Electrochemical Chemoselective Hydroxyl Group Transformation: Anthranilic Acyl modification of Tyrosine Bioconjugations

Shiqi You, ${ }^{+}$Ruitao Wang, ${ }^{+}$Yue Weng, Chao Ma, Guichun Yang, Cuifen Lu, Li Liu, and Meng Gao*

Supporting Information

TABLE OF CONTENTS

\qquad
2. Synthesis of Starting Materials ...- 3 -
2.1 Synthesis of starting materials dipeptides..- 3 -
2.2 Synthesis of starting materials tripeptides ...- 9 -
2.3 Synthesis of Isatin derivatives ..- 10 -
3. General Procedure...- 11 -
3.1 Reaction optimization ...- 11 -
3.2 General procedure for cyclic voltammetry (CV)...................................- 12 -
3.3 Dipeptides scope and characterization ...- 13 -
3.4 Polypeptide scope and characterization ..- 19 -
3.5 Drug molecules and Natural products scope and characterization....- 28 -
3.6 Other substrates expansion ...- 32 -
3.7 Additional application of electrochemical bioconjugation- 39 -
3.7.1 Bioconjugation of Biotin ..- 39 -
3.7.2 Bioconjugation of Oxytocin ...- 42 -
3.7.3 Bioconjugation of Protein ...- 43 -
4. References .. 47 -
5. Spectra ..- 48 -
5.1 NMR Spectra of Products...- 48 -
$5.2^{1} \mathbf{H}$ NMR spectroscopic investigation ...- 89 -

1. General Information

Unless otherwise stated, analytical grade solvents and commercially available reagents were used without further purification. All solvents were analytical reagent or better and were degassed prior to use. The instrument for electrolysis was dual display potentiostat (DJS-292B) (made in China). The anode electrode is platinum plate electrodes ($\Phi 6 \mathrm{~mm}$) and the cathode electrode is lead plate electrodes ($15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 0.3 \mathrm{~mm}$). Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (boiling point is between $60-90^{\circ} \mathrm{C}$). Gradient flash chromatography was conducted eluting with a continuous gradient from DCM to the indicated solvent, and they are listed as volume/volume ratios. High resolution mass spectra (HRMS) for polypeptides were measured with an Agilent 6224 instrument and accurate masses were reported for the molecular ion + Hydrogen $(\mathrm{M}+\mathrm{H})$ or molecular ion + Sodium $(\mathrm{M}+\mathrm{Na})$. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker Advance III (400 MHz) spectrometers with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. For ${ }^{1} \mathrm{H}$ NMR, chemical shifts (δ) were given in ppm relatives to internal standard (TMS at 0 ppm , CDCl_{3} at $7.26 \mathrm{ppm}, \mathrm{MeOH}-d_{4}$ at $3.31 \mathrm{ppm}, \mathrm{DMSO}-d_{6}$ at 2.50 ppm$)$. For ${ }^{13} \mathrm{C}-\mathrm{NMR}$, chemical shifts (δ) were reported in ppm using solvent as internal standard $\left(\mathrm{CDCl}_{3}\right.$ at $77.00 \mathrm{ppm}, \mathrm{MeOH}-d_{4}$ at 49.00 ppm , DMSO-d6 at 39.50 ppm).

2. Synthesis of Starting Materials

2.1 Synthesis of starting materials dipeptides ${ }^{[1][2]}$

To a solution of Boc-L-tyrosine $\mathbf{A}\left(410 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0\right.$ equiv.) in $40 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added HOBT (1-hydroxybenzotriazole) (2.4 mmol), EDCI (1-ethyl-3(3-dimethylpropylamine) carbodimide) (2.4 mmol) and peptide $\mathbf{B}(2.0 \mathrm{mmol})$. The mixture was stirred for 10 min at room temperature, and then triethylamine (3.0 mmol) was added to the solution. The reaction was stirred overnight. After regular workup, the reaction mixture washed 2 M hydrochloric acid solution (40 $\mathrm{mL} \times 3$) and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL} \times 3)$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The resulting crude product was purified by flash chromatography ($\mathrm{DCM} / \mathrm{MeOH}$) to afford corresponding dipeptides 2aa-2ag, 2aj, 2ak.

Dipeptide 2aa Boc-Tyr-Gly-OMe, white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.65$ (s, $1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{dt}, J=6.1,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.68-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40(\mathrm{dt}, J=8.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 3.15-3.04(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 172.25,170.46,156.17,155.61,130.62,129.22,115.74$, 115.73, 79.37, 55.03, 52.28, 41.53, 37.72, 28.30.

2ab

Dipeptide 2ab Boc-Tyr-Val-OMe, white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.56$ (s, $1 \mathrm{H}), 7.52(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dt}, J=6.0,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=9.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.17-2.95(\mathrm{~m}$, $2 \mathrm{H}), 2.21-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 173.43,172.16,156.42,154.83,130.64,130.49,115.78,79.34,57.76$, 55.37, 52.40, 37.75, 30.35, 28.29, 19.06, 19.03.

Dipeptide 2ac Boc-Tyr-Leu-OMe, white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.60$ (d, J $=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{dt}, J=6.0,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.68-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.45-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{qdt}, J=9.9,5.7,0.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.69-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 173.30,172.00,156.09,154.82,130.64,130.49,115.69,115.67$, 79.35, 55.57, 52.40, 51.33, 40.76, 37.75, 28.29, 24.44, 22.52, 22.46.

Dipeptide 2ad Boc-Tyr-Phe-OMe, white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.69$ (d, J $=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=1.7,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{dt}, \mathrm{J}=6.1$, $0.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dt}, J=9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ (dt, $J=9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.09-2.92(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13}$ 13C NMR (101 MHz, Chloroform-d) $\delta 171.74,171.32,156.09,154.80,136.71,130.80,130.55,129.27,129.18,128.63$, $127.01,115.63,79.39,55.59,53.79,52.39,37.76,37.74,28.29$.

Dipeptide 2ae Boc-Tyr-Ser-OMe, white solid, ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.56$ (s, 1H), $7.51(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dt}, J=6.0,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.50(\mathrm{dt}, J=8.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{td}, J=5.6,2.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.00(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 172.28, $170.96,156.22,154.83,130.58,115.70,79.34,64.84,55.57,54.42,52.61,37.75,28.28$.

Dipeptide 2af Boc-Tyr-Cys-OMe, white solid, ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.70$ (d, $J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=6.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.52-4.44(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.15-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 1 \mathrm{H}), 2.84-2.68(\mathrm{~m}, 2 \mathrm{H})$, 1.41 (s, 9H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 172.78,171.95,156.22,154.83,130.86$, $130.49,115.73,79.32,55.56,53.97,52.37,37.75,29.69,28.29$.

2ag

Dipeptide 2ag Boc-Tyr-Met-OMe, light yellow solid, ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.62$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dt}, J=8.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dt}, J=8.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.07-$ $2.98(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 173.06,171.99,156.08,154.82,130.64,129.95,115.64,79.39,52.47$, $51.59,37.74,31.04,30.82,28.29,14.78$.

2aj

Dipeptide 2aj Methyl (R)-2-(2-((tert-butoxycarbonyl)amino)-3-(4-hydroxyphenyl)propanamido)acrylate, white solid, ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.99$ (s, 1H), 7.55 (s, 1H), 6.99 (dd, $J=6.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dt}, J=8.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.01(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}=)$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 170.66,165.58,156.37,155.34,134.51,130.72,129.22$, $115.70,108.56,79.34,55.22,52.34,37.66,28.31$.

Dipeptide 2ak Ethyl (R)-4-(2-((tert-butoxycarbonyl)amino)-3-(4-hydroxyphenyl)propanam-

 ido)butanoate, white solid, ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.56$ (s, 1H), 7.42 (s, 1H), 6.99 (dt, $J=6,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dt}, J=8.2,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.17(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{td}, J=5.7,2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.82-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ $173.13,172.17,156.42,155.62,130.64,130.49,115.77,79.34,60.23,54.94,39.98,37.74,32.23$, 28.29, 25.17, 14.19.

In a round bottomed flask, equipped with a stir bar, peptide $\mathbf{A}(2.0 \mathrm{mmol})$, HOBT (1hydroxybenzotriazole) (2.4 mmol), EDCI (1-ethyl-3(3-dimethylpropylamine) carbodiimide) (2.4 $\mathrm{mmol})(2.4 \mathrm{mmol})$, dichloromethane $(40 \mathrm{~mL})$ and peptide $\mathbf{B}(2.0 \mathrm{mmol})$ were combined and added. The mixture was stirred for 10 min at room temperature, and then, triethylamine (3.0 mmol) was added to the solution. The reaction was stirred overnight. After regular workup, the reaction mixture washed by saturated 2 M hydrochloric acid solution $(40 \mathrm{~mL} \times 3)$ and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL} \times 3)$.

The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The resulting crude product was purified by flash chromatography $(\mathrm{DCM} / \mathrm{MeOH})$ to afford corresponding dipeptides 2ah-i.

Dipeptide 2ah Ac-Trp-Try-OMe, lignt yellow solid, ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.06$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=5.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.34$ (dd, $J=6.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{td}, J=5.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dt}, J=6.0,0.9 \mathrm{~Hz}$, 2H), $6.68-6.62(\mathrm{~m}, 2 \mathrm{H}), 4.62-4.50(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.01$ (qdt, J $=9.8,5.6,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 172.40, 171.97, $171.29,156.09,136.71,131.54,129.91,127.73,123.46,121.78,120.03,118.64,115.66,112.31$, $110.09,54.23,53.68,52.36,37.33,28.33,22.61$.

2ai

Dipeptide 2ai Methyl ((S)-2-((tert-butoxycarbonyl)amino)pent-4-ynoyl)-L-tyrosinate, white solid, ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.80(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{dt}, \mathrm{J}=$ 6.0, $0.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.47-$ $4.39(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.02-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.61(\mathrm{~m}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101

MHz , Chloroform-d) $\delta 171.63,171.42,156.42,155.09,131.39,129.98,115.72,80.61,79.34$, 73.04, 53.67, 53.04, 52.36, 37.3, 28.28, 24.03.

2.2 Synthesis of starting materials tripeptides ${ }^{[3]}$

In a round bottomed flask, equipped with a stir bar, peptide $\mathbf{A}(2 \mathrm{mmol})$, HOBT ($1-$ hydroxybenzotriazole) (2.4 mmol), EDCI (1-ethyl-3(3-dimethylpropylamine) carbodiimide) (2.4 $\mathrm{mmol})(2.4 \mathrm{mmol})$, dichloromethane $(40 \mathrm{~mL})$ and peptide $\mathbf{B}(2.0 \mathrm{mmol})$ were combined and added. The mixture was stirred for 10 min at room temperature, and then, triethylamine (3.0 mmol) was added to the solution. The reaction was stirred overnight. After regular workup, the reaction mixture washed by saturated 2 M hydrochloric acid solution $(40 \mathrm{~mL} \times 3)$ and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL} \times 3)$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The resulting crude product was purified by flash chromatography ($\mathrm{DCM} / \mathrm{MeOH}$) to afford corresponding dipeptide C. To a solution of dipeptide $\mathbf{C}(2.0 \mathrm{mmol})$ in dichloromethane $(18 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added trifluoroacetic acid (2 mL) to give a 10% solution. The reaction was stirred 6 h at room temperature. After removing the solvent in rotary evaporator, the product was obtained as white solid after freeze drying. Then, to a solution of the product in $\mathrm{DCM}(30 \mathrm{~mL})$ was added HOBT (1-hydroxybenzotriazole) (2.4 mmol), EDCI (1-ethyl-3(3-dimethylpropylamine) carbodiimide) (2.4 mmol) (2.4 mmol) and peptide $\mathbf{D}(2.0 \mathrm{mmol})$. After 10 min , triethylamine (3.0 mmol) was added to the solution. The reaction was stirred overnight. After regular workup, the reaction mixture washed by saturated 2 M hydrochloric acid solution $(40 \mathrm{~mL} \times 3)$ and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL} \times 3)$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The resulting crude
product was purified by flash chromatography $(\mathrm{DCM} / \mathrm{MeOH})$ to afford corresponding tripeptide 2ba-f.

2.3 Synthesis of Isatin derivatives ${ }^{[4]}$

Amino acid (2.0 mmol), HATU (3.0 mmol) and DIPEA (3.0 mmol) were dissolved in DCM $(20 \mathrm{~mL})$ and the solution was stirred at $0^{\circ} \mathrm{C}$ under an argon atmosphere for 10 min . Then, 2,3-Dioxoindoline-5-carboxylic Acid (2.0 mmol) in DCM (10 mL) was added dropwise, and the reaction mixture was stirred overnight at $0^{\circ} \mathrm{C}$ to room temperature. The solvent was removed by reduced pressure, and the crude product was purified by silica gel chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ to get the product $\mathbf{1} \mathbf{h} \mathbf{- j}$.

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.07(\mathrm{dd}, J=6.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 183.96,170.65,167.06,160.54,148.87,130.31,129.92$, 125.37, 121.69, 112.46, 52.36, 41.97.

${ }^{1} \mathrm{H}$ NMR (400 MHz, Methanol-d4) $\delta 8.10(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=6.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ (d, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dq}, J=7.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}$, $J=5.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Methanol-d4) $\delta 183.60,173.02,166.92,161.76,148.92$, 130.30, 129.80, 126.13, 121.27, 112.60, 52.58, 48.78, 17.77.

${ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol-d4) $\delta 8.09-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.79(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{dd}, \mathrm{J}=21.8$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.45(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{dd}, \mathrm{J}=11.5,6.8 \mathrm{~Hz}$, 6H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Methanol-d4) δ 183.37, 172.46, 167.37, 160.07, 153.03, 128.82, $123.90,123.40,117.69,111.91,58.88,51.27,30.34,18.30,17.88$.

3. General Procedure

3.1 Reaction optimization

In an oven-dried undivided three-necked bottle $(25 \mathrm{~mL})$ equipped with a stir bar, isatin (0.3 $\mathrm{mmol})$, Tyrosine residue (0.6 mmol) and ${ }^{n} \mathrm{Bu} \mathrm{B}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{mmol})$ were combined and added. Then, solvent (6 mL) were injected into the tubes via syringes. The bottle was equipped with platinum plate $(15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 0.3 \mathrm{~mm})$ as the anode and plumbum plate $(15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 0.3$ mm) as the cathode. The reaction mixture was stirred and electrolysis at constant current under room temperature. When the reaction was finished, the solvent was removed by reduced pressure and the crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=5: 1$). A summary of optimization results is presented in Table S1 below.

Table S1. Investigation of the reaction conditions

 $(15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 0.3 \mathrm{~mm})$, constant current $=5 \mathrm{~mA}, \mathbf{1 a}(0.3 \mathrm{mmol}), \mathbf{2 a}(2.0$ equiv. $),{ }^{n} \mathbf{B} \mathbf{u}_{\mathbf{4}} \mathbf{N F} \cdot \mathbf{3} \mathbf{H}_{\mathbf{2}} \mathbf{O}$ (1.0 equiv.), 5 mL MeCN , undivided cell, 4 h . Yields of isolated products are shown. N.D. $=$ Not Detected.

3.2 General procedure for cyclic voltammetry (CV)

Cyclic voltammetry was performed in a three-electrode cell connected to a schlenk line at room temperature. The working electrode was a steady glassy carbon disk electrode, the counter electrode was a platinum wire. The reference was an $\mathrm{Ag} / \mathrm{AgCl}$ electrode submerged in saturated aqueous KCl solution and separated from a reaction by a salt bridge. The cyclic voltammetry (CV) experiments on $0.015 \mathrm{M}^{n} \mathrm{Bu}_{4} \mathrm{NF}$ or ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$ with $0.003 \mathrm{M} \mathbf{2 a}$, 2af and 2ac were performed, respectively. The scan rate is $0.1 \mathrm{~V} / \mathrm{s}$. The positive scan range was from 0 V to -3.0 V .

Figure S1. As shown in this graphic, the cyclic voltammograms showed irreversible reduction waves.

3.3 Dipeptides scope and characterization

General procedure for product (3aa-k): In an oven-dried undivided three-necked bottle $(25 \mathrm{~mL})$ equipped with a stir bar, isatin $(0.3 \mathrm{mmol})$, dipeptide $(0.6 \mathrm{mmol})$ and ${ }^{n} \mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.3$ $\mathrm{mmol})$ were combined and added. Then, $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$ were injected into the tubes via syringes. The bottle was equipped with platinum plate ($15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 0.3 \mathrm{~mm}$) as the anode and plumbum plate ($15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 0.3 \mathrm{~mm}$) as the cathode. The reaction mixture was stirred and electrolysis at a constant current of 5 mA under room temperature for 4 h . After completion of the reaction, as indicated by TLC and LC-MS, the pure product was obtained by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate).

Detailed descriptions for products:

(R)-4-(2-((tert-butoxycarbonyl)amino)-3-((2-methoxy-2-oxoethyl)amino)-3-oxopropyl)phenyl 2-aminobenzoate (3aa): light yellow oil (Yield: 60%, 84.78 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.99(\mathrm{dd}, \mathrm{J}=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.05$ (d, J = 8.4 Hz, 2H), $6.64(\mathrm{dd}, \mathrm{J}=7.9,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{~s}$, $1 \mathrm{H}), 3.93(\mathrm{qd}, \mathrm{J}=18.3,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 171.46,169.89,166.78,155.47,151.27,149.79,134.92,134.08$, $131.58,130.41,122.19,116.80,116.43,109.57,80.47,55.54,52.40,41.22,37.60,28.29$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{7}: 472.2078$ found, 472.2075.

4-((R)-2-((tert-butoxycarbonyl)amino)-3-(((R)-1-methoxy-3-methyl-1-oxobutan-2-yl)amin-o)-

 3-oxopropyl)phenyl 2-aminobenzoate (3ab): light yellow oil (Yield: $63 \%, 96.97 \mathrm{mg}$), ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.98(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.57(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{~s}, 2 \mathrm{H}), 4.98(\mathrm{~s}$, $1 \mathrm{H}), 4.41(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.06(\mathrm{dq}, \mathrm{J}=13.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{dd}, \mathrm{J}=11.3,6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 171.84,171.08,166.73,155.48,151.28,149.77,134.90,134.13,131.55,130.42$, $122.15,116.80,116.41,109.58,80.40,57.30,55.80,52.16,37.19,31.29,28.29,18.87,17.79$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{7}: 514.2548$ found, 514.2547 .

4-((R)-2-((tert-butoxycarbonyl)amino)-3-(((R)-1-methoxy-4-methyl-1-oxopentan-2-yl)ami-

no)-3-oxopropyl)phenyl 2-aminobenzoate (3ac): light yellow oil (Yield: $65 \%, 102.68 \mathrm{mg}$), ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.97$ (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25 (t, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.20 (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{dd}, \mathrm{J}=7.8,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.67$ (s, 2H), $5.02(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.02$ $(\mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 172.89,170.95,166.72,155.44,151.31,149.77,134.88,134.11,131.54$, $130.46,128.81,122.11,116.80,116.37,109.54,80.36,55.57,52.29,50.80,41.49,37.32,28.27$, 24.68, 22.77, 21.87.HRMS (ESI) cald. for (M+H)+ $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{7}$: 528.2704 found, 528.2706.

4-((R)-2-((tert-butoxycarbonyl)amino)-3-(((R)-1-methoxy-1-oxo-3-phenylpropan-2-yl)ami-no)-3-oxopropyl)phenyl 2-aminobenzoate (3ad): white oil (Yield: $55 \%, 92.67 \mathrm{mg}$), ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.98(\mathrm{dd}, \mathrm{J}=1.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}$, $5 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{dd}, \mathrm{J}=7.8,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~d}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{q}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}$, $3 \mathrm{H}), 2.99(\mathrm{tt}, \mathrm{J}=13.7,7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 171.44, $170.75,166.72,155.32,151.28,149.79,135.66,134.92,134.01,131.55,130.44,129.26,128.63$, 127.18, 122.17, 116.81, 116.41, 109.54, 80.35, 55.62, 53.34, 52.38, 37.95, 37.55, 28.28. HRMS
(ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{7}$: 562.2548,found, 562.2545 .

4-((R)-2-((tert-butoxycarbonyl)amino)-3-(((R)-3-hydroxy-1-methoxy-1-oxopropan-2-yl)am-ino)-3-oxopropyl)phenyl 2-aminobenzoate (3ae): light yellow oil (Yield: $50 \%, 75.34 \mathrm{mg}$), ${ }^{1} \mathrm{H}$ NMR (400 MHz, Methanol-d4) $\delta 8.00-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, 2H), $6.79(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.60(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}, \mathrm{J}=9.0,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, \mathrm{J}=11.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, \mathrm{J}=11.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{dd}, \mathrm{J}$ $=13.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, \mathrm{J}=13.8,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Methanold4) $\delta 172.94,170.63,166.74,156.33,152.20,149.77,134.70,134.46,130.95,130.07,121.59$, $116.46,115.26,108.60,79.44,61.47,55.84,54.77,51.50,37.13,27.28$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{8}$: 502.2184,found, 502.2188.

4-((R)-2-((tert-butoxycarbonyl)amino)-3-(((S)-3-mercapto-1-methoxy-1-oxopropan-2-yl)a-

 mino)-3-oxopropyl)phenyl 2-aminobenzoate (3af): yellow oil (Yield: 45%, 69.78 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.06(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=$ 8.2 Hz, 2H), $7.08(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{dd}, \mathrm{J}=8.0,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.75$ (s, 2H), $5.31(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{q}, \mathrm{J}=6.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.17$ (dd, $\mathrm{J}=13.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.00-2.89(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 173.17,170.45,166.79,155.38,151.26,150.20,135.12,134.37,131.66$,$130.48,122.11,116.80,115.69,109.49,79.27,55.68,55.55,52.78,29.71,28.32$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})+\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{SNa}$: 540.1775 ,found, 540.1780 .

4-((R)-2-((tert-butoxycarbonyl)amino)-3-(((R)-1-methoxy-4-(methylthio)-1-oxobutan-2-

yl)amino)-3-oxopropyl)phenyl 2-aminobenzoate (3ag): light yellow oil (Yield: 55 \%, 89.91 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.98$ (dd, $\mathrm{J}=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.29-7.24(\mathrm{~m}, 1 \mathrm{H})$, $7.20(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.67-6.58(\mathrm{~m}, 3 \mathrm{H}), 5.70(\mathrm{~s}, 2 \mathrm{H}), 4.98(\mathrm{~d}, \mathrm{~J}=$ $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{q}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{dt}, \mathrm{J}=13.9,6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{dt}, \mathrm{J}=13.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{dd}, \mathrm{J}=14.4$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 171.83, 171.01, 166.76, 155.41, $151.28,149.82,134.94,133.97,131.56,130.44,122.22,116.80,116.43,109.52,80.50,55.69$, 52.59, 51.60, 37.29, 31.52, 29.74, 28.29, 15.41. HRMS (ESI) cald. for ($\mathrm{M}+\mathrm{Na}$) $+\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{SNa}$: 568.2088,found, 568.2085.

4-((S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)propanamido)-3-methoxy-3-oxopropyl)phenyl 2aminobenzoate (3ah): yellow oil (Yield: $70 \%, 113.78 \mathrm{mg}$), ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{dd}, \mathrm{J}=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{ddd}, \mathrm{J}=8.5,7.3,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.90(\mathrm{~m}$,
$2 \mathrm{H}), 6.76-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.80(\mathrm{~s}, 2 \mathrm{H}), 4.76(\mathrm{dtd}, \mathrm{J}=15.6,8.4,7.8,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{dd}, \mathrm{J}=14.3,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, \mathrm{J}=14.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, \mathrm{J}=14.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, \mathrm{J}=14.4,8.1$ Hz, 1H), 1.98 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 171.57, 171.31, 169.98, 167.74, $151.52,149.80,136.36,135.38,133.13,131.75,130.23,127.06,123.64,122.36,122.16,119.66$, 119.31, 116.97, 116.60, 111.26, 110.37, 109.08, 53.46, 52.84, 52.41, 36.55, 28.89, 23.35. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{6}$: 543.2238 ,found, 543.2240 .

4-((S)-2-((S)-2-((tert-butoxycarbonyl)amino)pent-4-ynamido)-3-methoxy-3-oxopropyl)phenyl 2-aminobenzoate (3ai): white oil (Yield: $60 \%, 91.75 \mathrm{mg}$), ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 8.04(\mathrm{dd}, \mathrm{J}=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{ddd}, \mathrm{J}=8.6,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.09(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.67(\mathrm{~m}, 2 \mathrm{H}), 5.78(\mathrm{~s}, 2 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H})$, $4.87(\mathrm{q}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{qd}, \mathrm{J}=14.0,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{~d}, \mathrm{~J}=$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 171.41,170.05,166.77,155.34,151.33,149.92,134.94,133.28,131.55,130.43$, $122.18,116.81,116.38,109.45,80.60,79.31,72.09,53.39,52.84,52.48,37.18,28.27,22.26$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{7}: 510.2235$,found, 510.2238 .

(R)-4-(2-((tert-butoxycarbonyl)amino)-3-((3-methoxy-3-oxoprop-1-en-2-yl)amino)-3-oxopropyl)phenyl 2-aminobenzoate (3aj): light yellow oil (Yield: 63 \%, 89.30 mg), ${ }^{1} \mathrm{H}$ NMR (400

MHz, Chloroform-d) $\delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{dd}, \mathrm{J}=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{ddd}, \mathrm{J}=8.5,7.1,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.72-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~d}, \mathrm{~J}=$ 1.1, 1H), $5.76(\mathrm{~s}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 170.13,166.72,164.02,155.43,151.29,149.89$, $134.92,133.77,131.56,130.63,130.30,122.30,116.80,116.42,109.55,109.47,80.71,56.40$, 52.97, 37.37, 28.25.HRMS (ESI) cald. for (M+H)+ $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{7}$: 484.2078,found, 484.2079.

(R)-4-(2-((tert-butoxycarbonyl)amino)-3-((4-ethoxy-4-oxobutyl)amino)-3-oxopropyl)phenyl

2-aminobenzoate (3ak): white oil (Yield: $60 \%, 92.30 \mathrm{mg}$), ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.98(\mathrm{dd}, \mathrm{J}=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{td}, \mathrm{J}=7.7,7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.66-6.59(\mathrm{~m}, 2 \mathrm{H}), 6.17(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.24(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{q}, \mathrm{J}=6.8,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.99$ (hept, $\mathrm{J}=7.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{p}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.35$ ($\mathrm{s}, 9 \mathrm{H}$), $1.16(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 173.25,171.21,166.76$, $155.43,151.31,149.75,134.90,134.31,131.55,130.36,122.18,116.35,109.48,80.23,67.97$, $60.51,55.99,38.86,38.03,31.56,28.31,25.61,24.50,14.21$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+$ $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{7}$: 514.2547,found, 514.2551.

3.4 Polypeptide scope and characterization

General procedure for product (3ba-f): In an oven-dried undivided three-necked bottle (25 $\mathrm{mL})$ equipped with a stir bar, isatin (0.45 mmol), tripeptide $(0.3 \mathrm{mmol})$ and ${ }^{n} \mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.3$ $\mathrm{mmol})$ were combined and added. Then, $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$ were injected into the tubes via syringes. The bottle was equipped with platinum plate ($15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 0.3 \mathrm{~mm}$) as the anode and plumbum
plate $(15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 0.3 \mathrm{~mm})$ as the cathode. The reaction mixture was stirred and electrolysis at a constant current of 5 mA under room temperature for 4 h . After completion of the reaction, as indicated by TLC and LC-MS, the pure product was obtained by flash column chromatography on silica gel (eluent: $\mathrm{DCM} / \mathrm{MeOH}$).

4-((R)-2-((R)-2-acetamido-3-phenylpropanamido)-3-((4-ethoxy-4-oxobutyl)amino)-3-oxopropyl)phenyl 2-aminobenzoate (3ba): light yellow oil (Yield: $68 \%, 123.02 \mathrm{mg}$), ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.24(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dt}, \mathrm{J}=15.4,6.4 \mathrm{~Hz}$, 2H), $7.34-7.15(\mathrm{~m}, 8 \mathrm{H}), 7.10(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H}), 6.59(\mathrm{t}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.09-2.59(\mathrm{~m}, 6 \mathrm{H}), 2.25(\mathrm{q}, \mathrm{J}=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{dq}, \mathrm{J}=14.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=18.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta 173.12,171.64,171.01,169.81,166.44,152.60,149.54,138.43,135.56$, $135.26,131.43,130.62,129.59,128.44,126.64,122.16,117.13,115.40,108.07,60.21,54.64$, $54.50,38.29,37.77,37.51,31.28,24.81,22.90,14.56$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+$ $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{7}$: 603.2774,found, 603.2769

Methyl(6R,9R,12R)-9-(4-((2-aminobenzoyl)oxy)benzyl)-2,2,12-trime-thyl-6-(2-(methyl-thio)ethyl)-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (3bb): yellow oil (Yield: 63 \%, $115.72 \mathrm{mg}),{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 9.73$ (d, J = $\left.8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.80(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.90(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.83(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.60$ $(\mathrm{m}, 1 \mathrm{H}), 4.54-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ (dt, J = 22.7, $9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.84-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{dq}, \mathrm{J}=20.2,11.5,11.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.44(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta 172.86,169.75,165.98$, $156.45,152.16,152.07,149.21,134.83,134.80,131.01,130.07,121.82,116.67,114.93,107.58$, 79.81, 54.45, 51.97, 47.84, 44.19, 39.93, 35.97, 31.29, 29.04, 27.79, 16.77, 14.79. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})+\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{SNa}$: 639.2459,found, 639.2463.

4-((R)-2-((R)-2-acetamido-4-methylpentanamido)-3-(((R)-1-methoxy-3-methyl-1-oxobutan-

 2-yl)amino)-3-oxopropyl)phenyl 2-aminobenzoate: yellow oil (Yield: 55\%, 93.82 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz, Methanol-d4) $\delta 7.97$ (dd, J = 8.2, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.23$ $(\mathrm{m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{dd}, \mathrm{J}=0.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{ddd}, \mathrm{J}=8.1,7.1,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.70-4.62(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{dd}, \mathrm{J}=13.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.82$ $(\mathrm{dd}, \mathrm{J}=13.9,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=4.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.92-0.91(\mathrm{~m}, 3 \mathrm{H}), 0.83(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Methanol-d4) $\delta 172.12,171.66,171.57,171.54,166.69,152.23,149.90,134.09,130.90$, $130.04,128.87,121.69,116.45,115.23,108.52,57.35,54.45,53.67,53.53,41.13,37.37,29.97$, 22.93, 22.34, 20.98.HRMS (ESI) cald. for (M+H)+ $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{7}$: 569.2931,found, 569.2933.

4-((R)-2-((R)-2-acetamido-3-phenylpropanamido)-3-(((R)-1-methoxy-3-methyl-1-oxobutan-2-yl)amino)-3-oxopropyl)phenyl 2-aminobenzoate (3bd): yellow liquid (Yield: 60 \%, 108.52 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.40(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{dd}, \mathrm{J}=16.5,7.4 \mathrm{~Hz}, 5 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.96(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H}), 6.60(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{dp}, \mathrm{J}=22.2$, $7.9,6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.78-2.69(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{dd}, \mathrm{J}=12.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{dd}, \mathrm{J}=$ 6.2, 16.0 Hz, 6H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) δ 172.54, 172.22, 171.79, 166.51, 155.77, $152.60,149.45,137.53,136.11,135.25,131.44,130.61,129.47,128.70,126.98,122.07,117.15$, $115.42,108.12,56.13,53.95,52.25,51.14,37.61,36.96,24.40,23.48,22.21$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{7}$: 603.2774,found, 603.2771.

4-((S)-2-((S)-2-((S)-2-acetamido-3-phenylpropanamido)-4-methylpentanamido)-3-methoxy-3-oxopropyl)phenyl 2-aminobenzoate (3be): yellow oil (Yield: $71 \%, 129.32 \mathrm{mg}$), ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.40(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, \mathrm{J}=16.9,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.23(\mathrm{dd}, \mathrm{J}=16.5,7.4 \mathrm{~Hz}, 5 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H}), 6.60(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{q}, \mathrm{J}=7.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{q}, \mathrm{J}=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{dtd}, \mathrm{J}=20.6,15.1,14.5,6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.80-$
$2.69(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{dt}, \mathrm{J}=12.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{dd}, \mathrm{J}=15.8$, 6.1 Hz, 6H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta 172.54,172.22,171.79,166.51,155.77,152.60$, $149.45,137.53,136.11,135.25,131.44,130.61,129.47,128.70,126.98,122.07,117.15,115.42$, 108.12, 56.13, 53.95, 52.25, 51.14, 41.73, 37.61, 36.96, 24.40, 23.48, 22.21. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{7}: 617.2931$,found, 617.2926.

4-((S)-2-(2-((S)-2-acetamido-3-phenylpropanamido)acetamido)-3-methoxy-3-oxopropyl)ph-

 enyl 2-aminobenzoate (3bf): yellow oil (Yield: 67\%, 93.82 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSOd6) $\delta 8.34(\mathrm{p}, \mathrm{J}=7.3,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.29$ $(\mathrm{m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, 1H), 6.74 (s, 2H), $6.60(t, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dp}, \mathrm{J}=9.9,6.3,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.74$ (ddd, J = 35.5, $16.9,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.08-2.92(\mathrm{~m}, 3 \mathrm{H}), 2.78-2.69(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta 172.76,172.63,171.11,168.00,166.29,156.48,156.10,135.31,133.16$, $131.92,130.67,130.38,127.87,127.64,122.97,115.51,111.58,108.33,107.27,54.37,52.13$, 49.05, 36.48, 32.94, 28.66. HRMS (ESI) cald. for (M+H)+ $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{7}$: 561.2306,found, 561.2310.General procedure for bioconjugation of polypeptides (3bg-j): In an oven-dried undivided three-necked bottle (15 mL) equipped with a stir bar, polypeptides (5 mg), isatin (10 mg), ${ }^{n} \mathrm{Bu}_{4} \mathrm{NF}$ $3 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mg}), \mathrm{CH}_{3} \mathrm{CN}(0.75 \mathrm{~mL})$ and phosphate buffer solution $(0.75 \mathrm{~mL}, \mathrm{pH}=7.4)$ were combined and added. The bottle was equipped platinum plate ($10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.1 \mathrm{~mm}$) as the anode and plumbum plate $(10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.3 \mathrm{~mm})$ as the cathode. The reaction mixture was stirred and electrolysis at constant current of 5 mA under room temperature for 30 min . After completion of the reaction, the solution was analyzed by LC-MS spectroscopy. The reaction was
analyzed by reverse phase HPLC using a gradient of 60% to 50% buffer B over 20 minutes on an Agilent Zorbax SB-Aq $5 \mu \mathrm{~m}$ column of 250 mm length. HPLC analysis used buffers A (water) and B (acetonitrile $+0.1 \% \mathrm{TFA}$). Conversion reported as a $\%$ conversion as determined.

bioconjugated product 3bg :

HPLC: >99\% conversion.
After the reaction finished, there are four peaks that elute at 50% buffer B (acetonitrile + $0.1 \% \mathrm{TFA}$) with retention times of $1.722 \mathrm{~min}, 3.415 \mathrm{~min}, 4.415 \mathrm{~min}$ and 5.236 min . Polypeptide $\mathbf{2 g}$ is a peak that elutes at 50% buffer B (acetonitrile $+0.1 \% \mathrm{TFA}$) with a retention time of 3.204 \min.

HPLC Spectra:

HRMS (ESI-TOF) calcd for $\mathrm{C}_{39} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{9},[\mathrm{M}+\mathrm{Na}]+, 767.3375$, found 767.3371 .

bioconjugated product 3bh :

HPLC: $>99 \%$ conversion.

After the reaction finished, there are four peaks that elute at 50% buffer B (acetonitrile + 0.1% TFA) with retention times of $1.809 \mathrm{~min}, 3.629 \mathrm{~min}, 6.382 \mathrm{~min}$ and 7.171 min . Polypeptide
$\mathbf{2 h}$ is a peak that elutes at 50% buffer B (acetonitrile $+0.1 \%$ TFA) with a retention time of 3.032 \min.

HPLC Spectra:
HRMS (ESI-TOF) calcd for C37H52N6O9S, [M+K]+, 795.3348, found 795.3345.
bioconjugated product 3bi :

HPLC: $>99 \%$ conversion.

After the reaction finished, there are four peaks that elute at 50% buffer B (acetonitrile + $0.1 \% \mathrm{TFA}$) with retention times of $1.720 \mathrm{~min}, 1.911 \mathrm{~min}, 3.387 \mathrm{~min}$ and 6.531 min . Polypeptide
$\mathbf{2 i}$ is a peak that elutes at 50% buffer B (acetonitrile $+0.1 \% \mathrm{TFA}$) with a retention time of 4.723 \min.

HPLC Spectra:
HRMS (ESI-TOF) calcd for $\mathrm{C}_{46} \mathrm{H}_{59} \mathrm{~N}_{7} \mathrm{O}_{10},[\mathrm{M}+\mathrm{H}]+$, 892.4255, found 892.4257.
bioconjugated product 3bj:

HPLC: $>99 \%$ conversion.

After the reaction finished, there are four peaks that elute at 50% buffer B (acetonitrile + $0.1 \% \mathrm{TFA}$) with retention times of $1.939 \mathrm{~min}, 2.728 \mathrm{~min}, 3.146 \mathrm{~min}$ and 4.513 min . Polypeptide $\mathbf{2 j}$ is a peak that elutes at 50% buffer B (acetonitrile $+0.1 \% \mathrm{TFA}$) with a retention time of 4.048 \min.

HPLC Spectra:
HRMS (ESI-TOF) calcd for $\mathrm{C}_{55} \mathrm{H}_{69} \mathrm{~N}_{9} \mathrm{O}_{11} \mathrm{~S},[\mathrm{M}+\mathrm{H}]+$, 1086.4735, found 1086.4731

3.5 Drug molecules and Natural products scope and characterization

Detailed descriptions for products:

2-methoxyphenyl 2-aminobenzoate (3ca): yellow oil (Yield: 78\%, 57.10 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.12(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.16$ $-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} 13 \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 166.39,151.53,151.13,139.79,134.75,131.91,126.87$, $123.26,120.85,116.71,116.42,112.51,109.74,55.95$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+$ $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{3}: 244.0968$,found, 244.0966.

5-isopropyl-2-methylphenyl 2-aminobenzoate (3cb): yellow oil (Yield: 73\%, 58.91 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.12$ (dd, J = 8.4, 1.4 Hz, 1H), 7.38 - 7.31 (m, 1H), 7.19 (d, J $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, \mathrm{J}=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.69(\mathrm{~m}, 2 \mathrm{H}), 5.78$ (s, 2H), $2.89(\mathrm{dd}, \mathrm{J}=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 166.59,151.23,149.29,148.13,134.78,131.62,130.91,127.65,124.10$, 120.15, 116.79, 116.43, 109.76, 33.61, 23.96, 15.90. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+$ $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}: 270.1488$,found, 270.1490.

4-allyl-2-methoxyphenyl 2-aminobenzoate (3cc): light yellow oil (Yield: 75\%, 63.67 mg), ${ }^{1} 1 \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.12(\mathrm{dd}, \mathrm{J}=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.74-6.68(\mathrm{~m}, 2 \mathrm{H}), 5.99(\mathrm{ddt}, \mathrm{J}=16.8,10.0,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.75(\mathrm{~s}, 2 \mathrm{H}), 5.17-5.09(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz,

Chloroform-d) $\delta 166.52,151.28,151.11,138.97,137.99,137.18,134.72,131.90,122.96,120.79$, $116.70,116.40,116.16,112.85,109.79,55.93,40.17$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3}$: 284.1281,found, 284.1278.

4-acetamidophenyl 2-aminobenzoate (3cd): light yellow solid (Yield: 74\%, 59.94 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz, Methanol-d4) $\delta 7.97$ (dd, $\mathrm{J}=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (ddd, $\mathrm{J}=$ $8.5,7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.59(\mathrm{~m}, 1 \mathrm{H}), 2.13$ (s, 3H). ${ }^{13} 13 \mathrm{C}$ NMR (101 MHz, Methanol-d4) $\delta 170.23,166.83,152.19,146.97,136.11,134.49$, $130.96,121.93,120.69,116.48,115.29,108.56,22.42$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+$ $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}$: 271.1077,found, 271.1081.

4-(1-(1H-indole-3-carboxamido)-2-methoxy-2-oxoethyl)phenyl 2-aminobenzoate (3ce): yellow oil (Yield: 74\%, 98.55 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol-d4) $\delta 8.05(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.99 (dd, J = 8.8, 1.3 Hz, 2H), $7.49-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, 1H), $7.20(\mathrm{dt}, \mathrm{J}=19.4,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, \mathrm{J}$ $=9.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Methanol-d4) $\delta 172.77,166.63,166.33$, $152.30,149.88,136.62,135.11,134.70,131.14,130.15,128.33,125.96,122.35,121.98,120.88$, $120.71,116.56,115.27,111.75,110.02,108.42,53.96,51.57$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+$ $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{5}$: 444.1554,found, 444.1551.

3cf
2-methyl-4-oxo-4H-pyran-3-yl 2-aminobenzoate (3cf): light yellow solid (Yield: 67\%, 49.25 $\mathrm{mg}),{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.04(\mathrm{dd}, \mathrm{J}=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{td}, \mathrm{J}=7.7,7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 2 \mathrm{H}), 2.31$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 172.42, 164.78, 159.53, 154.19, 151.51, 138.66, $135.22,131.90,116.92,116.44,108.59,15.12$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}_{4}$: 246.0761,found, 246.0759.

benzo[d][1,3]dioxol-5-yl 2-aminobenzoate (3cg): yellow oil (Yield: 72\%, 55.52 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.05(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, 1H), $6.74-6.66(\mathrm{~m}, 3 \mathrm{H}), 6.63(\mathrm{dd}, \mathrm{J}=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H}), 5.76(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 167.10,151.25,148.09,145.38,145.09,135.90,131.56,116.79,116.42$, 114.35, 109.55, 108.06, 104.16, 101.72. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NO}_{4}$: 258.0761,found, 258.0766.

2-(hydroxymethyl)phenyl 2-aminobenzoate (3ch): yellow oil (Yield: 70\%, 51.05 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.96(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.90-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.63(\mathrm{~m}, 2 \mathrm{H}), 5.75(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 169.90,155.99,150.51,134.16,129.46,129.25,128.04$, $124.91,120.06,116.89,116.46,116.17,113.12,64.30$. HRMS (ESI) cald. for $(M+H)+$ - 32 -
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{3}: 244.0968$,found, 244.0967.

(S)-4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl) iodoquinoline-2,3,4-tricarboxylate (3ci): light yellow oil (Yield: $60 \%, 70.03 \mathrm{mg}$), ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.07(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.99-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.71$ $(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.77(\mathrm{~s}, 2 \mathrm{H}), 2.98-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.21-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{ddq}, \mathrm{J}=43.2,20.1,11.2,10.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 220.88,167.14,151.22,148.68,138.08,137.36,134.82,131.60,126.47$, $122.00,119.21,116.78,116.40,109.76,50.47,47.99,44.21,38.06,35.89,31.59,29.45,26.39$, 25.80, 21.62, 13.86. HRMS (ESI) cald. for (M+H)+ $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{3}$: 390.2064,found, 390.2065.

($8 R, 9 S, 13 S, 14 S$)-17-hydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopen-ta[a]phenanthren-3-yl 2-aminobenzoate (3cj): white oil (Yield: 57\%, 66.85 mg), ${ }^{1} 1 \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.07$ (dd, J = 8.5, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{dd}, \mathrm{J}=8.4$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.68(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64(\mathrm{~s}, 1 \mathrm{H}), 2.93-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1 \mathrm{H})$, $1.90(\mathrm{ddt}, \mathrm{J}=11.3,5.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dddt}, \mathrm{J}=13.1,10.3,6.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.15(\mathrm{~m}$, $7 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} 13 \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 167.18,151.20,148.50,138.33$, 137.97, 134.78, 131.62, 126.47, 121.91, 119.01, 116.77, 116.40, 109.83, 81.92, 50.09, 44.19, $43.24,38.52,36.70,30.60,29.59,27.08,26.20,23.15,11.07$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+$
$\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{3}: 392.2220$, found, 392.2217 .

3.6 Other substrates expansion

General procedure for product (3da-dI): In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, isatin derivatives $(0.3 \mathrm{mmol})$, Tyrosine residue (0.6 mmol) and ${ }^{n} \mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{mmol})$ were combined and added. Then, solvent $(6 \mathrm{~mL})$ were injected into the tubes via syringes. The bottle was equipped with platinum plate ($15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 0.3 \mathrm{~mm}$) as the anode and plumbum plate $(15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 0.3 \mathrm{~mm})$ as the cathode. The reaction mixture was stirred and electrolysis at a constant current of 5 mA under room temperature for 4 h . After completion of the reaction, as indicated by TLC and LC-MS, the pure product was obtained by flash column chromatography on silica gel.

Detailed descriptions for products:

(S)-4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenyl
(3a): light yellow oil (Yield: 75\%, 93.15 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.06$ (dd, J = $8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{ddd}, \mathrm{J}=8.5,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.73-6.68(\mathrm{~m}, 2 \mathrm{H}), 5.79(\mathrm{~s}, 2 \mathrm{H}), 5.04(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.55(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $3.11(\mathrm{qd}, \mathrm{J}=13.9,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 172.28, 166.76, $155.15,151.32,149.84,134.92,133.59,131.58,130.34,122.10,116.81,116.39,109.52,80.06$, 54.42, 52.33, 37.70, 28.33. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}$: 415.1864,found, 415.1867.

(S)-4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenyl

2-amino-5-methylbenzo-ate (3da): light yellow oil (Yield: $67 \%, 86.03 \mathrm{mg}$), ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.86(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{q}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.11$ $(q d, J=13.9,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 171.23, $165.72,154.08,148.83,148.14,135.09,132.49,130.02,129.29,124.52,121.06,115.90,108.37$, $79.01,53.35,51.28,36.66,27.28$, 19.28. HRMS (ESI) cald. for $(M+H)+\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}$: 429.2020,found, 429.2018.

(S)-4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenyl 2-amino-3,5-dimeth-ylbe-nzoate (3db): light yellow oil (Yield: $67 \%, 83.53 \mathrm{mg}$), ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{dd}, \mathrm{J}=5.5,2.9 \mathrm{~Hz}, 3 \mathrm{H}), 5.72(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{q}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{qd}, \mathrm{J}=14.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$, $2.18(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 172.28,167.24,155.13,149.95$, $147.76,137.02,133.48,130.33,128.94,124.81,123.29,122.14,108.90,80.06,54.40,52.34$, 37.69, 28.33, 20.34, 17.45. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}$: 443.2177,found, 443.2176.

(S)-4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenyl 2-amino-5-chlorob-enzo-ate (3dc): light yellow solid (Yield: $73 \%, 98.31 \mathrm{mg}$), ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) δ $7.98(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67(\mathrm{dd}, \mathrm{J}=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{q}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.73(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{qd}, \mathrm{J}=13.9,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ $172.26,166.20,155.13,151.92,149.62,140.96,133.76,132.97,130.39,122.00,116.94,116.05$, 108.11, 54.39, 52.36, 37.72, 28.33. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{6}$: 449.1474,found, 449.1476.

(S)-4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenyl 2-amino-4-chlorob-enzo-ate (3dd): light yellow solid (Yield: 78\%, 104.81 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.98(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67(\mathrm{dd}, \mathrm{J}=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}), 5.04(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{q}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.73 (s, 3H), 3.11 (qd, J = 13.9, $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ $172.26,166.20,155.14,151.96,149.63,140.94,133.76,132.96,130.38,122.00,116.89,116.06$, 108.08, 80.09, 54.40, 52.35, 37.72, 28.33. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{6}$: 449.1474,found, 449.1476.

(S)-4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenyl 2-amino-5-fluroben-zo-ate (3de): light yellow oil (Yield: $60 \%, 79.81 \mathrm{mg}$), ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.72$ $(\mathrm{dd}, \mathrm{J}=9.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $2 H), 6.75(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{q}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ $(\mathrm{s}, 3 \mathrm{H}), 2.99(\mathrm{tt}, \mathrm{J}=14.2,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform-d) $\delta-128.04$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 172.83,166.03,155.53(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}), 152.59,149.58$, $148.07,130.29,126.91(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}), 123.12(\mathrm{~d}, \mathrm{~J}=23.4 \mathrm{~Hz}), 122.00,118.18(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz})$, $116.16(\mathrm{~d}, \mathrm{~J}=23.2 \mathrm{~Hz}), 109.14,80.37,54.72,52.34,37.39,28.30$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+$ $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{FN}_{2} \mathrm{O}_{6}: 433.1769$, found, 433.1771 .

(S)-4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenyl 2-amino-3-(trifluoro-me-thyl)benzoate (3df): light yellow solid (Yield: 50\%, 72.31 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.29(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ $(\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{qd}, \mathrm{J}=13.9,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform-d) $\delta-63.44 .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 171.19, 165.27, 154.08, 148.48, $147.72,134.87,132.96,131.67(q, J=5.0 \mathrm{~Hz}), 120.89,113.88,110.12,79.08,53.37,51.30,36.74$, 28.68, 27.28. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}$: 483.1737,found, 483.1734.

(S)-4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenyl 5-((acetoxymethyl)c-arbamoyl)-2-aminobenzoate (3dg): light yellow oil (Yield: 65\%, 103.16 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol-d4) $\delta 8.58(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09$ $(\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, \mathrm{J}=8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~d}$, $\mathrm{J}=11.9 \mathrm{~Hz}, 6 \mathrm{H}), 3.08(\mathrm{dd}, \mathrm{J}=13.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, \mathrm{J}=13.7,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} 13 \mathrm{C}$ NMR (101 MHz, Methanol-d4) $\delta 172.77,170.91,168.18,166.22,156.44,154.73,149.66$, $134.72,133.09,131.60,129.95,121.66,119.89,116.15,107.58,79.33,55.14,51.33,51.29,40.99$, 36.64, 27.33. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{9}$: 530.2133 ,found, 530.2131.

4-((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenyl 5-(((S)-1-acetoxyeth-

 yl)carbamoyl)-2-aminobenzoate (3dh): light yellow oil (Yield: 55\%, 89.61 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.63(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.87(\mathrm{dd}, \mathrm{J}=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 2 \mathrm{H}), 6.86$ $(\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.43(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{dt}, \mathrm{J}=13.9,3.9 \mathrm{~Hz}, 2 \mathrm{H})$, $1.73(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Methanol-d4) δ 173.56, 173.32, 168.75, $166.78,156.95,155.20,150.19,135.23,133.77,132.38,130.47,122.20,120.64,116.54,108.06$, $79.83,59.32,55.65,51.66,37.15,30.79,27.84,18.84$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+$ $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{9}: 544.2295$, found, 544.2290.

4-((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenyl 5-(((S)-1-acetoxy-2-methylpropyl)carbamoyl)-2-aminobenzoate (3di): yellow oil (Yield: 55\%, 97.64 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz, Methanol-d4) $\delta 8.62(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, \mathrm{J}=8.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, \mathrm{J}=$ 8.8, 5.6 Hz, 1H), $3.72(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.14(\mathrm{dd}, \mathrm{J}=13.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, \mathrm{J}=13.7,9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.24(\mathrm{dq}, \mathrm{J}=13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{dd}, \mathrm{J}=11.1,6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} 13 \mathrm{C}$ NMR (101 MHz, Methanol-d4) $\delta 172.74,168.28,166.27,156.46,154.72,149.70,134.73,133.24$, $131.86,129.94,121.66,120.15,115.99,107.56,79.29,58.81,55.13,51.29,51.09,36.64,30.27$, 27.30, 18.29, 17.95. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{9}$: 572.2608,found, 572.2605.

4-((R)-2-acetamido-3-(((R)-1-methoxy-3-methyl-1-oxobutan-2-yl)amino)-3-oxopropyl)phenyl 2-amino-5-(((R)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)benzoate (3dj): light yellow oil (Yield: 56\%, 102.82 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.57-8.50(\mathrm{~m}, 2 \mathrm{H}), 8.45$ (d, J = 7.7 Hz, 1H), $8.10(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, \mathrm{J}=8.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dq}, \mathrm{J}=14.4,7.7,6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.26(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 6 \mathrm{H}), 3.13-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{dd}, \mathrm{J}=13.8$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dq}, \mathrm{J}=13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{dd}, \mathrm{J}=10.7,4.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.94$ (dd, $\mathrm{J}=19.4,6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) δ 172.57, 171.70, 171.65, 169.07, $165.99,165.82,154.12,149.19,134.67,133.83,131.90,130.18,129.15,128.01,120.15,116.01$,
$58.67,53.61,53.57,51.91,51.56,37.51,35.93,29.47,22.43,19.30,19.22$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{9}: 613.2829$,found, 613.2833.

(R)-4-(2-((tert-butoxycarbonyl)amino)-3-((4-ethoxy-4-oxobutyl)amino)-3-oxopropyl)phenyl 2-amino-5-((2-methoxy-2-oxoethyl)carbamoyl)benzoate (3dk): light yellow oil (Yield: 60\%, $113.19 \mathrm{mg}),{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6\right) \delta 8.58(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.87(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H}), 6.67(\mathrm{~d}$, $\mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.20(\mathrm{~d}, \mathrm{~J}=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{q}, \mathrm{J}=8.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.93(\mathrm{~m}, 4 \mathrm{H}), 3.58$ $(\mathrm{s}, 3 \mathrm{H}), 2.93-2.84(\mathrm{~m}, 3 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.50(\mathrm{~m}, 2 \mathrm{H})$, 1.37 (s, 9H), 1.21 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) δ 172.76, 172.61, 171.10, 166.28, $166.21,156.50,156.09,154.64,135.31,131.92,130.38,127.63,120.38,115.51,110.64,107.25$, $77.95,54.37,52.12,49.05,36.47,32.94,28.66,26.23$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+$ $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{10}$: 629.2778,found, 629.2780.

4-((R)-2-acetamido-3-(((R)-1-methoxy-3-methyl-1-oxobutan-2-yl)amino)-3-oxopropyl)ph-

 enyl 2-amino-5-(((R)-1-methoxy-1-oxopropan-2-yl)carbamoyl)benzoate (3dI): yellow oil (Yield: 60\%, 105.13 mg), ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.64(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.58-8.52$ (m, 2H), $8.10(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, \mathrm{J}=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.20(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dt}, \mathrm{J}=15.3,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.48-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~d}$, $\mathrm{J}=10.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.08-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.67(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$,0.99 (dd, J = 8.3, 4.3 Hz, 6H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) δ 173.94, 172.15, 172.11, 169.52, $166.26,165.81,154.59,149.64,132.04,130.63,130.47,129.60,128.46,120.43,115.53,54.41$, 54.01, $52.36,52.27,48.67,37.97,36.39,22.88,19.10,17.26$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{H})+$ $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{9}$: 585.2482,found, 585.2484.

3.7 Additional application of electrochemical bioconjugation

3.7.1 Bioconjugation of Biotin ${ }^{[5]}$

Synthesis of compound 5: In a round bottomed flask, add an excess of ethylene diamine (10 $\mathrm{mL})$ to a solution of methyl biotinate (2.5 mmol) in methanol $(10 \mathrm{~mL})$. Keep the solution at $60^{\circ} \mathrm{C}$ for 48 hours, and then, remove the excess ethylene diamine and methanol under reduced pressure. Obtain the product as light yellow solid biotin (2-amino-ethyl)-amide) and use directly for the next experiment. ${ }^{[5]}$

In a round bottomed flask, equipped with a stir bar, Dioxoindoline-5-carboxylic Acid (2.0 mmol), HOBT (3.0 mmol), HBTU (3.0 mmol), dichloromethane (40 mL) and triethylamine (2.4 mmol) were combined and added. The mixture was stirred for 30 min at room temperature. And then, biotin (2-amino-ethyl)-amide) (2.0 mmol) was added to the solution. The reaction was stirred overnight. After regular workup, the reaction mixture washed with saturated NaHCO_{3} solution (40 $\mathrm{mL} \times 3)$, 2 M hydrochloric acid solution $(40 \mathrm{~mL} \times 3)$ and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL} \times 3)$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Evaporation of the solvent that was dissolved in DMSO. Then a crude product recrystallize by methanol.

In an oven-dried undivided three-necked bottle $(15 \mathrm{~mL})$ equipped with a stir bar, polypeptides $\mathbf{2 g}(5 \mathrm{mg})$, compound $\mathbf{4}(20 \mathrm{mg}),{ }^{n} \mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mg}), \mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ and phosphate buffer solution ($0.75 \mathrm{~mL}, \mathrm{pH}=7.4$) were combined and added. The bottle was equipped platinum plate $(10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.1 \mathrm{~mm})$ as the anode and plumbum plate $(10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.3 \mathrm{~mm})$ as the cathode. The reaction mixture was stirred and electrolysis at constant current of 5 mA under room
temperature for 30 min . After completion of the reaction, the solution was analyzed by LC-MS spectroscopy. The reaction was analyzed by reverse phase HPLC using a gradient of 60% to 50% buffer B over 20 minutes on an Agilent Zorbax SB-Aq $5 \mu \mathrm{~m}$ column of 250 mm length. HPLC analysis used buffers A (water) and B (acetonitrile $+0.1 \%$ TFA). Conversion reported as a \% conversion as determined.

Detailed descriptions for products 5:

HPLC: $>99 \%$ conversion.
After the reaction finished, there are four peaks that elute at 50% buffer B (acetonitrile + $0.1 \% \mathrm{TFA}$) with retention times of $1.828 \mathrm{~min}, 2.541 \mathrm{~min}, 3.077 \mathrm{~min}$ and 4.055 min . Polypeptide

$\mathbf{2 g}$ is a peak that elutes at 50% buffer B (acetonitrile $+0.1 \%$ TFA) with a retention time of 3.204 min.

HRMS (ESI-TOF) calcd for $\mathrm{C}_{52} \mathrm{H}_{68} \mathrm{~N}_{10} \mathrm{O}_{12} \mathrm{SNa},[\mathrm{M}+\mathrm{Na}]+$, 1079.4631, found 1079.4629

3.7.2 Bioconjugation of Oxytocin

Synthesis of compound 6:In an oven-dried undivided three-necked bottle (15 mL) equipped with a stir bar, Oxytocin $(10 \mathrm{mg}), \mathbf{1 a}(15 \mathrm{mg}),{ }^{n} \mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mg}), \mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ were combined and added. The bottle was equipped platinum plate ($10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.1 \mathrm{~mm}$) as the anode and plumbum plate ($10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.3 \mathrm{~mm}$) as the cathode. The reaction mixture was stirred and electrolysis at constant current of 2 mA under room temperature for 30 min . After completion of the reaction, the solution was analyzed by LC-MS spectroscopy. The reaction was analyzed by reverse phase HPLC using a gradient of 60% to 50% buffer B over 20 minutes on an Agilent Zorbax SB-Aq $5 \mu \mathrm{~m}$ column of 250 mm length. HPLC analysis used buffers A (water) and B (acetonitrile $+0.1 \% \mathrm{TFA})$. Conversion reported as a $\%$ conversion as determined.

Detailed descriptions for products 6:

HPLC: 50\% conversion.
After the reaction finished, there are three peaks that elute at 50% buffer B (acetonitrile + $0.1 \% \mathrm{TFA}$) with retention times of $2.028 \mathrm{~min}, 4.543 \mathrm{~min}, 5.09 \mathrm{~min}$. Oxytocin is a peak that elutes at 50% buffer B with a retention time of 3.98 min .

HRMS (ESI-TOF) calcd for $\mathrm{C}_{50} \mathrm{H}_{72} \mathrm{~N}_{13} \mathrm{O}_{13} \mathrm{~S}_{2},[\mathrm{M}+\mathrm{H}]+$, 1126.4814, found 1126.4823.

3.7.3 Bioconjugation of Protein

Synthesis of 3n: In an oven-dried undivided three-necked bottle (10 mL) equipped with a stir bar, Myoglobin (5 mg), 1a $(10 \mathrm{mg}),{ }^{n} \mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mg}), \mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ and phosphate buffer solution ($0.75 \mathrm{~mL}, \mathrm{pH}=7.4$) were combined and added. The bottle was equipped platinum plate $(10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.1 \mathrm{~mm})$ as the anode and plumbum plate $(10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.3 \mathrm{~mm})$ as the cathode. The reaction mixture was stirred and electrolysis at constant current of 2 mA under $-20^{\circ} \mathrm{C}$ for 10 min . After completion of the reaction, the solution was analyzed by Maldi-Tof MS.

Effect of anthranilic acyl modification on structure of Myoglobin

Comparison of CD spectra between Myoglobin and $3 \mathbf{n}$ sample ($100 \mu \mathrm{~g} / \mathrm{mL}$ in PBS buffer).

Synthesis of 30 : In an oven-dried undivided three-necked bottle (10 mL) equipped with a stir bar, Cytochrome $\mathrm{C}(5 \mathrm{mg}), \mathbf{1 a}(7 \mathrm{mg}),{ }^{n} \mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{mg}), \mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ and phosphate buffer solution ($0.75 \mathrm{~mL}, \mathrm{pH}=7.4$) were combined and added. The bottle was equipped platinum plate $(10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.1 \mathrm{~mm})$ as the anode and plumbum plate $(10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.3 \mathrm{~mm})$ as the cathode. The reaction mixture was stirred and electrolysis at constant current of 2 mA under $-10^{\circ} \mathrm{C}$ for 15 min . After completion of the reaction, the solution was analyzed by Maldi-Tof MS.

Effect of anthranilic acyl modification on structure of Cytochrome C

Comparison of CD spectra between Cytochrome C and 3o sample ($100 \mu \mathrm{~g} / \mathrm{mL}$ in PBS buffer).

Synthesis of 3p : In an oven-dried undivided three-necked bottle (10 mL) equipped with a stir bar, insulin $(10 \mathrm{mg}), \mathbf{1 a}(15 \mathrm{mg}),{ }^{n} \mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(15 \mathrm{mg}), \mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ and phosphate buffer solution $(0.75 \mathrm{~mL}, \mathrm{pH}=7.4)$ were combined and added. The bottle was equipped platinum plate $(10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.1 \mathrm{~mm})$ as the anode and plumbum plate $(10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.3 \mathrm{~mm})$ as the cathode. The reaction mixture was stirred and electrolysis at constant current of 2 mA under $-15^{\circ} \mathrm{C}$ for 20 min . After completion of the reaction, the solution was analyzed by Maldi-Tof MS.

Effect of anthranilic acyl modification on structure of insulin

Comparison of CD spectra between insulin and $\mathbf{3 p}$ sample ($100 \mu \mathrm{~g} / \mathrm{mL}$ in PBS buffer).

4. References

[1] R. A. Serwa, J.-M. Swiecicki, D. Homann, C. P. R. Hackenberger, Phosphoramidatepeptide synthesis by solution- and solid-phase Staudinger-phosphite reactions. J. Pept. Sci. 2010, 16, 563-567.
[2] Alam J, Keller T H, Loh T P. Functionalization of peptides and proteins by Mukaiyama aldol reaction. J. Am. Chem. Soc. 2010, 132, 9546-9548.
[3] Gu, K., Liu, Y., Guo, Z., Lian, C., Yan, C., Shi, P., Zhu, W. H. In situ ratiometric quantitative tracing of intracellular leucine aminopeptidase activity via an activatable nearinfrared fluorescent probe. ACS Appl. Mater. Inter. 2016, 8, 26622-26629.
[4] Bravo, F., McDonald, F. E., Neiwert, W. A., \& Hardcastle, K. I. Alkene Substituents for Selective Activation of Endo-Regioselective Polyepoxide Oxacyclizations. Org. Lett. 2004, 6, 4487-4489.
[5] I. A. Inverarity, R. F. H. Viguier, P. Cohen, A. N. Hulme, Biotinylated Anisomycin, A Comparison of Classical and "Click" Chemistry Approaches. Bioconj. Chem. 2007, 18, 1593-1603.

5. Spectra

5.1 NMR Spectra of Products

190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ f 1(1) \end{gathered}$		80	70	60	50	40	30	20	10

3bd

from Carvacrol 3cb

from Acetaminophen 3cd

N

on in

from Salicyl alcohol
3ch

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} 90$

> No No
Co m Now in No

5.2 ${ }^{1} \mathrm{H}$ NMR spectroscopic investigation

The concentration dependence of isochroman of the chemical shift of 2-H of Boc-Tyr-OMe

Entry	Isochroman (eq.)	Average chemical shift of 2-H of Boc-Tyr- OMe
1	0	6.731 ppm
2	0.05	6.732 ppm
3	0.1	6.734 ppm
4	0.2	6.765 ppm
5	0.4	6.809 ppm
6	0.8	6.834 ppm
7	1.0	6.836 ppm

Stacked ${ }^{1} \mathrm{H}$ NMR spectrum of 2-H of Boc-Tyr-OMe

