Supporting Information

Photocatalytic Dehydrogenated Oxidation/Amination of 2-Alkyl

Benzamides under Transition-Metal-Free Conditions

Yushen Yu,^a Zhihui Liang,^a Lele Zhang,^b Yuhan Lin,^a Min Liu,^a Shanshan Wang,^a Mingqiang Huang,^a Lina Cai^a and Shunyou Cai^{*a,b}

^a Fujian Provincial Key Laboratory of Modern Analytical Science and Separation

Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.

^b Guangdong Provincial Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.

E-mail: caishy05@mnnu.edu.cn

Table of Contents

(113 Pages)

Materials and methods	S2
General procedure for isoindolinone synthesis	S3
¹ H, ¹³ C and ¹⁹ F spectra data of compounds 2a-2s, 4a-4y	S4
Late-stage diversification of substances derived from natural products and drugs	S24
¹ H and ¹³ C spectra data of compounds 5-16	S24
Illustrative synthetic transformations	S31
¹ H and ¹³ C spectra data of compounds 17-20	S 31
Synthesis of anticancer agent III NU8231	S33
¹ H and ¹³ C spectra data of compounds 24 and 26	S33
Experiments on reaction mechanism	S34
¹ H, ¹³ C and ¹⁹ F spectra data of compounds 27-30	S34
UV-Vis absorption experiments	S37
Fluorescence quenching experiments	S38
CV curve of the substrate 1a	S41
EPR experiments	S42
Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra	S44

Materials and methods

All the chemicals were purchased commercially, and used without further purification. Thin-layer chromatography (TLC) was conducted with 0.25 mm Tsingdao silica gel plates (60F-254) and visualized by exposure to UV light (254 nm) or stained with potassium permanganate. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. ¹H NMR spectra were recorded on JEOL spectrometers (at 400 MHz) and were reported relative to deuterated solvent signals. Data for ¹H NMR spectra were reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. ¹³C NMR spectra were reported in terms of chemical shift. Mass spectrometric data were obtained using Bruker Apex IV RTMS. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad.

General procedure for isoindolinone synthesis

A flame-dried reaction tube was equipped with magnetic stir bar and charged with 2-ethyl-*N*-phenylbenzamide **1** or **3** (0.13 mmol, 1.0 equiv), Eosin Y (0.0067 mmol, 0.05 equiv), *n*Bu₄NBr (0.04 mmol, 0.3 equiv) and MeCN (3.0 mL). The reaction mixture was irradiated by blue LEDs (12 W, wavelength 450 nm) under a balloon oxygen atmosphere at room temperature until the starting material disappeared from the TLC. After that, the reaction mixture was directly concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography using hexane/EtOAc (v/v = 2/1) to afford the desired pure product **2** or **4** in 53-92% yields.

¹H, ¹³C and ¹⁹F spectra data of compounds 2a-2s, 4a-4y

3-hydroxy-3-methyl-2-phenylisoindolin-1-one (2a): ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.59 (m, 3H), 7.49-7.47 (m, 2H), 7.44-7.41 (m, 1H), 7.39-7.36 (m, 1H), 7.33-7.29 (m, 1H), 3.68 (s, 1H), 1.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 147.9, 135.4, 132.9, 130.1, 129.8, 129.2, 129.0, 127.2, 123.8, 121.8, 90.5, 24.4. These data are consistent with literature values, see: Kanako Nozawa-Kumada, Yuta Matsuzawa, Kanako Ono, Masanori Shigeno and Yoshinori Kondo. *Chem. Commun.* **2021**, *57*, 8604. (White solid, 29.3 mg, 92% isolated yield)

3-hydroxy-3-methyl-2-(p-tolyl)isoindolin-1-one (2b): ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.67 (d, *J* = 7.6 Hz, 1H), 7.62-7.60 (m, 2H), 7.47-7.43 (m, 1H), 7.37-7.34 (d, *J* = 8.8 Hz, 2H), 7.21-7.19 (d, J = 8.4 Hz, 2H), 3.27 (s, 1H), 2.39 (s, 3H), 1.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 147.8, 137.3, 132.9, 132.6, 130.3, 129.8, 129.7, 127.3, 123.9, 121.8, 90.3, 24.5, 21.2; HRMS calculated for C₁₉H₁₆NO₂ (M + H⁺): 254.1182, found: 254.1176. (Yellow solid, 22.2 mg, 70% isolated yield)

2-(4-(tert-butyl)phenyl)-3-hydroxy-3-methylisoindolin-1-one (**2c**): ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.56 (d, *J* =4.4 Hz, 2H), 7.53-7.51 (d, *J* = 7.6 Hz, 1H), 7.39-7.36 (m, 5H),3.90 (s, 1H), 1.59 (s, 3H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 150.1, 148.0, 132.8, 132.5, 130.2, 129.6, 126.8, 126.0, 123.7, 121.7, 90.4, 34.7, 31.5, 24.5; HRMS calculated for C₁₉H₂₂NO₂ (M + H⁺): 296.1651, found: 296.1645. (White solid, 28.6 mg, 91% isolated yield)

4-hydroxy-2-(4-methoxyphenyl)-3-methylisoindolin-1-one (2d): ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.57 (d, J = 3.6 Hz, 2H), 7.49-7.47 (d, J = 8.0 Hz, 1H), 7.39-7.36 (m, 1H), 7.33-7.31 (d, J = 8.8 Hz, 2H), 6.88-6.86 (d, J = 9.6 Hz, 2H), 3.82 (s, 3H), 1.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 158.7, 147.9, 132.7, 130.2, 129.7, 128.8, 127.8, 123.6, 121.8, 114.3, 90.3, 55.5, 24.5; HRMS calculated for C₁₆H₁₆NO₃ (M + H⁺): 270.1130, found: 270.1125. (White solid, 27.5 mg, 87% isolated yield)

3-hydroxy-3-methyl-2-(4-(trifluoromethoxy)phenyl)isoindolin-1-one (2e): ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.60 (m, 2H), 7.59-7.55 (m, 2H), 7.50-7.48 (d, *J* = 7.2 Hz, 1H), 7.40-7.36 (m, 1H), 7.20-7.18 (m, 2H), 3.94 (s, 1H), 1.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 147.8, 147.6, 134.1, 133.2, 129.9, 129.6, 127.9, 127.7, 123.8, 121.9, 121.8, 121.4, 90.8, 24.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.8; HRMS calculated for C₁₆H₁₃F₃NO₃ (M + H⁺): 324.0848, found: 324.0842. (White solid, 27.6 mg, 88% isolated yield)

2-([1,1'-biphenyl]-4-yl)-3-hydroxy-3-methylisoindolin-1-one (2f): ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.61 (m, 2H), 7.59-7.58 (m, 1H), 7.57-7.54 (m, 4H), 7.53-7.51 (m, 2H), 7.43-7.38 (m, 3H), 7.37-7.35 (m, 1H), 3.84 (s, 1H), 1.65 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 148.0, 140.5, 139.8, 134.7, 133.0, 130.0, 129.8, 128.9, 127.8, 127.6, 127.4, 127.1, 127.0, 123.7, 121.8, 90.7, 24.4; HRMS calculated for C₂₁H₁₇NO₂Na (M + Na⁺): 338.1157, found: 338.1152. (Yellow oil, 23.5 mg, 75% isolated yield)

2-([1,1'-biphenyl]-2-yl)-3-hydroxy-3-methylisoindolin-1-one (2g): ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.63 (m, 3H), 7.62-7.60 (m, 4H), 7.58-7.56 (m, 2H), 7.48-7.41 (m, 3H), 7.38-7.34 (m, 1H), 1.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 152.5, 150.4, 147.9, 140.6, 140.0, 134.7, 133.0, 130.2, 130.0, 128.9, 127.7, 127.5, 127.2, 127.1, 123.9,

121.8, 90.6, 24.4; HRMS calculated for $C_{21}H_{17}NO_2Na$ (M + Na⁺): 338.1157, found: 338.1152. (Yellow oil, 24.2 mg, 77% isolated yield)

3-hydroxy-3-methyl-2-(naphthalen-2-yl)isoindolin-1-one (2h): ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.90 (d, J = 2.0 Hz, 1H), 7.76-7.73 (d, J = 8.4 Hz, 1H), 7.65-7.63 (d, J = 8.8 Hz, 1H), 7.60-7.51 (m, 4H), 7.46-7.40 (m, 2H), 7.37-7.30 (m, 2H), 4.34 (s, 1H), 1.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 148.1, 133.4, 133.0, 132.2, 130.0, 129.7, 128.5, 128.2, 127.5, 126.1, 126.0, 125.0, 124.9, 123.6, 121.8, 90.9, 24.4; HRMS calculated for C₁₉H₁₅NO₂Na (M + Na⁺): 312.1000, found: 312.0095. (White solid, 24.9 mg, 79% isolated yield)

3-hydroxy-3-methyl-2-(4-(trifluoromethyl)phenyl)isoindolin-1-one (2i): ¹H NMR (400 MHz, *d*6-DMSO) δ 7.89-7.87 (d, *J* = 8.4 Hz, 2H), 7.82-7.80 (d, *J* = 8.8 Hz, 2H), 7.76-7.74 (d, *J* = 7.6 Hz, 1H), 7.71-7.70 (d, *J* = 3.6 Hz, 2H), 7.58-7.54 (m, 1H), 7.01 (s, 1H), 1.56 (s, 3H); ¹³C NMR (100 MHz, *d*6-DMSO) δ 166.1, 149.3, 140.8, 133.8, 130.1, 130.0, 127.1, 126.9, 126.3, 126.2, 123.6, 122.8, 90.8, 25.1; ¹⁹F NMR (376 MHz, *d*6-DMSO) δ -60.7; HRMS calculated for C₁₆H₁₂F₃NO₂Na (M + Na⁺): 330.0718, found: 330.0712. (White solid, 28.0 mg, 89% isolated yield)

3-hydroxy-3-methyl-2-(4-nitrophenyl)isoindolin-1-one (2j): ¹H NMR (400 MHz, *d*6-DMSO) δ 8.33-8.29 (m, 2H), 8.07-8.03 (m, 2H), 7.78-7.76 (d, *J* = 7.2 Hz, 1H), 7.74-7.71 (m, 2H), 7.60-7.56 (m, 1H), 1.61 (s, 3H); ¹³C NMR (100 MHz, *d*6-DMSO) δ 166.2, 149.3, 144.8, 143.6, 134.1, 130.2, 129.7, 125.5, 124.8, 123.8, 122.8, 91.3, 25.0; HRMS calculated for C₁₅H₁₁N₂O₄ (M - H⁺): 283.0719, found: 283.0724. (Yellow solid, 26.2 mg, 83% isolated yield)

3-hydroxy-3-methyl-2-(4-(methylsulfonyl)phenyl)isoindolin-1-one (**2k**): ¹H NMR (400 MHz, *d*6-DMSO) δ 8.00-7.93 (m, 4H), 7.77-7.75 (d, *J* = 8.0 Hz, 1H), 7.72-7.71 (d, *J* = 3.6 Hz, 1H), 7.59-7.55 (m, 1H), 7.06 (s, 1H), 3.23 (s, 3H), 1.58 (s, 3H); ¹³C NMR (100 MHz, *d*6-DMSO) δ 166.1, 149.3, 141.8, 138.3, 133.9, 130.1, 130.0, 128.2, 126.4, 123.6, 122.8, 91.0, 44.1, 25.1; HRMS calculated for C₁₆H₁₅NO₄SNa (M + Na⁺): 340.0619, found: 340.0614. (White solid, 27.3 mg, 87% isolated yield)

4-(1-hydroxy-1-methyl-3-oxoisoindolin-2-yl)benzonitrile (2l): ¹H NMR (400 MHz,

CDCl₃) δ 7.94-7.89 (m, 4H), 7.77-7.75 (d, J = 7.2 Hz, 1H), 7.72-7.71 (m, 2H), 7.59-7.55 (m, 1H), 1.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 149.3, 141.6, 134.0, 133.4, 130.1, 129.9, 126.2, 123.7, 122.8, 119.3, 108.6, 91.1, 25.1; HRMS calculated for C₁₆H₁₂N₂O₂Na (M + Na⁺): 287.0796, found: 287.0791. (White solid, 24.7 mg, 78% isolated yield)

2-(4-acetylphenyl)-3-hydroxy-3-methylisoindolin-1-one (2m): ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.82 (m, 2H), 7.73-7.70 (m, 2H), 7.61-7.60 (m, 2H), 7.39-7.37 (d, J = 7.6 Hz, 1H), 7.35-7.31 (m, 1H), 4.59 (s, 1H), 2.58 (s, 3H), 1.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 166.8, 148.0, 140.4, 134.5, 133.4, 129.8, 129.3, 129.0, 124.8, 123.7, 121.7, 91.4, 26.6, 24.2; HRMS calculated for C₁₇H₁₅NO₃Na (M + Na⁺): 304.0950, found: 304.0944. (White solid, 25.6 mg, 81% isolated yield)

methyl 4-(1-hydroxy-1-methyl-3-oxoisoindolin-2-yl)benzoate (2n): ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.99 (m, 2H), 7.75-7.73 (m, 2H), 7.64-7.58 (m, 3H), 7.44-7.40 (m, 1H), 3.93 (s, 3H), 1.65 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 166.6, 147.9, 140.3, 133.4, 130.3, 130.0, 129.5, 127.8, 124.9, 124.0, 121.7, 91.2, 52.3, 24.2; HRMS calculated for C₁₇H₁₅NO₄Na (M + Na⁺): 320.0899, found: 320.0893. (Yellow solid, 25.2 mg, 80% isolated yield)

2-(4-bromophenyl)-3-hydroxy-3-methylisoindolin-1-one (20): ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.57 (m, 2H), 7.45-7.34 (m, 6H), 4.13 (s, 1H), 1.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 147.9, 134.6, 133.2, 132.0, 129.8, 129.5, 127.7, 123.7, 121.7, 120.5,90.8, 24.2; HRMS calculated for C₁₅H₁₂BrNO₂Na (M + Na⁺): 339.9949, found: 339.9944. (White solid, 27.6 mg, 88% isolated yield)

2-(2-bromo-4-fluorophenyl)-3-hydroxy-3-methylisoindolin-1-one (2p): ¹H NMR (400 MHz, *d*6-DMSO) δ 7.76-7.67 (m, 4H), 7.57-7.51 (m, 2H), 7.41-7.36 (m, 1H), 6.79 (s, 1H), 1.49 (s, 3H); ¹³C NMR (100 MHz, *d*6-DMSO) δ 165.2, 160.5, 149.7, 133.9, 133.5, 131.7, 131.6, 130.2, 130.0, 125.7, 125.6, 123.6, 122.9, 120.9, 120.6, 116.0, 115.8, 90.1, 24.4; ¹⁹F NMR (376 MHz, *d*6-DMSO) δ -110.9; HRMS calculated for C₁₅H₁₁BrFNO₂Na (M + Na⁺): 357.9855, found: 357.9849. (Yellow solid, 28.2 mg, 90% isolated yield)

2-(4-chlorophenyl)-3-hydroxy-3-methylisoindolin-1-one (2q): ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.58 (m, 2H), 7.46-7.43 (m, 2H), 7.41-7.39 (d, *J* = 7.2 Hz, 1H), 7.37-7.33

(m, 1H), 7.31-7.26 (m, 2H), 4.07 (s, 1H), 1.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 147.9, 134.0, 133.2, 132.5, 129.8, 129.6, 129.0, 127.5, 123.7, 121.7, 90.8, 24.2; HRMS calculated for C₁₅H₁₂ClNO₂Na (M + Na⁺): 296.0454, found: 296.0499. (White solid, 25.6 mg, 81% isolated yield)

2-(4-fluorophenyl)-3-hydroxy-3-methylisoindolin-1-one (2r): ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.59 (m, 2H), 7.46-7.41 (m, 3H), 7.39-7.35 (m, 1H), 7.06-7.02 (t, *J* = 8.8 Hz, 2H), 1.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 160.3, 147.8, 133.0, 131.2, 129.8, 128.8, 128.7, 123.7, 121.8, 115.9, 115.7, 90.5, 24.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.5; HRMS calculated for C₁₅H₁₂FNO₂Na (M + Na⁺): 280.0750, found: 280.0744. (White solid, 28.9 mg, 91% isolated yield)

3-hydroxy-3-methyl-2-(3,4,5-trifluorophenyl)isoindolin-1-one (2s): ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.58 (m, 2H), 7.34-7.26 (m, 4H), 4.42 (s, 1H), 1.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 147.7, 133.7, 129.9, 128.8, 123.7, 121.8, 109.9, 109.8, 109.7, 109.6, 91.4, 24.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -133.7, -162.5; HRMS calculated for C₁₅H₁₀F₃NO₂Na (M + Na⁺): 316.0561, found: 316.0556. (White solid, 28.0 mg, 89% isolated yield)

3-hydroxy-3-methylisoindolin-1-one (4a): ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.53 (m, 3H), 7.42-7.38 (m, 1H), 7.09 (s, 1H), 3.79 (s, 1H), 1.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 149.4, 133.0, 130.0, 129.6, 123.6, 121.8, 86.1, 25.9; HRMS calculated for C₉H₉NO₂Na (M + Na⁺): 186.0531, found: 186.0526. (White solid, 23.3 mg, 71% isolated yield)

3-hydroxy-2,3-dimethylisoindolin-1-one (4b): ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.51 (m, 3H), 7.41-7.37 (m, 1H), 2.82 (s, 3H), 1.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 148.2, 132.3, 130.4, 129.5, 123.2, 121.7, 88.3, 23.4, 23.2; HRMS calculated for C₁₀H₁₁NO₂Na (M + Na⁺): 200.0687, found: 200.0682. (White solid, 17.3 mg, 53% isolated yield)

2-ethyl-3-hydroxy-3-methylisoindolin-1-one (4c): ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.54 (m, 3H), 7.44-7.39 (m, 1H), 3.49-3.40 (m, 1H), 3.32-3.21 (m, 1H), 1.69 (s, 1H), 1.24-1.21 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 148.2, 132.3, 130.6, 129.5, 123.2, 121.6, 88.9, 33.2, 24.4, 14.8; HRMS calculated for C₁₁H₁₃NO₂Na (M + Na⁺): 214.0844, found: 214.0839. (White solid, 17.5 mg, 54% isolated yield)

3-hydroxy-3-methyl-2-propylisoindolin-1-one (4d): ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.60 (m, 1H), 7.56-7.54 (m, 2H), 7.44-7.40 (m, 1H), 3.41-3.34 (m, 1H), 3.20-3.13 (m, 1H), 1.75-1.71 (m, 1H), 1.70 (s, 3H), 1.67-1.59 (m, 1H), 0.95-0.91 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 148.1, 132.3, 130.6, 129.5, 123.3, 121.6, 88.9, 40.4, 24.4, 22.6, 11.8; HRMS calculated for C₁₂H₁₅NO₂Na (M + Na⁺): 228.1000, found: 228.0995. (White solid, 16.7 mg, 52% isolated yield)

2-hexyl-3-hydroxy-3-methylisoindolin-1-one (4e): ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.58 (m, 1H), 7.55-7.54 (m, 2H), 7.43-7.39 (m, 1H), 3.40-3.33 (m, 1H), 3.17-3.10 (m, 1H), 1.69 (s, 1H), 1.60-1.56 (m, 1H), 1.34-1.24 (m, 7H), 0.90-0.87 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 148.2, 132.3, 130.6, 129.5, 123.2, 121.6, 88.9, 38.8, 31.6, 29.3, 27.1, 24.4, 22.7, 14.1; HRMS calculated for C₁₅H₂₁NO₂Na (M + Na⁺): 270.1470, found: 270.1465. (White solid, 18.1 mg, 57% isolated yield)

2-cyclohexyl-3-hydroxy-3-methylisoindolin-1-one (4f): ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.61 (d, J = 7.2 Hz, 1H), 7.51-7.48 (m, 2H), 7.44-7.40 (m, 1H), 3.47-3.41 (m, 1H), 2.86 (s, 1H), 2.40-2.31 (m, 2H), 1.87-1.82 (m, 2H), 1.70-1.66 (m, 6H), 1.37-1.27 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 147.6, 132.0, 131.7, 129.5, 123.1, 121.4, 89.3, 52.2, 30.7, 30.3, 26.5, 25.3, 24.4; HRMS calculated for C₁₅H₁₉NO₂Na (M + Na⁺): 268.1313, found: 268.1308. (White solid, 24.5 mg, 77% isolated yield)

3-hydroxy-2-methoxy-3-methylisoindolin-1-one (4g): ¹H NMR (400 MHz, CDCl₃) δ 7.71-7.69 (d, J = 8.0 Hz, 1H), 7.63-7.59 (m, 1H), 7.54-7.52 (d, J = 7.2 Hz, 1H), 7.49-7.45 (m, 1H), 4.06 (s, 3H), 1.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 145.6, 133.2, 129.9, 128.0, 123.7, 121.8, 88.8, 66.0, 23.4; HRMS calculated for C₁₀H₁₁NO₃Na (M + Na⁺): 216.0637, found: 216.0631. (Yellow oil, 22.6 mg, 70% isolated yield)

2-(tert-butoxy)-3-hydroxy-3-methylisoindolin-1-one (4h): ¹H NMR (400 MHz, CDCl₃) δ 1.77-7.50 (d, J = 7.6 Hz, 1H), 7.65-7.61 (m, 1H), 7.58-7.56 (d, J = 8.0 Hz, 1H), 7.52-7.48 (m, 1H), 1.69 (s, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, **S14** 146.8, 133.4, 129.9, 128.1, 1232.8, 122.1, 89.2, 82.9, 28.1, 24.1; HRMS calculated for $C_{13}H_{17}NO_3Na (M + Na^+)$: 258.1106, found: 258.1101. (Yellow oil, 23.6 mg, 74% isolated yield)

3-ethyl-3-hydroxy-2-phenylisoindolin-1-one (4i): ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.53 (m, 5H), 7.44-7.40 (t, J = 8.0 Hz, 1H), 7.38-7.34 (m, 2H), 7.29-7.26 (m, 1H), 2.14-1.96 (m, 2H), 0.49-0.45 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 146.1, 135.6, 132.9, 131.1, 129.8, 128.9, 126.9, 126.3, 123.8, 121.8, 94.0, 28.9, 7.9. These data are consistent with literature values, see: K. Nozawa-Kumada, Y. Matsuzawa, K. Ono, M. Shigeno and Y. Kondo. *Chem. Commun.* **2021**, *57*, 8604. (White solid, 27.0 mg, 85% isolated yield)

3-hydroxy-3-isopropyl-2-phenylisoindolin-1-one (4j): ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.61 (m,1H), 7.59-7.55 (m, 4H), 7.45-7.41 (m, 1H), 7.37-7.33 (m, 2H), 7.30-7.25 (m, 1H), 2.28-2.21 (m, 1H), 1.22-1.20 (d, *J* = 4.8 Hz, 3H), 0.48-0.46 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 145.0, 135.9, 132.4, 131.7, 129.7, 128.9, 126.9, 126.8, 123.8, 123.1, 95.9, 34.0, 17.2, 16.7; HRMS calculated for C₁₇H₁₇NO₂Na (M + Na⁺): 290.1157, found: 290.1152. (White solid, 25.6 mg, 81% isolated yield)

3-hydroxy-2-phenyl-3-propylisoindolin-1-one (4k): ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.46 (m, 5H), 7.34-7.24 (m, 4H), 4.06 (s, 1H), 2.03-1.85 (m, 2H), 1.01-0.93 (m, 1H), 0.72-0.62 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 146.6, 135.5, 132.8, 130.8, 129.6, 128.9, 126.8, 126.4, 123.7, 121.9, 93.4, 38.1, 16.8, 13.8. These data are consistent with literature values, see: K. Nozawa-Kumada, Y. Matsuzawa, K. Ono, M. Shigeno and Y. Kondo. *Chem. Commun.* **2021**, *57*, 8604. (White solid, 26.9 mg, 85% isolated yield)

3-butyl-3-hydroxy-2-phenylisoindolin-1-one (4l): ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.59 (m, 2H), 7.55-7.53 (m, 3H), 7.44-7.40 (m, 1H), 7.38-7.34 (m, 2H), 7.30-7.26 (m, 1H), 2.09-1.90 (m, 2H), 1.08-0.88 (m, 3H), 0.71-0.61 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 146.5, 135.5, 132.9, 131.0, 129.8, 128.9, 126.9, 126.5, 123.8, 121.8, 93.4, 35.5, 25.5, 22.3, 13.7; HRMS calculated for C₁₈H₁₉NO₂Na (M + Na⁺): 304.1313, found: 304.1308. (Yellow oil, 24.6 mg, 78% isolated yield)

3-hydroxy-3-pentyl-2-phenylisoindolin-1-one (4m): ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.65 (m, 1H), 7.63-7.59 (m, 1H), 7.57-7.54 (m, 3H), 7.46-7.42 (m, 1H), 7.39-7.35 (m, 2H), 7.31-7.27 (m, 1H), 2.09-1.90 (m, 2H), 1.07-0.94 (m, 5H), 0.72-0.64 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 146.4, 135.6, 132.9, 131.0, 129.8, 128.9, 126.9, 126.5, 123.9, 121.8, 93.4, 35.8, 31.3, 23.0, 22.2, 13.8; HRMS calculated for C₁₉H₂₁NO₂Na (M + Na⁺): 296.1651, found: 296.1645. (Yellow oil, 27.4 mg, 87% isolated yield)

3-hydroxy-3-(3-hydroxypropyl)-2-phenylisoindolin-1-one (4n): ¹H NMR (400 MHz, d6-DMSO) δ 7.76-7.70 (m, 2H), 7.65-7.63 (d, J = 7.2 Hz, 1H), 7.60-7.56 (m, 3H), 7.48-7.44 (m, 2H), 7.35-7.31 (m, 1H), 6.92 (s, 1H), 3.13-3.12 (d, J = 4.4 Hz, 2H), 2.09-2.01 (m, 1H), 1.85-1.78 (m, 1H), 1.15-1.07 (m, 1H), 0.83-0.74 (m, 1H); ¹³C NMR (100 MHz, d6-DMSO) δ 166.4, 147.9, 136.6, 133.3, 131.4, 129.9, 129.2, 127.4, 127.1, 123.3, 122.9, 93.0, 60.7, 33.4, 27.4; HRMS calculated for C₁₇H₁₇NO₃Na (M + Na⁺): 306.1106, found: 306.1101. (Yellow solid, 24.6 mg, 74% isolated yield)

3-(2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl)-3-hydroxy-2-phenylisoindolin-1-one (40): ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.63 (m, 1H), 7.61-7.57 (m, 2H), 7.55-7.52 (m, 2H), 7.47-7.43 (m, 1H), 7.39-7.35 (m, 2H), 7.33-7.29 (m, 1H), 3.82-3.78 (m, 1H), 3.54-3.51 (m, 1H), 3.21-3.17 (t, *J* = 9.2 Hz, 1H), 2.40-2.34 (m, 1H), 2.20-2.15 (m, 1H), 1.25 (s, 3H), 1.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 146.4, 135.7, 132.8, 130.1, 129.0, 127.4, 123.9, 122.4, 108.9, 91.6, 71.9, 69.9, 40.7, 26.7, 25.6; HRMS calculated for C₂₁H₂₃NO₄Na (M + Na⁺): 354.1705, found: 354.1700. (Yellow oil, 21.2 mg, 65% isolated yield)

3-hydroxy-2,3-diphenylisoindolin-1-one (4p): ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.70 (d, *J* = 3.2 Hz, 1H), 7.53-7.49 (m, 1H), 7.43-7.41 (m, 3H), 7.38-7.34 (m, 4H), 7.31-7.29 (d, *J* = 8.0 Hz, 1H), 7.25-7.20 (m, 3H), 7.19-7.17(m, 1H), 7.12-7.08 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 148.7, 138.7, 135.9, 133.3, 129.9, 129.8, 128.6, 128.5, 128.4, 126.3, 126.2, 125.5, 123.9, 122.8, 93.1. These data are consistent with literature values, see: D.-M. Yan, Q.-Q. Zhao, L. Rao, J.-R. Chen and W.-J. Xiao. *Chem. Eur. J.* **2018**, *24*, 16895. (White solid, 24.5 mg, 78% isolated yield)

3-hydroxy-1-oxo-2,3-diphenylisoindolin-5-yl thiazole-2-carboxylate (4q): ¹H NMR (400 MHz, CDCl₃) δ 8.83-8.82 (d, J = 2.0 Hz, 1H), 8.37-8.36 (d, J = 1.6 Hz, 1H), 7.71-7.69 (d, J = 8.0 Hz, 1H), 7.45-7.42 (m, 2H), 7.40-7.36 (m, 2H), 7.34-7.33 (m, 1H), 7.30-7.27 (m, 1H), 7.25-7.21 (m, 3H), 7.18-7.15 (m, 2H), 7.11-7.09 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 159.0, 155.3, 155.2, 150.6, 146.4, 138.4, 135.8, 131.6, 129.5, 128.6, 128.5, 128.4, 127.7, 126.4, 126.3, 126.2, 126.1, 125.6, 125.2, 123.7, 116.6, 92.7; HRMS calculated for C₂₄H₁₆N₂O₄SNa (M + Na⁺): 451.0728, found: 457.0723. (Yellow solid, 26.7 mg, 86% isolated yield)

6-chloro-3-hydroxy-2,3-diphenylisoindolin-1-one (4r): ¹H NMR (400 MHz, *d*6-DMSO) δ 7.82-7.81 (d, *J* = 1.6 Hz, 1H), 7.64-7.62 (dd, *J*₁= 2.0 Hz, *J*₂ = 1.6 Hz, 1H), 7.45-7.43 (m, 2H), 7.34-7.32 (m, 2H), 7.27-7.24 (m, 3H), 1.22-7.18 (m, 3H), 7.13-7.09 (m, 1H); ¹³C NMR (100 MHz, *d*6-DMSO) δ 165.5, 148.6, 139.8, 136.7, 134.7, 133.7, 132.3, 129.0, 128.9, 128.6, 126.5, 126.4, 126.0, 125.4, 123.3, 92.6. These data are consistent with literature values, see: K. Nozawa-Kumada, Y. Matsuzawa, K. Ono, M. Shigeno and Y. Kondo. *Chem. Commun.* **2021**, *57*, 8604. (White solid, 24.1 mg, 77% isolated yield)

6-fluoro-3-hydroxy-2,3-diphenylisoindolin-1-one (4s): ¹H NMR (400 MHz, *d*6-DMSO) δ 7.89-7.87 (d, *J* = 8.4 Hz, 3H), 7.82-7.80 (d, *J* = 8.8 Hz, 2H), 7.76-7.74 (d, *J* = 7.2 Hz, 1H), 7.71-7.70 (d, *J* = 3.6 Hz, 2H), 7.58-7.54 (m, 1H), 7.01 (s, 1H), 1.56 (s, 3H); ¹³C NMR (100 MHz, *d*6-DMSO) δ 166.1, 149.3, 140.8, 133.8, 130.1, 130.0, 127.1, 126.9, 126.4, 126.3, 123.6, 122.8, 90.8, 25.1; ¹⁹F NMR (376 MHz, *d*6-DMSO) δ -113.1. These data are consistent with literature values, see: K. Nozawa-Kumada, Y. Matsuzawa, K. Ono, M. Shigeno and Y. Kondo. *Chem. Commun.* **2021**, *57*, 8604. (White solid, 25.4 mg, 81% isolated yield)

3-hydroxy-2,3-diphenyl-5-(trifluoromethyl)isoindolin-1-one (4t): ¹H NMR (400 MHz, *d*6-DMSO) δ 8.09-8.07 (d, *J* = 8.0 Hz, 1H), 7.98-7.96 (dd, *J*₁= 0.8 Hz, *J*₂ = 1.2 Hz, 1H), 7.90 (s, 1H), 7.57 (s, 1H), 7.51-7.48 (m, 2H), 7.42-7.39 (m, 2H), 7.31-7.23 (m, 5H), 7.19-7.15 (m, 1H); ¹³C NMR (100 MHz, *d*6-DMSO) δ 165.4, 150.7, 139.4, 136.5, 134.1, 129.1, 129.0, 128.8, 127.4, 127.3, 126.7, 126.6, 126.1, 125.0, 120.1, 92.7; ¹⁹F NMR (376 MHz, *d*6-DMSO) δ -60.9. These data are consistent with literature values, see: K. Nozawa-Kumada, Y. Matsuzawa, K. Ono, M. Shigeno and Y. Kondo. *Chem. Commun.* **2021**, *57*, 8604. (White solid, 23.7 mg, 76% isolated yield)

3-hydroxy-5-methoxy-2,3-diphenylisoindolin-1-one (4u): ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.46 (d, J = 8.4 Hz, 1H), 7.41-7.39 (d, J = 8.0 Hz, 2H), 7.36-7.34 (d, J = 2.4 Hz, 2H), 7.23-7.20 (m, 3H), 7.14-7.10 (m, 2H), 7.06-7.03 (m, 1H), 6.77-6.72 (m, 2H), 4.86 (s, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 164.1, 151.3, 138.9, 136.2, 128.4, 128.3, 126.2, 125.7, 125.3, 125.0, 122.0, 116.3, 107.2, 92.8, 55.8. These data are consistent with literature values, see: K. Nozawa-Kumada, Y. Matsuzawa, K. Ono, M. Shigeno and Y. Kondo. *Chem. Commun.* **2021**, *57*, 8604. (White solid, 23.5 mg, 75% isolated yield)

3,5-dihydroxy-2,3-diphenylisoindolin-1-one (4v): ¹H NMR (400 MHz, *d*6-DMSO) δ 10.3 (s, 1H), 7.66-7.64 (dd, J = 8.4 Hz, 1H), 7.58 (s, 1H), 7.52-7.50 (m, 2H), 7.35-7.33 (m, 2H), 7.29-7.20 (m, 5H), 7.10-7.06 (m, 1H), 6.91-6.89 (dd, $J_1 = 6.4$ Hz, $J_2 = 2.0$ Hz, 1H), 6.56-6.55 (d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, *d*6-DMSO) δ 166.9, 162.6, 152.6, 141.0, 137.5, 128.9, 128.7, 128.3, 126.3, 125.7, 125.5, 125.4, 121.0, 117.3, 109.4, 92.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -60.9; HRMS calculated for C₂₀H₁₅NO₃Na (M + Na⁺): 340.0950, found: 340.0944. (White solid, 24.5 mg, 78% isolated yield)

3-hydroxy-3-(4-methoxyphenyl)-2-phenylisoindolin-1-one (4w): ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.64 (d, J = 7.6 Hz, 1H), 7.52-7.48 (m, 1H), 7.42-7.40 (m, 2H), 7.38-7.34 (m, 1H), 7.30-7.25 (m, 3H), 7.21-7.17 (m, 2H), 7.13-7.09 (m, 1H), 6.76-6.72 (m, 2H), 4.21 (s, 1H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 159.5, 148.9, 135.9, 133.3, 130.7, 129.8, 129.7, 128.6, 127.5, 126.2, 125.6, 123.8, 122.7, 113.8, 93.1, 55.2. These data are consistent with literature values, see: K. Nozawa-Kumada, Y. Matsuzawa, K. Ono, M. Shigeno and Y. Kondo. *Chem. Commun.* **2021**, *57*, 8604. (White solid, 26.6 mg, 85% isolated yield)

3-(4-(tert-butyl)phenyl)-3-hydroxy-2-phenylisoindolin-1-one (**4x**): ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.67 (m, 1H), 7.51-7.49 (m, 1H), 7.45-7.43 (m, 2H), 7.38-7.34 (m, 1H), 7.31-7.29 (m, 2H), 7.27-7.24 (m, 2H), 7.22-7.17 (m, 3H), 7.13-7.11 (m, 1H), 1.23 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 151.3, 148.9, 136.0, 135.6, 133.2, 129.8, 129.6, 128.6, 126.1, 125.8, 125.5, 125.4, 123.8, 122.8, 93.2, 34.6, 31.3, 31.1. These data are consistent with literature values, see: J. M. Dennis, C. M. Calyore, J. S. Sjoholm, J. P. Lutz, J. J. Gair and J. B. Johnson. *Synlett*, **2013**, *24*, 2567. (White solid, 25.0 mg, 80% isolated yield)

3-(4-chlorophenyl)-3-hydroxy-2-phenylisoindolin-1-one (4y): ¹H NMR (400 MHz, *d*6-DMSO) δ 7.81-7.80 (d, *J* = 6.8 Hz, 1H), 7.74 (s, 1H), 7.62-7.53 (m, 2H),7.45-7.42 (m, 2H), 7.34-7.23 (m, 7H), 7.13-7.09 (m, 1H); ¹³C NMR (100 MHz, *d*6-DMSO) δ 166.8, 149.6, 139.6, 136.8, 133.9, 133.1, 130.3, 130.1, 128.9, 128.6, 126.5, 126.1, 123.7, 123.4, 120.8, 92.3. These data are consistent with literature values, see: K. Nozawa-Kumada, Y. Matsuzawa, K. Ono, M. Shigeno and Y. Kondo. *Chem. Commun.* **2021**, *57*, 8604. (White solid, 26.3 mg, 84% isolated yield)

Late-stage diversification of substances derived from natural products and drugs

¹H and ¹³C spectra data of compounds 5-16

3-hydroxy-1-oxo-2,3-diphenylisoindolin-5-yl 4-(8,10,13-trimethyl-3,7,12trioxohexadecahydro-1*H***-cyclopenta[***a***]phenanthren-17-yl)pentanoate (5): ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.77 (m, 1H), 7.46-7.42 (m, 2H), 7.39-7.37 (m, 2H), 7.25-7.16**

(m, 6H), 7.14-7.09 (m, 1H), 7.04-7.01 (m, 1H), 5.04-4.89 (d, J = 58.5 Hz, 1H), 2.92-2.77 (m, 2H), 2.63-2.54 (m, 1H), 2.48-2.42 (m, 1H), 2.33-2.26 (m, 2H), 2.20-2.10 (m, 3H), 2.04-1.96 (m, 2H), 1.90-1.76 (m, 3H), 1.63-1.43 (m, 3H), 1.38-1.37 (d, J = 6.8 Hz, 3H), 1.31-1.20 (m, 3H), 1.06-1.04 (d, J = 9.2 Hz, 3H), 0.87-0.81 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) § 212.4, 209.6, 208.9, 172.2, 166.6, 154.7, 150.6, 138.5, 135.9, 128.6, 128.5, 128.4, 127.4, 126.4, 126.2, 125.8, 125.5, 125.2, 123.4, 116.5, 92.5, 57.0, 51.8, 49.0, 46.9, 45.6, 45.0, 42.8, 38.7, 36.4, 36.1, 35.3, 31.5, 30.3, 27.8, 25.2, 21.9, 18.7, 11.8; HRMS calculated for $C_{45}H_{50}NO_7$ (M + H⁺): 716.3587, found: 716.3582. (White solid, 24.2 mg, 81% isolated yield)

3-hydroxy-1-oxo-2,3-diphenylisoindolin-5-yl 3,3-dimethyl-7-oxo-4-thia-1-azabicyclo [**3.2.0]heptane-2-carboxylate 4,4-dioxide (6):** ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.78 (d, J = 8.4 Hz, 1H), 7.42-7.35 (m, 4H), 7.27-7.25 (m, 4H), 7.22-7.13 (m, 3H), 7.07-7.04 (m, 1H), 4.67-4.65 (m, 1H), 4.60-4.58 (d, J = 8.8 Hz, 1H), 4.37-4.35 (m, 1H), 3.51-3.48 (m, 2H), 1.69 (s, 3H), 1.55-1.54 (d, J = 4.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 170.7, 166.2, 150.7, 137.9, 131.0, 128.9, 128.8, 128.7, 126.6, 126.2, 125.7, 125.6, 123.2, 122.9, 116.1, 115.9, 92.6, 63.3, 62.9, 61.2, 23.1, 20.6, 18.8; HRMS calculated for $C_{28}H_{24}N_2O_7Na$ (M + Na⁺): 555.1202, found: 555.1196. (Yellow solid, 19.4 mg, 63%) isolated yield)

3-hydroxy-1-oxo-2,3-diphenylisoindolin-5-yl 4-(10,13-dimethyl-3-oxohexadecahydro -*1H*-cyclopenta[*a*]phenanthren-17-yl)pentanoate (7): ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.77 (d, *J* = 8.0 Hz, 1H), 7.40-7.36 (m, 4H), 7.25-7.18 (m, 5H), 7.15-7.10 (m, 2H), 7.02-7.01 (d, *J* = 2.0 Hz, 1H), 4.53 (s, 1H), 2.72-2.65 (t, *J* = 13.6 Hz, 1H), 2.60-2.53 (m, 1H), 2.45-2.28 (m, 2H), 2.17-2.13 (m, 1H), 2.06-1.99 (m, 3H), 1.91-1.79 (m, 4H), 1.63-1.57 (m, 1H), 1.52-1.34 (m, 9H), 1.27-1.21 (m, 2H), 1.16-1.06 (m, 4H), 1.02 (s, 3H), 0.98-0.96 (d, *J* = 6.4 Hz, 3H), 0.69-0.68 (d, *J* = 2.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 213.7, 172.4, 166.6, 154.7, 150.3, 138.4, 135.8, 128.7, 128.6, 128.5, 127.4, 126.5, 126.2, 125.7, 125.3, 123.6, 116.4, 92.5, 56.5, 56.0, 44.4, 42.9, 42.4, 40.8, 40.1, 37.3, 37.1, 35.6, 35.4, 35.0, 31.4, 30.9, 28.3, 26.7, 25.9, 24.2, 22.7, 21.3, 18.4, 12.2; HRMS calculated for C₄₄H₅₁NO₅Na (M + Na⁺): 696.3665, found: 696.3659. (Yellow solid, 24.5 mg, 80% isolated yield)

3-hydroxy-1-oxo-2,3-diphenylisoindolin-5-yl (*tert*-butoxycarbonyl)-*L*-valinate (8): ¹H NMR (400 MHz, CDCl₃) δ 7.77-7.72 (t, *J* = 8.0 Hz, 1H), 7.41-7.35 (m, 4H), 7.25-7.22 (m, 3H), 7.21-7.16 (m, 2H), 7.14-7.09 (m, 2H), 7.04-7.00 (m, 1H), 5.03-5.01 (d, *J* = 8.8 Hz, 1H), 4.49 (s, 1H), 4.41-4.37 (m, 1H), 2.29-2.26 (m, 1H), 1.45 (s, 3H), 1.43 (s, 6H), 1.06-1.04 (m, 3H), 1.00-0.97 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 169.0, 166.5, 155.7, 154.3, 150.4, 138.2, 135.7, 128.7, 128.6, 127.8, 126.5, 126.2, 125.7, 125.6, 125.4, 123.5, 123.4, 116.3, 116.2, 92.6, 80.4, 58.9, 31.2, 28.4, 19.2, 17.8; HRMS calculated for C₃₀H₃₂N₂O₆Na (M + Na⁺): 539.2158, found: 539.2153. (White solid, 26.8 mg, 87% isolated yield)

3-hydroxy-1-oxo-2,3-diphenylisoindolin-5-yl 2-(*(tert***-butoxycarbonyl)amino)-2cyclohexylacetate (9):** ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.69 (m, 1H), 7.39-7.34 (m, 4H), 7.23-7.22 (m, 3H), 7.20-7.10 (m, 4H), 7.04-7.00 (dd, $J_1 = 8.8$ Hz, $J_2 = 1.6$ Hz, 1H), 5.03-5.01 (d, J = 8.8 Hz, 1H), 4.74-4.58 (m, 1H), 4.40-4.34 (m, 1H), 1.88-1.68 (m, 6H), 1.46-1.42 (d, J = 9.0 Hz, 9H), 1.31-1.09 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 170.9, 166.6, 155.7, 154.4, 150.4, 138.3, 135.7, 128.6, 128.5, 127.7, 127.6, 126.5, 126.4, 125.7, 125.6, 125.3, 123.4, 116.3, 116.2, 92.6, 80.3, 58.7, 40.8, 40.7, 29.6, 28.4, 26.0; HRMS calculated for C₃₃H₃₆N₂O₆Na (M + Na⁺): 579.2471, found: 579.2466. (Yellow oil, 26.2 mg, 85% isolated yield)

3-hydroxy-1-oxo-2,3-diphenylisoindolin-5-yl 2-(11-oxo-6,11-dihydrodibenzo[*b,e*] **oxepin-2-yl)acetate (10):** ¹H NMR (400 MHz, CDCl₃) δ 8.16-8.15 (d, *J* = 2.0 Hz, 1H), 7.89-7.86 (m, 1H), 7.73-7.71 (d, *J* = 8.4 Hz, 1H), 7.59-7.55 (m, 1H), 7.49-7.43 (m, 2H), 7.37-7.33 (m, 5H), 7.24-7.15 (m, 5H), 7.13-7.10 (m, 2H), 7.06-7.04 (d, *J* = 8.4 Hz, 1H), 7.02-7.01 (d, *J* = 1.6 Hz, 1H), 5.19 (s, 2H), 3.85 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 190.9, 169.7, 166.6, 160.9, 154.5, 150.3, 140.4, 138.3, 136.4, 135.7, 135.6, 133.0, 132.8, 129.6, 129.4, 128.6, 128.5, 128.4, 127.9, 127.6, 126.6, 126.4, 126.2, 125.7, 125.3, 125.2, 123.5, 121.5, 116.4, 92.6, 73.7, 40.2; HRMS calculated for C₃₆H₂₅NO₆Na (M + Na⁺): 590.1580, found: 590.1574. (White solid, 27.1 mg, 88% isolated yield)

3-hydroxy-1-oxo-2,3-diphenylisoindolin-5-yl 2-(*(tert***-butoxycarbonyl)amino) hexanoate (11):** ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.69 (m, 2H), 7.41-7.31 (m, 4H), 7.25-7.19 (m, 4H), 7.18-7.09 (m, 3H), 7.04-7.01 (dd, $J_1 = 8.0$ Hz, $J_2 = 2.0$ Hz, 1H), 4.99-4.97 (d, J = 8.0 Hz, 1H), 4.47-4.24 (m, 1H), 1.96-1.88 (m, 1H), 1.76-1.68 (m, 1H), 1.44-1.43 (d, J = 5.6 Hz, 9H), 1.41-1.33 (m, 4H), 0.94-0.90 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.8, 171.8, 166.5, 154.4, 150.4, 130.3, 129.1, 128.7, 128.6, 127.6, 127.5, 126.5, 126.2, 125.7, 125.6, 125.4, 123.5, 116.2, 92.6, 80.4, 53.8, 32.1, 28.4, 27.6, 22.3, 13.9; HRMS calculated for C₃₁H₃₄N₂O₆Na (M + Na⁺): 553.2315, found: 553.2309. (Yellow solid, 26.5 mg, 86% isolated yield)

3-hydroxy-1-oxo-2,3-diphenylisoindolin-5-yl 2,2,7,7-tetramethyltetrahydro-5*H***-bis ([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-carboxylate (12): ¹H NMR (400 MHz, CDCl₃) δ 7.76-7.72 (t,** *J* **= 7.6 Hz, 1H), 7.43-7.39 (m, 2H), 7.37-7.34 (m, 3H), 7.25-7.16 (m, 5H), 7.13-7.08 (m, 2H), 5.69-5.68 (d,** *J* **= 5.2 Hz, 1H), 4.73-4.62 (m, 3H), 4.44-4.42 (m, 1H), 1.57-1.55 (d,** *J* **= 6.4 Hz, 3H), 1.49-1.44 (d,** *J* **= 18.0 Hz, 3H), 1.36-1.34 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 166.7, 154.3, 138.3, 128.7, 128.5, 127.7, 126.4, 126.2, 125.7, 125.6, 125.4, 123.8, 123.7, 116.5, 110.6, 109.4, 96.6, 92.6, 72.3, 70.9, 70.2, 68.9,**

26.1, 26.0, 24.9, 24.8; HRMS calculated for $C_{32}H_{31}NO_9Na$ (M + Na⁺): 596.1897, found: 596.1893. (Yellow oil, 26.7 mg, 87% isolated yield)

3-hydroxy-1-oxo-2,3-diphenylisoindolin-5-yl 2-(4-(2,2-dichlorocyclopropyl)phenoxy) -2-methylpropanoate (13): ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.65(d, *J* = 2.4 Hz, 1H), 7.37-7.31 (m, 4H), 7.25-7.22 (m, 3H), 7.18-7.09 (m, 5H), 6.92-6.86 (m, 3H), 2.86-2.81 (m, 1H), 1.98-1.93 (m, 1H), 1.80-1.75 (m, 1H), 1.71 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 166.6, 154.7, 154.4, 150.4, 138.2, 135.6, 130.0, 128.9, 128.6, 128.5, 127.7, 126.5, 126.2, 125.7, 125.6, 125.3, 123.4, 118.8, 116.2, 92.6, 79.3, 60.9, 34.8, 25.9, 25.7, 25.3; HRMS calculated for C₃₃H₂₇Cl₂NO₅Na (M + Na⁺): 610.1164, found: 610.1159. (Yellow oil, 27.7 mg, 90% isolated yield)

3-hydroxy-1-oxo-2,3-diphenylisoindolin-5-yl 2-((methoxycarbonyl)amino)-3,3dimethylbutanoate (14): ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.63 (m, 1H), 7.37-7.31 (m, 4H), 7.25-7.21 (m, 3H), 7.18-7.13 (m, 2H), 7.12-7.07 (m, 2H), 7.03-7.00 (m, 1H), 5.34-5.32 (d, *J* = 7.2 Hz, 1H), 4.91 (s, 1H), 4.33-4.31 (d, *J* = 8.8 Hz, 1H), 3.69 (s, 3H), 1.08-1.07 (d, *J* = 3.6 Hz, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 166.7, 166.6, 156.9, 154.1, 150.5, 138.2, 137.6, 135.6, 130.3, 128.6, 128.5, 127.8, 127.7, 126.5, 126.4, 126.3, 126.2, 125.8, 125.7, 125.3, 123.5, 123.4, 116.4, 116.2, 92.7, 62.4, 52.7, 342.9, 26.7; HRMS calculated for $C_{28}H_{28}N_2O_6Na$ (M + Na⁺): 511.1845, found: 511.1840. (White solid, 26.6 mg, 86% isolated yield)

3-hydroxy-1-oxo-2,3-diphenylisoindolin-5-yl (*tert*-butoxycarbonyl)-*L*-isoleucinate (15): ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.68 (m, 1H), 7.40-7.34 (m, 4H), 7.25-7.21 (m, 3H), 7.19-7.10 (m, 4H), 7.03-7.00 (dd, $J_1 = 10.4$ Hz, $J_2 = 2.0$ Hz, 1H), 5.04-5.02 (d, J = 8.8 Hz, 1H), 4.43-4.40 (m, 1H), 1.97 (s, 1H), 1.55-1.47 (m, 1H), 1.45-1.43 (d, J = 7.2 Hz, 9H), 1.30-1.22 (m, 1H), 1.03-1.00 (m, 3H), 0.99-0.94 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 170.9, 166.6, 154.4, 150.4, 138.2, 135.7, 135.6, 128.6, 128.5, 127.7, 127.6, 126.5, 126.4, 126.2, 125.7, 125.6, 125.3, 123.5, 116.3, 116.2, 92.6, 80.4, 58.3, 38.0, 28.4, 25.3, 15.8, 11.7; HRMS calculated for C₃₁H₃₄N₂O₆Na (M + Na⁺): 553.2315, found: 553.2309. (Yellow oil, 26.8 mg, 87% isolated yield)

3-hydroxy-1-oxo-2,3-diphenylisoindolin-5-yl 2-(4-(4-chlorobenzoyl)phenoxy)-2methylpropanoate (16): ¹H NMR (400 MHz, CDCl₃) δ 7.76-7.68 (m, 5H), 7.47-7.44 (m, 2H), 7.37-7.31 (m, 4H), 7.24-7.15 (m, 5H), 7.12-7.04 (m, 2H), 6.95-6.91 (m, 3H), 4.51 (s, 1H), 1.78 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 172.3, 166.4, 159.3, 154.3, 150.5, 138.7, 138.1, 136.2, 135.6, 132.3, 131.3, 131.0, 128.8, 128.7, 128.6, 128.5, 127.9, 126.5, 126.2, 125.7, 125.4, 123.3, 117.5, 116.0, 92.6, 79.5.25.6, 25.3; HRMS calculated for C₃₇H₂₈ClNO₆Na (M + Na⁺): 640.1503, found: 610.1497. (Colourless oil, 27.9 mg, 91% isolated yield)

Illustrative synthetic transformations

¹H and ¹³C spectra data of compounds 17-20

3-(4-chlorophenyl)-3-(1*H***-imidazol-1-yl)-2-phenylisoindolin-1-one (17): ¹H NMR (400 MHz, CDCl₃) \delta 8.05-8.03 (m, 1H), 7.65-7.63 (m, 2H), 7.40-7.34 (m, 5H), 7.32-7.26 (m, 4H), 7.01 (s, 1H), 6.87-6.85 (m, 2H), 6.63 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) \delta 167.8, 145.7, 137.5, 136.0, 135.4, 134.6, 133.8, 132.8, 130.8, 130.2, 129.6, 129.5, 129.3, 129.0, 128.7, 125.2, 123.5, 119.1, 83.9; HRMS calculated for C₂₃H₁₆ClN₃ONa (M + Na⁺): 408.0880, found: 408.0874. (Yellow oil, 32.4 mg, 94% isolated yield)**

2-phenyl-3-propylideneisoindolin-1-one (18): ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.97 (d, *J* = 8.0 Hz, 1H), 7.91-7.89 (d, *J* = 7.6 Hz, 1H), 7.67-7.63 (m, 1H), 7.56-7.49 (m, 3H), 7.45-7.40 (m, 1H), 7.35-7.32 (m, 2H), 5.33-5.29 (t, *J* = 8.0 Hz, 1H), 2.69-2.61 (m, 2H), 1.16-1.13 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 136.7, 135.5, 135.0, 132.2, 130.2, 129.5, 129.0, 128.9, 128.2, 123.9, 123.4, 115.7, 20.8, 14.5; HRMS calculated for C₁₇H₁₆NONa (M + H⁺): 250.1232, found: 250.1226. (Yellow oil, 27.2 mg, 97% isolated yield)

3-methoxy-2-phenyl-3-propylisoindolin-1-one (19): ¹H NMR (400 MHz, CDCl₃) δ 7.94-7.92 (d, J = 8.0 Hz, 1H), 7.68-7.64 (m, 1H), 7.62-7.59 (m, 2H), 7.58-7.54 (m, 1H), 7.50-7.43 (m, 3H), 7.31-7.26 (m, 1H), 3.01 (s, 3H), 2.05-1.98 (m, 2H), 1.06-0.96 (m, 1H), 0.78-0.69 (m, 1H), 0.66-0.63 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 143.1, 136.1, 132.9, 132.6, 129.9, 129.1, 126.5, 125.1, 124.0, 122.1, 97.7, 50.2, 38.0, 16.6, 13.8; HRMS calculated for C₁₈H₁₉NO₂Na (M + Na⁺): 304.1313, found: 304.1308. (White solid, 29.9 mg, 95% isolated yield)

4-propylphthalazin-1(2*H***)-one (20):** ¹H NMR (400 MHz, CDCl₃) δ 10.42 (s, 1H), 8.49-8.47 (d, J = 7.6 Hz, 1H), 7.85-7.83 (m, 2H), 7.80-7.76 (m, 1H), 2.95-2.91 (t, J = 7.2 Hz, 2H), 1.87-1.77 (m, 2H), 1.08-1.04 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.5, 147.8, 133.5, 131.3, 130.0, 128.2, 127.1, 124.8, 34.2, 21.3, 14.1; HRMS calculated for C₁₁H₁₃N₂O (M + H⁺): 189.1028, found: 189.1022. (Yellow oil, 16.9 mg, 84% isolated yield)

Synthesis of anticancer agent III NU8231

¹H and ¹³C spectra data of compounds 24 and 26

3-(4-chlorophenyl)-3-hydroxy-2-propylisoindolin-1-one (24): ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.71 (d, *J* = 7.2 Hz, 1H), 7.59-7.50 (m, 2H), 7.42-7.40 (d, *J* = 7.6 Hz, 1H), 7.34-7.32 (d, *J* = 8.2 Hz, 1H), 7.26-7.24 (d, *J* = 7.2 Hz, 1H), 7.19-7.18 (m, 1H), 3.35 (s, 1H), 3.34-3.28 (m, 1H), 2.91-2.84 (m, 1H),1.48-1.38 (m, 1H),0.78-0.75 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 149.7, 140.0, 133.2, 133.0, 131.1, 129.9, 129.0, 128.4, 123.2, 123.0, 90.6, 41.2, 22.2, 12.1. These data are consistent with literature values, see: R. K. Dempster and F. A. Luzzio. *Tetrahedron Lett.* **2011**, *52*, 4992.(White solid, 20.4 mg, 65% isolated yield)

3-(4-chlorophenyl)-3-((4-hydroxy-3,5-dimethoxybenzyl)oxy)-2-propylisoindolin-1-on e (26): ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.90 (dd, $J_1 = 5.2$ Hz, $J_2 = 1.2$ Hz, 1H), 7.53-7.46 (m, 2H), 7.36-7.28 (m, 4H), 7.12-7.11 (dd, $J_1 = 5.2$ Hz, $J_2 = 1.2$ Hz, 1H), 6.46 (s, 2H), 4.17-4.14 (d, J = 7.6 Hz, 1H), 3.93-3.90 (d, J = 7.6 Hz, 1H), 3.87 (s, 6H), 3.34-3.07 (m, 2H), 1.57-1.34 (m, 2H), 0.83-0.80 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 147.0, 145.3, 137.7, 134.6, 134.4, 132.6, 132.0, 130.0, 128.7, 128.5, 128.0, 123.6, 123.3, 104.5, 94.9, 65.4, 56.4, 41.6, 21.7, 11.9. These data are consistent with literature values, see: I. R. Hardcastle, S. U. Ahmed and H. Atkins. *J. Med. Chem.* **2006**, *49*, 6209. (White solid, 23.3 mg, 50% isolated yield)

Experiments on reaction mechanism

¹H, ¹³C and ¹⁹F spectra data of compounds 27-30

2-(1-hydroperoxyethyl)-*N*-phenylbenzamide (27): ¹H NMR (400 MHz, CDCl₃) δ 9.12 (s, 1H), 8.24 (s, 1H), 7.60-7.58 (d, *J* = 8.0 Hz, 2H), 7.52-7.45 (m, 3H), 7.34-7.31 (m, 3H), 7.16-7.13 (t, *J* = 7.6 Hz, 1H), 5.46-5.41 (m, 1H), 1.47-1.46 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 139.1, 137.8, 136.3, 130.8, 129.2, 128.4, 127.8, 127.1, 124.9, 120.2, 80.5, 29.9; HRMS calculated for C₁₅H₁₅NO₃ (M + Na⁺): 280.0950, found: 280.0944. (White solid, 15.1 mg, 44% isolated yield)

2-(1-hydroxyethyl)-*N***-phenylbenzamide (28):** ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H),7.64-7.61 (t, J = 7.2 Hz, 3H), 7.57-7.48 (m, 2H), 7.40-7.36 (t, J = 8.4 Hz, 3H), 7.20-7.16 (t, J = 7.6 Hz, 1H), 5.11-5.06 (m, 1H), 3.92 (s, 1H), 1.60-1.59 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 143.4, 137.8, 131.4, 129.3, 128.0, 127.9, 127.0, 125.8, 125.0, 120.3, 68.0, 22.1; HRMS calculated for C₁₅H₁₅NO₂ (M + Na⁺): 264.1000, found: 264.0995. (White solid, 15.4 mg, 82% isolated yield)

5-fluoro-2-(hydroperoxy(phenyl)methyl)-*N*-phenylbenzamide (29): ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.60-7.58 (d, *J* = 8.0 Hz, 2H), 7.41-7.34 (m, 8H), 7.31-7.28 (m, 1H), 7.19-7.10 (m, 2H), 6.50 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 139.1,

137.9, 137.5, 131.5, 131.4, 129.2, 129.0, 128.8, 128.7, 128.6, 127.4, 126.8, 126.1, 125.1, 120.3, 117.7, 117.5, 115.8, 115.6, 85.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.4; HRMS calculated for C₂₀H₁₆FNO₃ (M + Na⁺): 360.1012, found: 360.1006. (White solid, 13.3 mg, 40% isolated yield)

5-fluoro-2-(hydroxy(phenyl)methyl)-*N***-phenylbenzamide (30):** ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.42-7.38 (m, 2H), 7.36-7.27 (m, 8H), 7.25-7.18 (m, 2H), 7.17-7.10 (m, 1H), 6.06 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 142.0, 138.7, 137.1, 131.9, 131.8, 129.2, 128.8, 128.6, 128.3, 127.5, 126.5, 126.1, 125.3, 124.8, 124.7, 120.6, 117.9, 117.7, 115.3, 115.1, 73.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -110.9; HRMS calculated for C₂₀H₁₆FNO₂ (M + Na⁺): 344.1063, found: 344.1057. (White solid, 15.2 mg, 80% isolated yield)

Reaction progress of **3t** monitored by *in situ* ¹⁹F-NMR

UV-Vis absorption experiments

Figure 1. UV-Vis absorption spectra of the individual reaction components and the reaction mixtures

Fluorescence quenching experiments

Figure 2. Fluorescence spectra of Eosin Y with different concentrations of O₂

Figure 3. Stern Volmer plots of O₂

Figure 4. Fluorescence spectra of Eosin Y with different concentrations of 1a

Figure 5. Stern Volmer plots of the substrate 1a

Figure 6. Fluorescence spectra of Eosin Y with different concentrations of *n*Bu₄NBr

Figure 7. Stern Volmer plots of the TBAB

CV curve of the substrate 1a

Cyclic voltammetry (CV) was performed using an Epsilon electrochemical workstation (a BASi three-electrode cell system): glassy carbon electrode as the working electrode, Pt wire as the counter electrode, Ag/AgCl (KCl, 3 *M*) electrode as the reference electrode, and ferrocenium/ferrocene (Fc^+/Fc) as the internal standard. Scan rate: 100 mV s⁻¹ (in the range -0.7 to +2.3 V). *n*Bu₄NPF₆ (0.1 M MeCN) was used as the supporting electrolyte.

Figure 8. Cyclic voltammetry of the substrate 1a

EPR experiments

Figure 9. EPR experiments on reaction of 1a by adding TEMP

Figure 10. EPR experiments on reaction of 1a by adding DMPO

Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra

170.0 160.0 X : parts per Million : Carbon13 130.0

120.0

110.0

140.0

150.0

100.0

90.0

80.0

70.0

50.0

60.0

40.0

30.0

S77

20.0

10.0

Ó

S88

S100

