Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Biomimetic-inspired synthesis of sporochartines through Diels-Ader reaction between enantiopure (-)-sporothriolide and (+)-trienylfuranol A

Guillaume Arcile, a Théo Massard, b Elsa van Elslande, b Jamal Ouazzani, *a Jean-François Betzer *b

- a. Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, Department of Natural Products and Medicinal Chemistry, Gif-sur-Yvette, France.
- b. Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, Department of Organic Synthesis and Catalytic Methods, Gif-sur-Yvette, France.

Corresponding Author's email address: jamal.ouazzani@cnrs.fr jean-francois.betzer@cnrs.fr

Table of Contents

I - General information	4
II - Optimization for selective hydration of bisalkynyl ester 10 and 11	5
Table S1. Optimization for selective hydration of bisalkynyl ester 10	5
Table S2. Optimization for selective hydration of bisalkynyl ester 11	5
Table S3. Optimization for the formation of furane derivative 15	6
Table S4. Enantioselective reduction of α-oxo-γ-butyrolactone (±)- 18 using Baker's yeast	6
III - Experimental Procedures and Characterization Data	7
III.1 - Sporothriolide production from fermentation culture of <i>Hypoxylon monticulosum</i> CLL-205	7
III.2 - Synthetic approach of trienylfuranol by phosphine-organocatalyzed reaction for the formation of furanic mo	biety 7
III.3 - Enantioselective reduction of α-hydroxy-butenolide (±)- 18 using Baker's yeast	10
III.4 - Reaction scheme for synthesis of (±)-20 and (±)-24 from (±)-19	12
III.5 - Enzymatic kinetic resolution of acetate ester (±)-24	13
III.6 - Synthesis of both enantiomers of trienylfuranol A (-)-4 and (+)-4	13
III.7 - Diels-Alder reaction between (-)-sporothriolide 3 and (+)-trienylfuranol A 4	14
IV - ¹ H and ¹³ C NMR Spectra	15
¹ H NMR (CDCl ₃ , 500.1 MHz) of 9	15
¹³ C NMR (CDCl ₃ , 125.8 MHz) of 9	15
¹ H NMR (CDCl ₃ , 500.1 MHz) of 10	16
¹³ C NMR (CDCl ₃ , 125.8 MHz) of 10	16
¹ H NMR (CDCl ₃ , 500.1 MHz) of 11	17
¹³ C NMR (CDCl ₃ , 125.8 MHz) of 11	17
¹ H NMR (CDCl ₃ , 500.1 MHz) of 12	18
¹³ C NMR (CDCl ₃ , 125.8 MHz) of 12	18
¹ H NMR (CDCl ₃ , 500.1 MHz) of 12b	19
¹³ C NMR (CDCl ₃ , 125.8 MHz) of 12b	19
¹ H NMR (CDCl ₃ , 500.1 MHz) of 13	20
¹³ C NMR (CDCl ₃ , 125.8 MHz) of 13	20
¹ H NMR (CDCl ₃ , 500.1 MHz) of 14	21
¹³ C NMR (CDCl ₃ , 125.8 MHz) of 14	21
¹ H NMR (CDCl ₃ , 500.1 MHz) of 15	22
¹³ C NMR (CDCl ₃ , 125.8 MHz) of 15	22
¹ H NMR (CDCl ₃ , 500.1 MHz) of mixture 15 and 16	23
¹³ C NMR (CDCl ₃ , 125.8 MHz) of mixture 15 and 16	23
¹ H NMR (CDCl ₃ , 500.1 MHz) of 17	24
¹³ C NMR (CDCl ₃ , 125.8 MHz) of 17	24
¹ H NMR (CDCl ₃ , 500.1 MHz) of 19	25
¹³ C NMR (CDCl ₃ , 75.5 MHz) of 19	25
¹³ C NMR (CDCl ₃ , 125.8 MHz) of 21	26
¹ H NMR (CDCl ₃ , 500.1 MHz) of 19b	27
¹³ C NMR (CDCl ₃ , 125.8 MHz) of 19b	27
¹ H NMR (CDCl ₃ , 500.1 MHz) of 22	28
¹³ C NMR (CDCl ₃ , 125.8 MHz) of 22	28
¹ H NMR (CDCl ₃ , 500.1 MHz) of 23	29
¹³ C NMR (CDCl ₃ , 125.8 MHz) of 23	29
¹ H NMR (CDCl ₃ , 500.1 MHz) of 20	30
¹³ C NMR (CDCl ₃ , 125.8 MHz) of 20	30
¹ H NMR (CDCl ₃ , 500.1 MHz) of 24	31
¹³ C NMR (CDCl ₃ , 125.8 MHz) of 24	31
¹ H NMR (C_6D_6 , 500.1 MHz) of trienylfuranol A (-)- 4	32

¹³ C NMR (C ₆ D ₆ , 125.8 MHz) of trienylfuranol A (-)- 4	32
¹ H NMR (C ₆ D ₆ , 500.1 MHz) of trienylfuranol A (+)- 4	
¹³ C NMR (C ₆ D ₆ , 125.8 MHz) of trienylfuranol A (+)- 4	
¹ H NMR (CDCl ₃ , 500.1 MHz) of sporothriolide	34
¹³ C NMR (CDCl ₃ , 125.8 MHz) of sporothriolide	34
¹ H NMR (CDCl ₃ , 500.1 MHz) of Sporochartine B	35
¹³ C NMR (CDCl ₃ , 125.8 MHz) of Sporochartine B	35
¹ H NMR (CDCl ₃ , 500.1 MHz) of Sporochartines A/C mixture	36
¹³ C NMR (CDCl ₃ , 125.8 MHz) of Sporochartines A/C mixture	36
¹ H NMR (CDCl ₃ , 500.1 MHz) of Sporochartine D	37
V - NMR 2D Experiments	
NOESY Spectrum of compound 15 (500.1 MHz, CDCl ₃)	
NOESY Spectrum of the mixture of compounds 15 and 16 (500.1 MHz, CDCl ₃)	
VI - X-Ray crystal structure determination of compound 17	40
Experimental	40
Crystal data for compound 17	40
Figure S1. ORTEP drawing of 17	40
Table S3. Crystal data and structure refinement	41
VII - HPLC and SFC chromatograms	42
VII.1 - Chiral HPLC chromatograms of compounds (±)-cis-22 and (-)-(3S,5R)-22	42
VII.2 - Chiral HPLC chromatograms of compounds (±)-trans-23 and (+)-(35,55)-23	43
VII.3 - Chiral HPLC chromatograms of compounds (±)-20 and (-)-20	44
VII.4 - Chiral HPLC chromatograms of compounds (±)-24 and (-)-24	45
VII.5 - Chiral SFC chromatograms of (±)-, (-)- and (+)-trienylfuranol A 4	46
VII.6 - HPLC chromatograms analysis of Diels-Alder reaction	47
VIII - References	49

I - General information

All non-aqueous reactions were run under an inert atmosphere (argon), by using standard techniques for manipulating airsensitive compounds. Anhydrous solvents were obtained by filtration through drying columns (THF, dichloromethane, DMF). All reagent-grade chemicals and other solvents were obtained from commercial suppliers and were used as received. Reactions were monitored by analytical thin-layer chromatography (TLC) on silica gel (60 F₂₅₄) plates (Merck) and visualized using UV light (254 and 312 nm) and developed by heating the plate after spraying with an aqueous solution of sulfomolybdic acid or KMnO₄. Flash column chromatography was conducted on Merck silica gel 60 (40-63 μ m) or on Combiflash Companion using Interchim silica columns. Proton magnetic resonance ¹H NMR spectra (500.1 MHz) and carbon magnetic resonance ¹³C NMR spectra (75.5 and 125.8 MHz) were recorded on Bruker Avance spectrometers. Analyses were acquired in CDCl₃ (δ_{H} 7.26 ppm; δ_{C} 77.16 ppm) or C₆D₆ (δ_{H} 7.16 ppm; δ_{C} 128.06 ppm). The following abbreviations are used for the proton spectra multiplicities: s = singulet, d = doublet, t = triplet, q = quadruplet and m = multiplet. Coupling constants (J) are reported in Hertz (Hz). Infrared spectra (IR) were obtained on a Perkin-Elmer Spectrum 100 model instrument and are reported in reciprocal centimeters (cm⁻¹). Highresolution mass spectra (HRMS) were recorded with a Micromass LCT Premier XE instrument (Waters) and were determined by electrospray ionization (ESI) coupled with a time of flight analyser (TOF), while low resolution mass spectrometry (LRMS) on a Waters Acquity QDA detector coupled to a Waters Alliance HPLC system. Optical rotations were measured at 20 °C on an Anton Paar MCP 300 polarimeter and data are reported as follows: optical rotation [α_{I}]²⁰, concentration (*c* in g/100 mL) and solvent.

II - Optimization for selective hydration of bisalkynyl ester 10 and 11

Table S1. Optimization for selective hydration of bisalkynyl ester 10

Table S1. Optimization for selective hydration of bisalkynyl ester 10.

^{*a*} Reactions performed on 0.02 mmol scale. ^{*b*} Yield determined by ¹H NMR with trimethoxybenzene as internal standard added at the end of the reaction. ^{*c*} Isolated yield. (IPr)AuCl = 1,3-Bis(2,6-diisopropylphenyl-imidazol-2-ylidene)gold(I) chloride.

Table S2. Optimization for selective hydration of bisalkynyl ester 11

Table S2. Optimization for selective hydration of bisalkynyl ester 11. ÇO₂Me ÇO₂Me ÇO₂Me Cond. 0 CH ŌН Ōн Ö ŌН 11 12 12b catalyst (mol%) solvent Temp. (°C) Time (h) Conv. (%) Yield (%) of **12** Yield(%) of **12b** Entry 1^{*a*} $(IPr)AuCl (5) + AgSbF_6 (5)$ MeOH/H₂O 2:1 20 18 100 decomp. 2^{*a*} JohnPhosAu(MeCN)SbF₆ (5) MeOH/H₂O 2:1 20 18 100 decomp. 3^a MeOH/H₂O 2:1 [(IPr)Au(CH₃CN)]BF₄ (5) 20 18 100 decomp. **4**^a 30^b 5^b (IPr)AuCl (5) MeOH/H₂O 2:1 40 140 35 5^a (IPr)AuCl (5) MeOH/H₂O 2:1 100 100^{b} 110 18 70 15^{b} 65^b 6^a (SIPr)AuCl (5) MeOH/H₂O 2:1 26 80 **7**^a 15^{b} (AdPr)AuCl (5) MeOH/H₂O 2:1 70 26 35 20^b MeOH/H₂O 10:1 10^b 8^a NaAuCl₄.2H₂O (5) 75 6 10 **9**^a DCM+H₂O (few drops) 0 $PtCl_2(5)$ 20 18 starting material 0 10^a FeCl₃.6H₂O (200) + I₂ (200) 20 6 CH₃CN starting material THF/H₂O 5:2 75%^c 11^a $HgSO_4(3)$ 0 to 20 21 100

^{*a*} Reactions performed on 0.02 mmol scale. ^{*b*} Yield determined by ¹H NMR with trimethoxybenzene as internal standard added at the end of the reaction. ^{*c*} Isolated yield. (IPr)AuCl = 1,3-Bis(2,6-diisopropylphenyl-2-imidazolylidene)gold(I) chloride. (SIPr)AuCl = 1,3-Bis(2,6-diisopropylphenyl-2-imidazolylidene)gold(I) chloride. (AdPr)AuCl = 1,3-Bis(2,6-adamantyl-2-imidazolylidene)gold(I) chloride.

Table S3. Optimization for the formation of furane derivative 15

Table S3. Optimization of phosphine-catalyzed umpolung γ -hydroalkoxylations of alkynoate derivative **14** for the formation of furane derivative **15**.

CH ₃	PR ₃ (5 mc AcOH (20 n Tol., 90 °C,	bl%) nol%) > 18 h	MeO ₂ C	H ₃ + ó	0CH ₃
Entry	PR ₃	Conv. (%) ^c	Yield (%) of 15	Yield(%) of 16	
1 ^{<i>a</i>}	PPh₃	70	15 ^g	5 ^{<i>g</i>}	
2 ^{<i>a</i>}	PPh₂Me	100	40 ^{<i>g</i>}	25 ^g	
3 ^{<i>a</i>}	PPhMe ₂	NR	NA	NA	
4 ^{<i>a</i>}	dppe ^d	50	20 ^{<i>g</i>}	10 ^{<i>g</i>}	
5 ^{<i>a</i>}	dppp ^e	100	40 ^{<i>g</i>}	20 ^{<i>g</i>}	
6 ^{<i>a</i>}	dppb ^f	100	40 ^{<i>g</i>}	20 ^{<i>g</i>}	
7 ^b	dppp ^e	100	15 ^{<i>h</i>}	10 ^{<i>h</i>}	

^{*a*} Reactions performed on 0.1 mmol scale. ^{*b*} Reactions performed on 0.5 mmol scale. ^{*c*} Based on the consumption of **14** as determined of ¹H NMR analysis of the crude mixture. ^{*d*} **1**,2-Bis(diphenylphosphino)ethane. ^{*e*} **1**,3-Bis(diphenylphosphino)propane. ^{*f*} **1**,4-Bis(diphenylphosphino)butane. ^{*g*} Yield determined by ¹H NMR with dimethylsulfone as internal standard added at the end of the reaction. ^{*h*} Isolated yield.

Table S4. Enantioselective reduction of α -oxo- γ -butyrolactone (±)-18 using Baker's yeast

^{*a*} Reactions performed on 0.9 mmol scale in water (250 mL), 30 °C, 150 rpm with 5 g of baker's yeast. ^{*b*} Reactions performed on 9 mmol scale in water (1 L), 30 °C, 150 rpm with 20 g of baker's yeast. ^{*c*} The diastereoisomeric ratio (d.r.) was determined by ¹H NMR on the crude mixture. ^{*d*} Isolated yield.

III - Experimental Procedures and Characterization Data

III.1 - Sporothriolide production from fermentation culture of Hypoxylon monticulosum CLL-205

The crude ethyl acetate extract (3.0 g) from *Hypoxylon monticulosum* culture broth was purified by silica gel column chromatography (eluent: *n*-heptane/EtOAc 1:1). After concentration under reduced pressure, sporothriolide (300 mg, 10%) was obtained as a white powder. The spectra data are consistent to the previous described compound in literature (Leman-Loubière et al., J. Nat. Prod. 2017, 80, 2850-2854).

III.2 - Synthetic approach of trienylfuranol by phosphine-organocatalyzed reaction for the formation of furanic moiety

(*R*)-2-[3-(Trimethylsilyl)prop-2-yn-1-yl]oxirane (9). Trimethylsilylacetylene (11.2 mL, 81.1 mmol, 1.5 equiv.) was added to anhydrous THF (90 mL) under an argon atmosphere and the solution was cooled to -78 °C. Then, *n*-BuLi 1.6 M (51 mL, 81.1 mmol, 1.5 equiv.) was added dropwise and very carefully to avoid heating the reaction. The mixture was stirred at -78 °C for 10 min, then BF₃.OEt₂ (10.0 mL, 81.1

mmol, 1.5 equiv.) was added dropwise and very carefully to avoid heating the reaction and the mixture was stirred for another 10 min. Afterward, a solution of (*R*)-(-)-epichlorohydrin (5.0 g, 54.0 mmol, 1 equiv.) in anhydrous THF (20 mL) under an argon atmosphere at -78 °C was added dropwise along the wall of the flask and very carefully to the reaction mixture. The solution was stirred at -78 °C for 1.5 h and then allowed to warm up to 0 °C. After 1.5 h at 0 °C, the reaction was completed and treated by a saturated aqueous NH₄Cl solution. Then, the organic layer was separated and the aqueous phase was extracted three times by Et₂O. Combined organic layers were washed with brine, dried with MgSO₄, filtered and concentrated under *vacuum*. The crude mixture was dissolved in DCM (200 mL) and then NaOH (12.97 g, 324.3 mmol) was added. The mixture was stirred overnight at room temperature. After the reaction was completed, the reaction was treated by a saturated aqueous NH₄Cl solution. Then, the aqueous phase was extracted three times solution. Then, the organic layer was completed, the reaction was treated by a saturated aqueous NH₄Cl solution. The reaction was completed, the reaction was treated by a saturated aqueous NH₄Cl solution. Then, the organic layer was separated and the aqueous phase was extracted three times by DCM. Combined organic layers were washed with MgSO₄, filtered and concentrated under *vacuum*. The crude product was purified by silica gel flash column chromatography (eluent: Pentane/Et₂O 9:1) to give the alkynylated product **9** as a pale yellow colorless oil (4.7 g, 30.2 mmol, 56 %).

¹**H** NMR (500.1 MHz, CDCl₃) δ = 3.11-3.08 (m, 1H), 2.79 (dd, *J* = 5.0, 4.0 Hz, 1H), 2.67 (dd, *J* = 17.4, 4.4 Hz, 1H), 2.66 (dd, *J* = 5.0, 2.6 Hz, 1H), 2.48 (dd, *J* = 17.4, 5.2 Hz, 1H), 0.15 (s, 9H). ¹³**C** NMR (125.8 MHz, CDCl₃) δ = 100.9 (C_q), 87.4 (C_q), 50.0 (CH), 46.6 (CH₂), 23.7 (CH₂), 0.1 (CH₃). HRMS (ESI) *m/z*: calc for C₁₀H₁₈NOSi [M+ACN+H]⁺ 196.1158, found 196.1149. IR (neat) v_{max} = 3960, 2901, 2180, 1485, 1407, 1250, 1028, 946, 856, 760 cm⁻¹. $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{2} = -28.8$ (*c* = 1, CHCl₃).

Methyl (5)-5-hydroxy-8-(trimethylsilyl)octa-2,7-diynoate (10). Methyl propiolate (10.8 mL, 121.9 mmol, 4 equiv.) was added to anhydrous THF (140 mL) under an argon atmosphere and the solution was cooled to -78 °C. Then, *n*-BuLi (76.2 mL, 121.9 mmol, 4 equiv.) was added dropwise along the wall of the flask and very carefully to avoid heating the reaction. The mixture was stirred at -78 °C for 30 min. Afterward, a solution of epoxide **9** (4.70 g, 30.5 mmol, 1 equiv.) in anhydrous THF (30 mL) under an argon atmosphere was added dropwise along the wall of the flask and very carefully to avoid heating the reaction, this was followed by the addition of BF₃.OEt₂ (15.0 mL, 121.9 mmol, 4 equiv.) using the same method. Then, the mixture was stirred at -78 °C for 3 h. After the reaction was completed, the

reaction was treated by a saturated aqueous NH_4Cl solution. Then, the organic layer was separated and the aqueous phase was extracted three times by Et_2O . Combined organic layers were washed with brine, dried with $MgSO_4$, filtered and concentrated under *vacuum*. The crude product was purified by silica gel flash column chromatography (eluent: Pentane/Et₂O 8:2) to give the alkynylated product **10** as a pale yellow colorless oil (6.48 g, 27.2 mmol, 89 %).

¹H NMR (500.1 MHz, CDCl₃) δ = 3.99 (quint, *J* = 6.0, 1H), 3.77 (s, 3H), 2.67 (dd, *J* = 17.2, 6.0 Hz, 1H), 2.62 (dd, *J* = 17.2, 6.0 Hz, 1H), 2.58 (dd, *J* = 16.8, 6.0 Hz, 1H), 0.16 (s, 9H). ¹³C NMR (125.8 MHz, CDCl₃) δ = 153.9 (C_q), 101.5 (C_q), 88.8 (C_q), 85.4 (C_q), 74.9 (C_q), 67.9 (CH), 52.7 (CH₃), 27.9 (CH₂), 26.2 (CH₂), 0.0 (CH₃). HRMS (ESI) *m/z*: calc for C₁₂H₁₉O₃Si [M+H]⁺

S7

239,1103, found 239.1107. **IR (neat)** v_{max} = 3422, 2958, 2902, 2240, 2177, 1716, 1436, 1356, 1249, 1074, 1028, 858, 753 cm⁻¹. $[\alpha]_D^{20} = -3.8$ (c = 1, CHCl₃).

Methyl (*R***)-5-hydroxyocta-2,7-diynoate (11).** PTSA monohydrate (13.31 g, 70.0 mmol, 6 equiv.) was added to a solution of diyne **10** (2.78 g, 11.7 mmol, 1 equiv.) in MeOH (20 mL). Then, the mixture was warmed up to 60 °C and the reaction was stirred 65 h at this temperature. The crude was concentrated under *vacuum* and then was dissolved in EtOAc. The reaction was treated by a saturated aqueous Na_2CO_3 solution. Then, the organic layer was separated and the aqueous phase was extracted three times by EtOAc. Combined organic layers were washed with brine, dried with MgSO₄, filtered and concentrated under *vacuum*. The crude mixture was purified by silica gel flash column chromatography (eluent: Petroleum ether/EtOAc 7:3) to give the deprotected product **11** as a pale yellow colorless oil (1.56 g, 9.4 mmol, 80 %).

¹H NMR (500.1 MHz, CDCl₃) δ = 4.02 (quint, *J* = 5.8 Hz, 1H), 3.73 (s, 3H), 2.69 (dd, *J* = 17.2, 5.8 Hz, 1H), 2.65 (dd, *J* = 17.2, 5.8 Hz, 1H), 2.55 (ddd, *J* = 16.8, 5.8, 2.6 Hz, 1H), 2.51 (ddd, *J* = 16.8, 5.8, 2.6 Hz, 1H), 2.35 (brs, 1H), 2.10 (t, *J* = 2.6 Hz, 1H). ¹³C NMR (125.8 MHz, CDCl₃) δ = 153.9 (C_q), 85.1 (C_q), 79.4 (C_q), 75.0 (C_q), 71.8 (CH), 67.8 (CH), 52.8 (CH₃), 26.4 (CH₂), 26.2 (CH₂). HRMS (ESI) *m/z*: calc for C₂H₁₁O₃ [M+H]⁺ 16.0708, found 167.0701. IR (neat) v_{max} = 3423, 3292, 2956, 2923, 2853, 2239, 1708, 1436, 1252, 1071 cm⁻¹. [*α*]²*D* = -4.3 (*c* = 1, CHCl₃).

Methyl (S)-5-hydroxy-7-oxo-oct-2-ynoate (12).

Starting from the protected alkyne 10. A few drops of H₂SO₄ (95 % weight) were added to a solution of HgSO₄ (27.7 mg, 0.93 mmol, 3 mol%) in a mixture of THF/H₂O (28 mL, 5:2) at 0 °C. Then, a solution of the diyne **10** (371 mg, 2.20 mmol) in THF (20 mL) was added at the same temperature. The mixture was warmed up to room temperature and stirred for 24 h. The reaction was treated by a saturated aqueous NaHCO₃ solution. Then, the organic layer was separated and the aqueous phase was extracted twice by Et₂O. Combined organic layers were washed with brine, dried with MgSO₄, filtered and concentrated under *vacuum.* The crude mixture was purified by silica gel flash column chromatography (eluent: Petroleum ether/EtOAc 4:6) to give the desired hydration product **12** as a pale yellow colorless oil (267.3 mg, 1.5 mmol, 65 %).

Starting from the deprotected alkyne 11. According to the same above procedure and starting from the diyne **11** (703 mg, 4.20 mmol), the desired hydration product **12** was obtained in 75% yield (587.1 mg, 3.2 mmol).

¹**H** NMR (500.1 MHz, CDCl₃) δ = 4,27-4.21 (m, 1H), 3.73 (s, 3H), 3.34 (d, *J* = 2.8 Hz, 1H), 2.78 (dd, *J* = 17.8, 3.2 Hz, 1H), 2.67 (dd, *J* = 17.8, 8.6 Hz, 1H), 2.67 (dd, *J* = 17.2, 5.6 Hz, 1H), 2.58 (dd, *J* = 17.2, 7.0 Hz, 1H), 2.18 (s, 3H). ¹³**C** NMR (125.8 MHz, CDCl₃) δ = 208.7 (C_q), 153.8 (C_q), 85.2 (C_q), 74.9 (C_q), 65.4 (CH), 52.7 (CH₃), 48.5 (CH₂), 30.7 (CH₃), 26.3 (CH). HRMS (ESI) *m/z*: calc for C₉H₁₃Q₄ [M+H]⁺ 185.0814, found 185.0810. IR (neat) v_{max} = 3423, 2957, 2239, 1720, 1436, 1361, 1258, 1164, 1075, 946, 753 cm⁻¹. $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{2}$ = + 35.6 (*c* = 1, CHCl₃).

Methyl (*R*)-4-hydroxy-2-methyl-6-oxocyclohex-1-ene-1-carboxylate (12b). ¹H NMR (500.1 MHz, CDCl₃) δ = 4,27-4.23 (m, 1H), 3.78 (s, 3H), 3.22 (brs, 1H), 2.66 (dd, *J* = 16.0, 4.2 Hz, 1H), 2.65 (dd, *J* = 18.0, 4.4 Hz, 1H), 2.48 (dd, *J* = 16.0, 8.2 Hz, 1H), 2.46 (dd, *J* = 18.0, 6.8 Hz, 1H), 1.98 (s, 3H). ¹³C NMR (125.8 MHz, CDCl₃) δ = 194.0 (C_q), 167.1 (C_q), 157.9 (C_q), 132.7 (C_q), 65.4 (CH), 52.3 (CH₃), 45.7 (CH₂), 40.1 (CH₂), 22.3 (CH₃). HRMS (ESI) *m/z*: calc for C₉H₁₃O₄ [M+H]⁺ 185.0814, found 185.0818. IR (neat) v_{max} = 3430, 2955, 2902, 1727, 1666, 1632, 1436, 1381, 1318, 1241, 1185, 1154, 1078, 1019, 933 cm⁻¹.

Methyl 4-((45,6R)-2-ethyl-6-methyl-1,3,2-dioxaborinan-4-yl)but-2-ynoate (13). Diethylmethoxy-borane (2.4 mL, 1 *M* in THF, 2.4 mmol, 1.5 equiv.) then MeOH (1.5 mL) were added to a solution of the β-hydroxy-ketone **13** (300 mg, 1.6 mmol, 1 equiv.) in THF (7 mL) under an argon atmosphere and the mixture was stirred for 1 h at room temperature. Afterward, the solution was cooled to -78 °C and NaBH₄ (135.6 mg, 3.58 mmol, 2.2 equiv.) was added to the mixture. The solution was stirred for 24 h at -78 °C. Then, a saturated aqueous NH₄Cl solution was added and the solution was allowed to warm up to room temperature. The mixture was extracted three times by AcOEt. Combined organic layers were washed with brine, dried with MgSO₄, filtered and concentrated under *vacuum*. The crude mixture was purified by silica gel flash column chromatography

CO₂Me

ŌН

11

CO₂Me

¹**H NMR** (500.1 MHz, CDCl₃) δ = 4.17-4.07 (m, 2H), 3.77 (s, 3H), 2.69 (dd, *J* = 17.2, 5.0 Hz, 1H), 2.50 (dd, *J* = 17.2, 7.6 Hz, 1H), 2.10 (dt, J = 13.6, 2.4 Hz, 1H), 1.42 (dt, J = 13.6, 11.4 Hz, 1H), 1.26 (d, J = 6.4 Hz, 3H), 0.87 (t, J = 7.8 Hz, 3H), 0.67 (q, J = 7.8 Hz, 2H). ¹³C **NMR** (125.8 MHz, CDCl₃) δ = 154.0 (C_q), 85.0 (C_q), 74.8 (C_q), 68.9 (CH), 67.4 (CH), 52.7 (CH₃), 39.6 (CH₂), 27.2 (CH₂), 23.1 (CH₃), 7.7 (CH₂), 1.1 (CH₃). HRMS (ESI) m/z: calc for C_{9} H₁₅O₄ [M-B(Et)+3H]⁺ 187.0970, found 187.0979. IR (neat) v_{max} = 3377, 2968, 2241, 1713, 1437, 1379, 1263, 1076, 941 cm⁻¹. $\left[\alpha\right]_{D}^{22}$ + 19.1 (*c* = 1, CHCl₃).

Methyl (55,7R)-5,7-dihydroxyoct-2-ynoate (14). A solution of cis-B-ethyldioxaborinane 13 (309.7 mg, 1.4 mmol) in MeOH (50 mL) was rotary evaporated at 50 °C for 5 times. This gave the crude product as an oil (236.1 mg, 1.3 mmol, 92 %). The crude 1,3-diol 14 was used without further purification.

¹**H NMR** (500.1 MHz, CDCl₃) δ = 4.11-4.06 (m, 2H), 3.76 (s, 3H), 2.70 (brs, 1H), 2.56 (dd, *J* = 17.2, 6.0 Hz, 1H), 2.50 (dd, J = 17.2, 6.2 Hz, 1H), 1.74 (dt, J = 14.4, 2.4 Hz, 1H), 1.61 (dt, J = 14.4, 10.0 Hz, 1H), 1.24 (d, J = 6.2 Hz, 3H). ¹³C NMR (125.8 MHz, CDCl₃) δ = 154.1 (C_a), 85.9 (C_a), 74.7 (C_a), 70.3 (CH), 68.8 (CH), 52.7 (CH₃), 43.6 (CH₂), 27.9 (CH₂), 24.1 (CH₃). HRMS (ESI) *m/z*: calc for C₁₁H₁₇NO₄Na [M+MeCN+Na]⁺ 250,3055, found 250.1058. IR (neat) $v_{max} = 3385, 2956, 2920, 2853, 2238, 1710, 1436, 1251, 1130, 1073 cm⁻¹. <math>[\alpha]_{D}^{\sim} = + 23.5 (c = 1, CHCl_3).$

Methyl (E)-3-((2S,3R,5R)-3-hydroxy-5-methyltetrahydrofuran-2-yl)acrylate (15). A solution of 14 (54.4 mg, 0.29 mmol) in degassed THF (0.7 mL) was added to a solution of 1,3bis(diphenylphosphino)propane (6.0 mg, 14.6 μmol, 0.05 eq) in degassed THF (0.7 mL) under argon atmosphere. Then, acetic acid (3.5 mg, 58.4 µmol, 0.2 eq) was added to the solution. The mixture was warm up to 90 °C and allowed to stir during 22 h. The crude mixture was concentrated under

CH3 но 15

、CH₃

16

MeO₂C

vacuum and was purified by flash chromatography (eluent: cyclohexane/MTBE 3:7) to give the desired product 15 as an oil (7.8 mg, 41.9 μ mol, 14 %) and a mixture of compounds **15** and **16** (6.4 mg).

¹**H NMR** (500.1 MHz, CDCl₃) δ = 6.97 (dd, J = 15.6, 4.8 Hz, 1H), 6.11 (dd, J = 15.6, 1.8 Hz, 1H), 4.40-4.33 (m, 2H), 4.24 (m, 1H), 3.74 (s, 3H), 1.97 (ddd, J = 13.2, 5.4, 2.0 Hz, 1H), 1.91 (d, J = 2.8 Hz, 1H), 1.74 (ddd, J = 13.2, 10.0, 6.0 Hz, 1H), 1.32 (d, J = 6.0 Hz, 3H). ¹³C NMR (125.8 MHz, CDCl₃) δ = 166.9 (C₀), 146.5 (CH), 121.0 (CH), 85.7 (CH), 77.0 (CH), 75.1 (CH), 51.7 (CH₃), 42.1 (CH₂), 20.8 (CH₃). HRMS (ESI) m/z: calc for C₉H₁₅O₄ [M+H]⁺ 187.9970, found 187.0972. IR (neat) v_{max} = 3434, 2972, 2931, 1724, 1661, 1438, 1383, 1300, 1278, 1195, 1171, 1104, 1042 cm⁻¹. $[\alpha]_D^{20} = +19.4^{\circ}$ (c = 1, CHCl₃).

(2R,3aR,7aR)-2-methyl-2,3,3a,7a-tetrahydro-5H-furo[3,2-b]pyran-5-one (16). ¹H NMR (500.1 MHz, CDCl₃) δ = 6.82 (dd, J = 10.0, 5.0 Hz, 1H), 6.11 (d, J = 10.2, 1H), 5.12 (td, J = 5.0, 1.0 Hz, 1H), 4.48 (t, J = 5.0 Hz, 1H), 4.40-4.33 (m, 1H), 2.44 (ddd, J = 13.8, 5.4, 1.0 Hz, 1H), 1.90 (ddd, J = 13.8, 9.8, 5.4 Hz, 1H), 1.31 (d, J = 6.0 Hz, 3H). ¹³C NMR (125.8 MHz, CDCl₃) δ = 162.0 (C_a), 141.1 (CH), 122.6 (CH), 81.2 (CH), 74.8 (CH), 68.9 (CH), 42.1 (CH₂), 20.6 (CH₃).

(25,3R,5R)-2-((E)-3-Methoxy-3-oxoprop-1-en-1-yl)-5-methyltetrahydrofuran-3-yl 3,5dinitrobenzoate (17). To a suspension of 3,5-dinitrobenzoic acid (34.2 mg, 0.16 mmol, 1.5 equiv.) in dichloromethane (1 mL) was added DMAP (39.4 mg, 0.32 mmol, 3.0 equiv.) in one portion at 0 °C. The reaction mixture was stirred for five minutes at 0°C then N,N'dicyclohexylcarbodiimide (33.2 mg, 0.16 mmol, 1.5 equiv.) was added at 0 °C and the resultant suspension was stirred for 15 min at 0 °C. A solution of the alcohol 15 (20.0 mg, 0.11 mmol) in dichloromethane (1 mL) was added at 0 °C. The cooling bath was removed and the reaction mixture was stirred at room temperature for 40 h. The suspension was filtrated through a pad

of Celite® and the filter cake was washed with dichloromethane. The combined organic extracts were dried over MgSO₄, concentrated under reduced pressure and purified by silica gel column chromatography (Petroleum ether/EtOAc 4:6) to give benzoate ester 17 (2.7 mg, 7%) as a white solid. ¹H NMR (500.1 MHz, CDCl₃) δ = 9.26 (t, J = 2.0 Hz, 1H), 9.15 (d, J = 2.0 Hz, 2H), 7.10 (dd, J = 15.6, 4.4 Hz, 1H), 6.22 (dd, J = 15.6, 2.0 Hz, 1H), 5.38 (m, 1H), 4.68 (dt, J = 4.4, 2.2 Hz, 1H), 4.46 (m, 1H), 3.78 (s, 3H), 2.28 (ddd, J = 14.2, 4.4, 0.6 Hz, 1H), 1.87 (ddd, J = 14.2, 10.6, 6.0 Hz, 1H), 1.44 (d, J = 6.0 Hz, 3H). ¹³C NMR (125.8 MHz, CDCl₃) δ = 166.5 (C_α), 166.2 (C_α), 148.8 (C_α), 144.7 (CH), 133.4 (C_α), 129.5 (CH), 122.8 (CH), 122.2 (CH), 83.1 (CH), 81.7 (CH), 75.8 (CH), 51.8 (CH₃), 38.9 (CH₂), 20.3 (CH₃). **HRMS (ESI)** m/z: calc for C₁₈H₂₀N₃O₉ [M+MeCN+H]⁺ 422.1200, found 422.1216. **IR (neat)** v_{max} = 3102, 2975, 2932, 1727, 1630, 1545, 1461, 1437, 1346, 1276, 1167, 1111, 1077 cm⁻¹. $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{20} = + 12.6^{\circ}$ (c = 1, CHCl₃).

ÇO₂Me

III.3 - Enantioselective reduction of α-hydroxy-butenolide (±)-18 using Baker's yeast

(35,5R)-3-Hydroxy-5-methyldihydrofuran-2(3H)-one (19). To a solution of α -hydroxy-butenolide (±)-18 (1.0 g, 8.77 mmol) in water (1 L) was added Baker's yeast (Saccharomyces cerevisiae, 20 g) and placed on orbital shaker (150 rpm) at 30 °C for 24 h. After this period, the reaction mixture was centrifugated and the supernatant was concentrated to reduce the volume to 200 mL and extracted with ethyl acetate (3x150 mL). The crude mixture was purified by silica gel flash column chromatography (eluent: petroleum

ether/EtOAc 1:1) to give the reduced compounds cis-19 as a pale yellow colorless oil (200 mg, 20%) and trans-21 as a pale yellow colorless oil (200 mg, 20%).

The spectra data of (35,5R)-19 are consistent to the previous described compound in Literature.¹

¹H NMR (500.1 MHz, CDCl₃) δ 4.56-4.47 (m, 2H), 3.11 (s, 1H), 2.71 (ddd, *J* = 12.8, 8.3, 5.0 Hz, 1H), 1.89-1.83 (m, 1H), 1.46 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (75.5 MHz, CDCl₃) δ 177.8 (CO), 73.8 (CH), 69.1 (CH), 38.9 (CH₂), 21.0 (CH₃). $[\alpha]_D^{20}$ = -1.0 (*c* = 0.5, CH₃OH).

(3S,5S)-3-Hydroxy-5-methyldihydrofuran-2(3H)-one (21).

The spectra data of (35,55)-21 are consistent to the previous described compound in Literature.^{1a,1b}

¹H NMR (500.1 MHz, CDCl₃) δ 4.83-4.77 (m, 1H), 4.55 (t, *J* = 7.8 Hz, 1H), 3.24 (s, 1H), 2.38 (dt, *J* = 13.2, 7.6 Hz, 1H), 2.22 (ddd, J = 13.2, 8.1, 4.1 Hz, 1H), 1.40 (d, J = 6.6 Hz, 3H). ¹³C NMR (125.8 MHz, CDCl₃) δ 177.6 (CO), 75.2 (CH), 67.7 (CH), 37.2 (CH₂), 21.5 (CH₃).

 $[\alpha]_D^{20} = -60.0 \ (c = 0.5, CH_3OH).$

(35,5R)-5-Methyl-2-oxotetrahydrofuran-3-yl acetate (19b). To a solution of DMAP (3.0 mg, 0.03 mmol, 0.2 equiv.) in DCM (2 mL) at 0 °C was added triethylamine (54 μL, 0.39 mmol, 3.0 equiv.), cis-19 compound (15 mg, 0.13 mmol) in DCM (1 mL). Then Ac₂O (19.0 μ L, 0.20 mmol, 1.5 equiv.) was added dropwise and the mixture was stirred for 1h at room temperature. Upon completion, solvents were removed under reduced pressure and the crude product was purified by silica gel flash column chromatography (eluent: Petroleum ether/EtOAc 7:3) to give the acetate derivative 19b as a pale yellow colorless oil (16 mg, 80 %).

The spectra data of (35,5R)-19b are consistent to the previous described compound in Literature.^{1c,1d} ¹H NMR (500.1 MHz, CDCl₃) δ 5.49 (dd, J = 10.8, 8.7 Hz, 1H), 4.59-4.52 (m, 1H), 2.81 (ddd, J = 13.2, 8.6, 5.4 Hz, 1H), 2.16 (s, 3H), 1.91-1.84 (m, 1H), 1.48 (d_z / ³/₂β.2 Hz, 3H). ¹³C NMR (125.8 MHz, CDCl₃) δ₀172.5 (CO), 169.9 (CO), 73.6 (CH), 69.1 (CH), 36.9 (CH₂), 21.1 (CH₃), 20.7 (CH₃). $[\alpha]_D^{20} = +12.4$ (*c* = 1, CHCl₃); Literature^{1c,1d} $[\alpha]_D^{20} = -18.4$ (*c* = 0.9, CHCl₃) for (3*R*,5*S*)-19b.

(35,5R)-5-Methyl-2-oxotetrahydrofuran-3-yl 4-bromobenzoate (22). To a suspension of pbromobenzoic acid (26.0 mg, 0.13 mmol, 1.5 equiv.) in DCM (3 mL) was added DMAP (32.0 mg, 0.26 mmol, 3.0 equiv.) in one portion at 0 °C. The reaction mixture was stirred for five minutes at 0 °C and N,N'-dicyclohexylcarbodiimide (30.0 mg, 0.14 mmol, 1.5 equiv.) was added at 0 °C and the resultant suspension was stirred for 15 min at 0 °C. Then, a solution of cis-19 (10.0 mg, 0.09 mmol) in DCM (1 mL) was added at 0°C. The cooling bath was removed and the reaction mixture was stirred at room temperature overnight. The suspension was filtrated through a pad of Celite® and the filter cake was

washed with DCM. The combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure. The crude mixture was purified by silica gel flash column chromatography (eluent: Petroleum ether/EtOAc 7:3) to give the benzoate ester 22 as an off-white solid (9.0 mg, 35%).

The NMR spectra data of (35,5R)-22 are consistent to the racemic sample (±)-22 (see next page) prepared for the HPLC analysis. ¹H NMR (500.1 MHz, CDCl₃) δ 7.95-7.92 (m, 2H), 7.62-7.59 (m, 2H), 5.71 (dd, *J* = 10.8, 8.5 Hz, 1H), 4.67-4.60 (m, 1H), 2.93 (ddd, J = 12.7, 8.5, 5.3 Hz, 1H), 2.01 (dt, J = 12.7, 10.6 Hz, 1H), 1.53 (d, J = 6.2 Hz, 3H). HRMS (ESI): m/z calcd. for C₁₂H₁₂O₄Br [M+H]⁺ 298.9919, found 298.9914.

0:

ΗÒ

21

CHa

Enantiomeric excess of compound **22** has been measured to 91% by HPLC analysis (Waters) equipped with a Chiralpak[®] ID column (5 μ m, 10x250 mm)₀ with *n*-heptane/*i*-propanol 85:15 as solvent at a flow rate of 1 mL.min⁻¹, a temperature of 25°C, and a detection at 250 nm. $\left[\alpha\right]_{D}^{2}$ = -27.0 (*c* = 0.1, CH₃OH).

(+)-(35,55)-5-Methyl-2-oxotetrahydrofuran-3-yl 4-bromobenzoate (23). To a suspension of *p*bromobenzoic acid (26.0 mg, 0.13 mmol, 1.5 equiv.) in DCM (3 mL) was added DMAP (32.0 mg, 0.26 mmol, 3.0 equiv.) in one portion at 0 °C. The reaction mixture was stirred for five minutes at 0 °C then *N*,*N*'-dicyclohexylcarbodiimide (30.0 mg, 0.14 mmol, 1.5 equiv.) was added at 0 °C and the resultant suspension was stirred for 15 min at 0 °C. A solution of *trans*-21 (10.0 mg, 0.09 mmol) in DCM (1 mL) was added at 0 °C. The cooling bath was removed and the reaction mixture was stirred at room temperature overnight. The suspension was filtrated through a pad of Celite[®] and

the filter cake was washed with dichloromethane. The combined organic extracts were dried over Na_2SO_4 and concentrated under reduced pressure. The crude mixture was purified by silica gel flash column chromatography (eluent: Petroleum ether/EtOAc 7:3) to give the benzoate ester **23** as an off-white solid (13.0 mg, 50%).

The NMR spectra data of **(35,55)-23** are consistent to the racemic sample (±)-**23** (see next page) prepared for the HPLC analysis. ¹H NMR (500.1 MHz, CDCl₃) δ 7.93-7.90 (m, 2H), 7.61-7.59 (m, 2H), 5.65 (dd, *J* = 8.3, 7.4 Hz, 1H), 4.92-4.86 (m, 1H), 2.54-2.48 (m, 1H), 2.43 (ddd, *J* = 12.9, 8.4, 4.4 Hz, 1H), 1.49 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (125.8 MHz, CDCl₃) δ 172.4 (CO), 164.9 (CO), 132.1 (CH), 132.1 (CH), 131.6 (CH), 129.2 (CH), 127.8 (CH), 75.0 (CH), 69.0 (CH), 35.7 (CH₂), 21.7 (CH₃). **IR (neat)** v_{max}: 2981, 2932, 1785, 1723, 1589, 1263, 1172, 1103, 1011, 754 cm⁻¹. **HRMS (ESI)**: *m/z* calcd. for C₁₂H₁₂O₄Br [M+H]⁺ 298.9919, found 298.9918.

Enantiomeric excess of compound **23** has been measured to 99% by HPLC analysis (Waters) equipped with a Chiralpak[®] ID column (5 μ m, 10x250 mm) with *n*-heptane/*i*-propanol 85:15 as solvent at a flow rate of 1 mL.min⁻¹, a temperature of 25°C, and a detection at 250 nm. $\left[\alpha\right]_{D}^{\alpha}$ = +14.0 (*c* = 0.1, CH₃OH).

cis-5-Methyl-2-oxotetrahydrofuran-3-yl 4-bromobenzoate (±)-22. To a suspension of *p*bromobenzoic acid (26.0 mg, 0.13 mmol, 1.5 equiv.) in DCM (3 mL) was added DMAP (32.0 mg, 0.26 mmol, 3.0 equiv.) in one portion at 0 °C. The reaction mixture was stirred for five minutes at 0°C then *N*,*N*'-dicyclohexylcarbodiimide (30.0 mg, 0.14 mmol, 1.5 equiv.) was added at 0 °C and the resultant suspension was stirred for 15 min at 0 °C. A solution of alcohol (±)-19 (10.0 mg, 0.09 mmol) in DCM (1 mL) was added at 0 °C. The cooling bath was removed and the reaction mixture was stirred at room temperature overnight. The suspension was filtrated through a pad of Celite[®] and the filter cake was washed with DCM. The combined organic extracts were dried over Na₂SO₄

and concentrated under reduced pressure. The crude mixture was purified by silica gel flash column chromatography (eluent: Petroleum ether/EtOAc 7:3) to give the benzoate ester (\pm) -**22** as an off-white solid (32 mg, 63%).

¹H NMR (500.1 MHz, CDCl₃) δ 7.95-7.91 (m, 2H), 7.61-7.58 (m, 2H), 5.71 (dd, J = 10.8, 8.5 Hz, 1H), 4.67-4.60 (m, 1H), 2.92 (ddd, J = 12.8, 8.5, 5.3 Hz, 1H), 2.00 (dt, J = 12.6, 10.5 Hz, 1H), 1.52 (d, J = 6.2 Hz, 3H). ¹³C NMR (125.8 MHz, CDCl₃) δ 172.2 (CO), 164.9 (CO), 132.1 (CH), 132.1 (CH), 131.6 (CH), 131.6 (CH), 129.2 (CH), 127.8 (CH), 73.7 (CH), 69.8 (CH), 37.0 (CH₂), 21.2 (CH₃). IR (neat) v_{max} : 2979, 2935, 1785, 1727, 1589, 1274, 1200, 1122, 1012, 755 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₂H₁₂O₄Br [M+H]⁺ 298.9919, found 298.9919.

trans-5-Methyl-2-oxotetrahydrofuran-3-yl 4-bromobenzoate (±)-23. To a solution of *p*bromobenzoic acid (45.0 mg, 0.22 mmol, 1.3 equiv.), triphenylphosphine (58.0 mg, 0.22 mmol, 1.3 equiv.) and (±)-19 (20.0 mg, 0.17 mmol) in THF (5 mL) at 0 °C was slowly added diethyl azodicarboxylate (40% in toluene, 105 μ L, 0.22 mmol, 1.3 equiv.). The cooling bath was removed and the reaction mixture was stirred at room temperature overnight. The diethyl ether (20 mL) was added and the mixture was washed with a saturated aqueous NaHCO₃ solution (2x10 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure. The crude mixture was purified by silica gel flash column chromatography (eluent: Petroleum ether/EtOAc 7:3) to give the benzoate ester (±)-23 as an off-white solid (10 mg, 20%).

¹**H NMR** (500.1 MHz, CDCl₃) δ 7.92-7.90 (m, 2H), 7.61-7.59 (m, 2H), 5.66-5.63 (m, 1H), 4.92-4.86 (m, 1H), 2.54-2.48 (m, 1H), 2.43 (ddd, *J* = 12.7, 8.4, 4.3 Hz, 1H), 1.48 (d, *J* = 6.5 Hz, 3H). ¹³**C NMR** (125.8 MHz, CDCl₃) δ 172.4 (CO), 164.9 (CO), 132.1 (CH), 132.1

(CH), 131.6 (CH), 131.6 (CH), 129.2 (CH), 127.8 (CH), 75.0 (CH), 69.0 (CH), 35.7 (CH₂), 21.7 (CH₃). **IR (neat) v**_{max}: 2981, 2932, 1785, 1723, 1589, 1263, 1172, 1103, 1011, 754 cm⁻¹. **HRMS (ESI)**: *m/z* calcd. for C₁₂H₁₂O₄Br [M+H]⁺ 298.9919, found 298.9916.

III.4 - Reaction scheme for synthesis of (±)-20 and (±)-24 from (±)-19

The experimental procedures and characterization of racemic compounds (\pm)-**A**-**E** are described in our previous synthesis of (\pm)-trienylfuranol A.²

The experimental procedures and characterization of new compounds (\pm) -20 and (\pm) -24 are given below.

(25*,35*,5R*)-2-((E)-2-Iodovinyl)-5-methyltetrahydrofuran-3-ol (±)-20. To a solution of OTBSprotected of (±)-20 (250 mg, 0.68 mmol) in THF (12 mL), prepared for the racemic synthesis of trienylfuranol A in our previous study,² was added TBAF (1*M* in THF, 1.37 mL, 1.37 mmol, 2.0 equiv.) at 0°C and stirred for 2 h at room temperature. Upon completion, the mixture was quenched with a saturated aqueous NH₄Cl solution (3 mL) and extracted with diethyl ether (3x20 mL). The combined

organic extracts were dried over Na_2SO_4 and concentrated under reduced pressure. The crude mixture was purified by silica gel flash column chromatography (eluent: Petroleum ether/EtOAc 6:4) to give the deprotected alcohol (±)-**20** as a pale yellow colorless oil (146 mg, 85%).

¹H NMR (500.1 MHz, CDCl₃) δ 6.68 (dd, *J* = 14.6, 6.0 Hz, 1H), 6.53 (dd, *J* = 14.6, 1.1 Hz, 1H), 4.32-4.28 (m, 1H), 4.14-4.11 (m, 1H), 4.02 (qdd, *J* = 6.5, 6.5, 6.5 Hz, 1H), 2.40 (dt, *J* = 13.6, 6.4 Hz, 1H), 1.58-1.55 (m, 1H), 1.34 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (125.8 MHz, CDCl₃) δ 141.5 (CH), 85.0 (CH), 80.3 (CH), 74.1 (CH), 73.8 (CH), 42.7 (CH₂), 22.1 (CH₃). HRMS (ESI): m/z calcd. for C₇H₁₂O₂I [M+H]⁺ 254.9882, found 254.9887. **IR (neat)** v_{max} : 3409, 2973, 2928, 1608, 1445, 1387, 1331, 1267, 1179, 1115, 1067, 1027, 947 cm⁻¹.

(25*,35*,5R*)-2-((E)-2-Iodovinyl)-5-methyltetrahydrofuran-3-yl acetate (±)-24. To a solution of DMAP (12.0 mg, 0.10 mmol, 0.2 equiv.) in DCM (7 mL) at 0°C was added triethylamine (210 μ L, 1.50 mmol, 3.0 equiv.), alcohol (±)-20 (128 mg, 0.50 mmol) in DCM (3 mL). Then Ac₂O (71.0 μ L, 0.75 mmol, 1.5 equiv.) was added dropwise and the mixture was stirred for 1 h at room temperature. Upon completion, solvents were removed under reduced pressure and the crude mixture was purified by silica gel flash

column chromatography (eluent: Petroleum ether/EtOAc 8:2) to give the acetylated alcohol (\pm)-**24** as a pale yellow colorless oil (138 mg, 93%).

¹**H** NMR (500.1 MHz, CDCl₃) δ 6.55 (dd, *J* = 14.5, 6.0 Hz, 1H), 6.47 (dd, *J* = 14.5, 0.6 Hz, 1H), 5.31-5.28 (m, 1H), 4.25 (t, *J* = 5.4 Hz, 1H), 4.02 (qdd, *J* = 6.3, 6.3, 6.3 Hz, 1H), 2.46 (dt, *J* = 13.7, 6.8 Hz, 1H), 2.06 (s, 3H), 1.61 (ddd, 13.6, 7.7, 3.9 Hz, 1Hz), 1.33 (d, *J* = 6.2 Hz, 3H). ¹³**C** NMR (125.8 MHz, CDCl₃) δ 170.5 (CO), 140.8 (CH), 83.1 (CH), 80.1 (CH), 75.3 (CH), 74.0 (CH), 39.9 (CH₂), 21.4 (CH₃), 21.1 (CH₃). HRMS (ESI): *m*/*z* calcd. for C₉H₁₄O₃I [M+H]⁺ 296.9988, found 297.0004. IR (neat) v_{max} : 2976, 2931, 2866, 1737, 1607, 1439, 1374, 1236, 1179, 1104, 1035, 947 cm⁻¹.

Enzymatic kinetic resolution of acetate ester (±)-24 for the production of (-)-20 and (-)-24. To a solution of acetate (±)-24 (130 mg, 0.44 mmol) in 20 mM, pH 7.4 phosphate buffer (130 mL) was added Amano Lipase PS from *Burkholderia Cepacia* (500 mg) and placed on orbital shaker (130 rpm) at 28°C for 6 h. Reaction was monitored by ¹H NMR to have 50:50 acetate/alcohol

ratio. After this period, the reaction mixture was extracted with ethyl acetate (3x100 mL) and the crude mixture was purified by silica gel flash column chromatography (eluent: Petroleum ether/EtOAc 8:3) to give alcohol (-)-**20** (35 mg, 31%) and acetate (-)-**24** (45 mg, 35%).

Enantiomeric excess of alcohol **20** has been measured to 99% by HPLC analysis (Waters) equipped with a Chiralpak[®] ID column (5 μ m, 10x250 mm) with *n*-heptane/*i*-propanol 80:20 as solvent at a flow rate of 1 mL.min⁻¹, a temperature of 25°C, and a detection at 230 nm. $[\alpha]_D^D = -19.0$ (*c* = 0.1, CH₃OH).

Enantiomeric excess of acetate **24** has been measured to 99% by HPLC analysis (Waters) equipped with a Chiralpak[®] ID column (5 μ m, 10x250 mm) with *n*-heptane/*i*-propanol 95:5 as solvent at a flow rate of 1 mL.min⁻¹, a temperature of 25°C, and a detection at 230 nm. $[\alpha]_D^D = -40.0$ (*c* = 0.1, CH₃OH).

III.6 - Synthesis of both enantiomers of trienylfuranol A (-)-4 and (+)-4.

Trienylfuranol A (-)-4 (unnatural enantiomer). To a solution of vinyl iodide (-)-**20** (65 mg, 0.25 mmol) and *(E)*-buta-1,3-dien-1-yltributylstannane (150 mg, 0.44 mmol, 1.8 equiv.) in degassed DMF (8 mL) at room temperature was added $PdCl_2(CH_3CN)_2$ (20.0 mg, 0.08 mmol, 30 mol%) and stirred for 3h. Upon completion, the mixture was quenched with an aqueous KF solution (1*M*, 8 mL). The precipitate was removed by filtration and the mixture was diluted in diethyl

ether (50 mL), washed with water (5x3 mL) and the combined organic extracts were concentrated under reduced pressure. The crude mixture was purified by silica gel flash column chromatography (eluent: Petroleum ether/EtOAc 5:5) to give the unnatural enantiomer of trienylfuranol A (-)-**4** as a pale yellow colorless oil (26 mg, 56%).

¹**H NMR** (500.1 MHz, C₆D₆) δ 6.46-6.41 (m, 1H), 6.30-6.23 (m, 1H), 6.12-6.09 (m, 2H), 5.72 (dd, J = 15.3, 6.0 Hz, 1H), 5.09 (d, J = 16.7, 1H), 4.98 (d, J = 10.1, 1H), 3.95-3.93 (m, 1H), 3.86-3.83 (m, 1H), 3.80-3.74 (m, 1H), 1.95-1.89 (m, 1H), 1.41 (ddd, J = 13.3, 6.7, 2.7 Hz, 1H), 1.28 (d, J = 6.2 Hz, 3H). ¹³**C NMR** (125.8 MHz, C₆D₆) δ 137.3 (CH), 133.9 (CH), 133.1 (CH), 133.0 (CH), 130.3 (CH), 117.5 (CH), 83.8 (CH), 74.4 (CH), 74.0 (CH), 43.0 (CH₂), 22.3 (CH₃). **HRMS (ESI)**: m/z calcd. for C₁₁H₁₇O₂ [M+H]⁺ 181.1229, found 181.1228.

Enantiomeric excess of trienylfuranol A (-)-4 has been measured to 99% by supercritical fluid chromatography (Thar SFC, Waters) equipped with a Chiralpak[®] IA column (5 μ m, 4.6x250 mm) with 5% *i*-propanol in CO₂ as solvent at a flow rate of 4 mL.min⁻¹, a pressure of 100 bar, and a detection at UV max absorbance. $\left[\alpha\right]_{D}^{26} = -8.0$ (*c* = 0.1, CH₃CN).

(25,35,5R)-2-((E)-2-iodovinyl)-5-methyltetrahydrofuran-3-ol (+)-20. To a solution of acetate (-)-24 (78 mg, 0.26 mmol) in anhydrous methanol (3 mL) was added dry K_2CO_3 (110 mg, 0.79 mmol, 3.0 equiv.) and stirred at room temperature for 3h. Upon completion, the mixture was quenched with a saturated aqueous NH₄Cl solution (2 mL), extracted with diethyl ether (3x20 mL) and the combined organic extracts were concentrated under reduced pressure. The crude mixture was purified by silica gel flash

column chromatography (eluent: Petroleum ether/EtOAc 6:4) to give the deacetylated alcohol (+)-**20** as a pale yellow colorless oil (50 mg, 75%). $[\alpha]_D^2$ = +24.0 (*c* = 0.1, CH₃OH).

Trienylfuranol A (+)-4 (natural enantiomer). To a solution of vinyl iodide (+)-**20** (50 mg, 0.20 mmol) and *(E)*-buta-1,3-dien-1-yltributylstannane (115 mg, 0.34 mmol, 1.7 equiv.) in degassed DMF (6 mL) at room temperature was added $PdCl_2(CH_3CN)_2$ (15.0 mg, 0.06 mmol, 0.3 equiv.) and stirred for 3h. Upon completion, the mixture was quenched with an aqueous KF solution (1*M*, 5 mL). The precipitate was removed by filtration and the mixture was diluted

in diethyl ether (50 mL), washed with water (5x3 mL) and the combined organic extracts were concentrated under reduced

pressure. The crude mixture was purified by silica gel flash column chromatography (eluent: Petroleum ether/EtOAc 5:5) to give the natural enantiomer of trienylfuranol A (+)-**4** as a pale yellow colorless oil (24 mg, 68%).

Enantiomeric excess of trienylfuranol A (+)-4 has been measured to 99% by supercritical fluid chromatography (Thar SFC, Waters) equipped with a Chiralpak[®] IA column (5 μ m, 4.6x250 mm) with 5% *i*-propanol in CO₂ as solvent at a flow rate of 4 mL.min⁻¹, a pressure of 100 bar, and a detection at UV max absorbance. $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{20} = +9.0$ (*c* = 0.1, CH₃CN).

III.7 - Diels-Alder reaction between (-)-sporothriolide 3 and (+)-trienylfuranol A 4

Sporochartines A-D. Sporothriolide (30 mg, 0.13 mmol) and (+)-trienylfuranol A (26 mg, 0.14 mmol, 1.1 equiv.) were suspended in water/THF 4:1 mixture (3 mL) and warmed at 100 °C, allowing the THF to evaporate then stirred for 3 hours under reflux. After this period, the reaction mixture was concentrated and purified by preparative reversed-phase HPLC (Sunfire C18 5 μ m, 10 × 250 mm) eluting with a gradient of 50 to 100% acetonitrile in 40 min at a flow rate of 4 mL.min⁻¹ and a detection at 215 nm.

Sporochartine B (11 mg, 21%) was isolated as the major product as a white solid. **Sporochartines A** and **C** (8 mg, 15%) were isolated in 1:1 mixture as a white solid. **Sporochartine D** (1.5 mg, 3%) was isolated as the minor product as a white solid.

The spectra data of **sporochartines A-D** are consistent to the natural compounds described in Literature: C. Leman-Loubière, G. Le Goff, C. Debitus and J. Ouazzani, Sporochartines A-E, A New Family of Natural Products from the Marine Fungus Hypoxylon monticulosum Isolated from a Sphaerocladina Sponge, *Front. Mar. Sci.*, 2017, **4**, Article 399.³

Sporochartine B. ¹H NMR (500.1 MHz, CDCl₃) δ 5.96-5.92 (m, 1H), 5.83 (dd, J= 15.5, 9.0 Hz, 1H), 5.74 (dd, J= 15.5, 3.9 Hz, 1H), 5.54 (dd, J= 10.0, 1.5 Hz, 1H), 5.14-5.12 (m, 1H), 4.41-4.37 (m, 1H), 4.29-4.26 (m, 1H), 4.20-4.17 (m, 1H), 4.09-4.02 (m, 1H), 3.30 (d, J=5.8 Hz, 1H), 3.25-3.21 (m, 1H), 2.83-2.74 (m, 1H), 2.42-2.36 (m, 1H), 2.29-2.21 (m, 1H), 2.15-2.08 (m, 1H), 2.05-2.00 (m, 1H), 1.88-1.81 (m, 1H), 1.79-1.72 (m, 1H), 1.58 (ddd, J= 13.7, 6.0, 1.5 Hz, 1H), 1.47-1.41 (m, 2H), 1.37-1.31 (m, 2H), 1.32 (d, J=6.1 Hz, 3H), 1.31-1.24 (m, 4H), 0.88 (t, J=6.7 Hz, 3H). ¹³C NMR (125.8 MHz, CDCl₃) δ 178.7 (CO), 173.0 (CO), 130.9 (CH), 130.1 (CH), 129.9 (CH), 124.7 (CH), 82.8 (CH), 81.1 (CH), 78.7 (CH), 74.1 (CH), 73.8 (CH), 50.8 (C), 47.2 (CH), 46.9 (CH), 42.4 (CH₂), 31.7 (CH₂), 29.1 (CH₂), 28.9 (CH₂), 26.9 (CH₂), 22.8 (CH₂), 22.6 (CH₂), 22.4 (CH₃), 14.1 (CH₃). **IR (neat) v**_{max}: 3471, 2931, 2866, 1771, 1306, 1177, 1070 cm⁻¹. **HRMS (ESI)**: *m/z* calcd. for C₂₄H₃₅O₆ [M+H]⁺ 419.2434, found 419.2421. [α] ²⁰_D + 83° (c=0.6, CHCl₃)

Sporochartine D. ¹**H NMR** (500.1 MHz, CDCl₃) δ 5.98-5.94 (m, 1H), 5.64 (dd, J= 15.9, 7.4 Hz, 1H), 5.55 (dd, J= 15.6, 6.0 Hz, 1H), 5.52-5.48 (m, 1H), 5.08-5.06 (m, 1H), 4.45-4.42 (m, 1H), 4.28-4.22 (m, 1H), 4.20-4.17 (m, 1H), 4.07-4.03 (m, 1H), 3.29 (d, J=5.3 Hz, 1H), 2.80-2.78 (m, 1H), 2.62-2.54 (m, 1H), 2.41-2.36 (m, 1H), 2.29-2.20 (m, 1H), 1.96-1.92 (m, 2H), 1.91-1.87 (m, 1H), 1.85-1.77 (m, 1H), 1.61-1.58 (m, 2H), 1.49-1.43 (m, 2H), 1.38-1.33 (m, 2H), 1.32-1.26 (m, 7H), 0.88 (t, J=6.6 Hz, 3H). **HRMS (ESI)**: *m/z* calcd. for C₂₄H₃₅O₆ [M+H]⁺419.2434, found 419.2418.

IV - ¹H and ¹³C NMR Spectra

¹H NMR (CDCl₃, 500.1 MHz) of 9

ppm 200 180 160 140 120 100 80 60 40 20 0

ppm 200 180 160 140 120 100 80 60 40 20 0

ppm 180 160 140 120 100 80 60 40 20 0

¹³C NMR (CDCl₃, 125.8 MHz) of 17

¹³C NMR (C₆D₆, 125.8 MHz) of trienylfuranol A (-)-4

¹³C NMR (C₆D₆, 125.8 MHz) of trienylfuranol A (+)-4

¹³C NMR (CDCl₃, 125.8 MHz) of sporothriolide

¹³C NMR (CDCl₃, 125.8 MHz) of Sporochartine B

¹³C NMR (CDCl₃, 125.8 MHz) of Sporochartines A/C mixture

V - NMR 2D Experiments

NOESY Spectrum of compound 15 (500.1 MHz, CDCl₃)

VI - X-Ray crystal structure determination of compound 17

Experimental

Crystals of compound **17** were obtained by liquid-liquid diffusion dichloromethane/*n*-hexane.

Single crystals suitable to X-ray diffraction structural analyses were transferred upon a microscope slide and one of them selected under a binocular, mounted on a nylon loop and fixed with Paratone[®] oil. Then, X-ray diffraction and crystallographic data were collected at 100 K using redundant ω scans on a Rigaku XtaLabPro single-crystal diffractometer using microfocus Mo K α radiation and a HPAD PILATUS3 R 200K detector. CrysAlisPro 1.171.39.46⁴ was employed for the data processing, with SCALE3 ABSPACK scaling algorithm implemented for the empirical absorption correction using spherical harmonics.

Using Olex2,⁵ the structures was readily solved by intrinsic phasing methods (SHELXT⁶), and by full-matrix least-squares methods on F² using SHELXL.⁶ The non-hydrogen atoms were refined anisotropically, and hydrogen atoms, most of them were identified in difference maps and were treated as riding on their parent atoms.

The Flack parameter⁷ was also refined. The determination of the absolute structure was confirmed by using Bayesian statistics on Bijvoet differences⁸ based on the Olex2 results and the characterized enantiopure compound **17** was confirmed by the use of enantiopure (*R*)-epichlorhydrine **7** as starting material.

The molecular graphics presented here were computed with Mercury 2020.3.0.9

Crystallographic data have been deposited in the Cambridge Crystallographic Data Centre database (the deposition number is 2269175). Copies of the data can be obtained free of charge from the CCDC at https://www.ccdc.cam.ac.uk/structures/

Crystal data for compound 17

 $C_{16}H_{16}N_2O_9$, M_r = 380.31, triclinic, P2₁ (No. 4), a = 10.3384(5) Å, b = 5.3232(2) Å, c = 16.2069(9) Å, β = 107.001(6)°, V = 852.95(8) Å³, Z = 2, T = 100.15 K, μ (MoK α) = 0.123, 30178 reflections measured, 3502 unique (R_{int} = 0.0602) which were used in all calculations. The final wR_2 was 0.0672 (all data) and R_1 was 0.0283 (I > 2 σ (I)). The goodness of fit on F2 was 1.078. Flack parameter = -0.1(4). Hooft parameter = -0.1(3).

Figure S1. ORTEP drawing of 17

Figure S1: (left) ORTEP drawing of **17** with thermal ellipsoids drawn at the 50% probability level and (right) Labelling scheme of the structure.

Compound Identification code		17		
Empirical Formula		$C_{16}H_{16}N_2O_9$		
Formula Weight		380.31		
Crystal Color, H	labit	[clear light colourless, rect.Prism]		
Crystal Dimensions (mm ³)		0.35 × 0.04 × 0.02		
Crystal Syste	m	monoclinic		
Space Grou	р	P21		
	<i>a</i> (Å)	10.3384(5)		
	b (Å)	5.3232(2)		
Unit	<i>c</i> (Å)	16.2069(9)		
dimensions	α (°)	90		
	β(°)	107.001(5)		
	γ(°)	90		
Volume (Å3	3)	852.94(7)		
Z value		2		
Calculated density D _{calc.} (g.cm ⁻³)		1.481		
Absorption coefficier	nt μ (mm⁻¹)	0.123		
F (000)		396.0		
Diffractometer		Rigaku XtaLAB PRO		
Radiation ty	pe	Μο Κ _α		
Wavelength	(Å)	0.71073		
Voltage, Current (kV <i>,</i> mA)	(50, 0.6)		
<i>Т</i> (К)		100.15		
2θ range for data collection (°)		7.57 to 52.038		
Limiting indic	ces	-12 ≤ h ≤ 12, -6 ≤ k ≤ 6, -20 ≤ l ≤ 20		
Reflections collecte	d/unique	30178/3502		
Completeness to $ heta$) full (%)	99.6		
R _{int}		0.0602		
Absorption corre	ection	Semi-empirical from equivalents		
Refinement me	thod	Full-matrix least-squares on F ²		
Data/restraints/par	rameters	3502/1/283		
Goodness-of-fit	on F ²	1.078		
Final R indices	R ₁	0.0283		
[/>2ơ(/)]	WR ₂	0.0658		
(all data)	K ₁ WR ₂	0.0311		
Absolute structure p	arameters	0.0072		
Flack Parameter		-0.1(4)		
Hooft Parame	eter	-0.1(3)		
Largest ∆ peak and h	ole (e.A ⁻³)	0.17/-0.17		
CCDC Deposit Nu	umber	2269175		

VII - HPLC and SFC chromatograms

VII.1 - Chiral HPLC chromatograms of compounds (±)-cis-22 and (-)-(35,5R)-22

Enantiomeric excess of compound **22** has been measured to 91% by HPLC analysis (Waters) equipped with a Chiralpak[®] ID column (5 μ m, 10x250 mm) with *n*-heptane/*i*-propanol 85:15 as solvent at a flow rate of 1 mL.min⁻¹, a temperature of 25°C, and a detection at 250 nm.

VII.2 - Chiral HPLC chromatograms of compounds (±)-trans-23 and (+)-(35,55)-23

Enantiomeric excess of compound **23** has been measured to 99% by HPLC analysis (Waters) equipped with a Chiralpak[®] ID column (5 μ m, 10x250 mm) with *n*-heptane/*i*-propanol 85:15 as solvent at a flow rate of 1 mL.min⁻¹, a temperature of 25°C, and a detection at 250 nm.

VII.3 - Chiral HPLC chromatograms of compounds (±)-20 and (-)-20

Enantiomeric excess of alcohol **20** has been measured to 99% by HPLC analysis (Waters) equipped with a Chiralpak[®] ID column (5 μ m, 10x250 mm) with *n*-heptane/*i*-propanol 80:20 as solvent at a flow rate of 1 mL.min⁻¹, a temperature of 25°C, and a detection at 230 nm.

VII.4 - Chiral HPLC chromatograms of compounds (±)-24 and (-)-24

Enantiomeric excess of acetate **24** has been measured to 99% by HPLC analysis (Waters) equipped with a Chiralpak[®] ID column (5 μ m, 10x250 mm) with *n*-heptane/*i*-propanol 95:5 as solvent at a flow rate of 1 mL.min⁻¹, a temperature of 25°C, and a detection at 230 nm.

VII.5 - Chiral SFC chromatograms of (±)-, (-)- and (+)-trienylfuranol A 4

Enantiomeric excesses were determined by supercritical fluid chromatography (Thar SFC, Waters) equipped with a CHIRALPAK[®] IA column (5 µm, 4.6x250 mm), 25 °C, eluent: 5% *i*-PrOH in CO₂, 4 mL.min⁻¹, pressure of 100 bar, detection at UV max absorbance: retention times 5.7 and 12.3 min.

Chiral SFC chromatogram of (±)-trienylfuranol A

Chiral SFC chromatogram of (+)-trienylfuranol A

Chiral SFC chromatogram of (-)-trienylfuranol A

VII.6 - HPLC chromatograms analysis of Diels-Alder reaction

Diels-Alder reaction between (-)-sporothriolide and (+)-trienylfuranol A

HPLC chromatogram of crude reaction mixture between (-)-sporothriolide 3 and (+)-trienylfuranol A 4

Samples were analyzed on a Waters Alliance HPLC system coupled with a photodiode array (PDA, Waters 2996), an evaporative light-scattering detector (ELSD, Waters 2424), and a mass detector (Waters, QDa). A Sunfire analytical C18 column (4.6 x 150 mm, 3.5μ m) was used with a flow rate of 0.7 mL/min. The elution gradient consisted of 100% water (+0.1% formic acid) to 100% acetonitrile (+0.1% formic acid) in 40 min, then 10 min at 100% acetonitrile (+0.1% formic acid).

Magnification of HPLC chromatogram of crude reaction mixture between (-)-sporothriolide 3 and (+)-trienylfuranol A 4

Magnification of HPLC chromatogram obtained from fermentation culture of Hypoxylon monticulosum CLL-205³

VIII - References

- (a) H. Ahrens, M. Paetow and D. Hoppe, Stereoselective generation of 1,3- and 1,4-dioxy-substituted carbanions by sparteine-assisted deprotonation of chiral precursors: Substrate or reagent control in the synthesis of α,γ- and α,δ-diols, *Tetrahedron Lett.*, 1992, **33**, 5327-5330; (b) K. Kiegiel, T. Bałakier, P. Kwiatkowski and J. Jurczak, Diastereoselective allylation of *N*-glyoxyloyl-(2*R*)-bornane-10,2-sultam and (1*R*)-8-phenylmenthyl glyoxylate: synthesis of (2*S*,4*S*)-2-hydroxy-4-hydroxymethyl-4-butanolide, *Tetrahedron Asym.*, 2004, **15**, 3869-3878; (c) A. K. Ghosh and P. R. Nyalapatla, Enantioselective Total Synthesis of (+)-Amphirionin-4, *Org. Lett.*, 2016, **18**, 2296-2299; (d) A. K. Ghosh and P. R. Nyalapatla, Total syntheses of both enantiomers of amphirionin 4: A chemoenzymatic based strategy for functionalized tetrahydrofurans, *Tetrahedron*, 2017, **73**, 1820-1830.
- 2. G. Arcile, P. Retailleau, J. Ouazzani and J.-F. Betzer, Total Synthesis of the Fungal Metabolite Trienylfuranol A through Nucleophilic Diastereodivergent Additions to Oxocarbenium Ions, *Eur. J. Org. Chem.*, 2021, 2050-2054.
- 3. C. Leman-Loubière, G. Le Goff, C. Debitus and J. Ouazzani, Sporochartines A-E, A New Family of Natural Products from the Marine Fungus Hypoxylon monticulosum Isolated from a Sphaerocladina Sponge, *Front. Mar. Sci.*, 2017, **4**, Article 399.
- 4. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.
- 5. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.
- 6. G. Sheldrick, SHELXT Integrated space-group and crystal-structure determination, *Acta Crystallographica Section A*, 2015, **71**, 3-8.
- 7. H. Flack, On enantiomorph-polarity estimation, *Acta Crystallographica Section A*, 1983, **39**, 876-881.
- 8. R. W. W. Hooft, L. H. Straver and A. L. Spek, Determination of absolute structure using Bayesian statistics on Bijvoet differences, *J. Appl. Crystallogr.*, 2008, **41**, 96-103.
- 9. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, Mercury: visualization and analysis of crystal structures, *J. Appl. Crystallogr.*, 2006, **39**, 453-457.