Supplementary Information

Terpenoids from *Penicillium chrysogenum* MT-40, an Endophytic Fungus Isolated from *Huperzia* serrata

Fangfang Jia,^{‡a} Mingliang Zhang,^{‡a} Jiangping Fan,^a Yang Wang,^a Xiangyu Ge,^a Xinyu Mi,^a Xiao Liu,^a Juan Wang,^{a,b} Peng-Fei Tu^c and She-Po Shi^{*a}

- ^a Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine,
 Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
- ^b State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
- ^c State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, People's Republic of China

*To whom correspondence should be addressed: Tel/Fax: 86-10-64286350, E-mail: shishepo@163.com

CONTENT

The NMR, HRESIMS, UV and IR Spectra of Compounds 1–5

Fig. S	¹ H NMR spectrum of compound 11
Fig. S	¹³ C NMR spectrum of compound 11
Fig. S	¹ H- ¹ H COSY spectrum of compound 12
Fig. S	gHSQC spectrum of compound 12
Fig. S	5 HMBC spectrum of compound 1
Fig. S	NOESY spectrum of compound 1
Fig. S	HRESIMS spectrum of compound 14
Fig. S	UV (MeOH) spectrum of compound 15
Fig. S	IR spectrum of compound 1
Fig. S	0 ¹ H NMR spectrum of compound 2
Fig. S	1 ¹³ C NMR spectrum of compound 2
Fig. S	2 1H-1H COSY spectrum of compound 27
Fig. S	3 gHSQC spectrum of compound 27
Fig. S	4 gHMBC spectrum of compound 2
Fig. S	5 NOESY spectrum of compound 2
Fig. S	6 HRESIMS spectrum of compound 29
Fig. S	7 UV (MeOH) spectrum of compound 210
Fig. S	8 IR spectrum of compound 210
Fig. S	9 ¹ H NMR spectrum of compound 311
Fig. S	¹³ C NMR spectrum of compound 311
Fig. S	¹ H- ¹ H COSY spectrum of compound 312
Fig. S	2 gHSQC spectrum of compound 312
Fig. S	3 gHMBC spectrum of compound 313
Fig. S	4 NOESY spectrum of compound 313
Fig. S	5 HRESIMS spectrum of compound 314
Fig. S	6 UV (MeOH) spectrum of compound 315
Fig. S	7 IR spectrum of compound 315
Fig. S	¹ H NMR spectrum of compound 416
Fig. S	9 ¹³ C NMR spectrum of compound 416
Fig. S	$1 H^{-1}H COSY spectrum of compound 417$
Fig. S	1 gHSQC spectrum of compound 417
Fig. S	2 gHMBC spectrum of compound 418
Fig. S	3 NOESY spectrum of compound 418
Fig. S	4 HRESIMS spectrum of compound 419
Fig. S	5 UV (MeOH) spectrum of compound 420
Fig. S	6 IR spectrum of compound 420
Fig. S	7 ¹ H NMR spectrum of compound 521
Fig. S	8 ¹³ C NMR spectrum of compound 521

ECD calculation of compounds 2-4

Table S1	and S2	Cartesian	Coordinates	and I	Energies	of (3 <i>R</i> ,	5 <i>R</i> ,	8 <i>R</i> ,	9 <i>S</i> ,	10 <i>S</i> ,	14 <i>S</i>)-2	22
Table S3	and S4	Cartesian	Coordinates	and I	Energies	of (3 <i>R</i> ,	5 <i>R</i> ,	8 <i>S</i> ,	10 <i>S</i>)-3	•••••	23
Table S5	and S6	Cartesian	Coordinates	and l	Energies	of (3 <i>R</i> ,	5 <i>R</i> ,	105	5)-4.	••••••	•••••	24

Fig. S2 $^{\rm 13}C$ NMR spectrum of compound 1 (in CDCl_3, 125 MHz)

Fig. S4 gHSQC spectrum of compound 1

Fig. S7 HRESIMS spectrum of compound 1

Fig. S8 UV spectrum of compound 1

Fig. S9 IR spectrum of compound 1

Fig. S11 ¹³C NMR spectrum of compound 2 (in CDCl₃, 125 MHz)

Fig. S16 HRESIMS spectrum of compound 2

Fig. S18 IR spectrum of compound 2

Fig. S20¹³C NMR spectrum of compound 3 (in CDCl₃, 125 MHz)

Fig. S25 HRESIMS spectrum of compound 3

Fig. S27 IR spectrum of compound 3

Fig. S29 ¹³C NMR spectrum of compound 4 (in CDCl₃, 125 MHz)

Fig. S31 gHSQC spectrum of compound 4

Fig. S33NOESY spectrum of compound 4

Fig. S34 HRESIMS spectrum of compound 4

Fig. S36 IR spectrum of compound 4

Fig. S37 ¹H NMR spectrum of compound 5 (in Methanol-*d*₄, 500 MHz)

Fig. S38 ¹³C NMR spectrum of compound 5 (in Methanol-d₄, 125 MHz)

Table S1 Optimized geometries of predominant conformers for (*3R*, *5R*, *8R*, *9S*, *10S*, *14S*)-**2** at the B3LYP/6-31G(d) level, and Boltzmann distribution of conformers of (*3R*, *5R*, *8R*, *9S*, *10S*, *14S*)-**2** Cartesian Coordinates and Energies of Computed Structures.

Conformer	Structure	G (Hartree)	H (Hartree)	ΔG (cal/mol)	Proportion (%)
2-1	and the second sec	-1344.543043	-843713.533	0	89.21
2-2		-1344.541050	-843712.282	2.112206615	10.79

Table S2 Cartesian Coordinates and Energies of (3*R*, 5*R*, 8*R*, 9*S*, 10*S*, 14*S*)-2Sum of electronic and thermal Free Energies=-1344.543043

С	-1.161557	-1.78162	-0.903643	Н	-1.441249	-2.840265	-0.881766
С	0.347106	-1.675936	-0.654603	Н	-1.408115	-1.419461	-1.908427
С	0.857761	-0.212911	-0.699228	Н	0.886501	-2.260449	-1.409111
С	-0.008325	0.682367	0.249305	Н	0.571563	-2.140065	0.311825
С	2.770396	1.370615	-0.016985	Н	-0.296513	2.907573	0.244543
С	1.752148	2.442731	0.078307	Н	2.876813	4.109593	0.879715
С	0.448499	2.122739	0.183744	Η	2.731395	4.118603	-0.878245
С	2.2187	-0.064345	0.096672	Н	1.33539	4.553326	0.124148
С	2.196243	3.883549	0.049869	Н	4.445175	2.660278	-0.150115
С	4.082131	1.639009	-0.117535	Н	4.831784	0.860836	-0.186446
С	0.977268	0.239737	-2.161305	Η	0.046096	0.066009	-2.703069
0	0.414063	0.173763	1.588884	Н	1.217592	1.298795	-2.254204
С	1.718173	-0.181086	1.552559	Η	1.769668	-0.339114	-2.645343
0	2.331734	-0.471307	2.550607	Η	-4.205609	0.607041	2.260354
С	-3.740324	1.06471	1.383504	Η	-4.155544	2.073173	1.291394
С	-4.101787	0.287429	0.12139	Н	-5.178057	0.289765	-0.06346
С	-3.533266	-1.149284	0.064264	Н	-1.658214	-1.434503	1.13654
С	-1.959363	-1.020782	0.16665	Н	-1.853824	2.131353	1.664982
С	-1.547702	0.494343	0.224457	Н	-1.856288	0.521444	2.365107
С	-2.200749	1.106251	1.509912	Η	-3.667378	-2.833145	-1.33613
С	-4.029228	-1.805144	-1.243364	Н	-5.12487	-1.842839	-1.23763
0	-3.539299	1.040083	-1.003301	Н	-3.722862	-1.25164	-2.13482
С	-2.197366	1.190985	-0.969142	Н	-5.167562	-2.012174	1.240823
0	-1.644474	1.834592	-1.838643	Η	-3.712248	-3.016361	1.161744
С	-4.071294	-1.984174	1.243497	Н	-3.742232	-1.597207	2.213087
С	3.211267	-1.143757	-0.334196	Н	5.100052	-2.979601	0.023897
0	3.869012	-1.08366	-1.355358	Η	3.938444	-4.05528	0.868134
0	3.215215	-2.202853	0.484279	Η	3.73851	-3.698997	-0.879358
С	4.059866	-3.305695	0.087556				

Table S3 Optimized geometries of predominant conformers for (3R, 5R, 8S, 10S)-**3** at the B3LYP/6-31G(d) level, and Boltzmann distribution of conformers of (3R, 5R, 8S, 10S)-**3**.

Conformer	Structure	G (Hartree)	H (Hartree)	ΔG (cal/mol)	Proportion (%)
3-1		-1191.940593	-747954.0455	0	91.31
3-2		-1191.938374	-747952.6531	2.351724274	8.69

Table S4 Cartesian Coordinates and Energies of (3*R*, 5*R*, 8*S*, 10*S*)-3Sum of electronic and thermal Free Energies= -1191.940593

С	-0.03275	0.884848	-0.0106	С	-4.81126	-2.57811	-0.87623
С	-0.97085	-0.22493	0.461722	Н	-1.19085	-2.37448	0.217738
С	-0.56795	-1.57458	-0.19762	Н	-0.78244	-1.52449	-1.273
С	0.904353	-1.91345	0.017152	Н	1.104739	-2.05163	1.084197
С	-0.53718	2.091485	-0.33587	Н	1.119364	-2.87577	-0.46232
С	-1.96897	2.405057	-0.36024	Н	0.092528	2.923464	-0.62774
С	-2.92231	1.281094	-0.19815	Н	4.020779	0.98113	-2.1738
0	-2.36553	3.555485	-0.57239	Н	4.268963	2.202465	-0.93554
С	-2.43529	0.06754	0.135757	Н	5.106601	0.106543	-0.00786
С	3.700225	1.300212	-1.1789	Н	2.017852	2.624621	-0.84394
С	4.029939	0.22242	-0.14991	Н	1.708087	1.43829	-2.1065
С	3.358048	-1.13715	-0.4317	Н	3.442646	-2.73031	-1.90872
С	1.817879	-0.84344	-0.58737	Н	4.994343	-1.91899	-1.65736
С	1.480439	0.622348	-0.10451	Н	3.719151	-1.13227	-2.60796
С	2.179714	1.58387	-1.13019	Н	-1.18501	0.600532	2.48378
С	3.912393	-1.75651	-1.73001	Н	-1.55514	-1.13323	2.36374
0	3.543585	0.709986	1.142442	Н	0.130502	-0.56483	2.350491
С	2.209001	0.918743	1.213136	Н	-4.65579	2.470345	0.196503
0	1.724183	1.356493	2.23587	Н	-4.53663	1.921613	-1.4673
Η	1.597302	-0.82719	-1.6631	Н	-5.03958	0.782319	-0.20441
С	-0.88417	-0.34302	2.021323	Н	4.791711	-2.19857	0.805753
С	-3.38428	-1.09455	0.288783	Н	3.33649	-1.74659	1.697259
С	-4.37214	1.616196	-0.4272	Н	3.292611	-3.0958	0.550388
С	3.702708	-2.09766	0.729107	Н	-5.10283	-2.73177	-1.91423
0	-3.65556	-1.64789	1.337965	Н	-4.31854	-3.46788	-0.47811
0	-3.88918	-1.46459	-0.89959	Н	-5.68213	-2.33585	-0.26322

Table S5 Optimized geometries of predominant conformers for (3R, 5R, 10S)-4 at the B3LYP/6-31G(d) level, and Boltzmann distribution of conformers of (3R, 5R, 10S)-4.

Conformer	Structure	G (Hartree)	H (Hartree)	ΔG (cal/mol)	Proportion (%)
4-1		-809.215542	-507790.4402	0	61.38
4-2		-809.215105	-507790.1659	0.463138129	38.62

Table S6 Cartesian Coordinates and Energies of (3*R*, 5*R*, 10*S*)-4Sum of electronic and thermal Free Energies=-809.215542

С	1.751874	-0.13936	-0.20259	Н	1.406431	2.848276	-1.00337
С	2.300934	1.106536	-0.17106	Н	1.966392	3.04628	0.640314
С	1.447217	2.343567	-0.02505	Η	0.075624	1.789868	1.545607
С	0.034592	2.065967	0.484841	Н	-0.56435	2.98022	0.414637
С	3.774192	1.42888	-0.25646	Η	4.405461	0.624917	-0.63306
С	-1.70928	-1.57094	-1.33546	Н	3.91072	2.296396	-0.91356
С	-2.2691	-0.89247	-0.08643	Н	4.14898	1.727719	0.731533
С	-2.11811	0.648284	-0.07892	Η	-2.24498	-1.22507	-2.22384
С	-0.5934	0.943274	-0.343	Н	-1.89337	-2.64683	-1.25321
С	0.243455	-0.37934	-0.21661	Η	-3.30432	-1.18335	0.106891
С	-0.19167	-1.27802	-1.42245	Н	0.382339	-2.2028	-1.41403
С	-2.98057	1.278839	-1.18927	Н	0.059155	-0.73886	-2.34205
0	-1.52276	-1.41643	1.058399	Η	-2.68784	0.940169	-2.18817
С	-0.21006	-1.07867	1.067023	Н	-2.8776	2.369842	-1.16823
0	0.464514	-1.31605	2.047634	Η	-4.04184	1.042866	-1.04586
Η	-0.49829	1.240343	-1.39611	Η	3.710436	-1.12026	-0.16038
С	2.626198	-1.32448	-0.184	Η	-2.60251	2.278979	1.299672
С	-2.6294	1.185396	1.27679	Η	-3.67173	0.878878	1.424376
0	2.247375	-2.49081	-0.16268	Η	-2.05299	0.813843	2.127807