Supporting Information

Dearomatization of Indoles via Palladium-Catalyzed Carbonylation using $Co_2(CO)_8$ as Carbonyl Source Leading to Carbonyl-Containing

Spiroindolenines

Weiming Hu,*^{,a} Jiali Huang,^a Wenting Wu,^a Wenting Guo,^a Gang Gao,^c Xiaoqin Pei,^a Huiyan Wang,^a Chuanzhou Tao,^a and Huayou Hu,^b

^a Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China;

^b School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China;

^c Jiangsu Province Lianyungang Flood Control and Motorized Rescue Team, Lianyungang 222000, Jiangsu, China;

Table of Contents

I. General Information	S2
II. Synthesis and Reaction	
III. Characterization Data	
IV. References	S52
V. Copies of NMR Spectra	

I. General Information

Unless otherwise noted, all chemicals were purchased from commercial suppliers and used without further purification. ¹H NMR 13 C NMR spectra were recorded at ambient temperature on a 500 MHz (125 MHz for ¹³C) NMR spectrometer. NMR experiments are reported in δ units, parts per million (ppm), and were referenced to CDCl₃ (δ 7.26 or 77.0 ppm) as the internal standard. The coupling constants *J* are given in Hz. IR spectra were recorded on a spectrometer using KBr discs. Column chromatography was performed using EM Silica gel 60 (300-400 mesh). Highresolution mass spectra (HRMS) were obtained using a Bruker micro TOF II focus spectrometer (ESI). All melting points were uncorrected.

II. Synthesis and Reaction

Preparation of the substrates

General procedures for the synthesis of 1

Following a modified procedure,¹ in an oven dried 50 mL Schlenk tube, 10% Pd-C (75 mg, 10 mol%), TFA (1.15 mL, 15.0 mmol, 1.50 equiv.) and Et₃SiH (2.2 equiv.) were added to DCM (50 mL) under argon at 0 °C and the mixture was stirred for 10 min. Then a solution of an indole derivative (10.0 mmol, 1.0 equiv.) and the corresponding 2-bromobenzaldehyde derivative (11.0 mmol, 1.10 equiv.) in DCM (50 mL) was added dropwise to the reaction mixture. After stirring for 4 hours at 0 °C, the reaction mixture was allowed to warm to room temperature and the stirring was continued for additional 20 hours. Then the reaction mixture was filtered through celite and concentrated in a rotary evaporator. The solvent was evaporated, and the crude mixture was purified by flash column chromatography on silica gel (hexane/EtOAc, 60:1-30:1) to obtain products **1 (1a-1r)**.

General procedures for the synthesis of 1s

According to the literature procedure,² in a 50 mL Schlenk tube, indole (1.0 mmol), 2-bromobenzaldehyde (1.2 mmol) and NaOH (1.0 mmol, 40 mg) were added to EtOH/H₂O ($v_1:v_2$, 1:1, 2.0 mL), and the mixture was stirred at 90 °C for 1 hour. Then the reaction mixture was filtered through celite and concentrated in a rotary

evaporator. The solvent was evaporated, the crude product (2-bromophenyl)(1*H*-indol-3-yl)methanol was used for the next step without purification.

According to the literature procedure,³ to a stirred solution of the crude product (2bromophenyl) (1*H*-indol-3-yl) methanol (241.0 mg, 0.8 mmol) in DCM (3.0 mL), Hantzsch esters (253.3 mg, 1.0 mmol) was added. Then *p*-toluenesulfonic acid monohydrate (6.9 mg, 0.04 mmol) was added to the mixture and the resultant was stirred for 4 hours. After the reaction was completed by TLC, the solvent was removed in vacuum. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 5:1) on silica gel to afford 3-(2- bromobenzyl)-1*H*-indole (**1s**) as a yellowish oil (212.8 mg, 93%).

General procedure for the synthesis of 2

Under air, a 20 mL of Schlenk tube equipped with a stir bar was charged with indole derivative 1 (0.10 mmol, 1.0 equiv.), $Co_2(CO)_8$ (0.1 mmol, 1.0 equiv.), $Pd(acac)_2$ (10 mol%), PCy_3 (20 mol%), DIPEA (2.0 equiv.) and toluene (1.0 mL). The tube was sealed with a Teflon lined cap. The reaction mixture was stirred at 100 °C for 24 h in oil bath. After the completion of the reaction, 5.0 mL of saturated brines was added to the mixture, and extracted with ethyl acetate (5 mL × 3). The combined organic extracts were dried over anhydrous Na₂SO₄. Subsequently, the solvent was filtered and evaporated under reduced pressure, and the residue was purified by flash column chromatography on silica gel with petroleum ether-EtOAc (PE/EA, v/v, 3:1) as the eluent to give the desired product **2**.

General Procedure for the 2.0 mmol scale preparation of 2a

Under air, a 100 mL of round-bottom flask equipped with a stir bar was charged with indole derivative **1a** (2.0 mmol, 1.0 equiv.), $Co_2(CO)_8$ (2.0 mmol), $Pd(acac)_2$ (10 mol%), PCy₃ (20 mol%), DIPEA (2.0 equiv.) and toluene (20 mL). The tube was sealed with a Teflon lined cap. The reaction mixture was stirred at 100 °C for 48 h in oil bath. After the completion of the reaction, 20 mL of saturated brines was added to the mixture, and extracted with ethyl acetate (15 mL × 3). The combined organic extracts were dried over anhydrous Na₂SO₄. Subsequently, the solvent was filtered and evaporated under reduced pressure, and the residue was purified by flash column chromatography on silica gel with petroleum ether-EtOAc (PE/EA, v/v, 3:1) gave **2a** in 65% yield as a yellowish solid (321 mg).

General procedure for preparation of thione 3⁴

To a solution of compound 2q (0.2 mmol, 1.0 equiv.) in dry DCM (2.0 mL) was added Lawesson's reagent (80.9 mg, 0.2 mmol, 1.0 equiv.) under argon and the mixture was stirred at 35 °C until complete conversion was observed by TLC. Then the solvent was removed in vacuo, the residue was purified by flash column chromatography on silica gel (PE/EA = 6:1) to afford the desired product **3** as a yellowish oil (53.3 mg, 82%).

General procedure for Rh-catalyzed C(sp²)-H bromination of 2q

To a solution of compound **2t** (61.8 mg, 0.2 mmol, 1.0 equiv.) in acetone (4.0 mL) was added [Cp*RhCl₂]₂ (4.0 mol%, 5.0 mg), PhI(OAc)₂ (96.6 mg, 0.3 mmol, 1.5 equiv.), NaBr (61.4 mg, 0.6 mmol, 3.0 equiv.) and CF₃COOH (1.5 equiv.). The reaction mixture was then stirred at 50 °C for 24 h. Then, EtOAc (10mL) and H₂O (10 mL) were added, the organic layer was dried over Na₂SO₄, and the solvent was removed in vacuo. The residue was purified by flash chromatography (PE/EA = 8:1) to afford the bromination product **4** as a white solid (41.9 mg, 54%).

General procedure for the preparation of hydrazone 5⁵

To a solution of tosylhydrazide (1.0 equiv.) in MeOH (0.5 M) was added **2a** (49.4 mg, 0.2 mmol, 1.0 equiv.). The reaction mixture was stirred at 36 °C until complete conversion was observed by TLC. Then the solvent was removed in vacuo, the residue was purified by flash column chromatography on silica gel (PE/EA = 4:1) to afford the desired product **5** as a yellowish oil (52.3 mg, 63%).

General procedure for reduction of 2a to spiroindoline 6

Under argon, to a solution of 2a (49.4 mg, 0.2 mmol, 1.0 equiv.) in MeOH (2.0 mL)

was added NaBH₃CN (50.0 mg, 0.8 mmol, 4.0 equiv.). The reaction mixture was stirred at 40 °C until complete conversion was observed by TLC (4 h). 10 mL of saturated brines was added to the mixture, and extracted with ethyl acetate (5 mL \times 3). The combined organic extracts were dried over anhydrous Na₂SO₄. Subsequently, the solvent was filtered and evaporated under reduced pressure, and the residue was purified by flash column chromatography on silica gel with petroleum ether-EtOAc (PE/EA, v/v, 4:1) gave **6** in 80% yield as a yellowish oil (39.9 mg).

III. Characterization Data

3-(2-bromobenzyl)-2-methyl-1*H*-indole (1a)^{1,3}

Flash column chromatography on a silica gel (PE/EA, v/v, 60:1) gives **1a** (880 mg, 97% yield) as a yellowish solid: m.p. 76-77 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.80 (s, 1H), 7.61 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.5$ Hz, 1H), 7.37 (d, J = 7.9 Hz, 1H), 7.31 (d, J = 8.1 Hz, 1H), 7.18–7.14 (m, 1H), 7.13–7.09 (m, 1H), 7.07 (d, J = 7.3 Hz, 1H), 7.06 – 7.03 (m, 1H), 6.98 (dd, $J_1 = 7.5$ Hz, $J_2 = 1.9$ Hz, 1H), 4.17 (s, 2H), 2.36 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 140.3, 135.4, 132.5, 132.4, 130.0, 129.0, 127.5, 127.3, 124.6, 121.2, 119.4, 118.5, 110.2, 109.0, 30.5, 11.9. IR (cm⁻¹): 3420(N-H), 3180(Ar-H), 1616(Ar C=C), 1402(C-H), 1087(Ar-Br), 933(C-C), 759(C-C), 741(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₆H₁₅BrN⁺ 300.0382, Found 300.0391.

3-(2-bromo-5-methylbenzyl)-2-methyl-1*H*-indole (1b)

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **1b** (309 mg, 25% yield) as a yellow oil; ¹H NMR (500 MHz,CDCl₃) δ 7.83 (s, 1H), 7.46 (d, J = 8.1 Hz, 1H), 7.37 (d, $J_1 = 7.9$ Hz, 1H), 7.31 (d, $J_1 = 8.0$ Hz, 1H), 7.14 (td, $J_1 = 8.1$ Hz, $J_2 = 7.6$, $J_3 = 1.2$ Hz, 1H), 7.06–7.03 (m, 1H), 6.85 (d, $J_1 = 8.1$ Hz, 1H), 6.79 (s, 1H), 4.12 (s, 2H), 2.36 (s, 3H), 2.13 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 139.9, 137.2, 135.4, 132.3, 132.2, 130.7, 129.0, 128.3, 121.2, 121.1, 119.4, 118.5, 110.2, 109.2, 30.3, 21.0, 11.9. IR (cm⁻¹): 3403(N-H), 3180(Ar-H), 1621(Ar C=C), 1402(C-H), 1074(Ar-Br), 858(C-C), 740(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₇BrN⁺ 314.0539, Found 314.0547.

3-(2-bromo-4-methylbenzyl)-2-methyl-1*H*-indole (1c)

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **1c** (730 mg, 47% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.75 (s, 1H), 7.51–7.47 (m, 1H), 7.42 (dd, $J_1 = 7.9$ Hz, $J_2 = 1.1$ Hz, 1H), 7.31 (dt, $J_1 = 8.1$ Hz, $J_2 = 0.9$ Hz, 1H), 7.2 – 7.17 (m, 1H), 7.12–7.08 (m, 1H), 6.94 (dd, J = 7.9 Hz, $J_2 = 1.7$ Hz, 1H), 6.89 (d, J = 7.9 Hz, 1H), 4.17 (s, 2H), 2.36 (s, 3H), 2.32 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 137.4, 137.2, 135.4, 132.9, 132.3, 129.7, 129.0, 128.1, 124.3, 121.1, 119.4, 118.5, 110.2, 109.2, 30.0, 20.6, 11.8. IR (cm⁻¹): 3404(N-H), 3189(Ar-H), 1654(Ar C=C), 1402(C-H), 1083(Ar-Br), 930(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₇BrN⁺ 314.0539, Found 314.0544.

3-(2-bromo-4-methoxybenzyl)-2-methyl-1H-indole (1d)

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **1d** (1.15 g, 87% yield) as a reddish solid: m.p. 68-69 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.76 (s, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.24 – 7.16 (m, 2H), 7.12 – 7.08 (m, 1H), 6.91 (d, *J* = 8.6 Hz, 1H), 6.70 (dd, *J*₁ = 8.6 Hz, *J*₂ = 2.7 Hz, 1H), 4.14 (s, 2H), 3.78 (s, 3H), 2.35 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 158.3, 135.4, 132.4, 132.3, 130.4, 129.0, 124.5, 121.2, 119.4, 118.5, 117.8, 113.5, 110.3, 109.4, 55.6, 29.6, 11.8. IR (cm⁻¹): 3394(N-H), 3181(Ar-H), 1647(Ar C=C), 1558(C-N), 1487(C-H), 1402(C-H), 1160(C-O-C), 1084(Ar-Br), 929(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₇BrNO⁺ 330.0488, Found 330.0486.

3-(2-bromo-5-methoxybenzyl)-2-methyl-1*H*-indole (1e)

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **1e** (1.44 g, 88% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.80 (s, 1H), 7.50 (dd, $J_1 = 8.7$ Hz, $J_2 = 4.7$ Hz, 1H), 7.39 (t, J = 6.7 Hz, 1H), 7.28 (d, J = 8.1 Hz, 1H), 7.17–7.12 (m, 1H), 7.10–7.02 (m, 1H), 6.65–6.61 (m, 1H), 6.59 – 6.55 (m, 1H), 4.13 (d, J = 4.6 Hz, 2H), 3.61 (d, J = 2.1 Hz, 3H), 2.34 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 159.0, 141.6, 135.4, 132.9, 132.4, 128.9, 121.2, 119.4, 118.4, 116.4, 115.1, 112.5, 110.2, 108.9, 55.3, 30.6, 11.8. IR (cm⁻¹): 3404(N-H), 3186(Ar-H), 1647(Ar C=C), 1558(C-N), 1462(C-H), 1402(C-H), 1157(C-O-C), 1084(Ar-Br), 930(C-C), 745(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₇BrNO⁺ 330.0488, Found 330.0493.

3-(2-bromo-5-fluorobenzyl)-2-methyl-1H-indole (1f)

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **1f** (1.35 g, 80% yield) as a light pink solid: m.p. 165-166 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.67 (s, 1H), 7.53 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.3$ Hz, 1H), 7.41 – 7.33 (m, 2H), 7.24 (d, J = 8.0 Hz, 1H), 7.10 (td, $J_1 = 8.0$ Hz, $J_2 = 7.6$ Hz, $J_3 = 1.2$ Hz, 1H), 7.06 – 7.00 (m, 2H), 4.42 (s, 2H), 2.26 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 138.2, 136.2, 135.1, 131.8, 131.7, 129.1, 128.6, 128.3, 126.7, 120.8, 119.2, 118.6, 110.2, 107.4, 30.4, 12.2. IR (cm⁻¹): 3436(N-H), 2984(C-H), 1622(Ar C=C), 1454(C-H), 1067(Ar-Cl), 1003(Ar-Br), 910(C-C), 777(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₆H₁₄BrClN⁺ 333.9993, Found 334.0001.

3-(2-bromo-5-chlorobenzyl)-2-methyl-1*H*-indole (1g)

Flash column chromatography on a silica gel (PE/EA, v/v, 60:1) gives **1g** (1.03 g, 62% yield) as a yellowish solid: mp 68-69 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.84 (s, 1H), 7.58 (d, *J* = 8.5 Hz, 1H), 7.48 (d, *J* = 8.1 Hz, 1H), 7.36 – 7.34 (m, 1H), 7.30 – 7.26 (m, 1H), 7.21 – 7.18 (m, 1H), 7.10 (dd, *J*₁ = 8.5 Hz, *J*₂ = 2.6 Hz, 1H), 7.05 (d, *J* = 2.6 Hz, 1H), 4.22 (s, 2H), 2.36 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 142.4, 135.4, 133.53, 133.49, 132.6, 129.9, 128.7, 127.7, 122.4, 121.4, 119.6, 118.2, 110.4, 108.2, 30.5, 11.9. IR (cm⁻¹): 3389(N-H), 3169(Ar-H), 1660(Ar C=C), 1458(C-H), 1402(C-H), 1093(Ar-Cl), 1030(Ar-Br), 935(C-C), 816(C-C), 737(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₆H₁₄BrClN⁺ 333.9993, Found 333.9991.

3-(2-bromo-5-fluorobenzyl)-2-methyl-1*H*-indole (1h)

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **1h** (1.47 g, 93% yield) as a yellowish soild: m.p. 121-122 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.79 (s, 1H), 7.58 (dd, $J_1 = 8.7$ Hz, $J_2 = 5.4$ Hz, 1H), 7.41 (d, J = 7.9 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 7.24 – 7.20 (m, 1H), 7.15 – 7.11 (m, 1H), 6.82 (td, $J_1 = 8.2$ Hz, $J_2 = 3.1$ Hz, 1H), 6.72 (dd, $J_1 = 9.9$ Hz, $J_2 = 3.1$ Hz, 1H), 4.17 (s, 2H), 2.36 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 162.3 (d, $J_{C-F} = 244.4$ Hz), 142.9 (d, $J_{C-F} = 6.9$ Hz), 135.5, 133.5 (d, $J_{C-F} = 8.0$ Hz), 132.7, 128.8, 121.4, 119.7, 118.5 (d, $J_{C-F} = 2.9$ Hz, 1H), 118.3, 117.0 (d, $J_{C-F} = 23.5$ Hz), 114.7 (d, $J_{C-F} = 22.6$ Hz), 110.5, 108.3, 30.6, 11.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -114.9. IR (cm⁻¹): 3388(N-H), 3050(Ar-H), 1610(Ar C=C), 1460(C-H), 1300(C-H), 1174(Ar-F), 1003(Ar-Br), 870(C-C), 815(C-C), 741(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₆H₁₄BrFN⁺ 318.0288, Found 318.0293.

3-(2-bromo-3-chlorobenzyl)-2-methyl-1H-indole (1i)

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **1i** (580 mg, 43% yield) as a yellowish solid: m.p. 69-70 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (s, 1H), 7.32 (d, J = 1.2 Hz, 1H), 7.31 – 7.29 (m, 2H), 7.17 – 7.13 (m, 1H), 7.07 – 7.00 (m, 2H), 6.84 – 6.80 (m, 1H), 4.18 (s, 2H), 2.35 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 143.1, 135.4, 134.9, 132.6, 128.8, 127.9, 127.8, 127.7, 124.5, 121.3, 119.5, 118.3, 110.3, 108.7, 31.8, 11.8. IR (cm⁻¹): 3401(N-H), 3174(Ar-H), 1654(Ar C=C), 1402(C-H), 1085(Ar-Cl), 1000(Ar-Br), 930(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₆H₁₄BrClN⁺ 333.9993, Found 333.9996.

3-(2-bromo-5-nitrobenzyl)-2-methyl-1*H*-indole (1j)

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **1j** (1.26 g, 74% yield) as a yellow solid: m.p. 150-151 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.98 (s, 1H), 7.89 (dd, $J_1 = 8.7$ Hz, $J_2 = 2.8$ Hz, 1H), 7.85 – 7.70 (m, 2H), 7.32 (d, J = 8.2 Hz, 1H), 7.29 (d, J = 7.8 Hz, 1H), 7.16 (t, J = 7.5 Hz, 1H), 7.06 (t, J = 7.5 Hz, 1H), 4.20 (s, 2H), 2.39 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 147.5, 142.8, 135.5, 133.4, 132.7, 131.7, 128.4, 124.6, 122.2, 121.6, 119.7, 117.9, 110.5, 107.4, 30.7, 11.9. IR (cm⁻¹): 3389(N-H), 3169(Ar-H), 1654(Ar C=C), 1617(NO₂), 1402(C-H), 1085(Ar-Br), 928(C-C), 746(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₆H₁₄BrN₂O₂⁺ 345.0233, Found 345.0240.

3-(2-bromo-4,5-dimethoxybenzyl)-2-methyl-1*H*-indole (1k)

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **1k** (470 mg, 26% yield) as a yellowish solid: m.p. 134-135 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (s, 1H), 7.37 (dd, $J_1 = 7.9$ Hz, $J_2 = 1.1$ Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.13 – 7.10 (m, 1H), 7.08 – 7.00 (m, 2H), 6.57 (s, 1H), 4.08 (s, 2H), 3.85 (s, 3H), 3.56 (s, 3H), 2.36 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 148.4, 147.8, 135.4, 132.5, 132.1, 128.9, 121.1, 119.4, 118.5, 115.4, 114.1, 113.1, 110.2, 109.4, 56.2, 55.9, 30.0, 11.9. IR (cm⁻¹): 3359(N-H), 3187(Ar-H), 1654(Ar C=C), 1503(C-N), 1402(C-H), 1161(C-O-C), 1084(Ar-Br), 929(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₈H₁₉BrNO₂⁺ 360.0594, Found 360.0595.

3-((1-bromonaphthalen-2-yl)methyl)-2-methyl-1*H*-indole (11)

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **11** (860 mg, 70% yield) as a yellow solid: m.p. 138-139 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.43 (d, J_1 = 8.6 Hz, 1H), 7.82 – 7.75 (m, 2H), 7.64 – 7.57 (m, 2H), 7.51 – 7.47 (m, 1H), 7.41 (d, J = 7.9 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.18 – 7.13 (m, 2H), 7.06 (t, J = 7.5 Hz, 1H), 4.44 (s, 2H), 2.37 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 138.7, 135.4, 133.4, 132.6, 132.4, 129.1, 128.1, 127.6, 127.4, 127.32, 127.28, 125.9, 123.7, 121.2, 119.5, 118.5, 110.3, 109.6, 31.5, 11.9. IR (cm⁻¹): 3375(N-H), 3165(Ar-H), 1616(Ar C=C), 1402(C-H), 1084(Ar-Br), 929(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₂₀H₁₇BrN⁺ 350.0539, Found 350.0544.

3-(2-bromobenzyl)-2,5-dimethyl-1*H*-indole (1m)

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **1m** (660 mg, 42% yield) as a white solid: m.p. 141-142 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.71 (s, 1H), 7.61 (dd, $J_1 = 7.9$ Hz, $J_2 = 1.4$ Hz, 1H), 7.21 (d, J = 8.2 Hz, 1H), 7.16 (s, 1H), 7.13 – 7.10 (m, 1H), 7.08 – 7.04 (m, 1H), 6.99 (dd, $J_1 = 8.2$ Hz, $J_2 = 1.6$ Hz, 1H), 6.97 – 6.94 (m, 1H), 4.14 (s, 2H), 2.42 (s, 3H), 2.33 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 140.5, 133.7, 132.6, 132.4, 130.0, 129.3, 128.6, 127.42, 127.36, 124.7, 122.7, 118.2, 110.0, 108.5, 30.4, 21.6, 11.9. IR (cm⁻¹): 3390(N-H), 3178(Ar-H), 1647(Ar C=C), 1402(C-H), 1085(Ar-Br), 930(C-C), 750(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₇BrN⁺ 314.0539, Found 314.0542.

3-(2-bromobenzyl)-5-methoxy-2-methyl-1H-indole (1n)

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **1n** (270 mg, 16% yield) as a yellowish solid: m.p. 105-106 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.77 (s, 1H), 7.59 (dd, $J_1 = 7.9$ Hz, $J_2 = 1.4$ Hz, 1H), 7.18 (dd, $J_1 = 8.6$ Hz, $J_2 = 0.6$ Hz, 1H), 7.13 – 7.09 (m, 1H), 7.06 – 7.02 (m, 1H), 6.97 (dd, $J_1 = 7.6$ Hz, $J_2 = 1.9$ Hz, 1H), 6.83–6.76 (m, 2H), 4.12 (s, 2H), 3.78 (s, 3H), 2.33 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 154.0, 140.3, 133.3, 132.5, 130.5, 130.0, 129.4, 127.5, 127.4, 124.6, 110.9, 110.8, 108.9, 100.9, 55.9, 30.5, 11.9. IR (cm⁻¹): 3403(N-H), 3180(Ar-H), 1654(Ar C=C), 1402(C-H), 1160(C-O-C), 1084(Ar-Br), 931(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₇BrNO⁺ 330.0488, Found 330.0496.

3-(2-bromobenzyl)-5-fluoro-2-methyl-1*H*-indole (10)

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **10** (320 mg, 20% yield) as a brown solid: m.p. 115-116 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.84 (s, 1H), 7.58 (dd, $J_1 = 7.9$ Hz, $J_2 = 1.4$ Hz, 1H), 7.21 – 7.18 (m, 1H), 7.13 – 7.10 (m, 1H), 7.06 – 7.03 (m, 1H), 6.98 – 6.92 (m, 2H), 6.85 (td, $J_1 = 9.0$ Hz, $J_2 = 2.5$ Hz, 1H), 4.09 (s, 2H), 2.36 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 157.9 (d, $J_{C-F} = 232.8$ Hz), 139.9, 134.3, 132.6, 131.8, 129.9, 129.4 (d, $J_{C-F} = 9.7$ Hz), 127.5 (d, $J_{C-F} = 28.8$ Hz), 124.6, 110.7 (d, $J_{C-F} = 9.7$ Hz), 109.34 (d, $J_{C-F} = 4.2$ Hz), 109.26, 109.1, 103.5 (d, $J_{C-F} = 23.5$ Hz), 30.5, 12.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -124.8. IR (cm⁻¹): 3421(N-H), 3280(Ar-H), 1647(Ar C=C), 1402(C-H), 1092(Ar-F), 940(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₆H₁₄BrFN⁺ 318.0288, Found 318.0293.

3-(2-bromobenzyl)-5-chloro-2-methyl-1*H*-indole (1p)

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **1p** (940 mg, 56% yield) as a yellowish solid: m.p. 137-138 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.87 (s, 1H), 7.59 (dd, $J_1 = 7.9$ Hz, $J_2 = 1.4$ Hz, 1H), 7.29 (d, J = 2.0 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.12 (t, J = 7.4 Hz, 1H), 7.08 – 7.03 (m, 2H), 6.91 (dd, $J_1 = 7.7$ Hz, $J_2 = 1.8$ Hz, 1H), 4.09 (s, 2H), 2.34 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 139.8, 134.0, 133.7, 132.6, 130.1, 129.8, 127.6, 127.4, 125.1, 124.6, 121.4, 117.9, 111.2, 108.9, 30.3, 11.9. IR (cm⁻¹): 3415(N-H), 3169(Ar-H), 1654(Ar C=C), 1467(C-H), 1402(C-H), 1085(Ar-Cl), 1000(Ar-Br), 930(C-C), 801(C-C), 754(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₆H₁₄BrClN⁺ 333.9993, Found 333.9988.

3-(2-bromobenzyl)-2-phenyl-1*H*-indole (1q)¹

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **1q** (1.20 g, 67% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 8.19 (s, 1H), 7.64 (dd, $J_I = 7.7$ Hz, $J_2 = 1.7$ Hz, 1H), 7.48 – 7.45 (m, 3H), 7.44 – 7.35 (m, 4H), 7.27 – 7.23 (m, 1H), 7.09 (m, 3H), 7.03 (dd, $J_I = 7.3$ Hz, $J_2 = 2.2$ Hz, 1H), 4.34 (s, 2H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 140.3, 136.1, 135.9, 132.7, 132.5, 129.9, 129.5, 129.0, 127.9, 127.64, 127.57, 127.5, 124.7, 122.6, 120.0, 119.5, 110.88, 110.87, 109.9, 31.1. IR (cm⁻¹): 3426(N-H), 1614(Ar C=C), 1489(C-H), 1457(C-H), 1002(Ar-Br), 744(C-C), 692(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₁₇BrN⁺ 362.0539, Found 362.0548.

3-(2-bromobenzyl)-2-(4-fluorophenyl)-1*H*-indole (1r)¹

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **1r** (865 mg, 46% yield) as a yellow solid: m.p. 116-117 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.14 (s, 1H), 7.62 (dd, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 7.41 (m, 4H), 7.24 (m, 1H), 7.14 – 7.05 (m, 5H), 6.99 (dd, $J_1 = 7.3$ Hz, $J_2 = 2.1$ Hz, 1H), 4.27 (s, 2H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 163.5, 161.5, 140.1, 136.0, 135.0, 132.6, 129.8, 129.43, 129.39, 129.36, 128.8 (d, $J_{C-F} = 3.4$ Hz), 127.6, 127.5, 124.7, 122.7, 120.1, 119.5, 116.1 (d, $J_{C-F} = 21.6$ Hz), 110.9, 110.0, 31.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -113.4. IR (cm⁻¹): 3464(N-H), 3063(Ar-H), 2985(C-H), 1613(Ar C=C), 1441(C-H), 1398(C-H), 1215(Ar-F), 1024(Ar-Br), 839(C-C), 745(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₁₆BrFN⁺ 380.0445, Found 380.0446.

3-(2-bromobenzyl)-1*H*-indole (1s)³

Flash column chromatography on a silica gel (PE/EA, v/v, 30:1) gives **1p** (266.3 mg, 93% yield) as a faint yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.99 (s, 1H), 7.57 (dd, $J_1 = 15.4, J_2 = 7.8$ Hz, 2H), 7.38 (d, J = 8.2 Hz, 1H), 7.23 – 7.16 (m, 3H), 7.13 – 7.05 (m, 2H), 6.98 – 6.92 (m, 1H), 4.23 (s, 2H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 140.4, 136.4, 132.7, 130.6, 127.6, 127.43, 127.39, 124.6, 122.8, 122.1, 119.5, 119.2, 114.1, 111.1, 31.9. IR (cm⁻¹): 3416(N-H), 3057(C=CH), 1592(C=C), 1441(C-H), 1107(C-N), 1044(Ar-Br), 740(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₅H₁₃BrN⁺ 286.0226; Found 286.0229.

3-((4-bromothiophen-3-yl)methyl)-2-methyl-1H-indole (1t)

Flash column chromatography on a silica gel (PE/EA, v/v, 60:1) gives **1t** (320.3 mg, 87% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.76 (s, 1H), 7.44 (d, J = 7.8 Hz, 1H), 7.27 (d, J = 8.4 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 7.09 – 7.03 (m, 2H), 6.62 (d, J = 5.7 Hz, 1H), 4.00 – 3.94 (m, 2H), 2.39 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 141.1, 135.2, 131.6, 128.8, 128.6, 125.1, 121.2, 119.4, 118.3, 110.2, 109.7, 108.3, 24.4, 11.9. IR (cm⁻¹): 3389(N-H), 3169(C-H), 1654(Ar C=C), 1402(C-H), 1085(Ar-Br), 928(C-C), 746(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₄H₁₃BrNS⁺ 305.9947, Found 305.9948.

2'-methylspiro[indene-2,3'-indol]-1(3H)-one (2a)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **2a** (19.8 mg, 80% yield) as a yellow solid: m.p. 149-150 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 7.7 Hz, 1H), 7.74 (t, J = 7.5, 1H), 7.66 – 7.59 (m, 2H), 7.52 – 7.44 (m, 1H), 7.35 (td, $J_I =$ 7.6 Hz, $J_2 =$ 1.2 Hz, 1H), 7.13 (td, $J_I =$ 7.5 Hz, $J_2 =$ 1.1 Hz, 1H), 7.00 (d, J = 7.5 Hz, 1H), 3.62 (d, J = 17.7 Hz, 1H), 3.49 (d, J = 17.7 Hz, 1H), 2.16 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 200.3, 179.3, 156.4, 152.7, 140.6, 136.4, 135.8, 128.7, 128.2, 126.9, 125.8, 125.4, 121.1, 120.3, 72.4, 35.2, 16.4. IR (cm⁻¹): 2986(C-H), 1663(C=O), 1614(C=N), 1614(Ar C=C), 1441(C-H), 1174(C-N), 776(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₄NO⁺ 248.1070, Found 248.1076.

2',5-dimethylspiro[indene-2,3'-indol]-1(3H)-one (2b)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **2b** (19.6 mg, 75% yield) as a yellow solid: m.p. 126-127 °C; ¹H NMR (500 MHz, CDCl₃) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 7.8 Hz, 1H), 7.59 (d, *J* = 7.7 Hz, 1H), 7.44 (s, 1H), 7.36 – 7.28 (m, 2H), 7.12 (t, *J* = 7.5 Hz, 1H), 7.00 (d, *J* = 7.3 Hz, 1H), 3.56 (d, *J* = 17.6 Hz, 1H), 3.43 (d, *J* = 17.6 Hz, 1H), 2.52 (s, 3H), 2.15 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 199.7, 179.6, 156.4, 153.3, 147.4, 140.8, 134.2, 129.6, 128.6, 127.3, 125.8, 125.3, 121.1, 120.3, 72.6, 35.1, 22.2, 16.4. IR (cm⁻¹): 2983(C-H), 1705(C=O), 1613(Ar C=C), 1613(C=N), 1440(C-H), 1174(C-N), 775(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₈H₁₆NO⁺ 262.1226, Found 262.1234.

2',6-dimethylspiro[indene-2,3'-indol]-1(3H)-one (2c)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **2c** (20.4 mg, 78% yield) as a yellow solid: m.p. 148-149 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.62 (s, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.56 – 7.50 (m, 2H), 7.34 – 7.30 (m, 1H), 7.11 (t, *J* = 7.5 Hz, 1H), 6.98 (d, *J* = 7.4 Hz, 1H), 3.54 (d, *J* = 17.5 Hz, 1H), 3.42 (d, *J* = 17.5 Hz, 1H), 2.45 (s, 3H), 2.14 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 200.4, 179.5, 156.4, 150.2, 140.8, 138.4, 137.1, 136.6, 128.6, 126.6, 125.8, 125.3, 121.1, 120.2, 72.8, 34.9, 21.1, 16.4. IR (cm⁻¹): 2986(C-H), 1689(C=O), 1613(Ar C=C), 1558(C=N), 1441(C-H), 1174(C-N), 1007(C-C), 800(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₈H₁₆NO⁺ 262.1226, Found 262.1235.

6-methoxy-2'-methylspiro[indene-2,3'-indol]-1(3H)-one (2d)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **2d** (22.7 mg, 82% yield) as a yellow solid: m.p. 183-184 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, *J* = 7.7 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.35 – 7.30 (m, 2H), 7.25 (d, *J* = 2.5 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 7.00 (d, *J* = 7.4 Hz, 1H), 3.85 (s, 3H), 3.51 (d, *J* = 17.3 Hz, 1H), 3.39 (d, *J* = 17.3 Hz, 1H), 2.14 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 200.3, 179.4, 160.1, 156.4, 145.6, 140.7, 137.7, 128.7, 127.6, 125.8, 125.3, 121.1, 120.3, 106.4, 73.2, 55.7, 34.5, 16.4. IR (cm⁻¹): 2922(C-H), 1703(C=O), 1613(Ar C=C), 1580(C=N), 1434(C-H), 1172(C-N), 1024(C-O-C), 847(C-C), 779(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₈H₁₆NO₂⁺ 278.1176, Found 278.1184.

5-methoxy-2'-methylspiro[indene-2,3'-indol]-1(3H)-one (2e)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **2e** (22.2 mg, 80% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, *J* = 8.5 Hz, 1H), 7.59 (d, *J* = 7.7 Hz, 1H), 7.34 (td, *J*₁ = 7.6 Hz, *J*₂ = 1.2 Hz, 1H), 7.13 (t, *J* = 7.5 Hz, 1H), 7.05 (s, 1H), 7.03 – 6.99 (m, 2H), 3.95 (s, 3H), 3.55 (d, *J* = 17.6 Hz, 1H), 3.43 (d, *J* = 17.6 Hz, 1H), 2.16 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 198.3, 179.7, 166.2, 156.3, 155.9, 140.9, 129.6, 128.6, 127.1, 125.8, 121.1, 120.2, 116.3, 110.1, 72.7, 55.9, 35.2, 16.3. IR (cm⁻¹): 2987(C-H), 1705(C=O), 1613(Ar C=C), 1613(C=N), 1441(C-H), 1174(C-N), 1003(C-O-C), 780(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₈H₁₆NO₂⁺ 278.1176, Found 278.1186.

4-chloro-2'-methylspiro[indene-2,3'-indol]-1(3H)-one (2f)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **2f** (13.8 mg, 49% yield) as a yellowish solid: m.p. 101-102 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.76-7.73 (m, 2H), 7.61 (d, *J* = 7.8 Hz, 1 H), 7.48 (t, *J* = 7.7 Hz, 1H), 7.36 (dt, *J*₁ = 7.7 Hz, *J*₂ = 1.2 Hz, 1H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.0 (d, *J* = 7.5 Hz, 1H), 3.59 (d, *J* = 18.3 Hz, 1H), 3.48 (d, *J* = 18.3 Hz, 1H), 2.17 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 199.4, 178.6, 156.3, 150.3, 140.2, 138.2, 135.4, 133.2, 129.9, 128.9, 126.0, 123.6, 121.1, 120.4, 72.1, 34.1, 16.4. IR (cm⁻¹): 2986(Ar-H), 1655(C=O), 1614(C=N), 1614(Ar C=C), 1441(C-H), 1051(C-Cl), 788(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₃ClNO⁺ 282.0680, Found 282.0686.

6-chloro-2'-methylspiro[indene-2,3'-indol]-1(3H)-one (2g)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **2g** (15.7 mg, 56% yield) as a yellowish solid: m.p. 142-143 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 8.2Hz, 1H), 7.64 (s, 1H), 7.59 (d, *J* = Hz, 1H), 7.48-7.46 (m, 1H), 7.34 (dt, *J*₁ = 7.6 Hz, *J*₂ = 1.2 Hz, 1H), 7.12 (dt, *J*₁ = 8.7 Hz, *J*₂ = 1.1 Hz, 1H), 6.98 (d, *J* = 7.4 Hz, 1H), 3.57 (d, *J* = 17.9 Hz, 1H), 3.45 (d, *J* = 17.9 Hz, 1H), 2.15 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 198.8, 178.7, 156.3, 154.1, 142.5, 140.2, 134.8, 129.1, 128.8, 127.1, 126.3, 125.9, 121.0, 120.3, 72.3, 34.8, 16.3. IR (cm⁻¹): 2987(Ar-H), 1655(C=O), 1615(C=N), 1615(Ar C=C), 1439(C-H), 1067(C-Cl), 744(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₃ClNO⁺ 282.0680, Found 282.0689.

5-fluoro-2'-methylspiro[indene-2,3'-indol]-1(3H)-one (2h)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **2h** (11.9 mg, 45% yield) as a yellow solid: m.p. 138-139 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dd, J_I = 8.5 Hz, J_2 = 5.2 Hz, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.36 – 7.29 (m, 2H), 7.19 (t, J = 8.6 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 6.99 (d, J = 7.5 Hz, 1H), 3.58 (d, J = 17.9 Hz, 1H), 3.45 (d, J = 17.9 Hz, 1H), 2.15 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 198.4, 178.9, 167.7 (d, J_{C-F} = 257.3 Hz), 156.3, 155.7 (d, J_{C-F} = 10.2 Hz), 140.4, 132.8, 128.8, 127.7 (d, J_{C-F} = 10.7 Hz), 125.9, 121.0, 120.4, 116.8 (d, J_{C-F} = 23.7 Hz), 113.7 (d, J_{C-F} = 22.6 Hz), 72.5, 35.0 (d, J_{C-F} = 2.3 Hz), 16.4. ¹⁹F NMR (471 MHz, CDCl₃) δ -100.3. IR (cm⁻¹): 2981(C-H), 1708(C=O), 1614(C=N), 1592(Ar C=C), 1454(C-H), 1250(C-F), 1174(C-N), 774(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₃FNO⁺ 266.0976, Found 266.0985.

7-chloro-2'-methylspiro[indene-2,3'-indol]-1(3H)-one (2i)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **2i** (9.8 mg, 35% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.64-7.52 (m, 3H), 7.44 (d, J = 7.6 Hz, 1H), 7.34 (dt, $J_1 =$ 7.7 Hz, $J_2 =$ 1.3 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 6.98 (d, J = 7.4 Hz, 1H), 3.58 (d, J = 17.7 Hz, 1H), 3.42 (d, J = 17.7 Hz, 1H), 2.18 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 196.8, 178.8, 156.2, 154.8, 140.4, 135.9, 133.4, 132.4, 129.9, 128.8, 125.8, 125.2, 121.0, 120.3, 72.7, 34.4, 16.5. IR (cm⁻¹): 2974(Ar-H), 1655(C=O), 1604(C=N), 1604(Ar C=C), 1452(C-H), 1050(C-Cl), 776(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₃ClNO⁺ 282.0680, Found 282.0683.

2'-methyl-5-nitrospiro[indene-2,3'-indol]-1(3H)-one (2j)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **2j** (12.8 mg, 44% yield) as a yellowish solid: mp 182-183 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.51 (s, 1H), 8.36-8.33 (m, 1H), 7.99 (d, J = 8.3 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.39-7.36 (m, 1H), 7.15 (t, J = 7.15 Hz, 1H), 6.97 (d, J = 7.4 Hz, 1H), 3.59 (d, J = 18.0 Hz, 1H), 3.72 (d, J = 18.0 Hz, 1H), 2.17 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 198.8, 177.9, 156.2, 153.4, 152.4, 140.3, 139.7, 129.2, 126.3, 126.1, 123.7, 122.3, 120.9, 120.6, 72.6, 35.0, 16.5. IR (cm⁻¹): 2986(Ar-H), 1655(C=O), 1614(C=N), 1614(Ar C=C), 1491(Ar C-NO₂), 1352(Ar C-NO₂), 1441(C-H), 1174(C-N), 788(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₃N₂O₃⁺ 293.0921, Found 293.0929.

5,6-dimethoxy-2'-methylspiro[indene-2,3'-indol]-1(3H)-one (2k)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **2k** (25.5 mg, 83% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, *J* = 7.8 Hz, 1H), 7.34 (dt, *J*₁ = 7.6 Hz, *J*₂ = 1.3 Hz, 1H), 7.24 (s, 1H), 7.14 (t, *J* = 7.5 Hz, 1H), 7.04-7.02 (m, 2H), 4.04 (s, 3H), 3.94 (s, 3H), 3.51 (d, *J* = 17.5 Hz, 1H), 3.40 (d, *J* = 17.5 Hz, 1H), 2.15 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 198.6, 179.7, 156.4, 156.3, 150.1, 148.2, 140.7, 129.3, 128.6, 125.8, 121.1, 120.2, 107.5, 105.5, 72.7, 56.4, 56.2, 34.9, 16.2. IR (cm⁻¹): 2988(C-H), 1675(C=O), 1613(Ar C=C), 1613(C=N), 1441(C-H), 1174(C-N), 1003(C-O-C), 787(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₉H₁₈NO₃⁺ 308.1281, Found 308.1286.

2'-methylspiro[cyclopenta[a]naphthalene-2,3'-indol]-1(3H)-one (2l)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **21** (23.4 mg, 79% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 9.02 (d, J = 8.3 Hz, 1H), 8.20 (d. J = 8.4 Hz, 1H), 7.98 (d, J = 8.2 Hz, 1H), 7.71-7.41 (m, 4H), 7.36 (dt, $J_1 = 7.8$ Hz, $J_2 = 1.3$ Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 7.03 (d, J = 7.4 Hz, 1H), 3.71 (d, J = 18.1 Hz, 1H), 3.59 (d, J = 18.0 Hz, 1H), 2.19 (s, 3H) ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 200.2, 179.5, 156.5, 156.4, 140.6, 137.0, 133.0, 130.8, 129.8, 129.6, 128.6, 128.3, 127.3, 125.8, 124.0, 123.7, 121.0, 120.2, 72.8, 35.4, 16.3. IR (cm⁻¹): 2986(C-H), 1689(C=O), 1622(Ar C=C), 1613(C=N), 1454(C-H), 1174(C-N), 774(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₂₁H₁₆NO⁺ 298.1226, Found 298.1234.

2',5'-dimethylspiro[indene-2,3'-indol]-1(3H)-one (2m)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **2m** (21.1 mg, 81% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 7.7 Hz, 1H), 7.74 (t, *J* = 7.5 Hz, 1H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.52 – 7.46 (m, 2H), 7.14 (d, *J* = 7.9 Hz, 1H), 6.80 (s, 1H), 3.60 (d, *J* = 17.6 Hz, 1H), 3.47 (d, *J* = 17.6 Hz, 1H), 2.28 (s, 3H), 2.13 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 200.7, 178.3, 154.2, 152.8, 140.8, 136.5, 135.78, 135.76, 129.3, 128.3, 126.9, 125.4, 121.9, 119.8, 72.3, 35.3, 21.3, 16.4. IR (cm⁻¹): 2988(C-H), 1662(C=O), 1613(C=N), 1613(Ar C=C), 1441(C-H), 1174(C-N), 788(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₈H₁₆NO⁺ 262.1226, Found 262.1235.

5'-methoxy-2'-methylspiro[indene-2,3'-indol]-1(3H)-one (2n)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **2n** (22.2 mg, 80% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 7.8 Hz, 1H), 7.74 – 7.69 (m, 1H), 7.63 (d, J = 7.7 Hz, 1H), 7.50 – 7.45 (m, 2H), 6.84 (dd, J_I = 8.5 Hz, J_2 = 2.6 Hz, 1H), 6.54 (d, J = 2.4 Hz, 1H), 3.70 (s, 3H), 3.59 (d, J = 17.6 Hz, 1H), 3.44 (d, J = 17.6 Hz, 1H), 2.10 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 200.4, 177.1, 158.4, 152.8, 150.0, 142.1, 136.4, 135.8, 128.3, 127.0, 125.4, 120.5, 113.3, 108.0, 72.5, 55.7, 35.5, 16.3. IR (cm⁻¹): 2986(C-H), 1670(C=O), 1613(C=N), 1613(Ar C=C), 1441(C-H), 1174(C-N), 1067(C-O-C), 786(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₈H₁₆NO₂⁺ 278.1176, Found 278.1183.

5'-fluoro-2'-methylspiro[indene-2,3'-indol]-1(3H)-one (2o)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **20** (20.1 mg, 76% yield) as a yellow solid: m.p. 151-152 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 7.8 Hz, 1H), 7.77 (t, J = 7.5 Hz, 1H), 7.67 (d, J = 7.7 Hz, 1H), 7.57 – 7.51 (m, 2H), 7.05 (td, $J_I =$ 8.9 Hz, $J_2 =$ 2.5 Hz, 1H), 6.74 (dd, $J_I =$ 7.8 Hz, $J_2 =$ 2.5 Hz, 1H), 3.65 (d, J = 17.6 Hz, 1H), 3.50 (d, J = 17.6 Hz, 1H), 2.16 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 199.6, 179.2, 161.3 (d, $J_{C-F} =$ 243.5 Hz), 152.5, 152.4, 142.2 (d, $J_{C-F} =$ 9.0 Hz), 136.2, 136.0, 128.5, 127.0, 125.6, 121.0 (d, $J_{C-F} =$ 8.8 Hz), 115.2 (d, $J_{C-F} =$ 23.4 Hz), 109.1 (d, $J_{C-F} =$ 24.8 Hz), 72.8 (d, $J_{C-F} =$ 2.4 Hz), 35.1, 16.4. ¹⁹F NMR (471 MHz, CDCl₃) δ -116.2. IR (cm⁻¹): 2987(C-H), 1685(C=O), 1614(C=N), 1614(Ar C=C), 1440(C-H), 1174(C-F), 800(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₃FNO⁺ 266.0976, Found 266.0982.

5'-chloro-2'-methylspiro[indene-2,3'-indol]-1(3H)-one (2p)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **2p** (21.9 mg, 78% yield) as a yellow solid: m.p. 97-98 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 7.7 Hz, 1H), 7.75 (t, J = 7.5 Hz, 1H), 7.65 (d, J = 7.6 Hz, 1H), 7.51 (dd, $J_I = 8.1$ Hz, $J_2 = 5.5$ Hz, 2H), 7.31 (dd, $J_I = 8.3$ Hz, $J_2 = 2.1$ Hz, 1H), 6.97 (d, J = 2.1 Hz, 1H), 3.62 (d, J = 17.7 Hz, 1H), 3.48 (d, J = 17.6 Hz, 1H), 2.15 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 199.4, 179.9, 155.0, 152.5, 142.3, 136.13, 136.08, 131.5, 128.8, 128.5, 127.0, 125.6, 121.7, 121.1, 72.6, 35.1, 16.4. IR (cm⁻¹): 2976(C-H), 1714(C=O), 1608(Ar C=C), 1558(C=N), 1454(C-H), 1174(C-N), 1050(C-Cl), 786(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₈H₁₆CINO⁺ 282.0680, Found 282.0691.

2'-phenylspiro[indene-2,3'-indol]-1(3H)-one (2q)¹

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **2q** (18.5 mg, 60% yield) as a yellowish solid: m.p. 181-182 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 7.7 Hz, 1H), 7.81-7.76 (m, 2H), 7.69-7.66 (m, 3H), 7.57 (t, *J* = 7.8 Hz, 1H), 7.43-7.33 (m, 4H), 7.13 (dt, *J*₁ = 7.5 Hz, *J*₂ = 1.1 Hz, 1H), 6.91 (d, *J* = 7.4 Hz, 1H), 3.84 (d, *J* = 17.7 Hz, 1H), 3.51 (d, *J* = 17.7 Hz, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 200.2, 177.2, 155.8, 152.5, 142.0, 136.4, 135.8 (2C), 131.7, 131.1, 128.9 (2C), 128.8, 128.4, 127.9, 127.3, 126.3, 125.9, 121.3, 120.1, 70.5, 37.6. IR (cm⁻¹): 2987(C-H), 1675(C=O), 1613(Ar C=C), 1613(C=N), 1441(C-H), 1174(C-N), 900(C-C), 799(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₂₂H₁₆NO⁺ 310.1226, Found 310.1232.

2'-(4-fluorophenyl)spiro[indene-2,3'-indol]-1(3H)-one (2r)¹

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **2r** (18.6 mg, 57% yield) as a yellow solid: m.p. 138-139 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, J = 7.7 Hz, 1H), 7.81-7.56 (m, 5H), 7.57 (t, J = 7.3 Hz, 1H), 7.39 (dt, $J_1 =$ 7.8 Hz, $J_2 =$ 1.2 Hz, 1H), 7.13 (dt, $J_1 =$ 7.5 Hz, $J_2 =$ 1.1 Hz, 1H), 7.05-7.02 (m, 2H), 6.91 (d, J = 7.3 Hz, 1H), 3.79 (d, J = 17.7 Hz, 1H), 3.52 (d, J = 17.7 Hz, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 200.0, 175.9, 164.5 (d, $J_{C-F} =$ 251.3 Hz), 155.7, 152.4, 141.9, 136.2, 136.0, 130.0 (d, $J_{C-F} =$ 8.8 Hz), 128.9, 128.5, 128.1 (d, $J_{C-F} =$ 2.5 Hz), 127.3, 126.3, 125.9, 121.2, 120.1, 116.1 (d, $J_{C-F} =$ 21.3 Hz), 70.4, 37.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -108.2. IR (cm⁻¹): 2988(C-H), 1714(C=O), 1668(C=N), 1613(Ar C=C), 1441(C-H), 1174(C-N), 910(C-C), 767(C-C). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₂₂H₁₄FNONa⁺ 350.0952, Found 350.0961.

2'-methyl-4H,6H-spiro[cyclopenta[c]thiophene-5,3'-indol]-4-one (2t)

Flash column chromatography on a silica gel (PE/EA, v/v, 20:1) gives **2t** (14.9 mg, 59% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, *J* = 4.8 Hz, 1H), 7.59 (d, *J* = 7.7 Hz, 1H), 7.36 (t, *J* = 7.5 Hz, 1H), 7.23 (d, *J* = 4.8 Hz, 1H), 7.16 (dt, *J* = 14.3, 7.0 Hz, 2H), 3.46 (d, *J* = 17.7 Hz, 1H), 3.36 (d, *J* = 17.7 Hz, 1H), 2.22 (s, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 190.5, 178.9, 166.9, 156.0, 142.6, 141.0, 139.8, 128.9, 126.0, 124.1, 121.3, 120.3, 32.9, 16.2. IR (cm⁻¹): 2986(C-H), 1663(C=O), 1614(C=N), 1614(Ar C=C), 1441(C-H), 1174(C-N), 776(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₅H₁₂NOS⁺ 254.0634, Found 254.0639.

2'-phenylspiro[indene-2,3'-indole]-1(3H)-thione (3)

Flash column chromatography on a silica gel (PE/EA, v/v, 6:1) gives **3** (53.3 mg, 82% yield) as a yellowish oil; ¹H NMR (500 MHz, CDCl₃) δ 8.80 (d, J = 8.2 Hz, 1H), 8.11 (d, J = 7.7 Hz, 1H), 7.81 – 7.74 (m, 2H), 7.43 – 7.37 (m, 3H), 7.34 – 7.27 (m, 2H), 7.22 – 7.17 (m, 3H), 7.17 – 7.13 (m, 1H), 3.83 (d, J = 15.8 Hz, 1H), 3.46 (d, J = 15.7 Hz, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 197.5, 162.4, 151.8, 137.7, 136.1, 135.8, 133.1, 129.7, 128.9, 128.6, 128.32 (2C), 128.29, 127.7, 125.5, 125.1 (2C), 125.0, 122.8, 117.9, 71.9, 35.8. IR (cm⁻¹): 2958(C-H), 1666(C=N), 1604(Ar C=C), 1463(C-H), 1182(C-N), 1076(C=S), 880(C-C), 758(C-C), 694(C-C). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₂₂H₁₅NSNa⁺ 348.0817, Found 348.0815.

2'-(2-bromophenyl)spiro[indene-2,3'-indol]-1(3H)-one (4)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives 4 (41.9 mg, 54% yield) as a white solid: m.p. 143-144 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.80 (d, J = 8.3 Hz, 1H), 8.11 (d, J = 7.5 Hz, 1H), 7.87 – 7.71 (m, 2H), 7.47 – 7.35 (m, 3H), 7.30 (dd, $J_1 = 19.0$ Hz, $J_2 = 7.5$ Hz, 2H), 7.22 – 7.19 (m, 2H), 7.17 (d, J = 8.6 Hz, 1H), 3.83 (d, J = 15.8 Hz, 1H), 3.46 (d, J = 15.8 Hz, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 197.5, 162.4, 151.7, 137.7, 136.1, 135.7 (2C), 133.1, 129.7, 128.9, 128.6, 128.33, 128.30, 127.7, 125.5 (2C), 125.1, 125.0, 122.8, 117.9, 71.9, 35.8. IR (cm⁻¹): 1719(C=O), 1665(Ar C=C), 1631(C=N), 1466(C-H), 1381(C-N), 1077(C-Br), 758(C-C), 697(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₂₂H₁₅BrNO⁺ 388.0332, Found 388.0333.

4-methyl-N'-(2'-methylspiro[indene-2,3'-indol]-1(3H)-ylidene)

benzenesulfonohydrazide (5)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **5** (52.3 mg, 63% yield) as a yellowish oil; ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 8.5 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.39 – 7.36 (m, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 7.13 (t, *J* = 7.5 Hz, 1H), 6.78 (d, *J* = 7.9 Hz, 1H), 6.68 (t, *J* = 7.5 Hz, 1H), 6.60 (d, *J* = 7.1 Hz, 1H), 5.73 (s, 1H), 3.25 (d, *J* = 15.9 Hz, 1H), 2.89 (d, *J* = 16.0 Hz, 1H), 2.37 (s, 3H), 1.74 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 166.5, 149.8, 147.2, 143.7, 136.9, 131.5, 131.0, 129.43, 129.38, 129.1, 128.6, 128.1, 127.9, 127.8, 126.3, 123.7, 122.1, 120.6, 110.1, 98.4, 70.6, 37.8, 21.5, 18.9. IR (cm⁻¹): 2957(C-H), 1614(Ar C=C), 1605(C=N), 1468(C-H), 1166(C-N), 815(C-C), 739(C-C). HRMS(ESI) m/z: [M+Na]⁺ Calcd. for C₂₄H₂₁N₃O₂SNa⁺ 438.1247, Found 438.1254.

2'-methylspiro[indene-2,3'-indolin]-1(3H)-one (6)

Flash column chromatography on a silica gel (PE/EA, v/v, 4:1) gives **6** (39.9 mg, 80% yield) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 7.7 Hz, 1H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.42 (t, *J* = 7.4 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.82 – 6.73 (m, 2H), 6.70 (t, *J* = 7.4 Hz, 1H), 4.12 (q, *J* = 6.6 Hz, 1H), 3.60 (d, *J* = 17.5 Hz, 1H), 3.24 (d, *J* = 17.5 Hz, 1H), 1.27 (d, *J* = 6.6 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 204.0, 152.7, 151.4, 136.1, 135.0, 133.0, 128.6, 128.0, 126.1, 124.7, 122.6, 119.6, 111.0, 65.4, 61.8, 40.9, 15.6. IR (cm⁻¹): 3418(N-H), 1714(C=O), 1602(Ar C=C), 1506(C=N), 1464(C-H), 1404(C-H), 879(C-C), 746(C-C). HRMS(ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₆NO⁺ 250.1226, Found 250.1231.

IV. References

- S. Bera, C. G. Daniliuc and A. Studer, Oxidative N-Heterocyclic Carbene Catalyzed Dearomatization of Indoles to Spirocyclic Indolenines with a Quaternary Carbon Stereocenter, *Angew. Chem., Int. Ed.*, 2017, 56, 7402–7406.
- Q.-F. Wu, C. Zheng and S.-L. You, Enantioselective Synthesis of Spiro Cyclopentane-1,3'-Indoles and 2,3,4,9-Tetrahydro-1H-Carbazoles by Iridium-Catalyzed Allylic Dearomatization and Stereospecific Migration, *Angew. Chem., Int. Ed.*, 2012, **51**, 1680–1683.
- H. C. Erythropel, J. B. Zimmerman, T. M. de Winter, L. Petitjean, F. Melnikov, C. H. Lam, A. W. Lounsbury, K. E. Mellor, N. Z. Janković, Q. Tu, L. N. Pincus, M. M. Falinski, W. Shi, P. Coish, D. L. Plata and P. T. Anastas, The Green ChemisTREE: 20 Years after Taking Root with the 12 Principles, *Green Chem.*, 2018, 20, 1929–1961.
- Q. Li, Y. Zhang, Y. Zeng, Y. Fan, A. Lin and H. Yao, Palladium-Catalyzed Asymmetric Dearomative Carbonylation of Indoles, *Org. Lett.*, 2022, 24, 3033– 3037.
- D. M. Allwood, D. C. Blakemore and S. V. Ley, Preparation of Unsymmetrical Ketones from Tosylhydrazones and Aromatic Aldehydes via Formyl C–H Bond Insertion, *Org. Lett.*, 2014, 16, 3064–3067.

V. Copies NMR Spectra

3-(2-bromobenzyl)-2-methyl-1*H*-indole (1a)

3-(2-bromo-4-methylbenzyl)-2-methyl-1*H*-indole (1c)

3-(2-bromo-5-chlorobenzyl)-2-methyl-1H-indole (1g)

3-(2-bromo-5-fluorobenzyl)-2-methyl-1*H*-indole (1h)

¹⁹F NMR (471 MHz, CDCl₃)

-20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 f1 (ppm)

3-(2-bromo-5-nitrobenzyl)-2-methyl-1H-indole (1j)

3-(2-bromo-4,5-dimethoxybenzyl)-2-methyl-1H-indole (1k)

¹H NMR (500 MHz, CDCl₃)

3-(2-bromobenzyl)-2,5-dimethyl-1*H*-indole (1m)

3-(2-bromobenzyl)-5-methoxy-2-methyl-1*H*-indole (1n)

3-(2-bromobenzyl)-5-fluoro-2-methyl-1*H*-indole (10)

S68

¹⁹F NMR (471 MHz, CDCl₃)

-20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 fl (ppm)

3-(2-bromobenzyl)-5-chloro-2-methyl-1*H*-indole (1p)

S70

3-(2-bromobenzyl)-2-phenyl-1*H*-indole (1q)

3-(2-bromobenzyl)-2-(4-fluorophenyl)-1*H*-indole (1r)

3-(2-bromobenzyl)-1*H*-indole (1s)

¹H NMR (500 MHz, CDCl₃)

110 100 fl (ppm) 150 140 130 120 -10

3-((4-bromothiophen-3-yl)methyl)-2-methyl-1*H*-indole (1t) ¹H NMR (500 MHz, CDCl₃)

2'-methylspiro[indene-2,3'-indol]-1(3*H*)-one (2a)

2',5-dimethylspiro[indene-2,3'-indol]-1(3*H*)-one (2b)

2',6-dimethylspiro[indene-2,3'-indol]-1(3*H*)-one (2c)

¹H NMR (500 MHz, CDCl₃)

6-chloro-2'-methylspiro[indene-2,3'-indol]-1(3H)-one (2g)

-20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 fl (ppm)

7-chloro-2'-methylspiro[indene-2,3'-indol]-1(3H)-one (2i)

2'-methyl-5-nitrospiro[indene-2,3'-indol]-1(3H)-one (2j)

2'-methylspiro[cyclopenta[a]naphthalene-2,3'-indol]-1(3H)-one (2l)

2',5'-dimethylspiro[indene-2,3'-indol]-1(3*H*)-one (2m)

¹H NMR (500 MHz, CDCl₃)

5'-methoxy-2'-methylspiro[indene-2,3'-indol]-1(3H)-one (2n)

-20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 f1 (ppm)

5'-chloro-2'-methylspiro[indene-2,3'-indol]-1(3*H*)-one (2p)

S92

2'-phenylspiro[indene-2,3'-indol]-1(3*H*)-one (2q)

2'-(4-fluorophenyl)spiro[indene-2,3'-indol]-1(3*H*)-one (2r)

2'-methyl-4*H*,6*H*-spiro[cyclopenta[*c*]thiophene-5,3'-indol]-4-one (2t)

2'-phenylspiro[indene-2,3'-indole]-1(*3H*)-thione (3)

2'-(2-bromophenyl)spiro[indene-2,3'-indol]-1(3*H*)-one (4) ¹H NMR (500 MHz, CDCl₃)

4-methyl-N'-(2'-methylspiro[indene-2,3'-indol]-1(3H)-

ylidene)benzenesulfonohydrazide (5)

2'-methylspiro[indene-2,3'-indolin]-1(3*H*)-one (6)

