Supporting Information

Imine Induced Metal-Free C-H Arylation of Indoles

Lin Zhang,^a Jianan Gao,^a Bin Wang,^a Azhar Iqbal,^c Weiwei Jin,^a Yu Xia,^a Yonghong Zhang^{a,b*} and Chenjiang Liu,^{a,b*}

- ^a Prof. Dr. Y. Zhang,* Dr. L. Zhang, Mr. Y. Liu, J. Gao, Prof. Dr. W. Jin, Y. Xia, C. Liu* State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China. E-mail: zhzhzyh@126.com; pxylcj@126.com.
- ^b Prof. Dr. C. Liu* College of Future Technology, Xinjiang University, Urumqi 830017, P. R. China.

^c Department of Chemistry, Bacha Khan University, Charsadda, Pakistan.

Table of Contents

Supporting Information	. 1
1. General Information	. 1
2. Synthesis of Indoles	. 1
3. Synthesis of Aryltriazenes	. 1
4. Experimental Procedures	. 2
5. NMR Spectra	. 7
5. References	2
7. Copies of ¹ H NMR and ¹³ C NMR for the Products	3

1. General Information

Unless otherwise noted, all reagents and solvents were purchased from commercial sources (Adamas-beta, Alfa Aesar) and used without further purification. Reactions were monitored using Thin Layer Chromatography (TLC) carried out on Merck silica gel plates ($60F_{254}$) using UV light as the visualizing agent. Column chromatography was performed using silica gel 60 (300-400 mesh). HRMS data were recorded on Thermo Fisher Scientific Q-Exactive. All ¹H NMR, ¹³C NMR, ¹⁹F NMR spectra were recorded on 600 MHz NMR spectrometers (Bruker AVANCE NEO 600) or 400 MHz NMR spectrometers (Varian Inova-400). Chemical shifts were given in parts per million (ppm, δ), referenced to the solvent peak of CDCl₃ or DMSO-*d*₆, defined at δ = 7.26 or 2.50 (¹H NMR), defined at δ = 77.0 or 39.70 (¹³C NMR). Coupling constants were quoted in Hz (*J*). ¹H NMR Spectroscopy splitting patterns were designated as singlet (s), doublet (d), triplet (t), quartet (q). Splitting patterns that could not be interpreted or easily visualized were designated as multiplet (m). EPR spectra were recorded on BÜCHI (M-560). IR spectra were recorded on a Mettler Toledo React IR I5.

2. Synthesis of Indoles^[1]

2.1 Synthesis of 1-methylindole-3-carbaldehyde derivative

A mixture of 1*H*-indole-3-carbaldehyde derivative or 1-(1H-indol-3-yl)ethan-1-one (2 mmol, 1.0 equiv.), NaOH (4 mmol, 2.0 equiv.) and dry DMSO (5 mL, 0.4 M) was added to a dried round bottom flask. Then, MeI (4 mmol, 2.0 equiv.) was added dropwise to the reaction mixture and the resulting mixture was stirred at room temperature for 16 h. When the reaction completed, 5 mL of water was added to the mixture, the aqueous mixture was extracted with ethyl acetate (3×5 mL). The combined organic phase was dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure, the residue was purified by flash column chromatography (petroleum ether / ethyl acetate 30:1-10:1) to afford the desired product.

2.2 Synthesis of (E)-N-(4-methoxyphenyl)-1-(1-methyl-1H-indol-3-yl)methanimine

In a dried round bottom flask under nitrogen, were added 1-methylindole-3-carbaldehyde (2.0 mmol, 159.2 mg), *p*-anisidine (2.1 mmol, 1.05 equiv.) and 4Å molecular sieves (0.4 g/mmol) and dry toluene (5 mL) was added and the reaction mixture was refluxed for 16 h. After completion of the reaction, the reaction mixture was cooled to room temperature, filtered through a pad of Celite (eluted with ethyl acetate) and concentrated in vacuo to give the crude product. The purified product **5a** was obtained from petroleum ether.

3. Synthesis of Aryltriazenes^[2]

A solution of arylamine (20 mmol) in concentrated HCl (4 mL) was cooled in an ice bath while a solution of NaNO₂ (20 mmol) in water (10 mL) was added dropwise. The resulting solution of the diazonium salt was stirred in an ice bath for 10 min and then added all at once to a chilled solution of amine (22 mmol) and 1.2 M K_2CO_3 aqueous (20 mL) to the above solution, and the resulting mixture was stirred for 0.5 h. The resulting precipitate was recrystallized in EtOH or separated by column chromatography to obtain the desired purified aryltriazenes products.

4. Experimental Procedures

4.1 General procedure for the synthesis of products (taking 3a as an example)

A mixture of 1-methylindole-3-carbaldehyde **1a** (0.1 mmol, 15.9 mg), *p*-methylphenyltriazene **2a** (0.3 mmol, 56.7 mg), CH₃OH (0.5 mL) and H₂O (0.5 mL) was added to a dried tube. Then, a solution of HPF₆ (0.06 mmol, 8.8 μ L) in CH₃OH (0.5 mL) and H₂O (0.5 mL) was added dropwise to the above stirred solution in 30 minutes. The reaction mixture was stirred at ambient temperature for 24 h. When the reaction was finished, 5 mL of water was added to the mixture and the aqueous mixture was extracted with ethyl acetate (3×5 mL). The combined organic phase was dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure, the residue was purified by flash column chromatography (eluent: petroleum ether/EtOAc = 30:1 to 10:1, v/v) to afford the desired product **3a** as a yellow semisolid (19.6 mg, 79% yield).

4.2 Gram-scale reaction

A mixture of 1-methylindole-3-carbaldehyde **1a** (10.0 mmol, 1.59 g), *p*-methylphenyltriazene **2a** (30.0 mmol, 5.67 g), CH₃OH (50.0 mL) and H₂O (50.0 mL) was added to a dried round bottom flask. Then, a solution of HPF₆ (6 mmol, 0.88 mL) in CH₃OH (50.0 mL) and H₂O (50.0 mL) was added dropwise to the above stirred solution over 30 minutes. The reaction mixture was stirred at ambient temperature for 48 h. When the reaction was finished, 50 mL of water was added to the mixture and the aqueous mixture was extracted with ethyl acetate (3×50 mL). The combined organic phase was dried over anhydrous MgSO4, filtered and concentrated under reduced pressure, the residue was purified by silica gel column chromatography (eluent: petroleum ether/EtOAc = 30:1 to 10:1, v/v) to afford the desired product **3a** as a yellow semisolid (1.37 g, 55% yield).

4.3 Control experiments

4.3.1 Synthesis of 2-(4-tolyl)-1-methylindole-3-carbaldehyde by aryldiazonium salt

A mixture of 1-methylindole-3-carbaldehyde **1a** (0.1 mmol, 15.9 mg), *p*-methylbenzendiazonium tetrafluoroborate **4a** (0.3 mmol, 61.8 mg), CH₃OH (0.5 mL) and H₂O (0.5 mL) was added and stirred at ambient temperature. Then, a solution of HPF₆ (60 wt.% solution in water, 0.06 mmol, 8.8 µL) in CH₃OH (0.5 mL) and H₂O (0.5 mL) was added dropwise to the above stirred solution in 30 minutes. The reaction mixture was stirred at ambient temperature for 24 h. When the reaction was finished, product **3a** was not detected by TLC. However, tetrahydropyrrole (0.3 mmol, 25 µL) was added to the above system, obtained the corresponding product **3a**. When the reaction was finished, 5 mL of water was added to the mixture, the aqueous mixture was extracted with ethyl acetate (3×5 mL). The combined organic phase was dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure, the residue was purified by flash column chromatography (eluent: petroleum ether/EtOAc = 30:1 to 10:1, v/v) to afford the desired product **3a** as yellow semisolid (17.2 mg, 69% yield).

4.3.2 Imine-directed arylation of indole C-2

A mixture of (*E*)-*N*-(4-methoxyphenyl)-1-(1-methyl-1*H*-indol-3-yl)methanimine **5a** (0.1 mmol, 26.4 mg), *p*methylphenyltriazene **2a** (0.3 mmol, 56.7 mg), CH₃OH (0.5 mL) and H₂O (0.5 mL) was added and stirred at ambient temperature. Then, a solution of HPF₆ (60 wt.% solution in water, 0.06 mmol, 8.8 µL) in CH₃OH (0.5 mL) and H₂O (0.5 mL) was added dropwise to the above stirred solution in 30 minutes. The reaction mixture was stirred at ambient temperature for 24 h. When the reaction was finished, the reaction mixture was quenched by addition of HCl (1M, 2 mL) and THF (1 mL), stirred at room temperature for 1 h. When the reaction was finished, 5 mL of water was added to the mixture, the aqueous mixture was extracted with ethyl acetate (3×5 mL). The combined organic phase was dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure, the residue was purified by flash column chromatography (eluent: petroleum ether/EtOAc = 30:1 to 10:1, v/v) to afford the desired product **3a** as yellow semisolid (9.7 mg, 39% yield). Similarly, (*E*)-*N*-(4-methoxyphenyl)-1-(1-

methyl-1*H*-indol-3-yl)methanimine **5a** (0.1 mmol, 26.4 mg), and *p*-methylbenzendiazonium tetrafluoroborate **4a** (0.3 mmol, 56.7 mg), the corresponding product **3a** (6.5 mg, 26% yield) was also obtained after the above operation.

4.3.3 Labeling experiment with H₂¹⁸O

A mixture of 1-methylindole-3-carbaldehyde **1a** (0.1 mmol, 15.9 mg), *p*-methylphenyltriazene **2a** (0.3 mmol, 56.7 mg), dry CH₃OH (0.9 mL) and H₂¹⁸O (0.1 mL) was added and stirred at ambient temperature. Then, a solution of HPF₆ (60 wt.% solution in water, 0.06 mmol, 8.8 μ L) in dry CH₃OH (1.0 mL) was added dropwise to the above solution in 30 minutes. The reaction mixture was stirred at ambient temperature for 24 h. When the reaction was finished, a mixture of **3a** and **3a**' was obtained from the mass spectrum of the mixed sample, **3a**: MS (ESI) *m/z* found 250.10; **3a**': MS (ESI) *m/z* found 252.10 with a ratio close to 3:2.

Figure S1 Mass spectrometry data of ¹⁸O labeling experiment

4.3.4 Free radical capture experiment

A mixture of 1-methylindole-3-carbaldehyde **1a** (0.1 mmol, 15.9 mg), *p*-methylphenyltriazene **2a** (0.3 mmol, 56.7 mg), 2,2,6,6-tetramethyl-1-piperidinyloxy (0.3 mmol, 46.9 mg), CH₃OH (0.5 mL) and H₂O (0.5 mL) was added and stirred at ambient temperature. Then, a solution of HPF₆ (60 wt.% solution in water, 0.06 mmol, 8.8 μ L) in CH₃OH (0.5 mL) and H₂O (0.5 mL) was added dropwise to the above solution in 30 minutes. The reaction mixture was stirred at ambient temperature for 24 h. When the reaction was finished, TLC showed that only trace **3a** was formed and the aryl radical-TEMPO adduct was detected by HRMS. HRMS (ESI⁺): m/z calcd. for C₂₃H₂₄N₃ [M+H]⁺: 248.2009, found: 248.2002.

Figure S2 High resolution mass spectrometry for free radical capture experiment

4.3.5 Electron paramagnetic resonance (EPR) experiments

A mixture of 1-methylindole-3-carbaldehyde **1a** (0.1 mmol, 15.9 mg), *p*-methylphenyltriazene **2a** (0.3 mmol, 56.7 mg), 5,5-dimethyl-1-pyrroline *N*-oxide (20 μ L), CH₃OH (0.5 mL) and H₂O (0.5 mL) was added and stirred at ambient temperature. Then, a solution of HPF₆ (60 wt.% solution in water, 0.06 mmol, 8.8 μ L) in CH₃OH (0.5 mL) and H₂O (0.5 mL) was added by dropwise to the above solution in 30 minutes. The reaction mixture was stirred at ambient temperature for 30 minutes, transferred to a capillary, and the EPR spectra were recorded. An obvious free radical signal was observed, which indicates that there are aryl radicals should be involved in the present reaction system. In another dried tube, were added 5,5-dimethyl-1-pyrroline *N*-oxide (20 μ L), CH₃OH (0.5 mL) and H₂O (0.5 mL) stirred at room temperature. Then, a solution of HPF₆ (0.06 mmol, 8.8 μ L) in CH₃OH (0.5 mL) and H₂O (0.5 mL) was added by dropwise to the above solution in 30 minutes as blank reaction. The reaction mixture was stirred at ambient temperature for 30 minutes. Then, a solution of HPF₆ (0.06 mmol, 8.8 μ L) in CH₃OH (0.5 mL) and H₂O (0.5 mL) was added by dropwise to the above solution in 30 minutes as blank reaction. The reaction mixture was stirred at ambient temperature for 30 minutes, transferred to a capillary, and the EPR spectra were recorded, no free radical signal is generated.

Measurement conditions: frequency: 9.6 GHz; power: 0.9187 mW; modulation amplitude: 5 G; time constant: 20.48 ms; Sweep time: 20 s; Number of scans: 3.

Figure S3 Electron spin resonance (ESR) spectrum.

4.4 In-situ IR experiment

In a dried round bottom flask, were added MeOH (4 mL), 1-methylindole-3-carbaldehyde **1a** (0.2 mmol, 31.8 mg), *p*-methylphenyltriazene **2a** (0.6 mmol, 113.4 mg), HPF₆ (0.12 mmol, 17.6 μ L). The mixture was allowed to stir at ambient temperature for 1 h and then recorded by in-situ IR.

Figure S3b 3D-surface plot of the observed vibrations at 1677 cm⁻¹

5. NMR Spectra

1-Methyl-2-(*p*-tolyl)-1*H*-indole-3-carbaldehyde (3a): Yellow semisolid, 19.6 mg, 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.74 (s, 1H), 8.45-8.42 (m, 1H), 7.39-7.32 (m, 7H), 3.67 (s, 3H), 2.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.69, 151.72, 140.05, 130.79, 129.35, 125.59, 125.22, 123.91, 123.23, 122.15, 115.33, 109.69, 30.96, 21.42; Konwn compound.^[3]

1-Methyl-2-phenyl-1*H***-indole-3-carbaldehyde (3b):** Yellow semisolid, 15.8 mg, 67% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.73(s, 1H), 8.48-8.44 (m, 1H), 7.87 (d, J = 8.4 Hz, 1H), 7.58-7.55 (m, 2H), 7.51-7.49 (m, 2H), 7.42-7.40 (m, 2H), 7.00 (d, J = 8.8 Hz, 1H), 3.68 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.79, 151.71, 137.37, 130.87, 129.90, 128.67, 128.53, 124.92, 124.09, 123.40, 122.18, 115.90, 109.79, 31.01; Konwn compound.^[3]

2-(4-iso-Propylphenyl)-1-methyl-1*H***-indole-3-carbaldehyde (3c):** Yellow solid, 15.2 mg, 55% yield, mp: 99.0-100.5 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.75 (s, 1H), 8.45-8.42 (m, 1H), 7.42-7.41 (br, 4H), 7.40-7.39 (m, 1H), 7.38-7.35 (m, 2H) 3.69 (s, 3H), 3.03 (sept, *J* = 7.0 Hz, 1H), 1.34 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 186.76, 151.77, 150.81, 137.33, 130.89, 126.72, 125.87, 125.21, 123.87, 122.74, 121.50, 115.62, 109.70, 34.04, 31.00, 23.83; HRMS (ESI⁺): *m/z* calcd. for C₁₉H₂₀NO [M+H]⁺ : 278.1539, found: 278.1541.

2-(4-(*tert***-Butyl)phenyl)-1-methyl-1***H***-indole-3-carbaldehyde (3d): Yellow solid, 12.2 mg, 42% yield, mp: 81.3-83.2 °C. ¹H NMR (400 MHz, CDCl₃) \delta 9.57 (s, 1H), 8.29-8.27 (m, 1H), 7.40 (d,** *J* **= 8.0 Hz, 2H), 7.24-7.15 (m, 3H), 7.08 (d,** *J* **= 8.1 Hz, 1H), 6.65 (d,** *J* **= 8.6 Hz, 1H) 3.52 (s, 3H), 1.24 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) \delta 187.03, 153.16, 137.38, 130.62, 126.27, 125.61, 125.41, 125.20, 123.95, 123.30, 122.13, 115.59, 114.81, 34.89, 31.52, 31.21; HRMS (ESI⁺):** *m/z* **calcd. for C₂₀H₂₂NO [M+H]⁺ : 292.1696, found: 292.1696.**

2-(4-Methoxyphenyl)-1-methyl-1*H***-indole-3-carbaldehyde (3e):** Yellow solid, 19.2 mg, 72% yield, mp: 135.5-136.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.74 (s, 1H), 8.44-8.40 (m, 1H), 7.43-7.33 (m, 5H), 7.07 (d, *J* = 8.2 Hz,

2H), 3.91 (s, 3H), 3.67 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.66, 160.81, 151.56, 137.31, 132.25, 125.22, 123.86, 123.20, 122.46, 120.59, 115.61, 114.15, 109.68, 55.44, 30.93; Konwn compound.^[4]

2-(4-Ethoxyphenyl)-1-methyl-1*H***-indole-3-carbaldehyde (3f):** Yellow semisolid, 14.2 mg, 51% yield. ¹H NMR (600 MHz, CDCl₃) δ 9.74 (s, 1H), 8.42 (d, *J* = 8.8 Hz, 1H), 7.40 (s, 1H), 7.39 (d, *J* = 5.4 Hz, 2H), 7.37-7.33 (m, 2H), 7.05 (d, *J* = 8.2 Hz, 2H), 4.13 (q, *J* = 7.0 Hz, 2H), 3.67 (s, 3H), 1.48 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 186.70, 160.21, 151.70, 137.31, 132.22, 125.22, 123.83, 123.17, 122.04, 120.34, 115.56, 114.59, 109.67, 63.70, 30.92, 14.74; HRMS (ESI⁺): *m/z* calcd. for C₁₈H₁₈NO₂ [M+H]⁺ : 280.1332, found: 280.1329.

2-(4-Fluorophenyl)-1-methyl-1*H***-indole-3-carbaldehyde (3g):** Yellow semisolid, 14.2 mg, 56% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 9.60 (s, 1H), 8.22 (d, J = 7.8 Hz, 1H), 7.74 (td, J = 5.6, 2.2 Hz, 2H), 7.66 (d, J = 8.1 Hz, 1H), 7.46 (t, J = 6.6 Hz, 2H), 7.38 (t, J = 7.2 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 3.68 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 185.33, 163.23 (d, J = 249.5 Hz), 150.32, 137.28, 133.59 (d, J = 9.1 Hz), 124.70, 123.60 (d, J = 83.8 Hz), 121.04, 115.99 (d, J = 21.2 Hz), 114.79, 111.21, 31.21. Known products.^[4]

2-(4-Chlorophenyl)-1-methyl-1*H***-indole-3-carbaldehyde (3h):** Yellow semisolid, 19.4 mg, 72% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.62 (s, 1H), 8.23 (dt, *J* = 7.5, 1.0 Hz, 1H), 7.73-7.65 (m, 5H), 7.39 (td, *J* = 7.2 Hz, 1.3, 1H), 7.32 (td, *J* = 7.9, 1.1, 1H), 3.69 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 185.30, 149.90, 137.36, 135.17, 133.03, 128.96, 127.19, 125.10, 124.10, 123.22, 121.09, 115.32, 111.25, 31.27. Known products.^[5]

2-(4-Bromophenyl)-1-methyl-1*H***-indole-3-carbaldehyde (3i):** Yellow semisolid, 26.7 mg, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.73 (s, 1H), 8.43 (d, *J* = 7.3 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.42-7.33 (m, 5H), 3.67 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.61, 137.38, 132.34, 132.00, 127.53, 125.10, 124.62, 124.28, 123.48, 122.22, 117.29, 115.88, 109.79, 31.01; HRMS (ESI⁺): *m/z* calcd. for C₁₆H₁₃BrNO [M+H]⁺ : 314.0175, found: 314.0174.

2-(4-Iodophenyl)-1-methyl-1*H***-indole-3-carbaldehyde (3j):** Yellow solid, 8.3 mg, 23% yield, mp: 146.6-147.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.63 (s, 1H), 8.34 (d, *J* = 6.1 Hz, 1H), 7.82 (d, *J* = 7.8 Hz, 2H), 7.35-7.25 (m, 3H), 7.13 (d, *J* = 7.9 Hz, 2H), 3.58 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.92, 149.96, 137.89, 132.37, 127.99,

125.05, 124.25, 123.45, 122.14, 118.01, 115.72, 109.80, 96.46, 31.01; HRMS (ESI⁺): m/z calcd. for C₁₆H₁₃INO [M+H]⁺: 362.0036, found: 362.0039.

2-(3-Fluorophenyl)-1-methyl-1*H***-indole-3-carbaldehyde (3k):** Yellow solid, 16.0 mg, 63% yield, mp: 180.5 - 181.5 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.75 (s, 1H), 8.43 (d, *J* = 8.8 Hz, 1H), 7.57-7.53 (m, 1H), 7.41 (d, *J* = 4.6 Hz, 2H), 7.38 (td, *J* = 7.6, 2.6 Hz, 1H), 7.29 (d, *J* = 8.1 Hz, 2H), 7.22 (dt, *J* = 9.1, 2.1 Hz, 1H), 3.69 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 186.22, 162.43(d, *J* = 249.2 Hz), 149.55, 137.35, 130.63 (d, *J* = 9.1 Hz), 130.45 (d, *J* = 9.1 Hz), 126.82, 125.02, 124.33, 123.51, 122.26, 117.94 (d, *J* = 22.7 Hz), 117.04 (d, *J* = 21.1 Hz), 115.91, 109.83, 31.04; ¹⁹F NMR (565 MHz, CDCl₃) δ -111.33; HRMS (ESI⁺): *m/z* calcd. for C₁₆H₁₃FNO [M+H]⁺ : 254.0976, found: 254.0973.

2-(3-Chlorophenyl)-1-methyl-1*H***-indole-3-carbaldehyde (3l):** Yellow semisolid, 15.3 mg, 57% yield. ¹H NMR (600 MHz, CDCl₃) δ 9.71 (s, 1H), 8.43 (d, *J* = 7.1 Hz, 1H), 7.56 (d, *J* = 8.2 Hz, 1H), 7.52 (d, *J* = 7.7 Hz, 1H), 7.50 (s, 1H), 7.42-7.41 (m, 2H), 7.40-7.38 (m, 2H), 3.69 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 186.89, 137.38, 134.82, 130.71, 130.30, 130.16, 130.00, 129.09, 124.98, 124.44, 123.64, 118.64, 117.13, 115.93, 109.89, 31.09; HRMS (ESI⁺): *m/z* calcd. for C₁₆H₁₂ClNONa⁺ [M+H]⁺ : 294.0470, found: 294.0461.

1,4-Dimethyl-2-(4-tolyl)-1*H*-indole-3-carbaldehyde (3m): Yellow brown solid, 13.2 mg, 50% yield, mp: 107.9-109.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.68 (s, 1H), 7.34-7.27 (m, 4H), 7.23 (d, *J* = 7.6 Hz, 1H), 7.17 (d, *J* = 8.1 Hz, 1H), 7.10 (d, *J* = 7.1 Hz, 1H), 3.54 (s, 3H), 2.95 (s, 3H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.82, 152.68, 139.73, 137.98, 133.19, 130.72, 129.11, 126.16, 124.78, 124.16, 123.89, 116.83, 107.20, 30.84, 23.00, 21.31; HRMS (ESI⁺): *m/z* calcd. for C₁₈H₁₈NO [M+H]⁺ : 264.1383, found: 264.1382.

1,5-Dimethyl-2-(4-tolyl)-1*H***-indole-3-carbaldehyde (3n):** Yellow semisolid, 9.3 mg, 35% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.70 (s, 1H), 8.24 (s, 1H), 7.38-7.30 (m, 4H), 7.27 (d, *J* = 11.7 Hz, 1H), 7.19 (d, *J* = 8.4 Hz, 1H), 3.63 (s, 3H), 2.51 (s, 3H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.69, 151.71, 139.94, 135.72, 132.97, 130.76, 129.30, 125.69, 125.40, 125.32, 121.86, 115.29, 109.34, 30.96, 21.46, 21.40; HRMS (ESI⁺): *m/z* calcd. for C₁₈H₁₈NO [M+H]⁺ : 264.1383, found: 264.1383.

1,6-Dimethyl-2-(4-tolyl)-1*H***-indole-3-carbaldehyde (30):** Yellow solid, 12.6 mg, 48% yield, mp: 138.1-139.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.68 (s, 1H), 8.22 (s, 1H), 7.36-7.30 (m, 4H), 7.24 (d, *J* = 3.4 Hz, 1H), 7.16 (d, *J* = 8.4 Hz, 1H), 3.61 (s, 3H), 2.49 (s, 3H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.69, 151.71, 139.94, 135.72, 132.97, 130.76, 129.30, 125.69, 125.40, 125.32, 121.86, 115.29, 109.34, 30.96, 21.46, 21.40; HRMS (ESI⁺): *m/z* calcd. for C₁₈H₁₈NO [M+H]⁺ : 264.1383, found: 264.1382.

1,7-Dimethyl-2-(4-tolyl)-1*H***-indole-3-carbaldehyde (3p):** Yellow solid, 8.2 mg, 31% yield, mp: 152.8-153.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.68 (s, 1H), 8.33 (d, *J* = 7.9 Hz, 1H), 7.40-7.29 (m, 4H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.07 (d, *J* = 7.2 Hz, 1H), 3.86 (s, 3H), 2.80 (s, 3H), 2.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.73, 152.68, 139.92, 135.48, 130.87, 129.25, 126.96, 126.05, 125.73, 123.18, 121.41, 120.01, 115.56, 34.41, 21.36, 20.15; HRMS (ESI⁺): *m/z* calcd. for C₁₈H₁₈NO [M+H]⁺ : 264.1383, found: 264.1384.

5-Fluoro-1-methyl-2-(4-tolyl)-1*H***-indole-3-carbaldehyde (3q):** Yellow solid, 12.1 mg, 45% yield, mp: 199.0-200.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.70 (s, 1H), 8.10 (dd, *J* = 9.3, 2.6 Hz, 1H), 7.37 (br, 4H), 7.31 (dd, *J* = 8.8, 4.2 Hz, 1H), 7.09 (td, *J* = 9.0, 2.6 Hz, 1H), 3.66 (s, 3H), 2.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.39, 160.23 (d, *J* = 278.8), 151.98, 140.27, 133.83, 130.69, 129.44, 125.88 (d, *J* = 12.1), 124.80, 115.56, 112.06 (d, *J* = 26.3), 110.51 (d, *J* = 9.1 Hz), 107.59 (d, *J* = 24.2), 30.59, 21.88; ¹⁹F NMR (565 MHz, CDCl₃) δ -120.07; HRMS (ESI⁺): *m/z* calcd. for C₁₇H₁₅FNO [M+H]⁺ : 268.1132, found: 268.1133.

5-Bromo-1-methyl-2-(4-tolyl)-1*H***-indole-3-carbaldehyde (3r):**Yellow solid, 14.4 mg, 44% yield, mp: 160.1-161.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.62 (s, 1H), 8.51 (d, *J* = 1.9 Hz, 1H), 7.37 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.29 (br, 4H), 7.17 (d, *J* = 9.2 Hz, 1H), 3.58 (s, 3H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.38, 152.18, 140.37, 136.04, 130.71, 129.47, 126.82, 126.73, 125.10, 124.70, 116.75, 115.01, 111.13, 31.10, 21.43; HRMS (ESI⁺): *m/z* calcd. for C₁₇H₁₅BrNO [M+H]⁺ : 328.0331, found: 328.0336.

5-Methoxy-1-methyl-2-(4-tolyl)-1*H***-indole-3-carbaldehyde (3s):** Yellow solid, 15.7 mg, 56% yield, mp: 123.5-125.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1H), 7.89 (d, *J* = 2.5 Hz, 1H), 7.34-7.28 (m, 4H), 7.22 (dd, *J* = 8.2, 3.0 Hz, 2H), 6.95 (dd, *J* = 8.8, 2.5 Hz, 1H), 3.88 (s, 3H), 3.59 (s, 3H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.64, 156.88, 151.60, 139.94, 132.22, 130.74, 129.31, 125.96, 125.65, 115.47, 114.17, 110.55, 103.34, 55.85, 31.04, 21.39; HRMS (ESI⁺): *m/z* calcd. for C₁₈H₁₈NO₂ [M+H]⁺ : 280.1332, found: 280.1333.

5-Ethoxy-1-methyl-2-(4-tolyl)-1*H***-indole-3-carbaldehyde (3t):** Yellow brown solid, 14.7 mg, 50% yield, mp: 114.6-116.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.65 (s, 1H), 7.88 (s, 1H), 7.30 (br, 4H), 7.21 (d, *J* = 6.4 Hz, 1H), 6.94 (dd, *J* = 8.9, 2.2 Hz, 1H), 4.11 (q, *J* = 6.9 Hz, 2H), 3.58 (s, 3H), 2.42 (s, 3H), 1.41 (t, *J* = 5.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.58, 156.72, 151.57, 139.89, 132.18, 130.72, 129.28, 125.94, 125.65, 115.42, 114.56, 110.50, 104.29, 64.03, 31.00, 21.36, 14.89; HRMS (ESI⁺): *m/z* calcd. for C₁₉H₂₀NO₂ [M+H]⁺ : 294.1489, found:294.1487.

6-Methoxy-1-methyl-2-(4-tolyl)-1*H***-indole-3-carbaldehyde (3u):** Yellow solid, 15.3 mg, 55% yield, mp: 130.7-132.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.69 (s, 1H), 8.29 (d, *J* = 8.6 Hz, 1H), 7.37-7.29 (m, 4H), 6.98 (d, *J* = 8.8 Hz, 1H), 6.83 (s, 1H), 3.91 (s, 3H), 3.61 (s, 3H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.57, 157.55, 151.13, 139.84, 138.32, 130.76, 129.27, 125.62, 122.76, 119.15, 115.55, 111.94, 93.83, 55.69, 30.92, 21.36; HRMS (ESI⁺): *m/z* calcd. for C₁₈H₁₈NO₂ [M+H]⁺: 280.1332, found: 280.1333.

1-(1-Methyl-2-(4-tolyl)-1*H*-indol-3-yl)ethan-1-one (3v): Yellow semisolid, 14.5 mg, 55% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 8.30 (dt, J = 8.5, 0.8 Hz, 1H), 7.56 (dt, J = 8.2, 0.8 Hz, 1H), 7.42 (br, 4H), 7.30 (td, J = 7.1, 1.4 Hz, 1H), 7.25 (td, J = 7.1, 1.3 Hz, 1H), 3.49 (s, 3H), 2.44 (s, 3H), 1.85 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 194.76, 146.71, 139.72, 136.63, 130.11, 129.53, 129.08, 126.71, 123.25, 122.73, 115.89, 109.38, 30.77, 30.16, 21.45; HRMS (ESI⁺): m/z calcd. for C₁₈H₁₈NO [M+Na]⁺: 286.1202, found: 286.1199.

2-(4-tolyl)-1*H***-indole-3-carbaldehyde (3w):** Yellow solid, 14.5 mg, 55% yield, mp: 211.0-212.3 °C. ¹H NMR (600 MHz, CDCl₃) δ 10.08 (s, 1H), 8.78 (s, 1H), 8.44-8.41 (m, 1H), 7.54 (d, *J* = 8.1 Hz, 2H), 7.44-7.42 (m, 1H), 7.35 (d, *J* = 7.8 Hz, 2H), 7.32 (dd, *J* = 6.0, 3.1 Hz, 2H), 2.46 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 186.85, 149.28, 140.46, 135.40, 129.92, 127.10, 126.25, 124.29, 123.19, 122.31, 114.79, 110.98, 21.42; HRMS (ESI⁺): *m/z* calcd. for C₁₆H₁₃NO [M+H]⁺ : 208.1121, found: 208.1117. Konwn compound.^[6]

6. References

1. N. Jacob, Y. Zaid, J. C. A. Oliveira, L. Ackermann and J. Wencel-Delord, J. Am. Chem. Soc., 2022, 144, 798-806.

2. L. G. Margaret, H. B.David and M. W. Willard, J. Org. Chem., 1993, 58, 2104-2109.

3. C-Y. Wu, M. Hu, Y. Liu, R-J. Song, Y. Lei, B-X. Tang, R-J Li and J-H Li, *Chem. Commun.*, **2012**, *48*, 3197-3199.

4. M. Chen, J. L. Peng, T. T. Mao and J. B. Huang, Org. Lett., 2014, 16, 6286-6289.

5. D. J. Gale, J. Lin and J. F. K. Wilshire, Aust. J. Chem., 1976, 29, 2747-2751.

6. Y. M. Yuan, X. M. Guo, X. F. Zhang, B. H. Li and Q. F. Huang, Org. Chem. Front., 2020, 7, 3146-3159.

7. Copies of 1H NMR and 13C NMR for the Products

C

Ċ

C

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

C

¹H NMR of product 3i in CDCl₃ (400 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR of product 3j in CDCl₃ (400 MHz)

 $2 \ 4$

¹³C NMR of product 3m in CDCl₃ (101 MHz)

		139.73 137.98 133.19 133.19 133.19 129.11 124.78 124.78 124.78 123.89		77.32 77.00 76.68	30.84	~23.00
--	--	--	--	-------------------------	-------	--------

¹H NMR of product 3r in CDCl₃ (400 MHz)

3222	5093	3880 3831 3665 3616 3616 3616 2942 1982 1632	
6	00 00	NNNNN	
T	\checkmark		

-3.5789

-2.4058

ć

¹H NMR of product 3s in CDCl₃ (400 MHz)

6582	8885 8823 3302 33187 33187 3302 33187 3302 33187 3302 33187 2332 9965 9965 9965 9965 99407 9345 99407	8771	5922	4239
-9.			-3.	-2

C

¹H NMR of product 3t in CDCl₃ (400 MHz)

3469	3781	2981 2240 2081 3571 3571 3549 3349 3292	1361 1189 1011	5758	4157	4226 3906
- 9.0	-7.1	211 99 99 99 99	4 4 4	-3.	-2,	

3 5

