Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Cascade C-C Bond Cleavage/Reformation and Cycloaddition for the Synthesis of 4-Acyl 1,2,3-Triazoles from β -Alkyl Nitroalkenes and Organic Azides

Lei Zheng a,b, Tao Yi, Ruilin Fang, Zhongzhen Zhou, Can Wang, a and Yunfeng Chena*

Table of Contents

1. General information	2
2. General procedures for 4-acyl-1,2,3-triazoles	2
3. Deprotection of the N^1 -PMB Group in 3ca	3
4. Compounds characterization	15
5. References	
6. ¹ H and ¹³ C NMR spectra of products	

^a School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, P. R. China. E-mail: <u>chemwang@wit.edu.cn</u>; <u>yfchen@wit.edu.cn</u>

^bDepartment of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.

1. General information

All reactions are basically carried out under air atmosphere. Unless otherwise noted, all commercial reagents and solvents were obtained from the commercial provider and used without further purification. TLC was performed with the detection of compounds with UV light. Flash column chromatography purification of the products was accomplished on silica gel (200–300 or 300–400 mesh). petroleum ether (PE) (60–90 °C) and ethyl acetate (EA) were used as eluents for silica gel chromatography. ¹H and ¹³C NMR spectra were recorded at 22 °C on a Bruker AV 400 and 100 MHz spectrometers with tetramethylsilane (TMS) as an internal standard. ¹³C chemical shifts in NMR spectra were referenced relative to signals of CDCl₃ (δ 7.26 ppm for ¹H and 77.0 ppm for ¹³C). High-resolution mass spectra (HRMS) were acquired on Waters Acquiry UPLC Class I/Xevo G2Q-TOF.

2. General procedures for 4-acyl-1,2,3-triazoles

Ar
$$\frac{\text{Cu(OTf)}_2 \text{ (10 mol\%)}}{\text{DMSO, 110 °C}}$$
 + $\frac{\text{RN}_3}{\text{DMSO, 110 °C}}$ $\frac{\text{ONN}_{\text{N}}}{\text{Ar}}$

To a solution of β -alkyl nitroolefins (1 mmol), organic azides (1.5 mmol), Cu(OTf)₂ (0.1 mmol) in DMSO (5.0 mL, 0.2 M) was added selectfluor (2 mmol) in one portion. The reaction mixture was stirred at 110 °C for 8 h. After completion of the reaction, the mixture was poured into water, extracted by ethyl acetate, and dried with anhydrous Na₂SO₄. Removal of the organic solvent in a vacuum followed by flash silica gel column chromatographic purification (petroleum/ethyl acetate) afforded 1,2,3-triazole product.

3. Deprotection of the N^1 -PMB Group in 3ca

Ph N=N
$$\frac{\text{CAN}}{\text{MeCN/H}_2\text{O, r.t.}}$$
 Ph N=N $\frac{\text{NH}}{\text{N=N}}$ $\frac{\text{Sa}}{\text{Sa}}$

To a solution of **3ca** (0.15 mmol) in MeCN (1.5 mL) was added dropwise a solution of ceric ammonium nitrate (CAN) (0.75 mmol) in H₂O (0.5 mL) at 0 °C. After 15 min, the solution was stirred at r.t. for 10 h. After completion of the reaction, water was added. The solution was extracted by ethyl acetate, and dried with anhydrous Na₂SO₄, and evaporated. The crude was purified with chromatography on silica gel using gradient eluent petroleum/ethyl acetate (v:v = 1:5) to afford **5a** as white solid. 24 mg, 92% yield, ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.37 (s, 1H), 8.29 (d, J = 7.6 Hz, 2H), 7.64 (d, J = 7.3 Hz, 1H), 7.54 (t, J = 7.7 Hz, 2H); ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 185.8, 136.4, 134.5, 133.6, 130.2, 128.6. Spectral data match those previously reported in the literature. [1]

4. Compounds characterization

(1-benzyl-1H-1,2,3-triazol-4-yl)(phenyl)methanone (3a)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3a** as a white solid. 210.6 mg, 80% yield, m.p. 116–117 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.41 (d, J = 8.2 Hz, 2H), 8.17 (s, 1H), 7.60 (t, J = 7.8 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H), 7.40 (d, J = 6.6 Hz, 3H), 7.33 (d, J = 7.8 Hz, 2H), 5.60 (s, 2H); ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 185.6, 148.3, 136.4, 133.6, 133.2, 130.5, 129.2, 129.1, 128.3, 128.2, 54.4. Spectral data match those previously reported in the literature. ^[2]

(1-benzyl-1H-1,2,3-triazol-4-yl)(p-tolyl)methanone (3b)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3b** as a white solid. 202.5 mg, 73% yield, m.p. $130-132 \,^{\circ}\text{C}$. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.36 (d, J = 8.2 Hz, 2H), 8.17 (s, 1H), 7.40 – 7.44 (m, 3H), 7.37 – 7.31 (m, 4H), 5.62 (s, 2H),

2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 185.2, 148.6, 144.2, 134.0, 133.8, 130.8, 129.3, 129.2, 128.4, 128.2, 54.5, 21.8. Spectral data match those previously reported in the literature.^[3]

(1-benzyl-1H-1,2,3-triazol-4-yl)(4-methoxyphenyl)methanone (3c)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3c** as a white solid. 202.3 mg, 69% yield, m.p. 129–131 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.52 – 8.49 (m, 2H), 8.14 (s, 1H), 7.42 – 7.38 (m, 3H), 7.36 – 7.31 (m, 2H), 7.02 – 6.97 (m, 2H), 5.60 (s, 2H), 3.89 (s, 3H); ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 183.9, 163.8, 148.8, 133.7, 133.1, 129.3, 129.1, 128.4, 128.1, 113.6, 55.5, 54.4. Spectral data match those previously reported in the literature. ^[4]

[1,1'-biphenyl]-4-yl(1-benzyl-1H-1,2,3-triazol-4-yl)methanone (3d)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3d** as a white solid. 224.0 mg, 66% yield, m.p. 146-147 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.53 (d, J = 8.0 Hz, 2H), 8.19 (s, 1H), 7.80 – 7.71 (m, 2H), 7.69 – 7.62 (m, 2H), 7.48 (t, J = 8.0 Hz, 2H), 7.42 – 7.33 (m, 6H), 5.63 (s, 2H). ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 185.2, 148.6, 146.0, 140.1, 135.2, 133.7, 131.2, 129.4, 129.2, 129.0, 128.4, 128.3, 128.2, 127.4, 127.1, 54.5. Spectral data match those previously reported in the literature. ^[3]

(1-benzyl-1H-1,2,3-triazol-4-yl)(4-fluorophenyl)methanone (3e)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3e** as a white solid. 281.3 mg, 78% yield, m.p. 145-146 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.59 – 8.50 (m, 2H), 8.18 (s, 1H), 7.43 – 7.37 (m, 3H), 7.31 – 7.35 m, 2H), 7.17 (t, J = 8.7 Hz, 2H), 5.61 (s, 2H). ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 183.8, 165.9 (d, J = 255.3 Hz), 148.3, 133.6, 133.4, 133.4, 132.7 (d, J = 2.9 Hz), 129.3, 129.2, 128.3, 115.5 (d, J = 21.7 Hz), 54.5. Spectral data match those previously reported in the literature. ^[4]

(1-benzyl-1H-1,2,3-triazol-4-yl)(4-chlorophenyl)methanone (3f)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3f** as a white solid. 241.2 mg, 81% yield, m.p. 158–160 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.43 (d, J = 8.7 Hz, 2H), 8.17 (s, 1H), 7.48 (d, J = 8.7 Hz, 2H), 7.42 – 7.38 (m, 3H), 7.36 – 7.32 (m, 2H), 5.61 (s, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 184.2, 148.2, 139.8, 134.7, 133.5, 132.1, 129.4, 129.2, 128.7, 128.4, 54.5. Spectral data match those previously reported in the literature.^[5]

(1-benzyl-1H-1,2,3-triazol-4-yl)(4-bromophenyl)methanone (3g)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3g** as a white solid. 270.3 mg, 79% yield, m.p. 149–151 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.36 (d, J = 8.5 Hz, 2H), 8.17 (s, 1H), 7.66 (d, J = 8.3 Hz, 2H), 7.42 – 7.31 (m, 5H), 5.62 (s, 2H). ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 184.3, 148.2, 135.1, 133.6, 132.0, 131.6, 129.2, 129.1, 128.5, 128.2, 54.4. Spectral data match those previously reported in the literature. ^[4]

(1-benzyl-1H-1,2,3-triazol-4-yl)(3-chlorophenyl)methanone (3h)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3h** as a white solid. 223.3 mg, 75% yield, m.p. 93–86 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.37 (t, J = 1.9 Hz, 1H), 8.31 – 8.35 (m, 1H), 8.22 (s, 1H), 7.50 – 7.54 (m, 1H), 7.40 (t, J = 7.9 Hz, 1H), 7.28 – 7.37 (m, 5H), 5.58 (s, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 184.1, 147.9, 138.0, 134.5, 133.7, 133.2, 130.4, 129.7, 129.3, 129.2, 128.9, 128.7, 128.4, 54.5. Spectral data match those previously reported in the literature. ^[5]

(1-(2-bromobenzyl)-1H-1,2,3-triazol-4-yl)(phenyl)methanone (3i)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3i** as a white solid. 256.6 mg, 75% yield, m.p. 103-106 °C. ¹H NMR (600 MHz, CDCl₃, ppm) δ 8.42 (d, J = 7.8 Hz, 2H), 8.26 (s, 1H), 7.59 – 7.67 (m, 2H), 7.52 (t, J = 7.6 Hz, 2H), 7.36 (t, J = 7.4 Hz, 1H), 7.32 – 7.27 (m, 2H), 5.75 (s, 2H). ¹³C NMR (150 MHz, CDCl₃, ppm): δ 184.4, 148.1, 135.1, 133.6, 133.1, 132.2, 131.7, 131.0, 128.7, 128.4, 128.0, 124.8, 54.3. Spectral data match those previously reported in the literature. ^[5]

(1-(2-bromobenzyl)-1H-1,2,3-triazol-4-yl)(p-tolyl)methanone (3j)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3j** as a white solid. 245.8 mg, 69% yield, m.p. 97–100 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.35 (d, J = 8.3 Hz, 2H), 8.24 (s, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.38 – 7.27 (m, 5H), 5.74 (s, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 185.2, 148.5, 144.2, 134.0, 133.5, 133.3, 130.9, 130.8, 129.1, 128.4, 128.3,123.9, 54.2, 21.8. Spectral data match those previously reported in the literature. ^[5]

[1,1'-biphenyl]-4-yl(1-(2-bromobenzyl)-1H-1,2,3-triazol-4-yl)methanone (3k)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3k** as a white solid. 267.7 mg, 64% yield, m.p. 164-168 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.53 (d, J = 8.4 Hz, 2H), 8.29 (s, 1H), 7.76 – 7.72 (m, 2H), 7.63 – 7.69 (m, 4H), 7.44 – 7.50 (m, 3H), 7.43 – 7.26 (m, 5H), 5.76 (s, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 185.1, 148.4, 146.0, 140.0, 135.2, 133.5, 133.3, 131.3, 130.9 (d, J = 2.9 Hz), 129.0, 128.6, 128.4, 128.2, 127.4, 127.1, 124.0, 54.2, 1.1. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₂H₁₇BrN₃O: 418.0550; found: 418.0546.

(1-(2-bromobenzyl)-1H-1,2,3-triazol-4-yl)(4-bromophenyl)methanone (31)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **31** as a white solid. 320.0 mg, 76% yield, m.p. 106-108 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.38 – 8.33 (m, 2H), 8.27 (s, 1H), 7.65 (d, J = 8.3 Hz, 3H), 7.27 – 7.39 (m, 3H), 5.75 (s, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 184.3, 148.1, 135.1, 133.5, 133.1, 132.2, 131.7, 131.0 (d, J = 4.2 Hz), 128.7, 128.4, 124.0, 54.2. Spectral data match those previously reported in the literature. ^[4]

(1-(2-bromobenzyl)-1H-1,2,3-triazol-4-yl)(2-fluorophenyl)methanone (3m)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3m** as a white solid. 252.1 mg, 70% yield, m.p. 60-62 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.22 (s, 1H), 7.86 (t, J = 7.4 Hz, 1H), 7.67 (d, J = 8.3 Hz, 1H), 7.59 – 7.52 (m, 1H), 7.41 – 7.34 (m, 1H), 7.32 – 7.27 (m, 3H), 7.19 (t, J = 9.7 Hz, 1H), 5.76 (s, 2H). ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 184.8, 160.7 (d, J = 255.7 Hz), 147.9, 133.8 (d, J = 8.6 Hz), 133.5, 133.2, 131.3 (d, J = 1.9 Hz), 130.9, 130.8, 128.4, 127.7, 126.2 (d, J = 12.8 Hz), 124.0 (d, J = 3.8 Hz), 123.9, 116.5 (d, J = 21.7 Hz), 54.2. Spectral data match those previously reported in the literature. ^[5]

(1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)(p-tolyl)methanone (3n)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3n** as a white solid. 218.5 mg, 74% yield, m.p. 145-147 °C. ¹H NMR (600 MHz, CDCl₃, ppm) δ 8.36 – 8.31 (m, 2H), 8.16 – 8.14 (m, 1H), 7.36 – 7.30 (m, 4H), 7.12 – 7.06 (m, 2H), 5.57 (s, 2H), 2.43 (s, 3H). ¹³C NMR (150 MHz, CDCl₃, ppm) δ 185.1, 163.1 (d, J = 248.9 Hz), 148.7, 144.2, 133.9, 130.7, 130.3 (d, J = 8.4 Hz), 129.7 (d, J = 3.1 Hz), 129.1, 128.0, 116.3 (d, J = 21.9 Hz), 53.6, 21.7. Spectral data match those previously reported in the literature. ^[4]

(1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)(4-methoxyphenyl)methanone (30)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **30** as a white solid. 221.0 mg, 71% yield, m.p. 131-132 °C. ¹H NMR (600 MHz, CDCl₃, ppm) δ 8.53 – 8.49 (m, 2H), 8.15 (s, 1H), 7.36 – 7.31 (m, 2H), 7.10 (t, J = 8.6 Hz, 2H), 7.02 – 6.97 (m, 2H), 5.58 (s, 2H), 3.90 (s, 3H). ¹³C NMR (150 MHz, CDCl₃, ppm) δ 183.8, 163.8, 163.0 (d, J = 248.8 Hz), 148.9, 133.1, 130.3 (d, J = 8.4 Hz), 129.6 (d, J = 3.4 Hz), 129.3, 128.0, 116.4 (d, J = 21.8 Hz), 113.7, 55.5, 53.6. Spectral data match those previously reported in the literature. ^[4]

(1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)(4-fluorophenyl)methanone (3p)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3p** as a white solid. 236.4 mg, 79% yield, m.p. 165-168 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.59 – 8.49 (m, 2H), 8.18 (s, 1H), 7.38 – 7.30 (m, 2H), 7.18 (t, J = 8.7 Hz, 2H), 7.09 (t, J = 8.5 Hz, 2H), 5.58 (s, 2H). ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 183.7, 166.0 (d, J = 255.5 Hz), 163.1 (d, J = 249.1 Hz), 148.4, 133.4 (d, J = 9.4 Hz), 132.7 (d, J = 2.9 Hz), 130.3 (d, J = 8.4 Hz), 129.5 (d, J = 3.4 Hz), 128.2, 116.4 (d, J = 21.9 Hz), 115.5 (d, J = 21.8 Hz), 53.7. Spectral data match those previously reported in the literature. ^[5]

(1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)(2-fluorophenyl)methanone (3q)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3q** as a white solid. 218.5 mg, 73% yield, m.p. 134-137 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.15 (s, 1H), 7.82 – 7.92 (m, 1H), 7.52 – 7.62 (m, 1H), 7.42 – 7.06 (m, 6H), 5.61 (s, 2H). ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 184.7, 163.1 (d, J = 232.6 Hz), 160.6 (d, J = 239.1 Hz), 148.0, 133.8 (d, J = 8.7 Hz), 131.2 (d, J = 2.1 Hz), 130.3 (d, J = 8.5 Hz), 129.5 (d, J = 3.4 Hz), 127.3, 126.1 (d, J = 12.6 Hz), 124.0 (d, J = 3.7 Hz), 116.5 (d, J = 21.7 Hz), 116.3 (d, J = 21.9 Hz), 53.6. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₆H₁₂F₂N₃O: 300.0943; found: 300.0940.

(3-chlorophenyl)(1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methanone (3r)

$$O$$
 $N = N$
 CI

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3r** as a white solid. 233.6 mg, 74% yield, m.p. 123–125 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.44 – 8.30 (m, 2H), 8.19 (s, 1H), 7.55 – 7.59 (m, 1H), 7.45 (t, J = 7.9 Hz, 1H), 7.38 – 7.29 (m, 2H), 7.09 (t, J = 8.5 Hz, 2H), 5.58 (s, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 184.1, 163.1 (d, J = 249.0 Hz), 148.0, 137.8, 134.6, 133.2, 130.4, 130.3 (d, J = 8.5 Hz), 129.7, 129.5 (d, J = 3.3 Hz), 128.8, 128.3, 116.4 (d, J = 21.9 Hz), 53.7. Spectral data match those previously reported in the literature. ^[5]

(1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)(phenyl)methanone (3s)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3s** as a white solid. 244.2 mg, 82% yield, m.p. 150–152 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.41 (d, J = 7.2 Hz, 2H), 8.18 (s, 1H), 7.64 – 7.59 (m, 1H), 7.52 (t, J = 8.5 Hz, 2H), 7.41 – 7.36 (m, 2H), 7.28 (d, J = 9.0 Hz, 3H), 5.58 (s, 2H). ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 185.6, 136.4, 135.3, 133.4, 132.2, 131.5, 130.6, 129.7, 129.6, 128.9, 128.4, 128.2, 53.7. Spectral data match those previously reported in the literature. ^[5]

(1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)(p-tolyl)methanone (3t)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3t** as a white solid. 205.8 mg, 66% yield, m.p. 178-180 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.34 (d, J = 8.1 Hz, 2H), 8.16 (s, 1H), 7.41 – 7.36 (m, 2H), 7.33 – 7.27 (m, 4H), 5.57 (s, 2H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 185.1, 148.7, 144.3, 135.3, 133.9, 132.3, 130.8, 129.7, 129.6, 129.1, 128.1, 53.7, 21.8. Spectral data match those previously reported in the literature. ^[4]

(4-bromophenyl)(1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methanone (3u)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3u** as a white solid. 308.8 mg, 82% yield, m.p. 175–177 °C. ¹H NMR (600 MHz, CDCl₃, ppm) δ 8.37 – 8.34 (m, 2H), 8.19 (s, 1H), 7.70 – 7.65 (m, 2H), 7.43 – 7.38 (m, 2H), 7.30 – 7.28 (m, 2H), 5.59 (s, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 184.3, 148.4, 135.4, 135.0, 132.2, 132.1, 131.8, 129.7, 129.6, 128.8, 128.4, 53.8. Spectral data match those previously reported in the literature. ^[5]

(1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)(2-fluorophenyl)methanone (3v)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3v** as a white solid. 246.3 mg, 78% yield, m.p. 175–177 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.20 – 8.12 (m, 1H), 7.87 (t, J = 7.5 Hz, 1H), 7.52 – 7.62 (m, 1H), 7.45 – 7.15 (m, 6H), 5.60 (s, 2H). ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 184.6, 160.7 (d, J = 256.2 Hz), 148.1, 135.3, 133.8 (d, J = 8.5 Hz), 132.2, 131.2 (d, J = 2.1 Hz), 129.6, 129.6, 127.3, 126.2 (d, J = 11.6 Hz), 124.1 (d, J = 3.3 Hz), 116.5 (d, J = 21.8 Hz), 53.7. HRMS (ESI): m/z [M + H]⁺ calcd for $C_{16}H_{12}CIFN_3O$: 316.0647; found: 316.0642.

(1-(4-bromobenzyl)-1H-1,2,3-triazol-4-yl)(4-fluorophenyl)methanone (3w)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3w** as a white solid. 277.3 mg, 77% yield, m.p. 195–198 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.53 (m, 2H), 8.19 (s, 1H), 7.53 (d, J = 8.0 Hz, 2H), 7.24 – 7.13 (m, 4H), 5.56 (s, 2H). ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 183.7, 166.0 (d, J = 255.0 Hz), 148.5, 133.4 (d, J = 9.3 Hz), 132.6, 132.5, 129.9, 128.3, 123.5, 115.6 (d, J = 21.8 Hz), 53.8. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₆H₁₁BrFN₃ONa: 381.9962; found: 381.9957.

(4-bromophenyl)(1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methanone (3x)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the 3x as a white solid. 234.5 mg, 63% yield, m.p. 145-147 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.40 – 8.28 (m, 2H), 8.13 (s, 1H), 7.68 – 7.60 (m, 2H), 7.33 – 7.23 (m, 2H), 6.97 – 6.86 (m, 2H), 5.53 (s, 2H), 3.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 184.4, 160.3, 148.1, 135.2, 132.2, 131.7, 130.0, 128.6, 128.2, 125.5, 114.8, 55.4, 54.1. Spectral data match those previously reported in the literature. ^[4]

phenyl(1-phenyl-1H-1,2,3-triazol-4-yl)methanone (3y)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3y** as a white solid. 179.5 mg, 72% yield, m.p. 126–127 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.74 (s, 1H), 8.51 (d, J = 7.3 Hz, 2H), 7.84 (d, J = 7.8 Hz, 2H), 7.69 – 7.49 (m, 6H). ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 185.6, 148.6, 136.5, 133.4, 130.7, 130.0, 129.5, 128.5, 126.4, 120.8. Spectral data match those previously reported in the literature. ^[2]

(4-bromophenyl)(1-(2-chlorophenyl)-1H-1,2,3-triazol-4-yl)methanone (3z)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the 3z as a white solid. 257.5 mg, 71% yield, m.p. 120-123 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.71 (s, 1H), 8.45 – 8.41 (m, 2H), 7.74 – 7.62 (m, 4H), 7.48 – 7.56 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 184.2, 135.1, 132.2, 131.8, 131.5, 131.0, 130.6, 128.9, 128.7, 128.1, 127.6. Spectral data match those previously reported in the literature. ^[4]

(1-benzyl-1H-1,2,3-triazol-4-yl)(naphthalen-2-yl)methanone (3aa)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3aa** as a white solid. 231.9 mg, 74% yield, m.p. 155–157 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 9.23 (s, 1H), 8.33 (d, J = 8.4 Hz, 1H), 8.22 (s, 1H), 8.03 (d, J = 7.8 Hz, 1H), 7.98 – 7.82 (m, 2H), 7.71 – 7.29 (m, 7H), 5.62 (s, 2H). ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 185.3, 148.7, 135.7, 133.7, 133.5, 132.5, 132.0, 130.1, 129.4, 129.2, 128.7, 128.4, 128.2, 127.7, 126.6, 125.5, 54.5. Spectral data match those previously reported in the literature. ^[4]

(1-(2-bromobenzyl)-1H-1,2,3-triazol-4-yl)(naphthalen-2-yl)methanone (3ab)

$$\bigcup_{N=N}^{O} N \longrightarrow Br$$

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3ab** as a white solid. 278.5 mg, 71% yield, m.p. 106-108 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.45 (d, J = 8.1 Hz, 1H), 8.29 (s, 1H), 8.16 (t, J = 6.0 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 7.9 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.62 – 7.25 (m, 6H), 5.77 (s, 2H). ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 188.4, 148.8, 133.9, 133.5, 133.3, 132.7, 130.9, 130.3, 128.4, 127.7, 126.4, 125.5, 124.4, 123.9, 54.2. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₅BrN₃O: 392.0393; found: 392.0387.

(1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)(naphthalen-2-yl)methanone (3ac)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3ac** as a white solid. 241.9 mg, 73% yield, m.p. 123–124 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.44 (d, J = 7.6 Hz, 1H), 8.20 (s, 1H), 8.14 (d, J = 7.0 Hz, 1H), 8.07 (d, J = 8.1 Hz, 1H), 7.94 (d, J = 7.7 Hz, 1H), 7.48 – 7.64 (m, 3H), 7.40 – 7.27 (m, 2H), 7.03 – 7.15 (m, 2H), 5.59 (s, 2H). ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 188.4, 163.1 (d, J = 248.1 Hz), 149.0, 134.3, 133.9, 132.7, 130.8, 130.4, 130.3, 129.7 (d, J = 4.0 Hz), 128.5, 128.1, 127.7, 126.4, 125.4, 124.4, 116.4 (d, J = 22.0 Hz), 53.7. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₅FN₃O: 332.1194; found: 332.1190.

(1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)(naphthalen-2-yl)methanone (3ad)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3ad** as a white solid. 267.8 mg, 77% yield, m.p. 118-121 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.44 (d, J = 7.9 Hz, 1H), 8.21 (d, J = 4.6 Hz, 1H), 8.17 (s, 1H), 8.06 (t, J = 6.4 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.47 – 7.63 (m, 3H), 7.34 – 7.42 (m, 2H), 7.20 – 7.32 (m, 2H), 5.57 (s, 2H). ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 188.3, 149.1, 135.3, 134.2, 133.9, 132.7, 132.3, 130.8, 130.3, 129.7, 129.6, 128.5, 128.2, 127.7, 126.5, 125.4, 124.4, 53.7. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₁₅ClN₃O: 348.0898; found: 348.0894.

ethyl 2-(4-benzoyl-1H-1,2,3-triazol-1-yl)acetate (3ba)

$$\bigcup_{N=N}^{O} N \longrightarrow O$$

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3ba** as a white solid. 171.1 mg, 66% yield, m.p. 125-126 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.48 – 8.35 (m, 3H), 7.61 – 7.67 (m, 1H), 7.59 – 7.51 (m, 2H), 5.28 (s, 2H), 4.32 (q, J = 7.2 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 185.5, 165.6, 148.4, 136.5, 133.3, 130.6, 129.9, 128.4, 62.8, 51.0, 14.1. Spectral data match those previously reported in the literature. ^[5]

ethyl 2-(4-(4-methylbenzoyl)-1H-1,2,3-triazol-1-yl)acetate (3bb)

$$\begin{array}{c}
0 \\
N=N
\end{array}$$

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3v** as a white solid. 169.4 mg, 62% yield, m.p. 148-150 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.40 (s, 1H), 8.35 – 8.28 (m, 2H), 7.27 – 7.33 (m, 2H), 5.24 (s, 2H), 4.21 – 4.31 (m, 2H), 2.42 (q, J = 3.1 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (**100 MHz, CDCl₃, ppm**) δ 185.1, 165.7 (d, J = 4.2 Hz), 148.5 (d, J = 6.5 Hz), 144.3, 134.0, 130.7 (d, J = 1.9 Hz), 129.8, 129.1, 62.7 (d, J = 2.4 Hz), 51.0, 21.7, 14.0. Spectral data match those previously reported in the literature. ^[5]

ethyl 2-(4-(4-fluorobenzoyl)-1H-1,2,3-triazol-1-yl)acetate (3bc)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3v** as a white solid. 194.1 mg, 70% yield, m.p. 160-161 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.61 – 8.50 (m, 2H), 8.45 (s, 1H), 7.21 (t, J = 8.7 Hz, 2H), 5.28 (s, 2H), 4.31 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 183.6, 166.0 (d, J = 255.4 Hz), 165.6, 148.3, 133.4 (d, J = 9.4 Hz), 132.7 (d, J = 2.9 Hz), 130.0, 115.5 (d, J = 21.8 Hz), 62.8, 51.0, 14.0. Spectral data match those previously reported in the literature. ^[4]

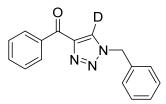
ethyl 2-(4-(4-bromobenzoyl)-1H-1,2,3-triazol-1-yl)acetate (3bd)

$$\begin{array}{c|c}
O \\
N = N
\end{array}$$

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3v** as a white solid. 243.5 mg, 72% yield, m.p. 162-164 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.45 (s, 1H), 8.41 – 8.35 (m, 2H), 7.74 – 7.64 (m, 2H), 5.28 (s, 2H), 4.33 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 184.2, 165.6, 148.3, 135.1, 132.2, 131.8, 130.0, 128.8, 62.9, 51.0, 14.1. Spectral data match those previously reported in the literature. ^[4]

(1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)(phenyl)methanone (3ca)

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:5) to afford the **3ca** as a white solid. 219.8 mg, 75% yield, m.p. 117–119 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.40 (d, J = 7.6 Hz, 2H), 8.12 (s, 1H), 7.61 (t, J = 7.2 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 6.94 – 6.90 (m, 2H), 5.54 (s, 2H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 185.7, 160.2, 148.2, 136.5, 133.2, 130.6, 130.0, 128.4, 128.0, 125.6, 114.7, 55.4, 54.1. Spectral data match those previously reported in the literature. ^[3]

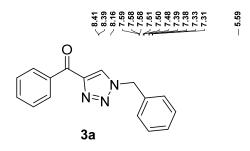

2-nitro-1-phenylethan-1-one (4)

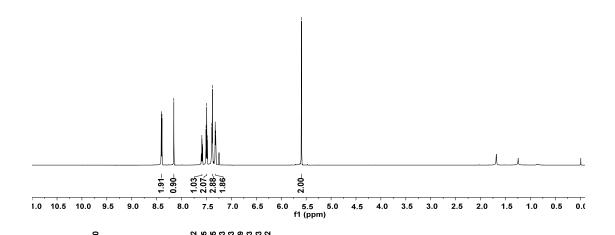
$$\bigcap_{\mathsf{NO}_2} \mathsf{NO}_2$$

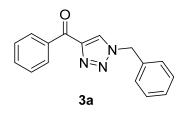
Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:5) to afford the 4 as a

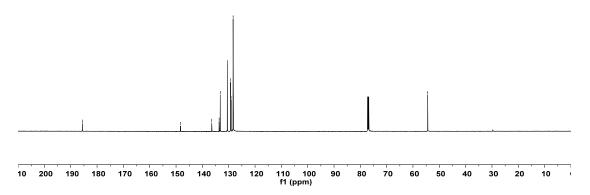
pale-yellow solid. 11.7 mg, 7% yield. ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.93 – 7.87 (m, 2H), 7.74 – 7.68 (m, 1H), 7.56 (t, J = 7.8 Hz, 2H), 5.92 (s, 2H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 185.9, 135.1, 133.4, 129.3, 128.3, 126.9, 81.3. Spectral data match those previously reported in the literature. ^[6]

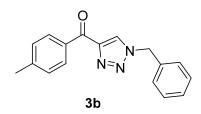
(1-benzyl-1H-1,2,3-triazol-4-yl-5-d)(phenyl)methanone (3a')

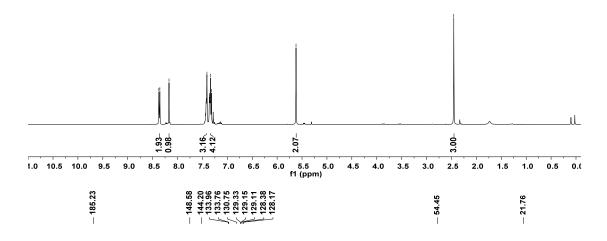


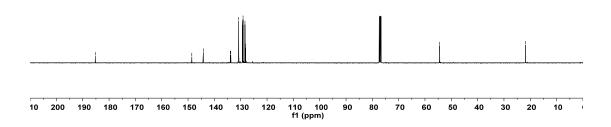

Purified by column chromatography (Ethyl acetate: Petroleum ether = 1:10) to afford the **3a'** as a white solid. 210.6 mg, 80% yield, m.p. 116-117 °C. ¹H NMR (**400 MHz, CDCl₃, ppm**) δ 8.42 – 8.41 (m, 2H), 7.63 (t, J = 7.8 Hz, 1H), 7.53 – 7.49 (m, 2H), 7.42 – 7.40 (m, 2H), 7.35 – 7.32 (m, 2H), 5.61 (s, 2H). HRMS (ESI): m/z [M + H]⁺ calcd for C₁₆H₁₃DN₃O: 265.1194; found: 265.1192.

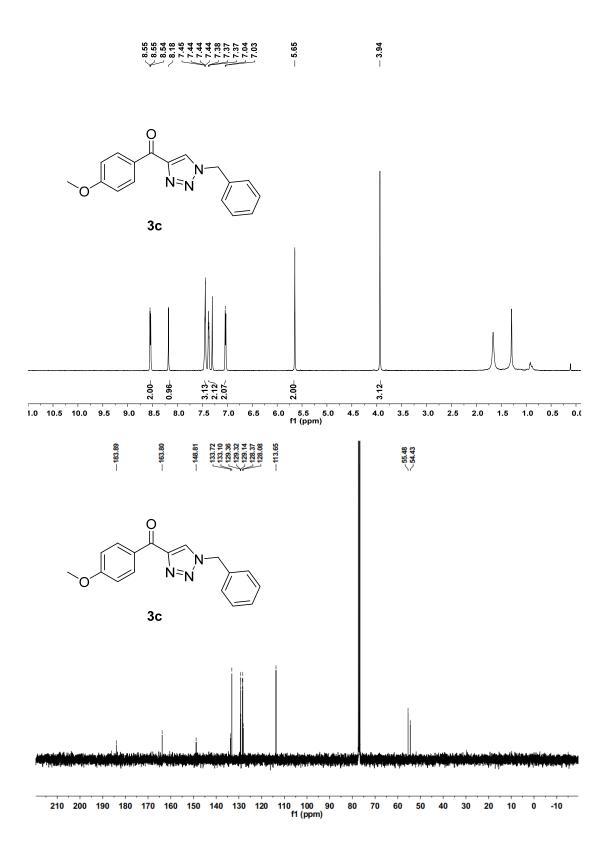

5. References

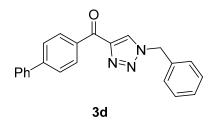

- [1] L. Yang, Y. W. Wu, Y. M. Yang, C. P. Wen, J. P. Wan, *Beilstein J. Org. Chem.* **2018**, *14*, 2348-2353.
- [2] J. Thomas, V. Goyvaerts, S. Liekens, W. Dehaen, Chem. Eur. J. 2016, 22, 9966-9970.
- [3] M. A. P. Martins, G. C. Paveglio, L. V. Rodrigues, C. P. Frizzo, N. Zanatta, H. G. Bonacorso, *New J. Chem.* **2016**, *40*, 5989-5992.
- [4] Y. Liu, G. Nie, Z. Zhou, L. Jia, Y. Chen, J. Org. Chem. 2017, 82, 9198-9203.
- [5] L. F. Huang, L. Zheng, Z. Z. Zhou, Y. F. Chen, Chem. Commun. 2022, 58, 3342-3345.
- [6] R. Sarkar, S. Mukherjee, Org. Lett. 2016, 18, 6160-6163.

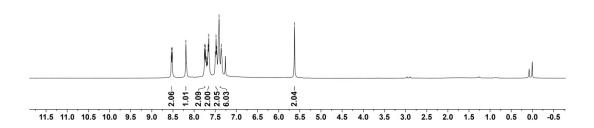

6. ¹H and ¹³C NMR spectra of products

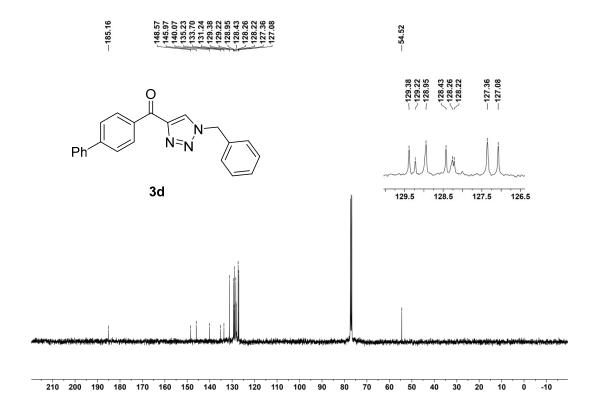


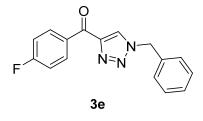


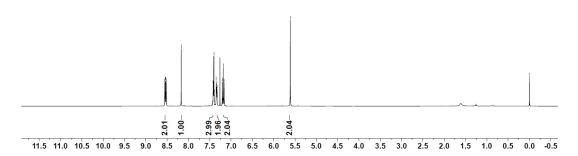


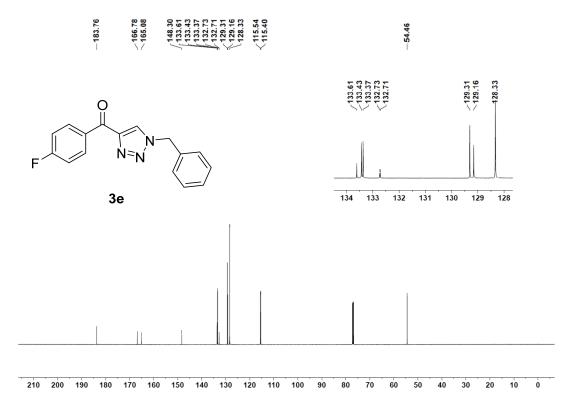


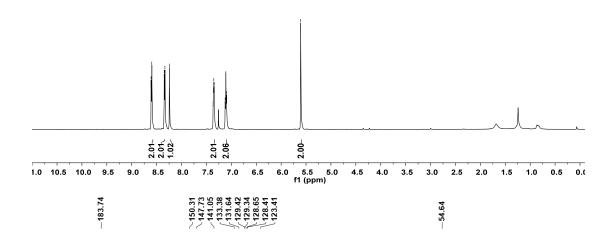


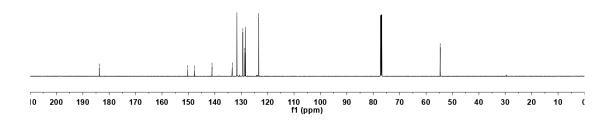


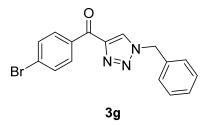


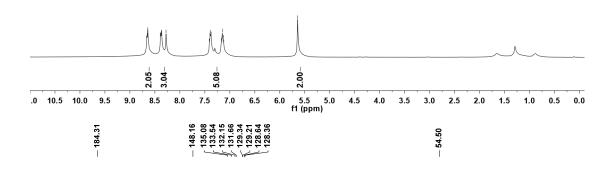


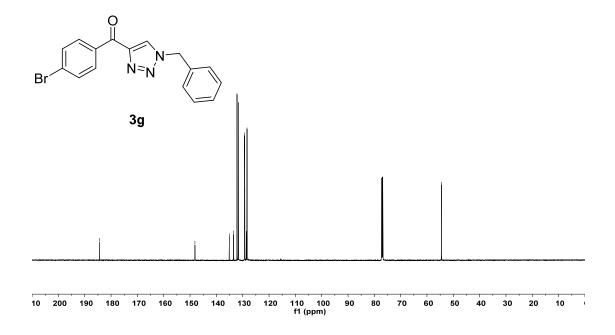


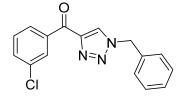


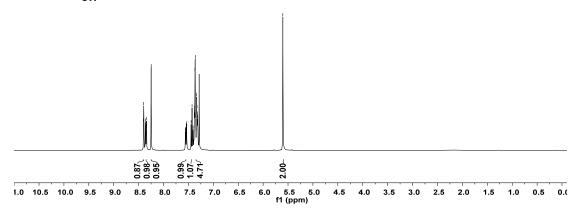


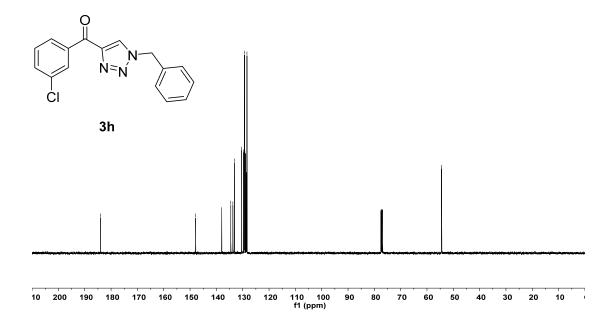


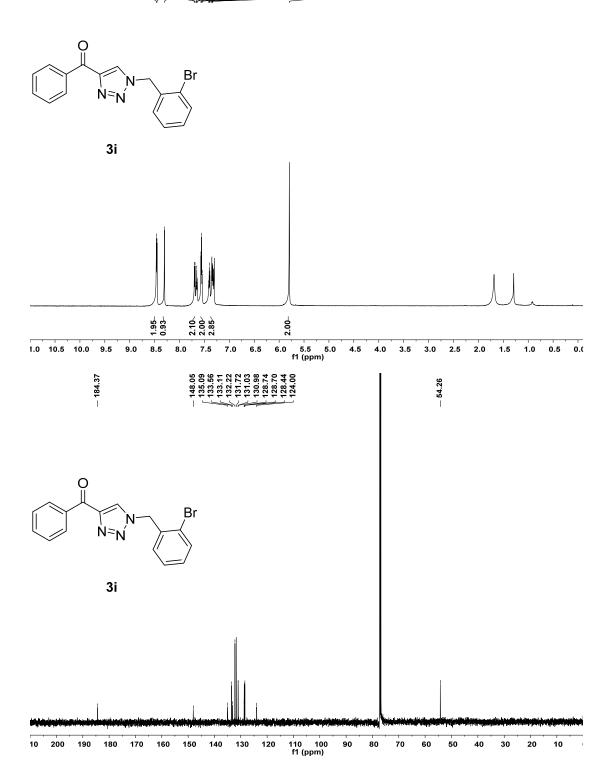


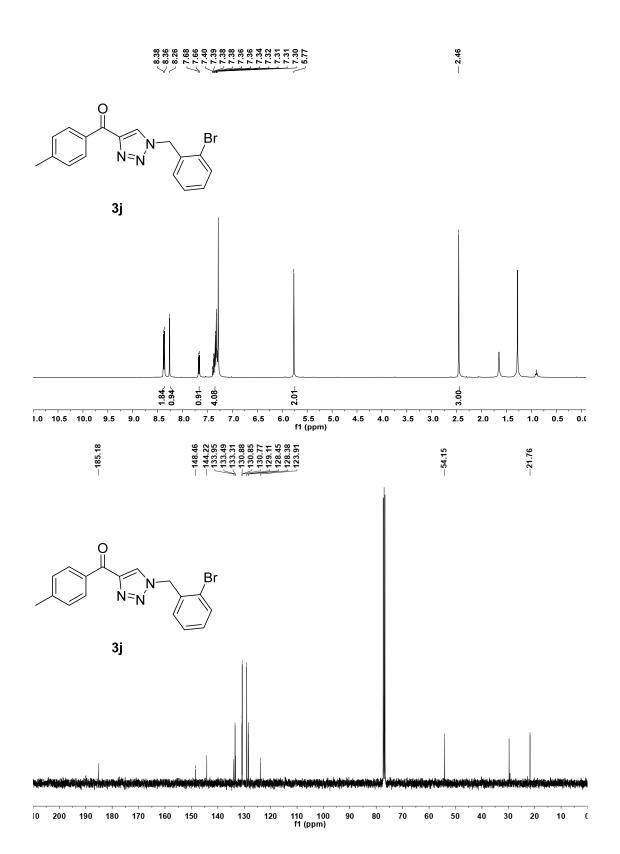


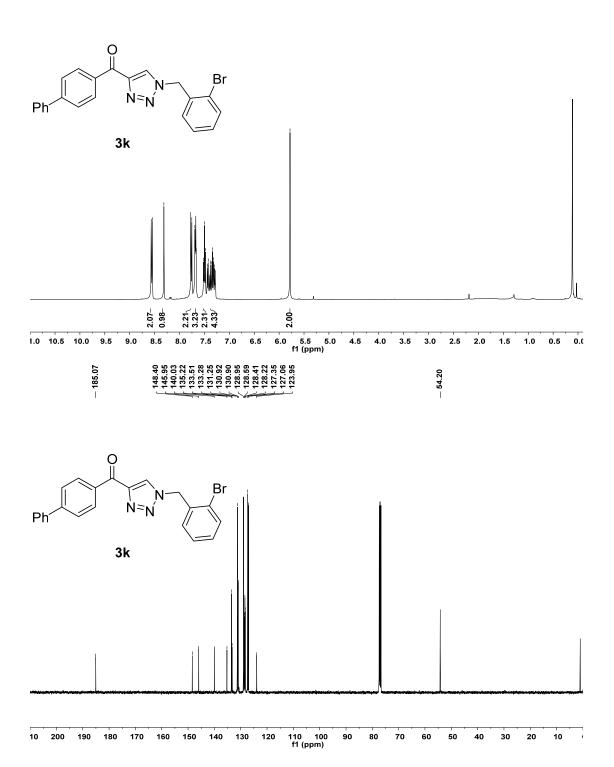




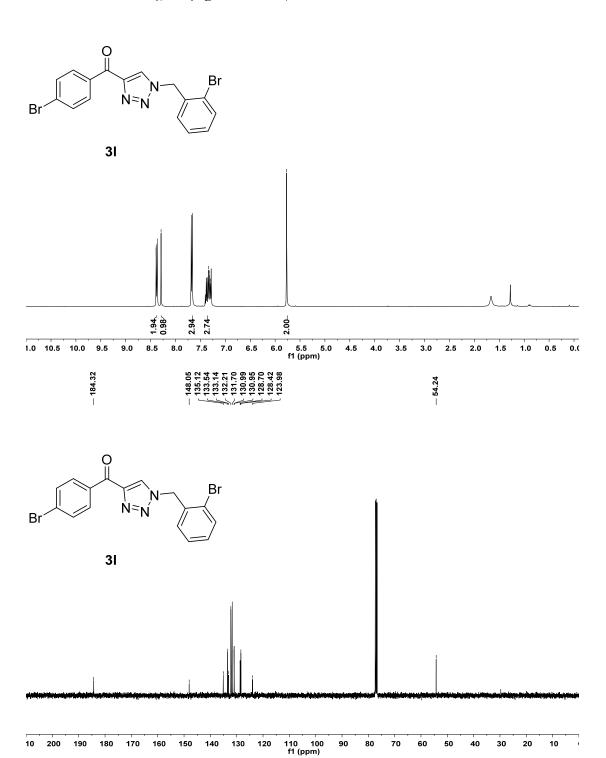


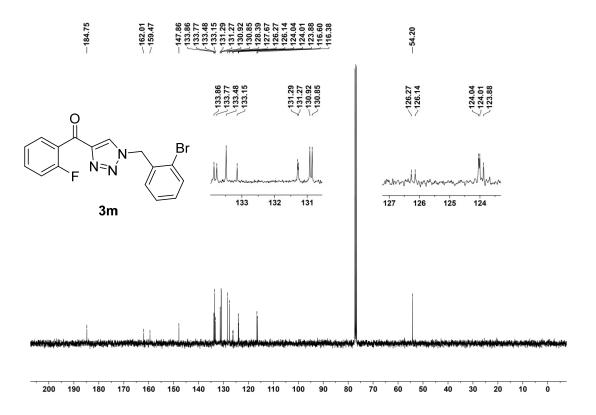


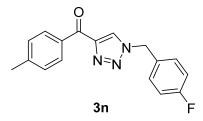

3h

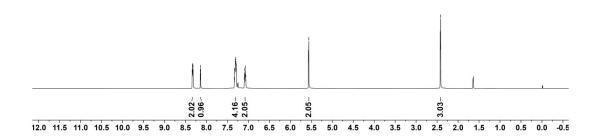


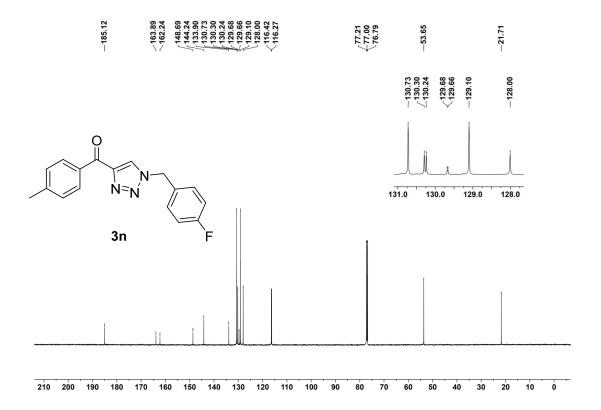
- 184.06 - 147.90 - 133.73 - 133.73 - 129.73 - 129.73 - 128.85 - 128.85 - 128.85 - 128.85 - 128.85

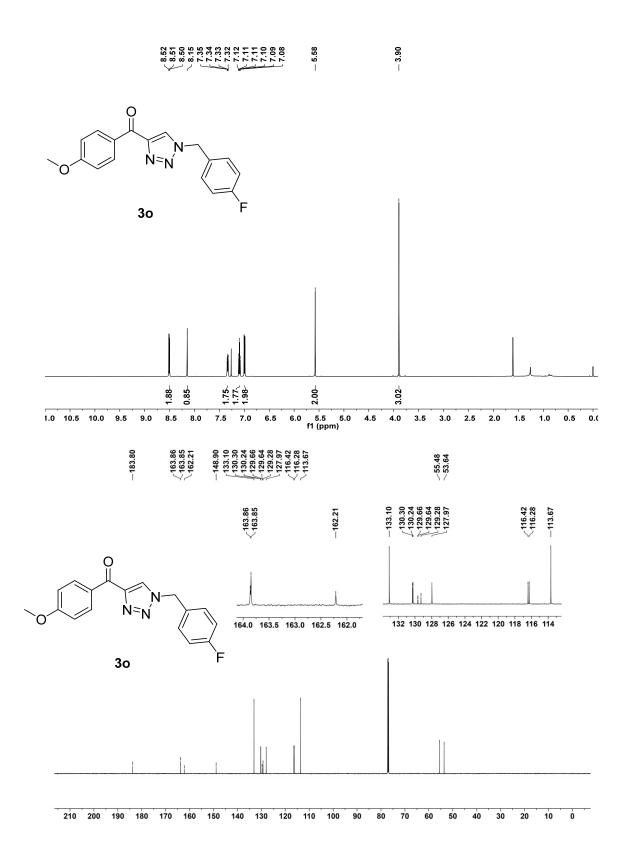


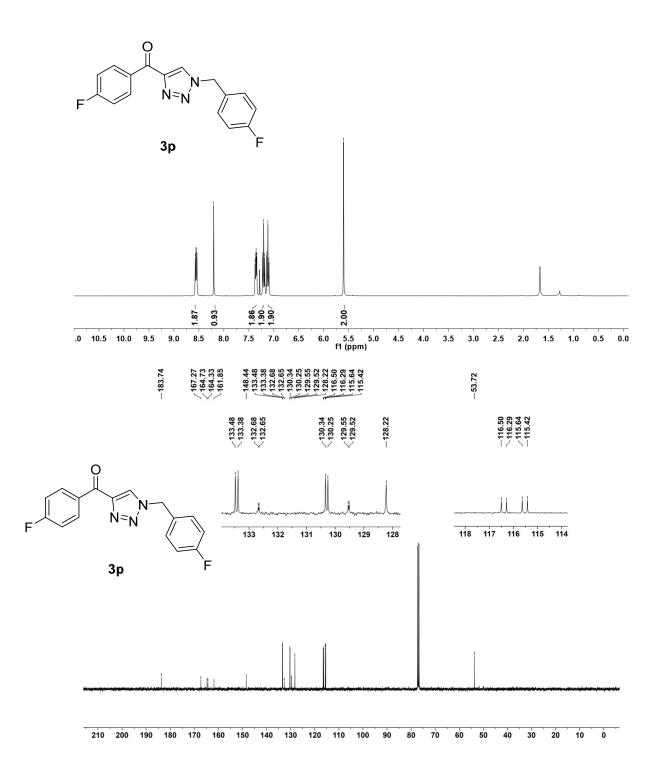


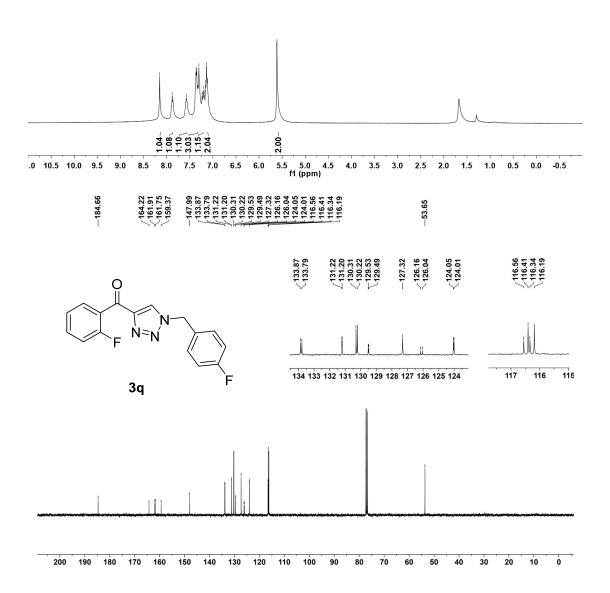


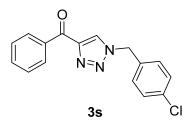

8.39 8.29 8.29 7.68 7.40 7.40 7.38 7.38 7.38 7.34 7.37 7.36 7.36 7.37

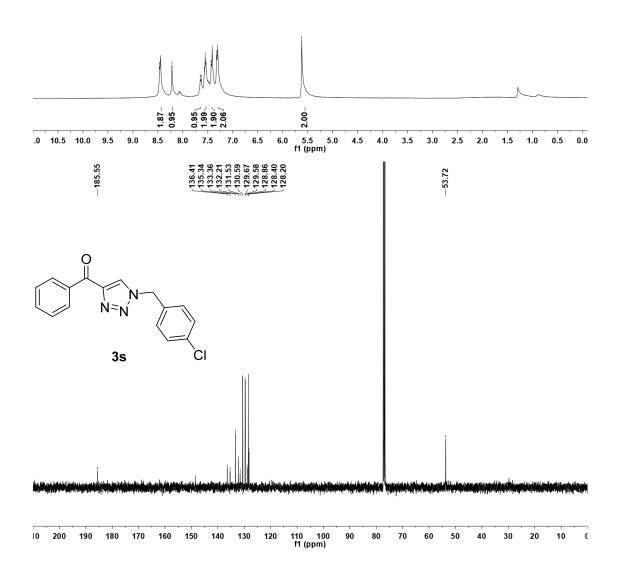


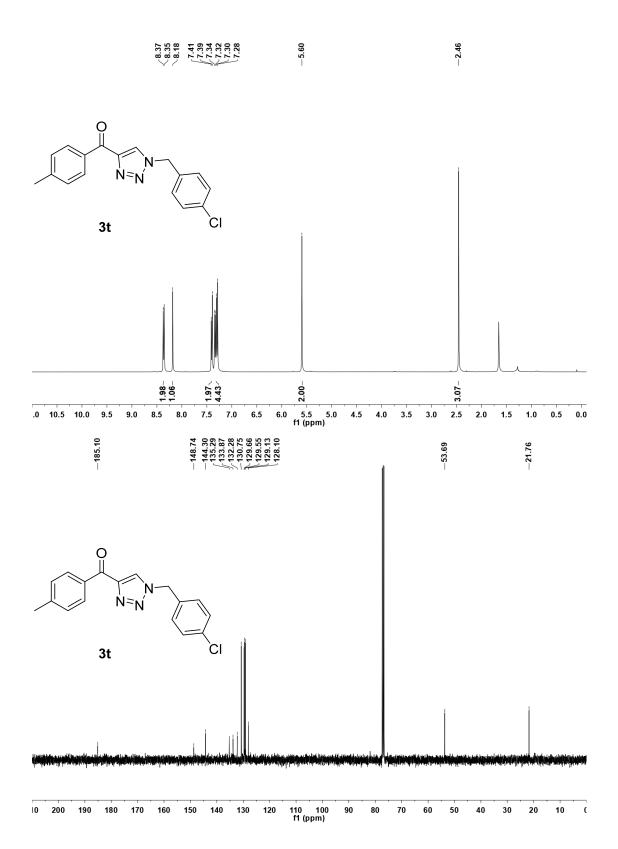


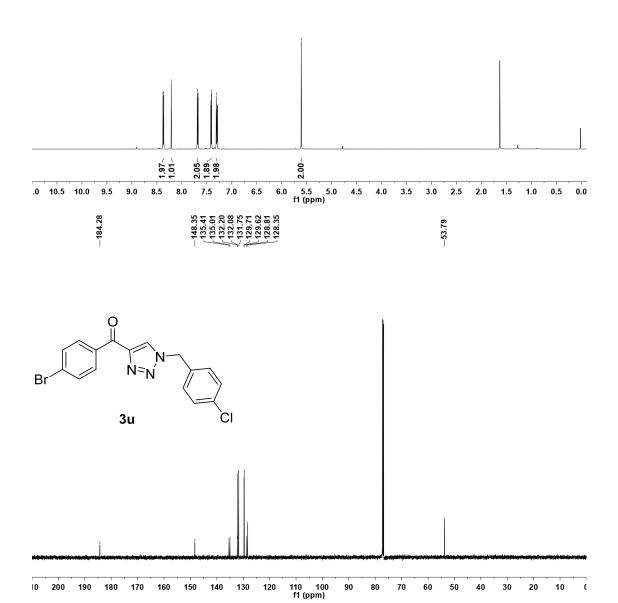


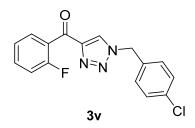

8.56 8.56 8.56 8.54 8.54 8.54 8.54 7.38 7.35 7.35 7.35 7.20 7.12 7.13 7.14 7.14 7.15 7.15 7.16 7.10

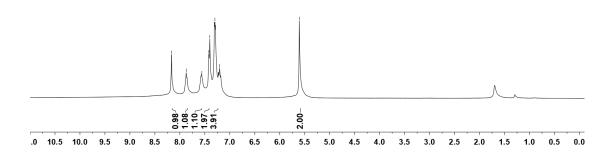

$$\begin{array}{c}
O \\
F
\end{array}$$

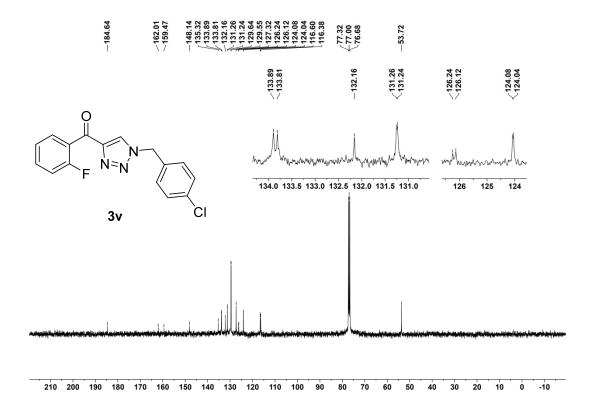

$$\begin{array}{c}
N \\
N \\
N
\end{array}$$

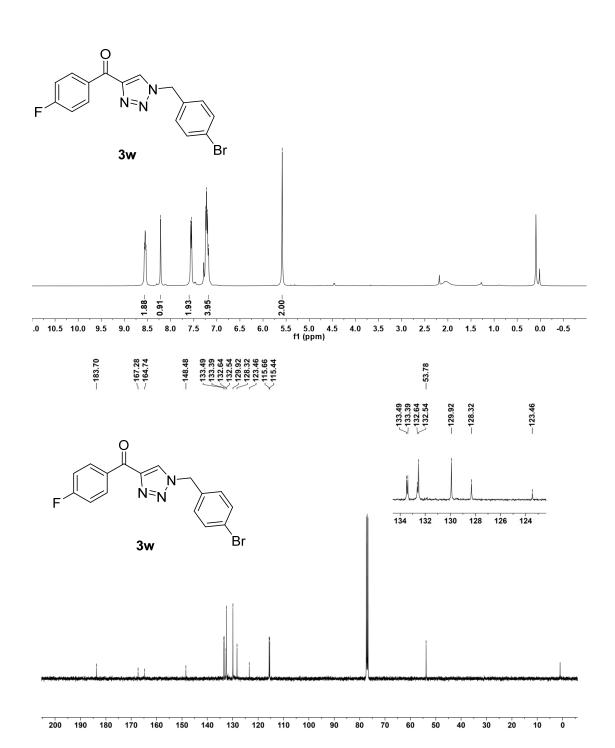

$$\begin{array}{c}
F
\end{array}$$

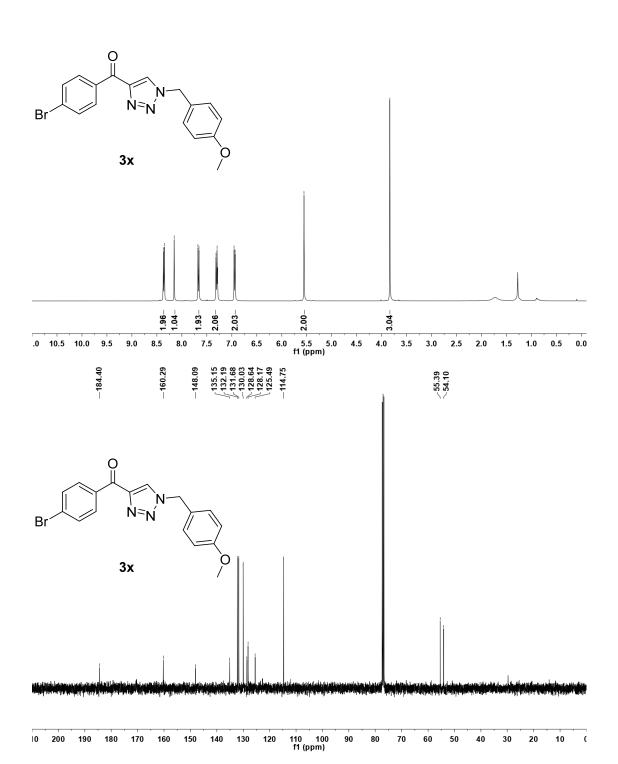


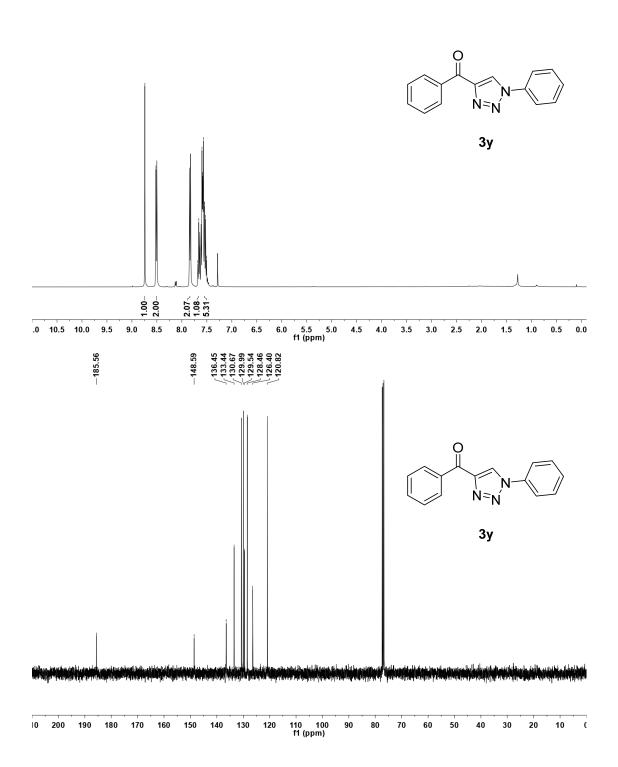


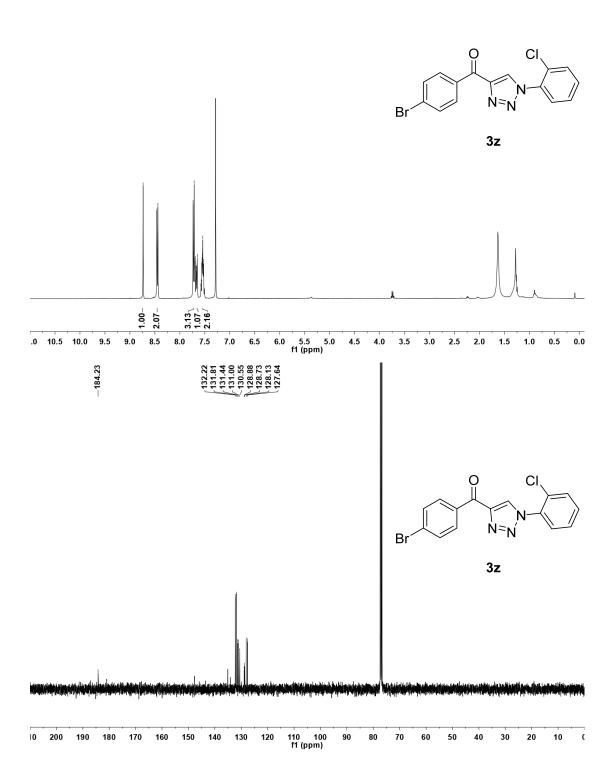


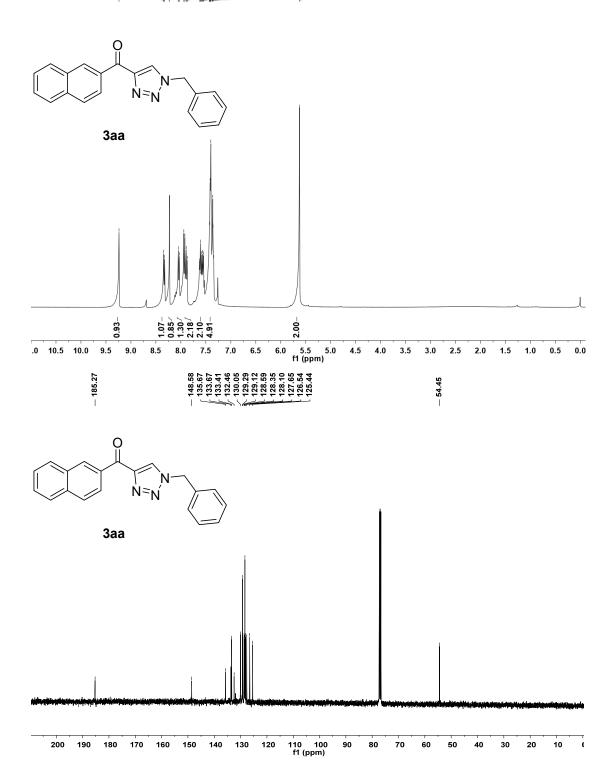


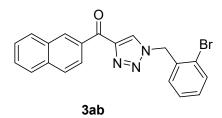


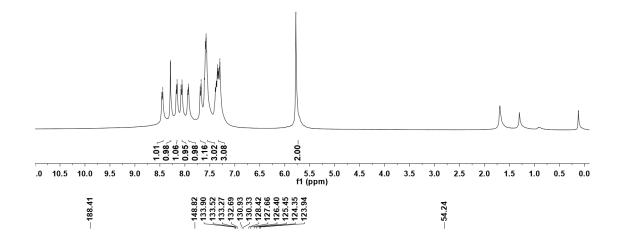


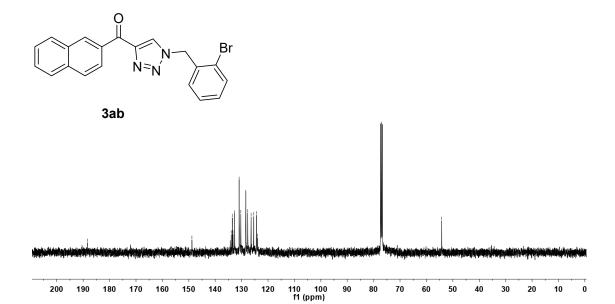


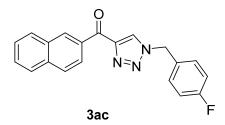


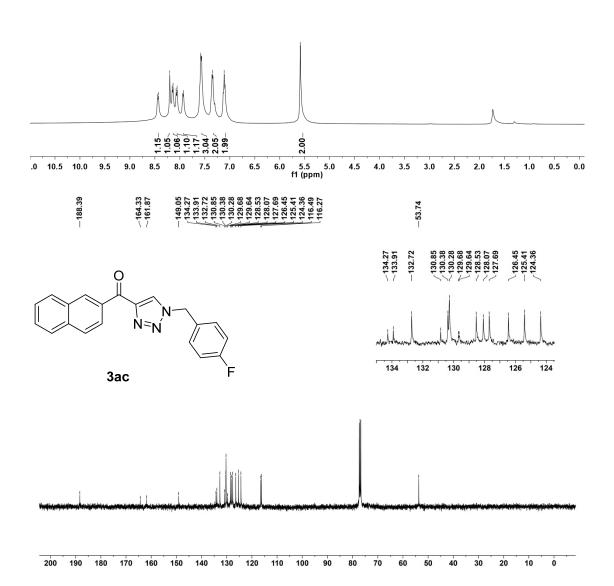


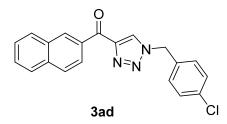


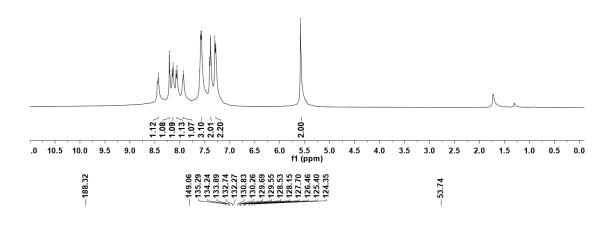


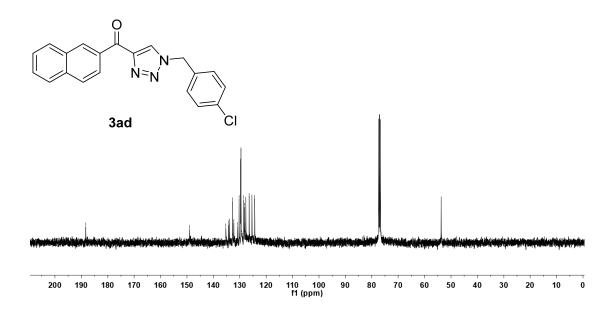


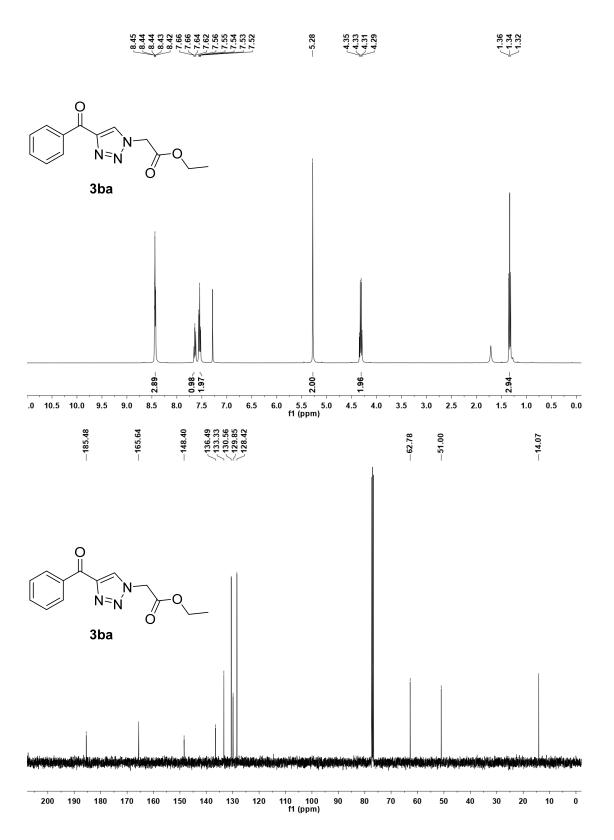


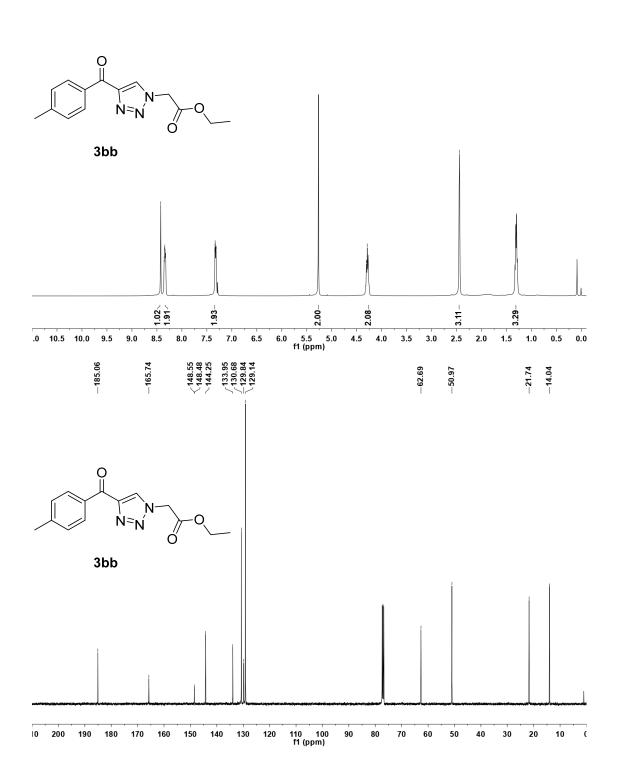


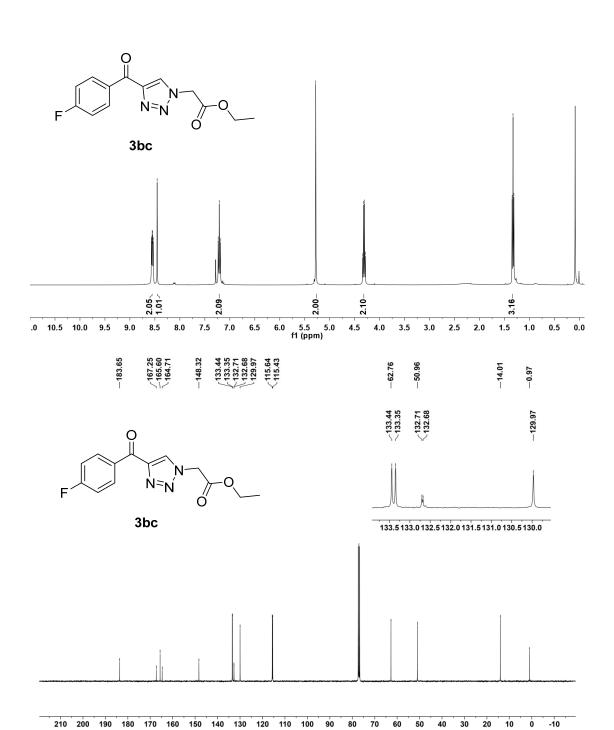


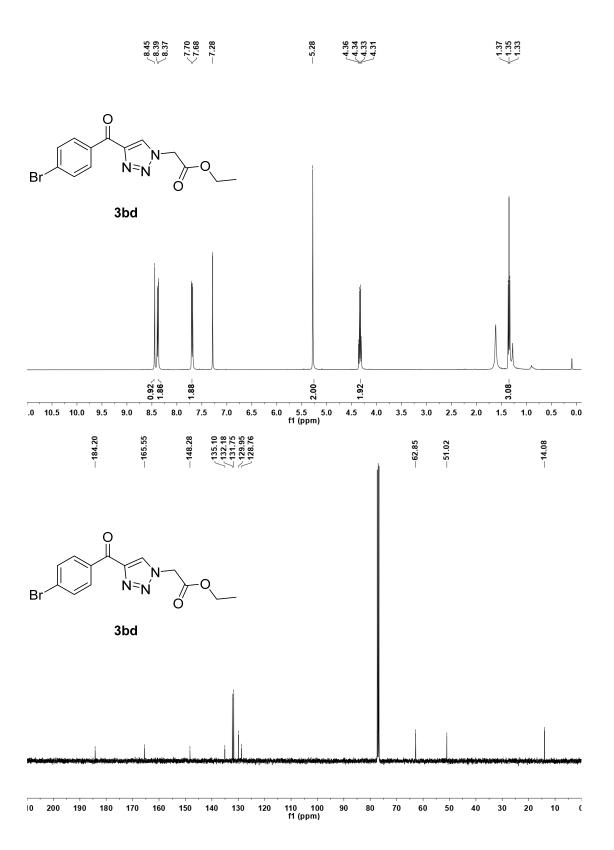


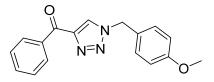


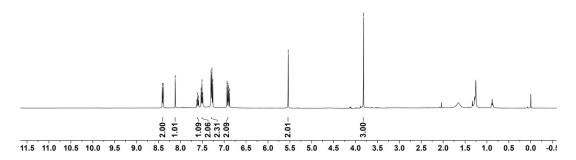


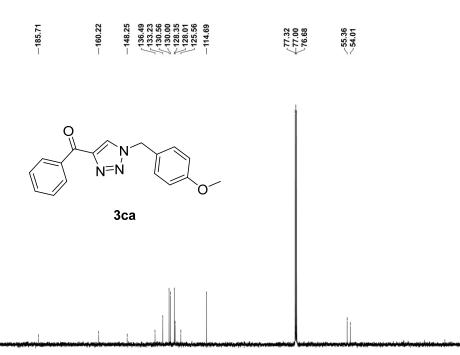


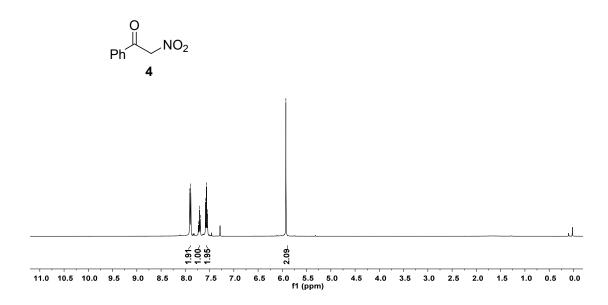


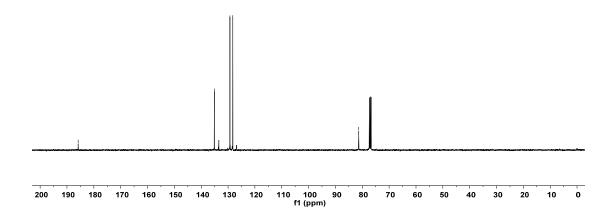


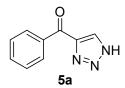


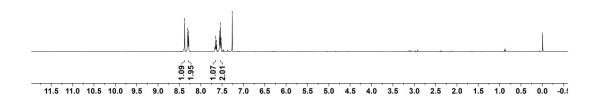


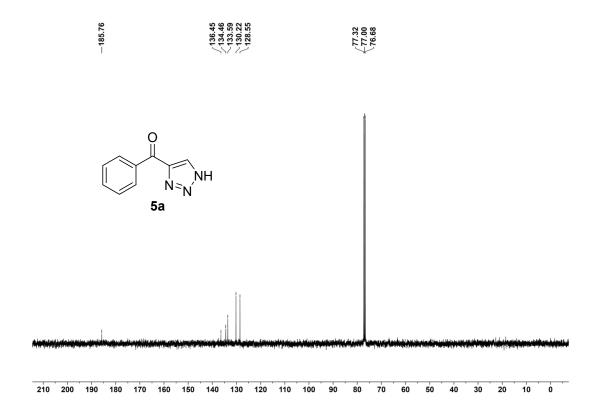



3ca

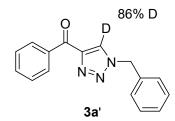

40 30 20 10 0

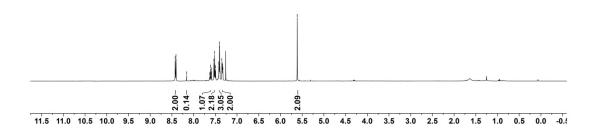

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50




- 185.85 - 135.11 - 128.25 - 128.25

Ph NO₂





8.42 8.41 8.46 8.16 7.61 7.61 7.59 7.59 7.59 7.59 7.59 7.50 7.70

