Supporting Information

In situ fluorescence visualizing of temperature-dependent

photoreaction process of pyridazine N-oxide

Jianye Gong,^{‡a} Junyi Gong,^{‡b} Yumao He,^a Chunbin Li,^a Bo Yang,^a Lingxiu Liu,^a Guoyu Jiang,^{*a} and Jianguo Wang^{*a}

^aCollege of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China. E-mail: jiangguoyu@mail.ipc.ac.cn; wangjg@iccas.ac.cn

^bSchool of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China.

Table of Contents

1. Materials and instruments	S3
2. Theoretical calculations	S3
3. Synthesis and characterization	S4
4. Supplementary Figures	S6
5. Reference	S17

1. Materials and instruments

N,N-diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline were purchased from Soochiral chemistry. 3,6-Dichloropyridazine and morpholine were purchased from Innochem. All other chemicals and reagents were purchased from Admas-beta® and used directly without further purification. ¹H and ¹³C NMR spectra were recorded with a Bruker ARX 500 NMR spectrometer using tetramethylsilane (TMS) as a reference. High resolution mass spectra (HRMS) were measured with a LCMS9030 spectrometer. UV-vis absorption spectra were recorded on a SHIMADZU UV-2600i spectrophotometer. Photoluminescence (PL) spectra were recorded on a HITACHI F-4700 fluorescence spectrophotometer. The absolute fluorescence quantum yield was measured using a Hamamatsu quantum yield spectrometer C11347-11 Quantaurus QY. Single crystal X-ray diffraction was performed on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu Kα radiation. The data were collected and processed using CrysAlisPro.

2. Theoretical calculations

In calculation of Gibbs free energy, the theoretical ground-state geometry and electronic structure of molecules were optimized using the density functional theory (DFT) at B3LYP/def2-SVP with program ORCA¹. The HOMO and LUMO electron cloud distribution of MPZ and MPD-O in crystal were calculated at the level of B3LYP/6-311+G(d). The geometry of *trans*-MDO was optimized using B3LYP/6-311+G(d). All the theoretical calculations were performed using Gaussian 09 package.

3. Synthesis and characterization

Synthesis of MPD-O: MPD-O was synthesized according to the literature method. ² Photosynthesis of MPZ: To a 50 mL round-bottom flask was added MPD-O (106 mg, 0.25 mmol) dissolved in THF (5 mL). The resulting solution was stirred under irradiation from a 365 nm hand-held UV lamp for 3 h at room temperature for complete reaction. The resulting solution was concentrated under reduced pressure. The yellow residue was washed with CH₂Cl₂ (3 mL). The resulting suspension was filtered to afford the title compound (81 mg, 76% yield) as a colorless powder. ¹H NMR (500 MHz, CDCl₃), δ (ppm): 7.54 (d, *J* = 8.5 Hz, 2H), 7.30 (t, *J* = 8.4 Hz, 4H), 7.13 (t, *J* = 7.6 Hz, 6H), 7.08 (t, *J* = 7.4 Hz, 2H), 6.93 (s, 1H), 4.06 (s, 2H), 3.84 (s, 2H), 3.79 (s, 4H); ¹³C NMR (126 MHz, CDCl₃), δ (ppm): 161.75, 148.37, 147.31, 146.95, 129.41, 126.48, 124.79, 123.67, 123.44, 123.20, 104.18, 66.95, 47.59, 42.94; HRMS (ESI): *m/z*: [M+H]⁺ calcd for [C₂₆H₂₅N₄O₂]⁺: 425.19775; found: 425.19720.

Photosynthesis of *trans-***MDO:** To a 50 mL round-bottom flask was added MPD-O (43 mg, 0.1 mmol) dissolved in freshly distilled THF (5 mL). The resulting solution was stirred under irradiation from a 365 nm hand-held UV lamp for 4 d at -40 °C for complete reaction. The resulting solution was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate (*v*:*v*, 1:1) as an eluent to afford the title compound (26 mg, 63% yield) as a yellow powder. ¹H NMR (500 MHz, THF-*d*₈), δ (ppm): 7.92 – 7.88 (m, 3H), 7.44 (d, *J* = 14.9 Hz, 1H), 7.32 (t, *J* = 8.4 Hz, 4H), 7.16 – 7.12 (m, 6H), 6.99 (d, *J* = 8.9 Hz, 2H), 3.61 (s, 8H); ¹³C NMR (126 MHz, THF-*d*₈), δ (ppm): 184.12, 161.43, 150.57, 144.65, 132.00, 129.17, 128.31, 127.98, 127.65, 124.14, 122.81, 117.51, 44.23, 40.34; HRMS (ESI): *m/z*: [M+H]⁺ calcd for [C₂₆H₂₅N₂O₃]⁺: 413.18652; found: 413.18597. *cis*-MDO: ¹H NMR (500 MHz, CDCl₃), δ (ppm): 7.82 (d, *J* = 9.0 Hz, 2H), 7.35 (t, *J* = 7.7 Hz, 4H), 7.19 – 7.17 (m, 6H), 7.00 (t, *J* = 8.8 Hz, 2H), 6.52 (d, *J* = 12.0 Hz, 1H), 3.76 (s, 2H), 3.71 (s, 4H), 3.49 (s, 2H); HRMS (ESI): *m/z*: [M+H]⁺ calcd for [C₂₆H₂₅N₂O₃]⁺: 413.18652; found: 413.18597.

Photosynthesis of MF: Following same procedure of trans-MDO, but resulting

solution was stirred under an atmosphere of N₂ and irradiated for 40 h at -40 °C. ¹H NMR (500 MHz, CDCl₃), δ (ppm): 7.44 (d, J = 8.5 Hz, 2H), 7.29 – 7.26 (m, 4H), 7.13 (d, J = 7.7 Hz, 4H), 7.08 (d, J = 8.7 Hz, 2H), 7.04 (t, J = 7.4 Hz, 2H), 6.48 (d, J = 3.3 Hz, 1H), 5.29 (d, J = 2.8 Hz, 1H), 3.88 (t, J = 4.8 Hz, 4H), 3.20 (t, J = 4.3 Hz, 4H); HRMS (ESI): m/z: [M+H]⁺ calcd for [C₂₆H₂₅N₂O₂]⁺: 397.19160; found: 397.19105.

4. Supplementary Figures

	$\lambda_{abs}(nm)$	$\lambda_{em}(nm)$		$arPsi_{ m f}^{ m a}(\%)$			$\tau_{\rm f}({\rm ns})$	$k_{\rm f,r}^{\rm c} ({\rm s}^{-1})$
	Solution	Solution	Solid	Solution	Solid	$\alpha_{AIE}{}^{b}$	Solution	Solution
MPD-O	388	464	464	1.1	0.8	0.73	0.67	1.64×10^{7}
MPZ	324	391	407	33.1	9.2	0.28	1.72	1.92×10^{8}
trans-MDO	392	578	547	5.3	11.8	2.23	1.48	3.58 × 10 ⁷

Table S1. Photophysical Properties of MPD-O, MPZ and trans-MDO.

^a $\Phi_{\rm f}$ = fluorescence quantum yield measured by using an integrating sphere

^b $\alpha_{AIE} = \Phi_{f,solid} / \Phi_{f,solution}$

$$k_{\rm f,r} = \Phi_{\rm f}/\tau_{\rm f}$$

Figure S1. PL spectra of MPD-O in THF/water mixtures with different water fractions (f_w).

Figure S2. (A) The torsion angles in the MPD-O single crystal. (B) The distance between the two adjacent pyridazine *N*-oxide rings. (C) Intermolecular interactions of MPD-O.

Figure S3. Normalized PL spectra of MPD-O in different solvents.

Figure S4. (A) PL spectra of MPD-O after different time of UV irradiation by the xenon lamp of the fluorescence spectrometer at room temperature. (B) Plot of the PL intensity at 395 nm versus irradiation time.

Figure S5. ¹H NMR spectrum of MPZ in CDCl₃.

Figure S6. ¹³C NMR spectrum of MPZ in CDCl₃.

Figure S7. HRMS spectrum of MPZ.

Figure S8. Single structure of MPZ.

Figure S9. (A) Molar extinction coefficient of MPZ in THF (30 μ M). (B) Normalized PL spectra of MPZ, MPD-O and MPD-O after UV irradiation 600 min.

Name	MPZ		
Empirical formula	$C_{26}H_{24}N_4O_2$		
Formula weight	424.49		
Temperature (K)	100.0(3)		
Wavelength (Å)	1.54184		
Crystal system	monoclinic		
Space group	P2 ₁ /c		
a (Å)	21.4658(15)		
b (Å)	11.4890(6)		
c (Å)	8.7489(5)		
α (°)	90		
β (°)	95.255(6)		
γ (°)	90		
Volume (Å ³)	2148.6(2)		
Ζ	4		
20 range for data collection (°)	4.134 to 146.896		
Index ranges	$-26 \le h \le 25, -14 \le k \le 9, -10 \le l \le 8$		
CCDC Number	2210453		

 Table S2. Crystallographic and structural refinement data of MPZ.

_

_

Figure S10. ¹H NMR spectrum of MPD-O in THF- d_8 at different time of UV irradiation by a hand-held UV lamp at room temperature.

Figure S11. (A) UV-vis absorption spectra of MPD-O in THF at different irradiation time points. (B) The functional relationship between the absorbance ratio (A_{324}/A_{388}) and the molar ratio of product (M_{pro}) versus reactant (M_{rea}) calculated from ¹H NMR data. Y = 7.411- 6.33/(1 + (X/2.61)^{0.85}), R² = 0.997.

Table S3. The molar ratio of the reaction product (M_{pro}) to the reactant (M_{rea}) was calculated based on ¹H NMR at different reaction times. M_{pro}/M_{rea} = integral of 7.649 – 7.563 ppm of product / integral of 7.839 – 7.800 ppm of reactant.

Time (min)	0	2.5	5	10	15	20	25	30	40	50
M _{pro} /M _{rea}	0	0.005	0.135	0.405	0.870	1.745	2.940	4.805	7.570	9.015

Figure S12. (A) Photostability of MPZ in THF. (B) Plot of the relative emission intensity (I/I_0) versus irradiation time.

Table S4. The corresponding CIE coordinates of MPD-O at different time in the photoreaction at low temperature of -40 °C.

Time (min)	CIE coordinate	Time (min)	CIE coordinate
0	(0.186, 0.203)	12	(0.193, 0.173)
2	(0.158, 0.041)	14	(0.205, 0.216)
4	(0.160, 0.053)	16	(0.219, 0.267)
6	(0.164, 0.068)	18	(0.232, 0.306)
8	(0.170, 0.091)	20	(0.242, 0.338)
10	(0.177, 0.116)	22	(0.247, 0.354)

$\begin{array}{c} 7.45\\ 7.29\\ 7.28\\ 7.28\\ 7.26\\ 7.28\\ 7.26\\ 7.26\\ 6.47\\ 6.47\\ 6.47\\ 6.47\\ 8.88\\ 3.89\\ 3.89\\ 3.20\\ 3.20\\ \end{array}$

Figure S13. ¹H NMR spectrum of MF in CDCl₃.

Figure S14. HRMS spectrum of MF.

Figure S15. ¹H NMR spectrum of *trans*-MDO in THF-*d*₈.

Figure S16. ¹³C NMR spectrum of *trans*-MDO in THF- d_8 .

Figure S17. HRMS spectrum of *trans*-MDO.

Figure S18. (A) Molar extinction coefficient and PL spectra of MF (30 μ M) in THF. Inset: the structure of MF. (B) Normalized PL spectra of MF and MPD-O after UV irradiation of 4 min.

Figure S19. (A) Photostability of *trans*-MDO in THF. (B) Plot of the relative emission intensity (I/I_0) versus irradiation time.

Figure S20. ¹H NMR spectrum of *cis*-MDO in CDCl₃.

Figure S21. HRMS spectrum of *cis*-MDO.

Figure S22. Molar extinction coefficient and PL spectra of *trans*-MDO (30 μ M) in THF solution.

Figure S23. ¹H NMR spectra of MPD-O in THF- d_8 at different time of UV irradiation by a hand-held UV lamp at -40 °C.

Figure S24. PL spectra of MPZ (A) and *trans*-MDO (C) in THF/water mixtures with different water fractions (f_w). Plot of maximal emission wavelength and PL intensity of MPZ (B) and *trans*-MDO (D) versus the water fraction in the THF/water mixtures.

Figure S25. Normalized PL spectra of MPZ (A) and *trans*-MDO (B) in different solvents.

Figure S26. The HOMO and LUMO electron cloud distribution of MPZ, MPD-O, and *trans*-MDO.

5. Reference

 F. Neese, The ORCA program system. *Wiley Interdiscip. Rev.: Comput. Mol. Sci.* 2012, 2, 73.
 J. Gong, L. Liu, C. Li, Y. He, J. Yu, Y. Zhang, L. Feng, G. Jiang, J. Wang and B. Z. Tang, Oxidization enhances type I ROS generation of AIE-active zwitterionic photosensitizers for photodynamic killing of drug-resistant bacteria, *Chem. Sci.*, 2023, 14, 4863-4871.