Supporting Information

Nickel-Catalyzed Selective C1–C8 Bond Cleavage of Benzocyclobutenones:

Theoretical Insights into Mechanism, Substituent Effects on Regioselectivity,

Ligand Effects on Reactivity, and Chemoselectivity

Mumin Zhang, Jiangping Yang, Wei Rong and Juan Li*

College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of

Functional Supramolecular Coordination Materials and Applications, Jinan University,

Guangzhou, Guangdong 510632, P. R. China

*Corresponding author. Email: tchjli@jnu.edu.cn

	Table of Contents	
Section 1	Optimization with M06 and PBE0 methods. (Table S1)	S2
Section 2	Other possible isomers and conformers. (Figs. S1-S2)	S3
Section 3	The whole free-energy profiles for the formation of byproduct 4a. (Fig. S3)	S4
Section 4	Comparison among five substrates and four ligands. (Figs. S4-S9)	S5
Section 5	Other possible pathways for the Ni-catalyzed coupling of benzocyclobutenones with indoles. (Figs. S10-S12)	S9
Section 6	Energies (in hartree) of All TSs and Intermediates	S10
Section 7	Calculated imaginary frequencies of all transition states species	S15

Section 1. Optimization with M06 and PBE0 methods

 Table S1. Relative Gibbs energies (in kcal/mol) for the key transition states with M06

 and PBE0 methods.

Section 2. Other possible isomers and conformers

Fig. S1 Other possible isomers and conformers of oxidative addition transition states. Values shown are relative free energies in kcal/mol.

Fig. S2 Other possible coordination environment of nickel for key transition states.

Values shown are relative free energies in kcal/mol.

Section 3. The whole free-energy profiles for the formation of byproduct 4a

Fig. S3 Calculated free-energy profiles for the process from **1-IN2a-B** to **4a-pre**. Values shown are relative free energies in kcal/mol.

Section 4. Comparison among five substrates and four ligands

Fig. S4 Calculated energy profiles for regio-selectivity-determining steps with five substrates. Values shown are relative free energies in kcal/mol.

Fig. S5 Calculated energy profiles for first two steps with four ligands at 50 °C. Values

shown are relative free energies in kcal/mol.

Fig. S6 Other possible isomers and conformers of oxidative addition transition state for substrates **1b-1d**. Values shown are relative free energies in kcal/mol.

Fig. S7 Other possible isomers and conformers of oxidative addition transition state for ligands **L2-L4**. Values shown are relative free energies in kcal/mol.

S7

Fig. S8 Optimized structures and dihedral angle for 1-TSe1-A, 1-INe1 and 1-TSe1-B are shown.

Fig. S9 Calculated frontier molecular orbitals for 1a and Ni(Lx)₂ (x=1, 2, 3 and 4). Orbital energies are given in eV.

Section 5. Other possible pathways for the Ni-catalyzed coupling of benzocyclobutenones with indoles

Fig. S10 Calculated free-energy profiles for oxidative addition to the C1–C8 bond of5-INa1. Values shown are relative free energies in kcal/mol.

Fig. S11 Calculated free-energy profiles for bidentate cyclization process from 5-Ina5. Values shown are relative free energies in kcal/mol.

Fig. S12 Calculated free-energy profiles for the Ni-catalyzed coupling of benzocyclobutenones with indoles (C1–C8 bond cleavage precede C–H bond cleavage). Values shown are relative free energies in kcal/mol.

Section 6. Energies	(in hartree) of All TSs ar	nd Intermediates
---------------------	-------------	-----------------	------------------

Geometry	E_0	Ε	$H_{353.15}$	$G_{353.15}$	$E_{(sol,M06)}$
Ni(cod) ₂	-793.235286	-793.212270	-793.211152	-793.288386	-793.1396732
NiL ₂	-2928.955500	-2928.886708	-2928.885590	-2929.075605	-2928.201928
1-CAT-1	-2628.007053	-2627.938624	-2627.937506	-2628.126752	-2627.1860221
NiL ₂ cod	-3240.946744	-3240.867916	-3240.866798	-3241.068770	-3240.1332592
1-CAT	-3468.428804	-3468.343947	-3468.342828	-3468.565323	-3467.4448296
1a	-498.153625	-498.141123	-498.140005	-498.196650	-411.7113978
2	-539.400534	-539.386349	-539.385231	-539.446987	-539.1605215
1-INa1	-3427.168190	-3427.086769	-3427.085650	-3427.298871	-3426.2308471
1-TSa1-A	-3427.148229	-3427.065915	-3427.064797	-3427.281382	-3426.2093251
1-TSa1-A-PBE0	-3423.608975	-3423.526448	-3423.525330	-3423.743073	-3426.2101456
1-TSa1-A-M06	-3425.151409	-3425.069208	-3425.068090	-3425.281405	-3426.2123856
1-TSa1-A-1	-3427.138150	-3427.055799	-3427.054680	-3427.269188	-3426.2012338
1-TSa1-A-2	-3427.146930	-3427.064740	-3427.063621	-3427.278118	-3426.2063363
1-TSa1-A-3	-3427.134826	-3427.052627	-3427.051508	-3427.265884	-3426.2005438
1-TSa1-A-4	-3427.148228	-3427.065914	-3427.064795	-3427.281386	-3426.2093235

80 °C, Solvent = Toluene:

1-TSa1-1-A	-2586.730084	-2586.664635	-2586.663516	-2586.843450	-2585.9581964
1-TSa1-1-A-1	-2586.728034	-2586.662712	-2586.661594	-2586.839695	-2585.956771
1-TSa1-1-A-2	-2586.726334	-2586.660297	-2586.659178	-2586.842114	-2585.9527539
1-TSa1-2-A	-1746.311064	-1746.263342	-1746.262224	-1746.402606	-1745.7012359
1-TSa1-2-A-1	-1746.311060	-1746.263342	-1746.262223	-1746.402578	-1745.7012396
1-TSa1-B	-3427.146356	-3427.064355	-3427.063236	-3427.276658	-3426.2091941
1-TSa1-B-PBE0	-3423.603615	-3423.521293	-3423.520175	-3423.736568	-3426.2091239
1-TSa1-B-M06	-3425.149750	-3425.068027	-3425.066909	-3425.277237	-3426.2130765
1-TSa1-1-B	-2586.728230	-2586.662751	-2586.661632	-2586.840967	-2585.9579287
1-TSa1-1-B-1	-2586.732910	-2586.667888	-2586.666770	-2586.844080	-2585.9594665
1-TSa1-1-B-2	-2586.735964	-2586.670984	-2586.669865	-2586.846638	-2585.9635129
1-TSa1-2-B	-1746.312197	-1746.263222	-1746.262104	-1746.406975	-1745.700194
1-TSa1-2-B-1	-1746.312196	-1746.263222	-1746.262104	-1746.406973	-1745.7002002
1-INa2-A	-3427.177226	-3427.095535	-3427.094417	-3427.306314	-3426.2354911
1-INa2-B	-3427.183554	-3427.183554	-3427.183554	-3427.183554	-3426.2392424
1-TSa2-B	-3427.142259	-3427.059840	-3427.058721	-3427.274533	-3426.2038411
1-TSa2-1-B	-2586.718142	-2586.652025	-2586.650906	-2586.831894	-2585.9420827
1-INa3-B	-3427.156973	-3427.073192	-3427.072074	-3427.292070	-3426.2155531
1-TSa3-B	-3427.135072	-3427.052706	-3427.051588	-3427.265070	-3426.1991036
1-TSa3-1-B	-2586.702116	-2586.635795	-2586.634677	-2586.814811	-2585.9269166
1-INa3-A	-2586.750247	-2586.683283	-2586.682165	-2586.870146	-2585.9655114
1-INa4-A	-2586.758372	-2586.692563	-2586.691445	-2586.873179	-2585.9790055
1-TSa2-C	-2586.733483	-2586.668671	-2586.667552	-2586.846329	-2585.958919
1-TSa2-C-PBE0	-2583.949156	-2583.885385	-2583.884267	-2584.061126	-2585.9586883
1-TSa2-C-M06	-2585.109922	-2585.045686	-2585.044568	-2585.219456	-2585.9616118
1-TSa2-C-1	-2586.731821	-2586.667067	-2586.665949	-2586.845319	-2585.9568951
1-TSa2-A	-2586.702116	-2586.635795	-2586.634677	-2586.814811	-2585.926917
1-TSa2-A-PBE0	-2583.954412	-2583.889428	-2583.888310	-2584.069202	-2585.9669028
1-TSa2-A-M06	-2585.120069	-2585.055095	-2585.053976	-2585.232496	-2585.9708171
1-INa5-A	-2586.752840	-2586.687751	-2586.686633	-2586.866616	-2585.9782646
1-INa5-C	-2586.782784	-2586.718055	-2586.716937	-2586.896238	-2586.0012458
1-INa6-A	-3966.635904	-3966.538579	-3966.537460	-3966.779504	-3965.4729169
1-TSa4-A	-3966.614910	-3966.517867	-3966.516749	-3966.760484	-3965.4564973
1-CAT	-2628.007053	-2627.938624	-2627.937506	-2628.126752	-2627.1860221
3a-pre	-1037.647078	-1037.619126	-1037.618007	-1037.711444	-1037.2279744
1-INa4-B	-2586.764305	-2586.698614	-2586.697496	-2586.877107	-2585.9874454
1-INa5-B	-2586.784071	-2586.719244	-2586.718126	-2586.897559	-2586.0045506
1-INa6-B	-3966.649490	-3966.551865	-3966.550747	-3966.795100	-3965.4845376
1-TSa4-B	-2586.746523	-2586.681898	-2586.680780	-2586.858249	-2585.9718229
1-TSa4-B-1	-2586.744739	-2586.680401	-2586.679282	-2586.857070	-2585.9693373
1-TSa4-D	-2586.715340	-2586.650213	-2586.649094	-2586.829155	-2585.9417673
1-TSa5-B	-3966.640892	-3966.543885	-3966.542767	-3966.785451	-3965.47894
4-pre	-1037.647711	-1037.619715	-1037.618596	-1037.711333	-1037.2290201

1-CAT-1	-2628.007053	-2627.938624	-2627.937506	-2628.126752	-2627.1860221
Nicod2	-793.235286	-793.212270	-793.211152	-793.288386	-793.1396732
NicodL2	-3240.946744	-3240.867916	-3240.866798	-3241.068770	-3240.1332592
NiL2	-2928.955500	-2928.886708	-2928.885590	-2929.075605	-2928.201928
1b	-614.664372	-614.648791	-614.647673	-614.712058	-614.4042955
1-INb1	-3543.692235	-3543.607109	-3543.605991	-3543.825373	-3542.6831746
1-INb2-A	-3543.655753	-3543.571970	-3543.570852	-3543.785684	-3542.6746307
1-INb2-B	-3543.686490	-3543.613171	-3543.612147	-3543.805721	-3542.6722222
1-TSb1-A	-3543.664217	-3543.578870	-3543.577752	-3543.800173	-3542.6558668
1-TSb1-A-1	-3543.661177	-3543.576997	-3543.575879	-3543.792276	-3542.6488828
1-TSb1-B	-3543.655753	-3543.571970	-3543.570852	-3543.785684	-3542.6495454
1c	-462.228338	-462.215338	-462.214220	-462.272027	-462.0603169
1-INc1	-3391.247673	-3391.164869	-3391.163751	-3391.380712	-3390.3312749
1-INc2-A	-3391.252662	-3391.183017	-3391.181993	-3391.363908	-3390.3312999
1-INc2-B	-3391.248472	-3391.178023	-3391.177000	-3391.361377	-3390.3253233
1-TSc1-A	-3391.221070	-3391.138167	-3391.137048	-3391.354225	-3390.3010975
1-TSc1-A-1	-3391.221066	-3391.138165	-3391.137046	-3391.354210	-3390.3011016
1-TSc1-B	-3391.216259	-3391.133875	-3391.132757	-3391.347079	-3390.3004126
1d	-619.409865	-619.389361	-619.388243	-619.463611	-619.2255213
1-INd1	-3548.423014	-3548.332595	-3548.331477	-3548.566617	-3547.489804
1-INd2-A	-3548.424999	-3548.348095	-3548.347072	-3548.545955	-3547.4885935
1-INd2-B	-3548.441548	-3548.364422	-3548.363399	-3548.564057	-3547.5042672
1-TSd1-A	-3548.402040	-3548.311894	-3548.310775	-3548.542401	-3547.4680974
1-TSd1-B	-3548.402450	-3548.312773	-3548.311654	-3548.540415	-3547.4724728
1-TSd1-B-1	-3548.398314	-3548.308586	-3548.307468	-3548.538225	-3547.4654653
1-TSd1-B-2	-3548.397516	-3548.307835	-3548.306716	-3548.536765	-3547.4643431
1-TSd1-B-3	-3548.400580	-3548.310759	-3548.309640	-3548.539598	-3547.468975
1e	-383.628680	-383.619566	-383.618447	-383.667094	-383.4714218
1-INe1	-3312.643093	-3312.564162	-3312.563044	-3312.771541	-3311.7346208
1-INe2-A	-3312.655091	-3312.587757	-3312.586734	-3312.765797	-3311.741069
1-INe2-B	-3312.652613	-3312.585031	-3312.584008	-3312.764511	-3311.7387932
1-TSe1-A	-3312.622102	-3312.543129	-3312.542010	-3312.750532	-3311.7098269
1-TSe1-A-1	-3312.609086	-3312.530411	-3312.529292	-3312.736160	-3311.7021118
1-TSe1-B	-3312.623176	-3312.545359	-3312.544241	-3312.747150	-3311.7196001
1-TSe1-B-1	-3312.622655	-3312.544226	-3312.543108	-3312.749091	-3311.7148701
1-TSe1-B-2	-3312.622665	-3312.544230	-3312.543112	-3312.749158	-3311.7148816
1-TSe1-B-3	-3312.620967	-3312.542426	-3312.541308	-3312.748357	-3311.7131568
1f	-691.281283	-691.261115	-691.259997	-691.333646	-691.0553755
1-INf1	-3620.301329	-3620.212669	-3620.211550	-3620.437141	-3619.3239682
1-TSf1-A	-3620.265005	-3620.176432	-3620.175314	-3620.401287	-3619.2881991
1-TSf1-B	-3620.268910	-3620.179371	-3620.178253	-3620.407129	-3619.295825

50 °C, Solvent = Toluene:

1a-50	-498.153625	-498.143011	-498.141988	-498.191926	-497.9671672
2-50	-539.400532	-539.388616	-539.387592	-539.441848	-539.1605254
50-L1	-1379.799622	-1379.772275	-1379.771252	-1379.862957	-1379.3963482
50-1-CAT	-3468.428804	-3468.356675	-3468.355652	-3468.546990	-3467.4448296
50-1-INa1	-3427.168119	-3427.098932	-3427.097908	-3427.280973	-3426.2308607
50-1-TSa1-A	-3427.148229	-3427.078178	-3427.077155	-3427.263556	-3426.2093255
50-1-TSa1-B	-3427.146752	-3427.077254	-3427.076230	-3427.258946	-3426.2107621
50-1-INa2-A	-3427.177140	-3427.107753	-3427.106730	-3427.288282	-3426.2355996
50-1-INa2-B	-3427.183553	-3427.113862	-3427.112839	-3427.294073	-3426.2392461
50-1-INa3-A	-2586.758372	-2586.702415	-2586.701392	-2586.858181	-2585.9790055
50-1-INa4-B	-2586.764305	-2586.708465	-2586.707442	-2586.862290	-2585.9874453
50-1-TSa2-A	-2586.740194	-2586.685055	-2586.684031	-2586.837303	-2585.9683356
50-1-TSa4-B	-2586.746523	-2586.691631	-2586.690608	-2586.843608	-2585.9718229
L2	-1046.915853	-1046.893430	-1046.892407	-1046.968439	-1046.790922
2-CAT	-2802.645427	-2802.583204	-2802.582181	-2802.745134	-2802.2261803
2-INa1	-2761.393298	-2761.333737	-2761.332714	-2761.487830	-2253.3727118
2-TSa1-A	-2761.365768	-2761.305494	-2761.304470	-2761.461149	-2760.9886761
2-TSa1-A-1	-2761.365297	-2761.305144	-2761.304120	-2761.460322	-2760.9888521
2-TSa1-A-2	-2761.362002	-2761.301795	-2761.300772	-2761.456582	-2760.9846197
2-TSa1-B	-2761.365105	-2761.305060	-2761.304037	-2761.459447	-2760.9896193
2-INa2-A	-2761.400054	-2761.339199	-2761.338175	-2761.498012	-2761.0209971
2-INa2-B	-2761.403266	-2761.342361	-2761.341337	-2761.500304	-2761.0208419
2-INa3-A	-2253.871185	-2253.819005	-2253.817982	-2253.964965	-2253.3623707
2-INa4-B	-2253.879259	-2253.828133	-2253.827110	-2253.968414	-2253.3836665
2-TSa2-A	-2253.856782	-2253.806533	-2253.805510	-2253.944037	-2253.3635165
2-TSa4-B	-2253.861387	-2253.812500	-2253.811477	-2253.945804	-2253.3682417
L3	-1036.226391	-1036.207840	-1036.206816	-1036.278247	-1035.9109975
3-CAT	-2781.279073	-2781.224730	-2781.223707	-2781.375125	-2780.4696365
3-INa1	-2740.018953	-2739.966539	-2739.965516	-2740.111420	-2739.2547937
3-TSa1-A	-2739.991540	-2739.938654	-2739.937631	-2740.085461	-2739.2270994
3-TSa1-B	-2739.991632	-2739.939274	-2739.938250	-2740.083945	-2739.229291
3-TSa1-B-1	-2739.991647	-2739.939280	-2739.938257	-2740.084027	-2739.2260383
3-INa2-A	-2740.021450	-2739.968525	-2739.967502	-2740.115366	-2739.2553539
3-INa2-B	-2740.025484	-2739.972282	-2739.971259	-2740.119305	-2739.2567581
3-INa3-A	-2243.183091	-2243.136015	-2243.134992	-2243.270985	-2242.4913279
3-INa4-B	-2243.188042	-2243.141049	-2243.140026	-2243.274330	-2242.4984564
3-TSa2-A	-2243.163137	-2243.116713	-2243.115689	-2243.249920	-2242.4787012
3-TSa4-B	-2243.170448	-2243.124511	-2243.123488	-2243.255206	-2242.4829435
L4	-2047.649061	-2047.618897	-2047.617874	-2047.720782	-2047.0182001
4-CAT	-4804.133007	-4804.053525	-4804.052502	-4804.268526	-4802.6922094
4-INa1	-4762.871606	-4762.794137	-4762.793113	-4763.004469	-4761.4762784

4-TSa1-A	-4762.848329	-4762.770542	-4762.769518	-4762.980667	-4761.4503823
4-TSa1-A-1	-4762.844097	-4762.766530	-4762.765506	-4762.974381	-4761.4468299
4-TSa1-B	-4762.845279	-4762.768717	-4762.767693	-4762.975689	-4761.4506888
4-INa2-A	-4762.877084	-4762.799444	-4762.798420	-4763.006719	-4761.4784738
4-INa2-B	-4762.876556	-4762.798196	-4762.797173	-4763.010647	-4761.4744766
4-INa3-A	-3254.607878	-3254.548213	-3254.547189	-3254.715379	-3253.5985999
4-INa4-B	-3254.614626	-3254.555032	-3254.554008	-3254.722734	-3253.608086
4-TSa2-A	-3254.586896	-3254.527906	-3254.526882	-3254.694975	-3253.5863683
4-TSa4-B	-3254.595083	-3254.536570	-3254.535547	-3254.700468	-3253.5906378

140 °C, Solvent = 1,4-dioxane:

1a-1	-498.153310	-498.136583	-498.135275	-498.206296	-497.9668201
ind	-626.923975	-626.904009	-626.902701	-626.981277	-626.6511293
5-CAT	-2523.416720	-2523.343157	-2523.341848	-2523.543933	-2522.7507199
5-INa1	-2523.401952	-2523.327938	-2523.326629	-2523.528435	-2522.727581
5-TSa1	-2523.399956	-2523.326746	-2523.325438	-2523.523943	-2522.730609
5-INa2	-2523.392981	-2523.319022	-2523.317714	-2523.523183	-2522.7134164
5-TSa2	-3021.557865	-3021.465345	-3021.464036	-3021.712533	-3020.6988549
5-TSa2-1	-3021.506482	-3021.413264	-3021.411956	-3021.659681	-3020.6460517
5-TSa2-2	-3021.507337	-3021.414312	-3021.413004	-3021.658113	-3020.6504217
5-TSa3	-3021.506078	-3021.412907	-3021.411599	-3021.661687	-3020.6409092
5-TSa3-1	-3021.462350	-3021.370012	-3021.368703	-3021.608813	-3020.6097705
5-INa3	-3021.575729	-3021.482869	-3021.481560	-3021.725093	-3020.7190002
5-INa3-1	-3021.559844	-3021.467247	-3021.465938	-3021.709116	-3020.6998347
5-INa3-2	-3021.551189	-3021.459218	-3021.457909	-3021.693908	-3020.699753
5-INa4	-3021.614262	-3021.520834	-3021.519526	-3021.767512	-3020.7512236
5-INa4-1	-3021.573204	-3021.479770	-3021.478461	-3021.724939	-3020.709399
5-INa5	-3021.611700	-3021.519596	-3021.518287	-3021.754791	-3020.760223
5-TSa4	-3021.583488	-3021.491801	-3021.490492	-3021.727172	-3020.7328028
5-TSa4-PBE0	-3018.497033	-3018.405724	-3018.404416	-3018.635492	-3020.7328028
5-TSa4-M06	-3019.794579	-3019.702888	-3019.701579	-3019.935446	-3020.7352198
5-INa6	-3021.601659	-3021.508642	-3021.507334	-3021.747811	-3020.7525879
5-INa7	-2908.242119	-2908.153540	-2908.152232	-2908.381822	-2907.4373629
5-TSa5	-2908.234639	-2908.145894	-2908.144585	-2908.375981	-2907.4286917
5-TSa6	-3021.540997	-3021.449390	-3021.448082	-3021.687765	-3020.6947882
5-TSa6-PBE0	-3018.468946	-3018.377465	-3018.376157	-3018.617796	-3020.6930125
5-TSa6-M06	-3019.761695	-3019.671295	-3019.669987	-3019.903474	-3020.6989976
5-TSa6-1	-3021.541457	-3021.451544	-3021.450236	-3021.679703	-3020.6964792
5-INa8	-3021.575696	-3021.483730	-3021.482422	-3021.723153	-3020.7215922
5-INa8-1	-3021.586774	-3021.495615	-3021.494306	-3021.731025	-3020.7419146
6a	-1011.770725	-1011.734954	-1011.733646	-1011.850360	-1011.3625462

5-CAT-1	-2394.653836	-2394.583785	-2394.582477	-2394.776058	-2394.0664386
5-TSa7	-2394.627688	-2394.557563	-2394.556254	-2394.749644	-2394.0393605
5-INa9	-2394.661722	-2394.591225	-2394.589917	-2394.783769	-2394.0711223
5-TSa8	-3021.526793	-3021.436244	-3021.434935	-3021.665557	-3020.6748974
5-TSa9	-3021.526905	-3021.435820	-3021.434511	-3021.670331	-3020.6690804
5-INa10	-2394.634563	-2394.563204	-2394.561896	-2394.766754	-2394.0361613
5-TSa8-1	-3021.507340	-3021.415812	-3021.414504	-3021.658469	-3020.6480674
5-TSa9-1	-3021.563429	-3021.471240	-3021.469931	-3021.709625	-3020.7067859
5-INa11	-3021.561136	-3021.468774	-3021.467466	-3021.706558	-3020.704447
5-INa12	-3021.551189	-3021.459218	-3021.457909	-3021.693908	-3020.699753
5-TSa10	-3021.514395	-3021.421505	-3021.420197	-3021.666705	-3020.652239
5-TSa10-1	-3021.534461	-3021.443113	-3021.441805	-3021.675652	-3020.680807

 E_0 = Sum of electronic and zero-point energies calculated by B3LYP-D3 in solvent

E = Sum of electronic and thermal energies calculated by B3LYP-D3 in solvent

 $H_{T^{\circ}C}$ = Sum of electronic and thermal enthalpies calculated by B3LYP-D3 in solvent

 $G_{T^{\circ}C}$ = Sum of electronic and thermal free energies calculated by B3LYP-D3 in solvent

 $E_{(M06)}$ = Single point energies calculated by M06-D3 in solvent

Section 7. Calculated imaginary frequencies of all transition states species

Species	Frequency
1-TSa1-A	-210.92
1-TSa1-A-1	-300.13
1-TSa1-A-2	-274.10
1-TSa1-A-3	-305.93
1-TSa1-A-4	-210.89
1-TSa1-A-PBE0	-241.61
1-TSa1-A-M06	-191.69
1-TSa1-1-A	-269.62

1-TSa1-1-A-1	-261.92
1-TSa1-1-A-2	-257.92
1-TSa1-2-A	-298.35
1-TSa1-2-A-1	-298.29
1-TSa1-B	-226.23
1-TSa1-B-PBE0	-193.31
1-TSa1-B-M06	-171.78
1-TSa1-1-B	-195.12
1-TSa1-1-B-1	-181.85
1-TSa1-1-B-2	-81.18
1-TSa1-2-B	-167.31
1-TSa1-2-B-1	-167.13
1-TSa2-A	-311.52
1-TSa2-A-1	-307.73
1-TSa2-A-PBE0	-270.34
1-TSa2-A-M06	-240.93
1-TSa2-C	-282.34
1-TSa2-C-1	-287.47
1-TSa2-C-PBE0	-269.89
1-TSa2-C-M06	-231.54
1-TSa2-B	-146.61
1-TSa2-1-B	-210.72
1-TSa3-B	-324.21
1-TSa3-1-B	-317.14
1-TSa4-A	-343.12
1-TSb1-A	-245.66
1-TSb1-A-1	-278.23
1-TSb1-B	-225.36
1-TSc1-A	-250.26
1-TSc1-A-1	-249.99
1-TSc1-B	-216.07
1-TSd1-A	-229.74
1-TSd1-B	-135.20
1-TSd1-B-1	-230.56
1-TSd1-B-2	-231.78
1-TSd1-B-3	-128.98
1-TSe1-A	-284.06
1-TSe1-A-1	-331.47
1-TSe1-B	-188.36
1-TSe1-B-1	-206.76
1-TSe1-B-2	-206.73
1-TSe1-B-3	-249.63
1-TSf1-A	-226.73

1-TSf1-B	-186.15
50-1-TSa1-A	-211.16
50-1-TSa1-B	-186.40
50-1-TSa2-A	-311.52
50-1-TSa4-B	-356.10
2-TSa1-A	-225.05
2-TSa1-A-1	-295.69
2-TSa1-A-2	-257.60
2-TSa1-B	-249.85
2-TSa2-A	-330.90
2-TSa4-B	-280.16
3-TSa1-A	-299.09
3-TSa1-B	-222.03
3-TSa1-B-1	-221.91
3-TSa2-A	-315.21
3-TSa4-B	-349.54
4-TSa1-A	-279.33
4-TSa1-A-1	-295.21
4-TSa1-B	-214.70
4-TSa2-A	-314.35
4-TSa4-B	-348.66
5-TSa1	-687.88
5-TSa2	-552.37
5-TSa2-1	-265.26
5-TSa2-2	-349.48
5-TSa3	-437.67
5-TSa3-1	-120.47
5-TSa4	-192.28
5-TSa4-PBE0	-175.16
5-TSa4-M06	-123.42
5-TSa5	-679.22
5-TSa6	-258.70
5-TSa6-PBE0	-211.76
5-TSa6-M06	-155.06
5-TSa6-1	-311.50
5-TSa7	-275.12
5-TSa8	-552.64
5-TSa9	-729.22
5-TSa8-1	-385.52
5-TSa9-1	-687.73
5-TSa10	-258.26
5-TSa10-1	-334.92