140.3, 134.5, 129.7, 129.5, 128.0, 126.3, 124.3, 121.2, 116.1, 115.0, 69.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₄ClO⁺ 245.0728, Found 245.0728.

1-bromo-3-(3-phenoxyprop-1-en-2-yl)benzene (1q). Colorless oil was obtained by silica gel column chromatography with PE. 0.42 g, 1.5 mmol, 50% yield. ¹H NMR: (500 MHz, CDCl₃): δ 7.62 (s, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.25-7.32 (m, 2H), 7.18-7.25 (m, 1H), 6.92-7.00 (m, 3H), 5.60 (s, 1H), 5.50 (s, 1H), 4.84 (s, 2H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 158.5, 142.1, 140.6, 130.9, 130.0, 129.5, 129.2, 124.7, 122.7, 121.2, 116.2, 115.0, 69.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₄BrO⁺ 289.0223, Found 289.0232.

1-iodo-3-(3-phenoxyprop-1-en-2-yl)benzene (1r). Orange oil was obtained by silica gel column chromatography with PE/EA (25:1). 0.98 g, 2.9 mmol, 60% yield. ¹H NMR: (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.23-7.33 (m, 2H), 7.04-7.12 (m, 1H), 6.92-7.01 (m, 3H), 5.58 (s, 1H), 5.48 (s, 1H), 4.83 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 141.8, 140.5, 136.8, 135.0, 130.0, 129.4, 125.2, 121.1, 116.0, 114.8, 94.5, 69.4; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₃INaO⁺ 358.9903, Found 358.9910.

1-(3-phenoxyprop-1-en-2-yl)-3-(trifluoromethyl)benzene (1s). Colorless oil was obtained by silica gel column chromatography with PE/EA (50:1). 0.74 g, 2.7 mmol, 53% yield. ¹H NMR: (500 MHz, CDCl₃): δ 7.73 (s, 1H),

7.64 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.43-7.49 (m, 1H), 7.25-7.33 (m, 2H), 6.92-7.01 (m, 3H), 5.66 (s, 1H), 5.56 (s, 1H), 4.89 (s, 2H); ¹³C NMR (125.8 MHz,) δ 158.4, 142.2, 139.2, 130.9 (q, J = 31.5 Hz), 129.5, 129.4, 128.9, 125.2, 124.6 (q, J = 3.5 Hz), 122.9 (q, J = 8.0 Hz), 121.3, 116.7, 115.0, 69.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₄F₃O⁺ 279.0991, Found 279.0987.

1-methoxy-2-(3-phenoxyprop-1-en-2-yl)benzene (1t). Colorless oil was obtained by silica gel column chromatography with PE/EA (50:1). 2.74 g, 11.4 mmol, 57% yield. ¹H NMR: (400 MHz, CDCl₃): δ 7.20-7.33 (m, 4H), 6.85-7.00 (m, 5H), 5.50 (s, 1H), 5.27 (s, 1H), 4.87 (s, 2H), 3.81 (s, 3H); ¹³C NMR (125.8 MHz, CDCl₃) δ 158.7, 156.8, 143.9, 130.4, 129.2, 129.1, 128.9, 120.7, 120.6, 115.2, 114.9, 110.6, 69.6, 55.4; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₇O₂⁺ 241.1223, Found 241.1221.

1-fluoro-2-(3-phenoxyprop-1-en-2-yl)benzene (1u). Colorless oil was obtained by silica gel column chromatography with PE/EA (80:1). 1.43 g, 6.3 mmol, 70% yield. ¹H NMR: (500 MHz, CDCl₃): δ 7.31-7.39 (m, 1H), 7.24-7.30 (m, 3H), 7.03-7.15 (m, 2H), 6.90-7.00 (m, 3H), 5.61 (s, 1H), 5.47 (s, 1H), 4.86 (s, 2H); ¹³C NMR (125.8 MHz,) δ 160.1 (d, J = 247.5 Hz), 158.6 , 140.3, 130.2 (d, J = 4.5 Hz), 129.5, 129.4, 126.8 (d, J = 14.5 Hz), 124.2 (d, J = 3.5 Hz), 120.9, 117.5 (d, J = 3.0 Hz), 115.8 (d, J = 22.5 Hz), 114.9, 69.9 ; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.5; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₃FNaO⁺ 251.0843, Found 251.0853.

1,2-dimethoxy-4-(3-phenoxyprop-1-en-2-yl)benzene (1v). Colorless oil was obtained by silica gel column chromatography with PE/EA (20:1). 2.86 g, 10.5 mmol, 70% yield. ¹H NMR: (500 MHz, CDCl₃): δ 7.26-7.32 (m, 2H), 7.01-7.06 (m, 2H), 6.93-6.99 (m, 3H), 6.84 (d, J = 9.0 Hz, 1H), 5.53 (s, 1H), 5.39 (s, 1H), 4.86 (s, 2H), 3.87 (d, J = 2.5 Hz, 6H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 158.6, 149.1, 148.9, 142.6, 131.3, 129.4, 121.0, 118.5, 114.9, 113.5, 111.1, 109.6, 70.1, 55.8; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₈NaO₃⁺ 293.1148, Found 293.1155.

1-(3-phenoxyprop-1-en-2-yl)benzo[d][1,3]dioxole (1w). Colorless oil was obtained by silica gel column chromatography with PE/EA (150:1). 0.42 g, 1.7 mmol, 33% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.33 (m, 2H), 6.90-7.02 (m, 5H), 6.78 (d, J = 8.0 Hz, 1H), 5.95 (s, 2H), 5.50 (s, 1H), 5.37 (s, 1H), 4.82 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.5, 147.8, 147.4, 142.5, 132.6, 129.4, 121.0, 119.6, 114.9, 114.0, 108.2, 106.6, 101.1, 70.0; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₅O₃⁺ 255.1016, Found 255.1024.

1-(3-phenoxyprop-1-en-2-yl)-9H-fluorene (1x). White solid was obtained by silica gel column chromatography with PE/EA (150:1). 0.61 g, 2.0 mmol, 34% yield. M. P. 92.1-92.4 °C.¹H NMR (400 MHz, CDCl₃): δ 7.80-7.73 (m, 2H), 7.67 (s, 1H), 7.53 (dd, J = 13.6, 8.0 Hz, 2H), 7.35-7.41 (m, 1H), 7.28-7.34 (m, 3H), 6.95-7.03 (m, 3H) 5.67 (s, 1H), 5.49 (s, 1H), 4.96 (s, 2H), 3.91 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.6, 143.4, 143.2, 141.6, 141.2, 136.8, 129.4, 126.8, 125.0, 124.8, 122.6, 121.0, 119.9, 119.7, 114.9, 114.5, 69.9, 36.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₁₉O⁺ 299.1430, Found 299.1427.

1-(3-phenoxyprop-1-en-2-yl)naphthalene (1y). White solid was obtained by silica gel column chromatography with PE/EA (50:1). 1.16 g, 4.4 mmol, 44% yield. M. P. 35.7-36.5 °C. ¹H NMR: (500 MHz, CDCl₃): δ 7.89 (s, 1H), 7.76-7.85 (m, 3H), 7.63 (dd, J = 8.5, 1.5 Hz, 1H), 7.41-7.50 (m, 2H), 7.25-7.35 (m, 2H), 6.93-7.04 (m, 3H), 5.75 (s, 1H), 5.56 (s, 1H), 5.00 (s, 2H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 158.7, 143.0, 135.6, 133.4, 133.1, 129.5, 128.3, 128.0, 127.6, 126.2, 126.1, 124.9, 124.2, 121.1, 115.3, 115.1, 69.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₇O⁺ 261.1274, Found 261.1277.

1-(3-phenoxyprop-1-en-2-yl)thiophene (1z). Yellow oil was obtained by silica gel column chromatography with PE. 0.91 g, 4.2 mmol, 52% yield. ¹H NMR: (500 MHz, CDCl₃): δ 7.24-7.32 (m, 2H), 7.19 (d, J = 5.0 Hz, 1H), 7.12 (d, J = 5.0 Hz, 1H), 6.90-7.01 (m, 4H), 5.62 (s, 1H), 5.34 (s, 1H), 4.84 (s, 2H); ¹³C NMR: (125.8 MHz, CDCl₃) δ

158.5, 141.9, 137.0, 129.5, 127.4, 124.7, 124.0, 121.2, 115.0, 113.3, 69.7; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₂NaOS⁺ 239.0501, Found 239.0507.

((2-cyclohexylallyl)oxy)benzene (1aa). Colorless oil was obtained by silica gel column chromatography with PE. 2.39 g, 11.7 mmol, 74% yield. ¹H NMR: (400 MHz, CDCl₃) δ 7.23-7.31 (m, 2H), 6.89-6.96 (m, 3H), 5.11 (s, 1H), 4.98 (s, 1H), 4.48 (s, 2H), 2.20-2.12 (m, 1H), 1.75-1.89 (m, 4H), 1.70 (d, J = 12.0 Hz, 1H), 1.15-1.34 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 158.8, 150.0, 129.3, 120.6, 114.7, 110.1, 70.0, 41.2, 32.2, 26.6, 26.2; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₂₀NaO⁺ 239.1406, Found 239.1406.

((2-methylallyl)oxy)benzene (1ab).⁷ Colorless oil was obtained by silica gel column chromatography with PE. 3.75 g, 25.3 mmol, 67% yield. ¹H NMR: (400 MHz, CDCl₃) δ 7.22-7.31 (m, 2H), 6.89-6.98 (m, 3H), 5.09 (s, 1H), 4.98 (s, 1H), 4.42 (s, 2H), 1.82 (s, 3H).

1-(tert-butyl)-4-((2-(4-methoxyphenyl)allyl)oxy)benzene (1ac). White solid was obtained by silica gel column chromatography with PE/EA (50:1). 0.30 g, 1.1 mmol, 25% yield. M. P. 62.0-62.5 °C. ¹H NMR: (500 MHz, CDCl₃): δ NMR (500 MHz,) δ 7.43 (d, J = 8.8 Hz, 2H), 7.30 (d, J = 8.8 Hz, 2H), 6.85-6.92 (m, 4H), 5.53 (s, 1H), 5.37 (s, 1H), 4.84 (s, 2H), 3.81 (s, 3H), 1.30 (s, 9H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 159.5, 156.5, 143.7, 142.6, 130.9, 127.2, 126.2, 114.4, 113.8, 113.2, 70.2, 55.3, 34.1, 31.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₅O₂⁺ 297.1849, Found 297.1851.

1-methoxy-4-(3-(4-methoxyphenoxy)prop-1-en-2-yl)benzene (1ad). White solid was obtained by silica gel column chromatography with PE/EA (50:1). 0.73 g, 2.7 mmol, 45% yield. M. P. 94.7-95.7 °C. ¹H NMR: (500 MHz, CDCl₃): δ 7.43 (d, J = 9.0 Hz, 2H), 6.80-6.92 (m, 6H), 5.51 (s, 1H), 5.35 (s, 1H), 4.82 (s, 2H), 3.82 (s, 3H), 3.77 (s,

⁷ W. Gao, X. Zhang, X. Xie, S. Ding, Chem. Commun. 2020, 56, 2012.

3H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 159.5, 154.1, 152.9, 142.7, 130.9, 127.2, 116.1, 114.6, 113.8, 113.2, 70.9,
55.7, 55.3; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₈NaO₃⁺ 293.1148, Found 293.1155.

1-methoxy-4-(3-methoxyprop-1-en-2-yl)benzene (1ae).⁸ Colorless oil was obtained by silica gel column chromatography with PE/EA (50:1). 1.21 g, 6.8 mmol, 72 % yield. ¹H NMR: (500 MHz, CDCl₃): δ 7.41 (d, J = 9.0 Hz, 2H), 6.87 (d, J = 9.0 Hz, 2H), 5.44 (s, 1H), 5.23 (s, 1H), 4.29 (s, 2H), 3.80 (s, 3H), 3.36 (s, 3H).

MeC

1-(3-ethoxyprop-1-en-2-yl)-4-methoxybenzene (1af).⁹ Colorless oil was obtained by silica gel column chromatography with PE/EA (200:1). 0.0740 g, 0.41 mmol, 26% yield. ¹H NMR: (400 MHz, CDCl₃): δ 7.41 (dd, J = 8.8, 2.4 Hz, 2H), 6.86 (dd, J = 8.8, 2.4 Hz, 2H), 5.43 (s, 1H), 5.24 (s, 1H), 4.33 (s, 2H), 3.80 (s, 3H), 3.49-3.57 (m, 2H), 1.15-1.25 (m, 3H).

III. Cobalt-catalyzed isomerization of allyl ethers

General procedure for Co-catalyzed isomerization of allyl ethers: To a 10 mL flame-dried Schlenk flask cooled under argon, CoCl₂ (0.025 mmol), PNP (0.03 mmol), PhCl (1 mL), alkene **1** (0.5 mmol) and NaBHEt₃ (0.075 mmol, 1 M in THF) were added in sequence. Then the reaction mixture was stirred at rt for 1 h, purified by flash column chromatography using PE/EtOAc as the eluent to give the desired product **2**.

(*E*)-1-methoxy-4-(1-phenoxyprop-1-en-2-yl)benzene [(*E*)-(2a)]. Prepared according to the general procedure using 0.1187 g (0.50 mmol) of 1a, 0.0161 g (0.03 mmol) of PNP, 0.0032 g (0.025 mmol) of CoCl₂, 75 μ L (0.075 mmol, 1 M in THF) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 10/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0973 g (0.40 mmol, 82% yield, >20/1 *E/Z*) of (*E*)-2a as a white solid. M. P. 56.2-56.4 °C. ¹H NMR (CDCl₃, 500 MHz): δ

⁸ W. Kirmse, J. Rode, Chem. Ber. 1986, 119, 3694.

⁹ J. Gupton, J. Dicesare, J. Brown, J. Idoux, Syn. Commun. 1992, 22, 1067.

7.29-7.34 (m, 4H), 7.02-7.07 (m, 3H), 6.88 (d, J = 9.0 Hz, 2H), 6.76 (s, 1H), 3.80 (s, 3H), 2.11 (s, 3H); ¹³C NMR (125.8 MHz, CDCl₃) δ 158.6, 157.7, 137.8, 132.3, 129.5, 126.5, 122.4, 120.4, 116.2, 113.9, 55.2, 13.2; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₇O₂⁺ 241.1223, Found 241.1228.

(*E*)-(1-phenoxyprop-1-en-2-yl)benzene [(*E*)-(2b)]. Prepared according to the general procedure using 0.1040 g (0.50 mmol) of **1b**, 0.0162 g (0.03 mmol) of **PNP**, 0.0031 g (0.025 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 10/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0690 g (0.33 mmol, 79% yield, >20/1 *E/Z*) of (*E*)-2b as a colorless oil. ¹H NMR (CDCl₃, 500 MHz): δ 7.40 (d, J = 7.5 Hz, 2H), 7.29-7.36 (m, 4H), 7.21-7.27 (m, 1H), 7.03-7.09 (m, 3H), 6.85 (s, 1H), 2.14 (s, 3H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 157.6, 139.9, 139.0, 129.6, 128.5, 126.7, 125.5, 122.7, 120.6, 116.4, 13.0; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₄NaO⁺ 233.0937, Found 233.0938.

(*E*)-1-methyl-4-(1-phenoxyprop-1-en-2-yl)benzene [(*E*)-(2c)]. Prepared according to the general procedure using 0.1116 g (0.49 mmol) of 1c, 0.0163 g (0.03 mmol) of PNP, 0.0033 g (0.025 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 10/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0889 g (0.39 mmol, 80% yield, >20/1 *E/Z*) of (*E*)-2c as a colorless oil. ¹H NMR (CDCl₃, 500 MHz): δ 7.26-7.35 (m, 4H), 7.14 (d, J = 8.0 Hz, 2H), 7.02-7.08 (m, 3H), 6.81 (s, 1H), 2.34 (s, 3H), 2.12 (s, 3H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 157.7, 138.4, 136.9, 136.4, 129.6, 129.1, 125.4, 122.6, 120.6, 116.3, 21.0, 13.1; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₁₆NaO⁺ 247.1093, Found 247.1089.

(*E*)-4-(1-phenoxyprop-1-en-2-yl)-1,1'-biphenyl [(*E*)-(2d)]. Prepared according to the general procedure using 0.1418 g (0.49 mmol) of 1d, 0.0164 g (0.031 mmol) of PNP, 0.0034 g (0.026 mmol) of CoCl₂, 75 μL (0.075 mmol)

of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 10/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.1168 g (0.41 mmol, 82% yield, >20/1 *E/Z*) of (*E*)-2d as a white solid. M. P. 122.5-122.7 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.55-7.63 (m, 4H), 7.41-7.51 (m, 4H), 7.31-7.37 (m, 3H), 7.05-7.11 (m, 3H), 6.93 (s, 1H), 2.18 (s, 3H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 157.6, 140.7, 139.5, 139.1, 138.8, 129.6, 128.8, 127.2, 127.1, 126.9, 125.8, 122.7, 120.1, 116.4, 12.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₁₉O⁺ 287.1430, Found 287.1434.

(*E*)-*N*, *N*-dimethyl-4-(1-phenoxyprop-1-en-2-yl)aniline [(*E*)-(2e)]. Prepared according to the general procedure using 0.0746 g (0.29 mmol) of 1e, 0.0194 g (0.036 mmol) of PNP, 0.0042 g (0.03 mmol) of CoCl₂, 90 μ L (0.090 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 10/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0605 g (0.24 mmol, 81% yield, >20/1 *E/Z*) of (*E*)-2e as a white solid. M. P. 75.6-77.3 °C. ¹H NMR: (400 MHz, CDCl₃) δ 7.27-7.35 (m, 4H), 7.00-7.10 (m, 3H), 6.70-6.77 (m, 3H), 2.95 (s, 6H), 2.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.7, 136.7, 129.5, 126.2, 122.2, 120.9, 116.1, 112.7, 40.7, 13.0; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₂₀NO⁺ 254.1539, Found 254.1537.

(*E*)-methyl(4-(1-phenoxyprop-1-en-2-yl)phenyl)sulfane [(*E*)-(2f)]. Prepared according to the general procedure using 0.1237 g (0.48 mmol) of 1f, 0.0160 g (0.03 mmol) of PNP, 0.0034 g (0.026 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 14/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.1194 g (0.46 mmol, 95% yield, >20/1 *E/Z*) of (*E*)-2f as a white solid. M. P. 47.2-48.6 °C. ¹H NMR: (400 MHz, CDCl₃) δ 7.30-7.35 (m, 3H), 7.22-7.27 (m, 3H), 7.03-7.10 (m, 3H), 6.84 (s, 1H), 2.49 (s, 3H), 2.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.5, 138.7, 136.7, 136.5, 129.6, 128.1, 126.9, 125.8, 122.7, 119.9, 116.3, 16.1, 12.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₇OS⁺ 257.0995, Found 257.0997.

(*E*)-1-fluoro-4-(1-phenoxyprop-1-en-2-yl)benzene [(*E*)-(2g)]. Prepared according to the general procedure using 0.1139 g (0.50 mmol) of 1g, 0.0161 g (0.03 mmol) of PNP, 0.0032 g (0.025 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 5/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0917 g (0.40 mmol, 81% yield, >20/1 *E/Z*) of (*E*)-2g as a colorless oil. ¹H NMR (CDCl₃, 500 MHz): δ 7.29-7.37 (m, 4H), 6.98-7.10 (m, 5H), 6.77 (s, 1H), 2.12 (s, 3H); ¹³C NMR (125.8 MHz,) δ 161.9 (d, J = 245.5 Hz), 157.6, 138.8 , 135.9 (d, J = 3.5 Hz), 129.7, 126.9 (d, J = 7.5 Hz), 122.8, 119.7, 116.4, 115.3 (d, J = 21.0 Hz), 13.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.1; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₄FO⁺ 229.1023, Found 229.1021.

(*E*)-1-chloro-4-(1-phenoxyprop-1-en-2-yl)benzene [(*E*)-(2h)]. Prepared according to the general procedure using 0.1223 g (0.50 mmol) of 1h, 0.0161 g (0.03 mmol) of PNP, 0.0032 g (0.025 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 6/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0974 g (0.40 mmol, 82% yield, >20/1 *E/Z*) of (*E*)-2h as a colorless oil. ¹H NMR (CDCl₃, 500 MHz): δ 7.26-7.36 (m, 6H), 7.01-7.10 (m, 3H), 6.83 (s, 1H), 2.11 (s, 3H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 157.5, 139.4, 138.3, 132.3, 129.6, 128.5, 126.6, 122.8, 119.3, 116.4, 12.9; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₄ClO⁺ 245.0728, Found 245.0728.

(*E*)-1-bromo-4-(1-phenoxyprop-1-en-2-yl)benzene [(*E*)-(2i)]. Prepared according to the general procedure using 0.1449 g (0.50 mmol) of 1i, 0.0162 g (0.03 mmol) of PNP, 0.0033 g (0.025 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 6/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.1115 g (0.38 mmol, 81% yield, >20/1 *E/Z*) of (*E*)-2i as a colorless oil. ¹H NMR (CDCl₃, 500 MHz): δ 7.44 (d, J = 8.5 Hz, 2H), 7.30-7.36 (m, 2H), 7.25 (d, J = 8.5 Hz, 2H), 7.02-7.11 (m, 3H), 6.84 (s, 1H), 2.12 (s, 3H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 157.5,

139.4, 138.8, 131.5, 129.7, 127.0, 122.9, 120.4, 119.4, 116.4, 12.9; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₃BrNaO⁺ 311.0042, Found 311.0048.

(*E*)-1-(1-phenoxyprop-1-en-2-yl)-4-(trifluoromethyl)benzene [(*E*)-(2j)]. Prepared according to the general procedure using 0.1333 g (0.50 mmol) of 1j, 0.0161 g (0.03 mmol) of PNP, 0.0032 g (0.025 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 8/1 *E*/*Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.1138 g (0.41 mmol, 85% yield, >20/1 *E*/*Z*) of (*E*)-2j as a colorless oil. ¹H NMR: (500 MHz, CDCl₃) δ 7.57 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.31-7.37 (m, 2H), 7.03-7.12 (m, 3H), 6.94 (s, 1H), 2.16 (s, 3H); ¹³C NMR (125.8 MHz,) δ 157.4, 143.6, 140.7, 129.7, 128.6 (q, J = 32.5 Hz), 127.9, 125.5, 125.4 (q, J = 3.5 Hz), 123.1, 119.0, 116.6, 12.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.3; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₄F₃O⁺ 279.0991, Found 279.1001.

(*E*)-1-(methylsulfonyl)-4-(1-phenoxyprop-1-en-2-yl)benzene [(*E*)-(2k)]. Prepared according to the general procedure using 0.0860 g (0.30 mmol) of 1k, 0.0194 g (0.036 mmol) of PNP, 0.0040 g (0.03 mmol) of CoCl₂, 90 μ L (0.090 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 14/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0767 g (0.27 mmol, 89% yield, >20/1 *E/Z*) of (*E*)-2k as a white solid. M. P. 88.4-90.0 °C. ¹H NMR: (400 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 7.33-7.40 (m, 2H), 7.04-7.15 (m, 3H), 7.10 (s, 1H), 3.05 (s, 3H), 2.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.2, 145.6, 141.8, 138.1, 129.7, 127.6, 125.8, 123.4, 118.2, 116.6, 44.6, 12.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₇O₃S⁺ 289.0893, Found 289.0893.

(*E*)-1-methyl-3-(1-phenoxyprop-1-en-2-yl)benzene [(*E*)-(2l)]. Prepared according to the general procedure using 0.1105 g (0.49 mmol) of 1l, 0.0162 g (0.03 mmol) of PNP, 0.0035 g (0.027 mmol) of CoCl₂, 75 μL (0.075 mmol)

of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 14/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.1013 g (0.45 mmol, 92% yield, >20/1 *E/Z*) of (*E*)-2l as a colorless oil. ¹H NMR: (400 MHz, CDCl₃) δ 7.28-7.37 (m, 2H), 7.17-7.26 (m, 3H), 7.02-7.11 (m, 4H), 6.83 (s, 1H), 2.36 (s, 3H), 2.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 139.8, 138.8, 138.0, 129.6, 128.4, 127.5, 126.3, 122.6, 120.7, 116.3, 21.5, 13.1; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₁₆NaO⁺ 247.1093, Found 247.1097.

(*E*)-1-methoxy-3-(1-phenoxyprop-1-en-2-yl)benzene [(*E*)-(2m)]. Prepared according to the general procedure using 0.1210 g (0.50 mmol) of 1m, 0.0161 g (0.03 mmol) of PNP, 0.0030 g (0.024 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 14/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0946 g (0.39 mmol, 86% yield, >20/1 *E/Z*) of (*E*)-2m as a colorless oil. ¹H NMR (CDCl₃, 500 MHz): δ 7.18-7.25 (m, 2H), 7.11-7.18 (m, 1H), 6.95 (m, 3H), 6.89 (d, J = 7.5 Hz, 1H), 6.84 (s, 1H), 6.77 (s, 1H), 6.70 (d, J = 8.5 Hz, 1H), 3.71 (s, 3H), 2.04 (s, 3H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 159.8, 157.6, 141.4, 139.2, 129.6, 129.4, 122.7, 120.4, 118.1, 116.4, 111.9, 111.6, 55.2, 13.1; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₇O₂⁺ 241.1223, Found 241.1228.

(*E*)-1-(benzyloxy)-3-(1-phenoxyprop-1-en-2-yl)benzene [(*E*)-(2n)]. Prepared according to the general procedure using 0.1446 g (0.46 mmol) of 1n, 0.0160 g (0.03 mmol) of PNP, 0.0034 g (0.026 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 13/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.1356 g (0.43 mmol, 93% yield, >20/1 *E/Z*) of (*E*)-2n as a yellow oil. ¹H NMR: (400 MHz, CDCl₃) δ 7.44 (d, J = 7.2 Hz, 2H), 7.35-7.41 (m, 2H), 7.28-7.35 (m, 3H), 7.20-7.26 (m, 1H), 6.99-7.07 (m, 5H), 6.87 (d, J = 7.2 Hz, 2H), 5.07 (s, 2H), 2.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 157.5, 141.3, 139.2, 137.0, 129.6, 129.4, 128.5, 127.9, 127.5, 122.7, 120.2, 118.2, 116.3, 112.6, 112.5, 70.0, 13.0; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₁O₂⁺ 317.1536, Found 317.1537.

(*E*)-1-bromo-3-(1-phenoxyprop-1-en-2-yl)benzene [(*E*)-(2o)]. Prepared according to the general procedure using 0.1434 g (0.50 mmol) of 1q, 0.0161 g (0.03 mmol) of PNP, 0.0032 g (0.025 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 11/1 *E/Z*, monitored by ¹H NMR, >20/1 *E/Z*), purified by flash column chromatography using PE as the eluent to give 0.1062 g (0.37 mmol, 83% yield) of (*E*)-2o as a colorless oil. ¹H NMR (CDCl₃, 500 MHz): δ 7.52 (s, 1H), 7.27-7.38 (m, 4H), 7.14-7.20 (m, 1H), 7.01-7.10 (m, 3H), 6.85 (s, 1H), 2.11 (s, 3H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 157.4, 142.1, 140.0, 129.9, 129.7, 129.5, 128.5, 124.0, 123.0, 122.7, 119.0, 116.5, 12.9; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₃BrNaO⁺ 311.0042, Found 311.0048.

(*E*)-1-iodo-3-(1-phenoxyprop-1-en-2-yl)benzene [(*E*)-(2p)]. Prepared according to the general procedure using 0.1022 g (0.30 mmol) of 1r, 0.0098 g (0.018 mmol) of PNP, 0.0020 g (0.015 mmol) of CoCl₂, 45 μ L (0.045 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 10/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0903 g (0.27 mmol, 88% yield, >20/1 *E/Z*) of (*E*)-2p as a yellow oil. ¹H NMR: (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.30-7.37 (m, 3H), 7.04-7.11 (m, 4H), 6.83 (s, 1H), 2.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 142.2, 139.9, 135.5, 134.4, 130.1, 129.7, 124.6, 122.9, 118.9, 116.5, 94.7, 12.9; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₃NaIO⁺ 358.9903, Found 358.9910.

(*E*)-1-fluoro-2-(1-phenoxyprop-1-en-2-yl)benzene [(*E*)-(2q)]. Prepared according to the general procedure using 0.1163 g (0.49 mmol) of 1u, 0.0164 g (0.031 mmol) of PNP, 0.0034 g (0.026 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 11/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0411 g (0.18 mmol, 57% yield, >20/1 *E/Z*) of (*E*)-2q as a colorless oil. ¹H NMR (CDCl₃, 500 MHz): δ 7.29-7.36 (m, 3H), 7.18-7.24 (m, 1H), 7.03-

7.14 (m, 5H), 6.83 (s, 1H), 2.13 (s, 3H); ¹³C NMR (125.8 MHz,) δ 160.4 (d, J = 247.5 Hz), 157.5, 141.5 (d, J = 6.5 Hz), 129.6, 129.4 (d, J = 4.5 Hz), 128.0 (d, J = 8.5 Hz), 127.8 (d, J = 13.5 Hz), 124.1 (d, J = 3.5 Hz), 122.7, 116.4, 115.9 (d, J = 23.5 Hz), 115.7, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₄FO⁺ 229.1023, Found 229.1021.

(*E*)-1,2-dimethoxy-4-(1-phenoxyprop-1-en-2-yl)benzene [(*E*)-(2r)]. Prepared according to the general procedure using 0.1319 g (0.5 mmol) of 1v, 0.0164 g (0.031 mmol) of PNP, 0.0034 g (0.026 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 10/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.1152 g (0.43 mmol, 87% yield, 10/1 *E/Z*) of (*E*)-2r as a colorless oil. ¹H NMR: (500 MHz, CDCl₃) δ 7.29-7.34 (m, 2H), 7.02-7.08 (m, 3H), 6.90-6.96 (m, 2H), 6.84 (d, J = 8.0 Hz, 1H), 6.77 (s, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 2.12 (s, 3H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 157.6, 148.9, 148.2, 138.1, 132.8, 129.6, 122.5, 120.5, 117.9, 116.3, 111.4, 109.2, 55.91, 55.86, 13.3; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₈NaO₃⁺ 293.1148, Found 293.1155.

(*E*)-5-(1-phenoxyprop-1-en-2-yl)benzo[d][1,3]dioxole [(*E*)-(2s)]. Prepared according to the general procedure using 0.0756 g (0.30 mmol) of 1w, 0.0098 g (0.018 mmol) of PNP, 0.0020 g (0.015 mmol) of CoCl₂, 45 μ L (0.045 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 11/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0597 g (0.24 mmol, 80% yield, >20/1 *E/Z*) of (*E*)-2s as a yellow oil. ¹H NMR: (400 MHz, CDCl₃) δ 7.19-7.27 (m, 2H), 6.93-7.00 (m, 3H), 6.74-6.82 (m, 2H), 6.65-6.72 (m, 2H), 5.95 (s, 2H), 2.09 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.6, 147.8, 146.5, 138.2, 134.1, 129.6, 122.6, 120.5, 118.9, 116.3, 108.2, 106.1, 101.0, 29.7, 13.4; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₅O₃⁺ 255.1016, Found 255.1016.

(*E*)-2-(1-phenoxyprop-1-en-2-yl)-9H-fluorene [(*E*)-(2t)]. Prepared according to the general procedure using 0.0891 g (0.30 mmol) of 1x, 0.0098 g (0.018 mmol) of PNP, 0.0020 g (0.015 mmol) of CoCl₂, 45 μL (0.045 mmol)

of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 10/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0853 g (0.28 mmol, 87% yield, >20/1 *E/Z*) of (*E*)-2t as a yellow oil. M. P. 109.1-109.5 °C. ¹H NMR: (400 MHz, CDCl₃) δ 7.72-7.79 (m, 2H), 7.59 (s, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.29-7.39 (m, 4H), 7.09 (d, J = 8.4 Hz, 3H), 6.93 (s, 1H), 3.91 (s, 2H), 2.20 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.6, 143.5, 143.2, 141.5, 140.4, 138.8, 138.4, 129.6, 126.7, 126.5, 125.0, 124.2, 122.6, 122.0, 120.8, 119.7, 116.6, 116.3, 36.9, 13.2; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₁₉O⁺ 299.1430, Found 244.1426.

(*E*)-2-(1-phenoxyprop-1-en-2-yl)naphthalene [(*E*)-(2u)]. Prepared according to the general procedure using 0.1292 g (0.50 mmol) of 1y, 0.0161 g (0.03 mmol) of PNP, 0.0032 g (0.025 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at 60 °C for 12 h (> 99% conv., 5/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0759 g (0.30 mmol, 60% yield, >20/1 *E/Z*) of (*E*)-2u as a white solid. M. P. 66.8-66.9 °C. ¹H NMR: (500 MHz, CDCl₃) δ 7.74-7.84 (m, 4H), 7.55 (d, J = 8.5 Hz, 1H), 7.39-7.48 (m, 2H), 7.29-7.37 (m, 2H), 7.04-7.11 (m, 3H), 7.01 (s, 1H), 2.25 (s, 3H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 157.7, 139.7, 137.1, 133.7, 132.4, 129.7, 127.91, 127.90, 127.5, 126.2, 125.5, 123.9, 122.8, 120.3, 116.5, 13.0; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₇O⁺ 261.1274, Found 261.1284.

(*E*)-2-(1-phenoxyprop-1-en-2-yl)thiophene [(*E*)-(2v)]. Prepared according to the general procedure using 0.1081 g (0.50 mmol) of 1z, 0.0164 g (0.031 mmol) of PNP, 0.0034 g (0.026 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at 60 °C for 12 h (> 99% conv., 6/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0696 g (0.32 mmol, 64% yield, >20/1 *E/Z*) of (*E*)-2v as a yellow oil. ¹H NMR: (500 MHz, CDCl₃) δ 7.30-7.37 (m, 2H), 7.03-7.11 (m, 4H), 6.99 (s, 3H), 2.15 (s, 3H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 157.4, 143.4, 138.3, 129.7, 127.2, 122.9, 122.3, 122.3, 116.5, 115.6, 13.5; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₃OS⁺ 217.0682, Found 217.0678.

((2-cyclohexylprop-1-en-1-yl)oxy)benzene (2w). Prepared according to the general procedure using 0.1081 g (0.50 mmol) of 1aa, 0.0161 g (0.030 mmol) of PNP, 0.0032 g (0.025 mmol) of CoCl₂, 75 µL (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (70% conv., 3/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0487 g (0.23 mmol, 48% yield, 3/1 E/Z) of 2w as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.31 (m, 2H), 6.93-7.02 (m, 3H), 6.26 (s, 1H), 1.93 (s, 1H), 1.82-1.70 (m, 4H), 1.68 (s, 3H), 1.50-1.61 (m, 1H), 1.29 (dd, J = 17.2, 8.8 Hz, 4H), 1.13-1.21 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 157.8, 134.9, 129.4, 126.9, 121.8, 115.8, 42.4, 31.9, 26.6, 26.3, 11.2; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₂₀NaO⁺ 239.1406, Found 239.1406.

Me OPh

((2-methylprop-1-en-1-yl)oxy)benzene (2x).⁷ Prepared according to the general procedure using 0.0741 g (0.50 mmol) of 1ab, 0.0164 g (0.031 mmol) of PNP, 0.0034 g (0.026 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (30 % conv., monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0138 g (0.09 mmol, 19% yield) of **2x** as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.26-7.32 (m, 2H), 7.03 - 6.93 (m, 3H), 6.20 (s, 1H), 1.71 (d, J = 15.5 Hz, 6H).

1-(tert-butyl)-4-((2-(4-methoxyphenyl)prop-1-en-1-yl)oxy)benzene (2y). Prepared according to the general procedure using 0.1423 g (0.48 mmol) of **1ac**, 0.0161 g (0.030 mmol) of **PNP**, 0.0032 g (0.025 mmol) of $CoCl_2$, 75 μ L (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 10/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.1342 g (0.45 mmol, 88% yield, 10/1 *E/Z*) of **2y** as a yellow solid. M. P. 97.2-98.3 °C. ¹H NMR: (400 MHz, CDCl₃) δ 7.29-7.37 (m, 4H), 6.98 (d, J = 8.0 Hz, 2H), 6.88 (d, J = 8.0 Hz, 2H), 6.76 (s, 1H), 3.81 (s, 3H), 2.10 (s, 3H), 1.31 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 158.5, 155.4, 145.3, 138.2, 132.4, 128.8, 126.5, 126.4, 119.9, 115.8, 113.9, 55.3, 34.2, 31.5, 13.1; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₅O₂⁺ 297.1849, Found 297.1848.

1-methoxy-4-(1-(4-methoxyphenoxy)prop-1-en-2-yl)benzene (2z). Prepared according to the general procedure using 0.1305 g (0.5 mmol) of **1ad**, 0.0161 g (0.030 mmol) of **PNP**, 0.0032 g (0.025 mmol) of CoCl₂, 75 μL (0.075

mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 10/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.1183 g (0.44 mmol, 88% yield, 10/1 *E/Z*) of **2z** as a yellow solid. M. P. 85.9-86.1 °C. ¹H NMR: (400 MHz, CDCl₃) δ 7.31 (d, J = 9.0 Hz, 2H), 6.98 (d, J = 9.0 Hz, 2H), 6.84-6.90 (m, 4H), 6.69 (s, 1H), 3.80 (d, J = 11.2 Hz, 6H), 2.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.4, 155.1, 151.7, 138.8, 132.3, 126.4, 119.2, 117.3, 114.6, 113.8, 55.6, 55.3, 13.1; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₈NaO₃⁺ 293.1148, Found 293.1155.

1-methoxy-4-(1-methoxyprop-1-en-2-yl)benzene (2aa). Prepared according to the general procedure using 0.0888 g (0.50 mmol) of **1ae**, 0.0161 g (0.030 mmol) of **PNP**, 0.0032 g (0.025 mmol) of $CoCl_2$, 75 µL (0.075 mmol) of NaBHEt₃, 1 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 9/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0764 g (0.43 mmol, 86% yield, 9/1 *E/Z*) of **2aa** as a colorless oil. ¹H NMR: (500 MHz, CDCl₃) δ 7.22 (d, J = 8.0 Hz, 2H), 6.83 (d, J = 8.0 Hz, 2H), 6.31 (s, 1H), 3.78 (s, 3H), 3.68 (s, 3H), 1.96 (s, 3H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 158.1, 144.0, 133.2, 128.6, 126.1, 113.7, 59.7, 55.2, 12.7; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₁H₁₄NaO₂⁺ 201.0886, Found 201.0896.

1-(1-ethoxyprop-1-en-2-yl)-4-methoxybenzene (2ab). Prepared according to the general procedure using 0.0228 g (0.12 mmol) of **1af**, 0.0039 g (0.0072 mmol) of **PNP**, 0.0008 g (0.006 mmol) of CoCl₂, 18 μL (0.018 mmol) of NaBHEt₃, 0.5 mL (0.5 M) of PhCl. Then the mixture was stirred at rt for 1 h (> 99% conv., 9/1 *E/Z*, monitored by ¹H NMR), purified by flash column chromatography using PE as the eluent to give 0.0194 g (0.010 mmol, 85% yield, 9/1 *E/Z*) of **2ab** as a colorless oil. ¹H NMR: (500 MHz, CDCl₃) δ 7.14 (d, J = 8.5 Hz, 2H), 6.75 (d, J = 8.5 Hz, 2H), 6.30 (s, 1H), 3.76-3.84 (m, 2H), 3.70 (s, 3H), 1.89 (s, 3H), 1.22 (t, J = 2.0 Hz, 3H); ¹³C NMR: (125.8 MHz, CDCl₃) δ 157.9, 142.6, 133.4, 128.5, 126.0, 113.8, 67.8, 55.2, 15.4, 12.8; HRMS (ESI) m/z: [M + Na]⁺ Calcd for $C_{12}H_{16}NaO_2^+$ 215.1043, Found 215.1044.

IV. Cobalt-catalyzed reductive C-O bond cleavage of allyl ethers

General procedure for cobalt-catalyzed reductive C-O bond cleavage of allyl ethers: To a 10 mL flame-dried Schlenk flask cooled under argon, added with PAO^{Me} (0.03mmol), CoCl₂ (0.025 mmol), THF (1 mL), alkene 1 (0.5

mmol), NaBHEt₃ (75 μ L, 0.075 mmol, 1 M in THF) and HBpin (90 μ L, 0.6 mmol) in sequence. Then the reaction mixture was stirred at rt for 1 h, purified by flash column chromatography using PE/EtOAc as the eluent to give the desired product **3**.

1-methoxy-4-(prop-1-en-2-yl)benzene (3a).¹⁰ Prepared according to the general procedure using 0.1204 g (0.5 mmol) of **1a**, 0.0131 g (0.030 mmol) of **PAO^{Me}**, 0.0034 g (0.025 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 90 μ L of HBpin (0.6 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0646 g (0.44 mmol, 87% yield) of **3a** as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 5.28 (s, 1H), 4.99 (s, 1H), 3.81 (s, 3H), 2.12 (s, 3H).

prop-1-en-2-ylbenzene (3b).¹¹ Prepared according to the general procedure using 0.1051 g (0.5 mmol) of **1b**, 0.0134 g (0.030 mmol) of **PAO^{Me}**, 0.0034 g (0.025 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 90 μ L of HBpin (0.6 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0557 g (0.47 mmol, 87% yield) of **3b** as a colorless oil. ¹H NMR: (400 MHz, CDCl₃) δ 7.46 (d, J = 7.2 Hz, 2H), 7.28-7.35 (m, 2H), 7.22-7.28 (m, 1H), 5.35 (s, 1H), 5.07 (s, 1H), 2.14 (s, 3H).

1-methyl-4-(prop-1-en-2-yl)benzene (3c).¹¹ Prepared according to the general procedure using 0.1109 g (0.50 mmol) of **1c**, 0.0140 g (0.032 mmol) of **PAO^{Me}**, 0.0032 g (0.025 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 90 μ L of HBpin (0.6 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0521 g (0.39 mmol, 72% yield) of **3c** as a colorless oil.

¹⁰ C. Casadevall, D. Pascual, J. Aragon, A. Call, A. Casitas, I. Casademont-Reig. J. Lloret-Fillol, Chem. Sci. 2022, 13, 4270.

¹¹ X. Wang, Z. Wang, Y. Asanuma, Y. Nishihara, Org. Lett. 2019, 21, 3640.

¹H NMR: (400 MHz, CDCl₃) δ 7.19-7.30 (m, 3H), 7.08 (d, J = 7.6 Hz, 1H), 5.34 (s, 1H), 5.05 (s, 1H), 2.35 (s, 3H), 2.14 (s, 3H).

4-(prop-1-en-2-yl)-1,1'-biphenyl (3d).¹¹ Prepared according to the general procedure using 0.1405 g (0.49 mmol) of **1d**, 0.0140 g (0.032 mmol) of **PAO^{Me}**, 0.0033 g (0.025 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 90 μ L of HBpin (0.6 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0807 g (0.42 mmol, 84% yield) of **3d** as a white solid. ¹H NMR: (400 MHz, CDCl₃) δ 7.50-7.60 (m, 6H), 7.48-7.45 (m, 2H), 7.26-7.35 (m, 1H), 5.42 (s, 1H), 5.10 (s, 1H), 2.17 (s, 3H).

Me₂N

N,*N*-dimethyl-4-(prop-1-en-2-yl)aniline (3e).¹³ Prepared according to the general procedure using 0.0776 g (0.31mmol) of 1e, 0.0086 g (0.019 mmol) of PAO^{Me}, 0.0025 g (0.019 mmol) of CoCl₂, 45 μ L (0.045 mmol) of NaBHEt₃, 50 μ L of HBpin (0.36 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0394 g (0.24 mmol, 82% yield) of 3e as a colorless oil. ¹H NMR: (400 MHz, CDCl₃) δ 7.39 (d, J = 8.8 Hz, 2H), 6.70 (d, J = 8.8 Hz, 2H), 5.25 (s, 1H), 4.90 (s, 1H), 2.95 (s, 6H), 1.22 (s, 3H).

methyl(4-(prop-1-en-2-yl)phenyl)sulfane (3f).¹² Prepared according to the general procedure using 0.0757 g (0.30 mmol) of **1f**, 0.0081 g (0.018 mmol) of **PAO^{Me}**, 0.0023 g (0.017 mmol) of CoCl₂, 45 μL (0.045 mmol) of NaBHEt₃, 50 μL of HBpin (0.36 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0415 g (0.25 mmol, 84% yield) of **3f** as a white solid. ¹H NMR: (400 MHz, CDCl₃) δ 7.40 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 5.35 (s, 1H), 5.05 (s, 1H), 2.48 (s, 3H), 2.13 (s, 3H).

¹² U. Chakraborty, E. Reyes-Rodriguez, S. Demeshko, F. Meyer, A. Wangelin, Angew. Chem. Int. Ed. 2018, 57, 4970.

1-fluoro-4-(prop-1-en-2-yl)benzene (3g).¹¹ Prepared according to the general procedure using 0.1150 g (0.50 mmol) of **1g**, 0.0137 g (0.031 mmol) of **PAO^{Me}**, 0.0036 g (0.027 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 90 μ L of HBpin (0.6 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0608 g (0.45 mmol, 89% yield) of **3g** as a colorless oil. ¹H NMR: (400 MHz, CDCl₃) δ 7.39-7.47 (m, 2H), 6.95-7.05 (m, 2H), 5.29 (s, 1H), 5.05 (s, 1H), 2.13 (s, 3H).

1-chloro-4-(prop-1-en-2-yl)benzene (3h).¹¹ Prepared according to the general procedure using 0.1245 g (0.51 mmol) of **1h**, 0.0132 g (0.030 mmol) of **PAO^{Me}**, 0.0036 g (0.027 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 90 μ L of HBpin (0.6 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0720 g (0.47 mmol, 94% yield) of **3h** as a colorless oil. ¹H NMR: (400 MHz, CDCl₃) δ 7.38 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 5.34 (s, 1H), 5.08 (s, 1H), 2.11 (s, 3H).

1-bromo-4-(prop-1-en-2-yl)benzene (3i).¹¹ Prepared according to the general procedure using 0.1475 g (0.51 mmol) of **1i**, 0.0133 g (0.030 mmol) of **PAO^{Me}**, 0.0034 g (0.026 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 90 μ L of HBpin (0.6 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0916 g (0.46 mmol, 92% yield) of **3i** as a colorless oil. ¹H NMR: (400 MHz, CDCl₃) δ 7.43 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 5.34 (s, 1H), 5.09 (s, 1H), 2.11 (s, 3H).

1-methyl-3-(prop-1-en-2-yl)benzene (3j).¹³ Prepared according to the general procedure using 0.0672 g (0.30

mmol) of **11**, 0.0083 g (0.018 mmol) of **PAO**^{Me}, 0.0025 g (0.018 mmol) of CoCl₂, 45 μ L (0.045 mmol) of NaBHEt₃, 50 μ L of HBpin (0.36 mmol), 1 mL (0.3 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0311 g (0.24 mmol, 85% yield) of **3j** as a colorless oil. ¹H NMR: (400 MHz, CDCl₃) δ 7.18-7.30 (m, 3H), 7.08 (d, J = 7.2 Hz, 1H), 5.34 (s, 1H), 5.06 (s, 1H), 2.35 (s, 3H), 2.14 (s, 3H).

1-methoxy-3-(prop-1-en-2-yl)benzene (3k).¹⁵ Prepared according to the general procedure using 0.1208 g (0.50 mmol) of **1m**, 0.0136 g (0.032 mmol) of **PAO^{Me}**, 0.0035 g (0.027 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 90 μ L of HBpin (0.6 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0640 g (0.43 mmol, 86% yield) of **3k** as a colorless oil. ¹H NMR: (400 MHz, CDCl₃) δ 7.20-7.24 (m, 1H), 7.06 (d, J = 8.0 Hz, 1H), 6.99 (s, 1H), 6.81 (dd, J = 8.4, 8.0 Hz, 1H), 5.35 (s, 1H), 5.07 (s, 1H), 3.80 (s, 3H), 2.13 (s, 3H).

1-fluoro-3-(prop-1-en-2-yl)benzene (3l).¹⁶ Prepared according to the general procedure using 0.1158 g (0.51 mmol) of **1o**, 0.0137 g (0.031 mmol) of **PAO^{Me}**, 0.0033 g (0.025 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 90 μ L of HBpin (0.6 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0613 g (0.45 mmol, 89% yield) of **3l** as a colorless oil. ¹H NMR: (400 MHz, CDCl₃) δ 7.20-7.30 (m, 2H), 7.14 (d, J = 10.8 Hz, 1H), 6.90-7.00 (m, 1H), 5.37 (s, 1H), 5.11 (s, 1H), 2.12 (s, 3H).

1-(prop-1-en-2-yl)-3-(trifluoromethyl)benzene (3m).¹⁴ Prepared according to the general procedure using 0.1378 g (0.49 mmol) of 1s, 0.0131 g (0.030 mmol) of PAO^{Me}, 0.0035 g (0.027 mmol) of CoCl₂, 75 μ L (0.075 mmol) of

¹³ J. Li, R. He, J. Liu, Y. Liu, L. Chen, Y. Huang, Y. Li, Org. Lett. 2022, 24, 1620.

¹⁴ D. Phan, K. Kou, V. Dong, J. Am. Chem. Soc. 2010, 132, 16354.

NaBHEt₃, 90 µL of HBpin (0.6 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0764 g (0.41 mmol, 82% yield) of **3m** as a colorless oil. ¹H NMR: (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.39-7.45 (m, 1H), 5.41 (s, 1H), 5.17 (s, 1H), 2.12 (s, 3H);

1-chloro-3-(prop-1-en-2-yl)benzene (3n).¹⁵ Prepared according to the general procedure using 0.1227 g (0.50 mmol) of **1p**, 0.0138 g (0.032 mmol) of **PAO^{Me}**, 0.0037 g (0.028 mmol) of $CoCl_2$, 75 µL (0.075 mmol) of NaBHEt₃, 90 µL of HBpin (0.6 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0684 g (0.45 mmol, 88% yield) of **3n** as a colorless oil. ¹H NMR: (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.29-7.35 (m, 1H), 7.20-7.25 (m, 2H), 5.36 (s, 1H), 5.11 (s, 1H), 2.11 (s, 3H).

1-methoxy-2-(prop-1-en-2-yl)benzene (30).¹⁶ Prepared according to the general procedure using 0.1208 g (0.50 mmol) of **1t**, 0.0140g (0.032 mmol) of **PAO^{Me}**, 0.0032g (0.025 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 90 μ L of HBpin (0.6 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0523 g (0.35 mmol, 72% yield) of **3o** as a colorless oil. ¹H NMR: (400 MHz, CDCl₃) δ 7.15-7.28 (m, 2H), 6.85-6.95 (m, 2H), 5.14 (s, 1H), 5.05 (s, 1H), 3.81 (s, 3H), 2.11 (s, 3H).

1-fluoro-2-(prop-1-en-2-yl)benzene (3p).¹⁶ Prepared according to the general procedure using 0.1156 g (0.51 mmol) of **1u**, 0.0137 g (0.031 mmol) of **PAO^{Me}**, 0.0043 g (0.033 mmol) of CoCl₂, 75 μL (0.075 mmol) of NaBHEt₃, 90 μL of HBpin (0.6 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash

¹⁵ P. Cooper, A. Dalling, E. Farrar, T. Aldhous, S. Grelaud, E. Lester, L. Feron, P. Kemmitt, M. Grayson, J. Bower, *Chem. Sci.* 2022, 13, 11183.

¹⁶ M. Han, H. Pan, P. Li, L. Wang, J. Org. Chem. 2020, 85, 5825.

column chromatography using PE as the eluent to give 0.0574 g (0.41 mmol, 82% yield) of **3p** as a colorless oil. ¹H NMR: (400 MHz, CDCl₃) δ 7.39-7.45 (m, 2H), 6.95-7.05 (m, 2H), 5.29 (s, 1H), 5.05 (s, 1H), 2.13 (s, 3H).

1,2-dimethoxy-4-(prop-1-en-2-yl)benzene (3q).¹⁷ Prepared according to the general procedure using 0.0947 g (0.30 mmol) of **1v**, 0.0081 g (0.018 mmol) of **PAO**^{Me}, 0.0020 g (0.018 mmol) of CoCl₂, 45 μ L (0.045 mmol) of NaBHEt₃, 50 μ L of HBpin (0.36 mmol), 1 mL (0.3 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0580 g (0.26 mmol, 87% yield) of **3o** as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.05 - 6.99 (m, 2H), 6.83 (d, J = 8.8 Hz, 1H), 5.29 (s, 1H), 5.02 (s, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 2.14 (s, 3H).

2-(prop-1-en-2-yl)-9H-fluorene (3r).¹⁸ Prepared according to the general procedure using 0.0877 g (0.29 mmol) of **1x**, 0.0083 g (0.018 mmol) of **PAO^{Me}**, 0.0020 g (0.015 mmol) of CoCl₂, 45 μ L (0.045 mmol) of NaBHEt₃, 50 μ L of HBpin (0.36 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0540 g (0.26 mmol, 87% yield) of **3r** as a white solid. ¹H NMR: (400 MHz, CDCl₃) δ 7.71-7.80 (m, 2H), 7.65 (s, 1H), 7.48-7.56 (m, 2H), 7.36 (d, J = 7.6 Hz, 1H), 7.30 (d, J = 7.6 Hz, 1H), 5.43 (s, 1H), 5.10 (s, 1H), 2.21 (s, 2H), (s, 3H).

2-(prop-1-en-2-yl)naphthalene (3s).¹¹ Prepared according to the general procedure using 0.1300 g (0.50 mmol) of **1y**, 0.0132 g (0.030 mmol) of **PAO^{Me}**, 0.0037 g (0.028mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 90 μ L of HBpin (0.6 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0699 g (0.42 mmol, 85% yield) of **3s** as a white solid. ¹H NMR: (400 MHz, CDCl₃) δ 7.74-7.86 (m, 4H), 7.61-7.68 (m, 1H), 7.39-7.46 (m, 2H), 5.51 (s, 1H), 5.17 (s, 1H), 2.25 (s, 3H).

¹⁷ J. Wu, L. Gong, Y. Xia, R. Song, Y. Xie, J. Li, Angew. Chem. Int. Ed. 2012, 51, 9909.

¹⁸ L. Gao, X. Liu, G. Li, S. Chen, J. Cao, G. Wang, S. Li, Org. Lett. 2022, 24, 31, 5698.

s

2-(prop-1-en-2-yl)thiophene (3t).¹¹ Prepared according to the general procedure using 0.1121 g (0.51 mmol) of **1z**, 0.0133 g (0.03 mmol) of **PAO^{Me}**, 0.0040 g (0.03 mmol) of CoCl₂, 75 μ L (0.075 mmol) of NaBHEt₃, 90 μ L of HBpin (0.6 mmol), 1 mL (0.5 M) of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give 0.0434 g (0.35 mmol, 87% yield) of **3t** as a colorless oil. ¹H NMR: (400 MHz, CDCl₃) δ 7.15 (s, 1H), 7.01 (s, 1H), 6.96 (s, 1H), 5.37 (s, 1H), 4.94 (s, 1H), 2.14 (s, 3H);

V. Gram-scale reactions.

Performed according to the general procedure using 1.2026 g (5 mmol) of **1a**, 0.0323 g (0.06 mmol) of **PNP**, 0.0064 g (0.05 mmol) of CoCl₂, 150 μ L (0.15 mmol) of NaBHEt₃ and 10 mL (1.0 M) of PhCl. The reaction mixture was stirred at rt for 12 h (> 99% conv., 10/1 *E/Z*, monitored by ¹H NMR), passed through a pad of silica gel and washed with EA, concentrated under reduced pressure. Then the residue was purified by flash column chromatography using PE/EtOAc as the eluent to give 1.0222 g (4.3 mmol, 85% yield, >20/1 *E/Z*) of **2a** as a white solid.

Performed according to the general procedure using 1.9233 g (8 mmol) of **1a**, 0.0419 g (0.096 mmol) of **PAO**^{Me}, 0.0108 g (0.08 mmol) of CoCl₂, 240 μ L (0.24 mmol) of NaBHEt₃, 1.2290 g (9.6 mmol) of HBpin and 10 mL (1.0 M) of THF. The reaction mixture was stirred at rt for 12 h, passed through a pad of silica gel and washed with PE, concentrated under reduced pressure. Then the residue was purified by flash column chromatography using PE as the eluent to give 1.0200 g (6.9 mmol, 85% yield) of **3a** as a white solid.

VI. Further derivatizations.

(*E*)-1-(but-2-en-2-yl)-4-methoxybenzene (4a):² Performed according to a previously reported procedure:¹⁹ To a 10 mL flame-dried Schlenk flask cooled under argon, 0.0597 g (0.25 mmol) of 2a, 0.5 mL (0.5 mmol, 1 mmol/mL in THF) of MeMgBr, 0.0186 g (0.025 mmol) of NiCl₂(PPh₃)₂ and 1 mL (0.25 M) of benzene were added in sequence. Then the mixture was stirred at 80 °C for 12 h, cooled to room temperature, passed through a pad of silica gel, washed with EA, concentrated under reduced pressure. The residue was purified by flash column chromatography using PE/EtOAc as the eluent to give 0.0357 g (0.22mmol, 88% yield, >20/1 *E/Z*) of 4a as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.30 (d, J = 8.5 Hz, 2H), 6.84 (d, J = 8.5 Hz, 2H), 5.74-5.80 (m, 1H), 3.80 (s, 3H), 2.00 (s, 3H), 1.78 (d, J = 6.5 Hz, 3H).

(*E*)-1-methoxy-4-(1-phenylprop-1-en-2-yl)benzene (4b):²⁰ Performed according to a previously reported procedure:¹⁹ To a 10 mL flame-dried Schlenk flask cooled under argon, 0.0599 g (0.25 mmol) of 2a, 0.5 mL (0.5 mmol, 1 mmol/mL in THF) of PhMgBr, 0.0328 g (0.05 mmol) of NiCl₂(PPh₃)₂ and 1 mL (0.25 M) of benzene were added in sequence. Then the mixture was stirred at 80 °C for 12 h, cooled to room temperature, passed through a pad of silica gel, washed with EA, concentrated under reduced pressure. The residue was purified by flash column chromatography using PE/EtOAc as the eluent to give 0.0400 g (0.18mmol, 71% yield, 17/1 *E/Z*) of 4b as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, J = 9.0 Hz, 2H), 7.33-7.38 (m, 4H), 6.91 (d, J = 9.0 Hz, 2H), 6.78 (s, 1H), 3.84 (s, 3H), 2.26 (s, 3H).

VII. Preliminary mechanistic studies

(a) Radical Trap Experiments:

To a 10 mL flame-dried Schlenk flask cooled under argon, 0.0034 g (0.026 mmol) of CoCl₂, 0.0164 g (0.031 mmol) of **PNP**, 1 mL of PhCl, 0.1195 g (0.5 mmol) of **1a** and 0.0898 g (0.5 mmol) of ethene-1,1-diyldibenzene were added in sequence. The mixture was stirred at room temperature for 5 minutes, then NaBHEt₃ (75 µL, 0.075 mmol)

¹⁹ Y. Nassar, F. Rodier, V. Ferey, J. Cossy, ACS Catal. 2021, 11, 5736.

²⁰ X. Hu, J. He, Z. Ying, J. Zhou, J. Yu, Chin. J. Chem. 2021, 39, 2227.

was added by dropwise. After stirring at room temperature for 1 h, the reaction was monitored by ¹H NMR (99% conv., 10/1 E/Z).

To a 10 mL flame-dried Schlenk flask cooled under argon, 0.0033 g (0.025 mmol) of CoCl₂, 0.0168 g (0.031 mmol) of PNP, 1 mL of PhCl, 0.1202 g (0.5 mmol) of **1a** and 0.0896 g (0.5 mmol) of 9,10-dihydroanthracene were added in sequence. The mixture was stirred at room temperature for 5 minutes, then NaBHEt₃ (75 μ L, 0.075 mmol) was added by dropwise. After stirring at room temperature for 1 h, After stirring at room temperature for 1 h, the reaction was monitored by ¹H NMR (99% conv., 10/1 *E/Z*).

To a 10 mL flame-dried Schlenk flask cooled under argon, 0.0032 g (0.025 mmol) of CoCl₂, 0.0164 g (0.031 mmol) of PNP, 1 mL of PhCl, 0.1205 g (0.5 mmol) of **1a** and 0.1082 g (0.49 mmol) of di-tert-butylhydroxytoluene were added in sequence. The mixture was stirred at room temperature for 5 minutes, then NaBHEt₃ (75 μ L, 0.075 mmol) was added by dropwise. After stirring at room temperature for 1 h, the reaction was monitored by ¹H NMR (99% conv., 10/1 *E/Z*).

To a 10 mL flame-dried Schlenk flask cooled under argon, 0.0036 g (0.027 mmol) of CoCl₂, 0.0134 g (0.031 mmol) of PAO^{Me}, 1 mL of THF, 0.1203 g (0.5 mmol) of **1a** and 0.0894 g (0.50 mmol) of ethene-1,1-diyldibenzene were added in sequence. The mixture was stirred at room temperature for 5 minutes, then NaBHEt₃ (75 μ L, 0.075 mmol) and HBpin (90 μ L, 0.60 mmol) was added by dropwise. After stirring at room temperature for 1 h, the reaction was monitored by ¹H NMR (99% conv.).

To a 10 mL flame-dried Schlenk flask cooled under argon, 0.0035 g (0.027 mmol) of CoCl₂, 0.0134 g (0.031 mmol) of PAO^{Me}, 1 mL of THF, 0.1208 g (0.5 mmol) of **1a** and 0.0894 g (0.50 mmol) of 9,10-dihydroanthracene were added in sequence. The mixture was stirred at room temperature for 5 minutes, then NaBHEt₃ (75 μ L, 0.075 mmol) and HBpin (90 μ L, 0.60 mmol) was added by dropwise. After stirring at room temperature for 1 h, the reaction was monitored by ¹H NMR (99% conv.).

To a 10 mL flame-dried Schlenk flask cooled under argon, 0.0032 g (0.025 mmol) of CoCl₂, 0.0141 g (0.032 mmol) of PAO^{Me}, 1 mL of THF, 0.1205 g (0.5 mmol) of **1a** and 0.1095 g (0.50 mmol) of di-tert-butylhydroxytoluene were added in sequence. The mixture was stirred at room temperature for 5 minutes, then NaBHEt₃ (75 μ L, 0.075 mmol) and HBpin (90 μ L, 0.60 mmol) was added by dropwise. After stirring at room temperature for 1 h, the reaction was monitored by ¹H NMR (99% conv.).

(b) H/D scrambling experiments:

1-methoxy-4-(3-phenoxyprop-1-en-2-yl-3,3-d2)benzene (D-1a). Prepared according to the general procedure²¹ of Witting reaction using Ph₃PMeBr and 1-(4-methoxyphenyl)-2-phenoxyethan-1-one-2,2-d2 (prepared according to a previously reported method, 100% D) as the starting materials, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.8 Hz, 2H), 7.27-7.31 (m, 2H), 6.94-6.99 (m, 3H), 6.89 (d, J = 8.8 Hz, 2H), 5.53 (s, 1H), 5.37 (s, 1H), 4.85 (s, 0.2H), 3.82 (s, 3H). ²H NMR (61 MHz, CDCl₃): δ 4.85 (s, 1.8D).

²¹ J. Zhao, B. Cheng, C. Chen, Z. Lu, Org. Lett. 2020, 22, 837.

Performed according to the general procedure using 0.0603 g (0.25 mmol) of D-1a, 0.0681 g (0.25 mmol) of 1v, 0.0043 g (0.030 mmol) of CoCl₂, 0.0179 g (0.033 mmol) of **PNP**, 75 μ L (1 M in THF, 0.075 mmol) of NaBHEt₃ and 1 mL of PhCl. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give D-(*E*)-2a (0.0550 g, 0.23 mmol, 91%) and D-(*E*)-2v (0.0621 mg, 0.23 mmol, 91%), respectively. For D-(*E*)-2a: ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.35 (m, 4H), 7.04 (d, J = 8.4 Hz, 3H), 6.88 (d, J = 8.4 Hz, 2H), 6.76 (s, 0.24H), 3.81 (s, 3H), 2.11 (s, 2.1H). ²H NMR (400 MHz, CHCl₃): δ 4.85 (s, 1.8D). ²H NMR (61 MHz, CDCl₃) δ 6.77 (s, 0.76D), 2.09 (d, J = 2.4 Hz, 0.9D). For D-(*E*)-2v: ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.35 (m, 2H), 7.05 (d, J = 8.4 Hz, 3H), 6.95 (d, J = 8.4 Hz, 1H), 6.91 (s, 1H), 6.85 (d, J = 8.3 Hz, 1H), 6.77 (s, 1H), 3.90 (s, 3H), 3.88 (s, 3H), 2.13 (s, 3H). ²H NMR (61 MHz, CDCl₃) δ 2.12 (s, 0.20D).

Prepared according to the general procedure using 0.0600 g (0.25 mmol) of D-1a, 0.0698 g (0.26 mmol) of 1v, 0.0039 g (0.030 mmol) of CoCl₂, 0.0139 g (0.032 mmol) of PAO^{Me}, 75 μ L (1 M in THF, 0.075 mmol) of NaBHEt₃ and 1 mL of THF. After 1 h, the crude reaction mixture was purified by flash column chromatography using PE as the eluent to give D-3a (0.0277 g, 0.19 mmol, 75%) and D-3q (0.0387 mg, 0.22 mmol, 87%), respectively. For D-3a: ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 5.29 (s, 0.85H), 4.99 (s, 0.85H), 3.81 (s, 3H), 2.13 (s, 2.40H). ²H NMR (61 MHz, CDCl₃) δ 5.29 (s, 0.15D), 4.99 (s, 0.15D), 2.08 (d, J = 2.0 Hz, 0.25 mmol).

0.6D). For D-**3q**: ¹H NMR (400 MHz, CDCl₃) δ 7.04 - 7.00 (m, 2H), 6.83 (d, J = 8.8 Hz, 1H), 5.29 (s, 0.84H), 5.01 (s, 0.84H), 3.91 (s, 3H), 3.89 (s, 3H), 2.14 (s, 2.40H). ²H NMR (61 MHz, CDCl₃) δ 5.32 (s, 0.16D), 5.04 (s, 0.16D), 2.12 (s, 0.6D).

VIII. NMR Spectra

1b ¹H NMR 500 MHz CDCl₃

1.506

2.341

S37

1.522

CDCl₃

\$57

500 MHz CDCl₃

¹H NMR 500 MHz CDCl₃

--0.000

CDCl₃

4.842

---0.000

S74

1.531

S84

5.000

1.500

S100

Г

2.01

S109

S122

MeO 2m ¹H NMR 500 MHz CDCl₃

— 2.038

BnO OPh 2n ¹H NMR 400 MHz CDCl₃

S128

1

S137

...... 3.942

2.236

0.103 0.033

S146

Г

S152

Г

S181

S184

