Supporting Information

Enantioselective Construction of Spirodihydrofuran Oxindoles via One-Pot Organo-/Iodine Sequential Catalysis

Ai-Bao Xia,^{1,*} Li-Sha Huang,¹ Chang-Ping Li,² Qing-Bo Hu,¹ Jin-Yao Zhu,¹ Liang Bai¹ and Dan-Qian Xu^{1,*}

¹Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China ²Hangzhou Environmental Protection Co., Ltd, Hangzhou 310063, P.R. China

> Fax (+86) 0571 88320066; E-mail: xiaaibao@zjut.edu.cn; chrc@zjut.edu.cn

	Table of Contents	Page
1	General information	S-3
2	Typical experimental procedure for the preparation of substrate 1 and organo-/iodine sequential catalysis, and characterization of products 4	S-4~S-16
3	Scale-up experiment	S-17
4	ESI-MS spectrum	S-18
5	¹ H, ¹³ C NMR spectra and HPLC chromatograms of compounds 4a-4x	S-19~S-66
6	X-ray crystal structure of the compound 4c	S-67~S-68

1. General information

NMR data were obtained on Bruker AVANCE III for ¹H at 500 MHz and for ¹³C at 125 MHz with TMS as the internal standard. HRMS data were measured on an Agilent 6545 Q-TOF LC/MS with an ESI source. In each case, enantiomeric excess was determined on a chiral column in comparison with authentic racemates by chiral HPLC, using a JASCO LC-2000 Plus system consisting of MD-2010 HPLC diode array detector or an Agilent 1260 chromatography. Column chromatography and flash chromatography experiments were conducted using silica gel GF254 (200-300 mesh) eluting with ethyl ether and petroleum ether. TLC experiments were carried out on glass-backed silica plates. Chemicals were used without purification as commercially available.

The Boc protected isatin-derived α-trifluoromethylacrylate was prepared according to a previously reported procedure. For details, see: Q.-X. Lou, Y.-Y. Ding, D.-F. Xu, G.-K. Liu, J.-L. Zhao, *Adv. Synth. Catal.*, 2017, **359**, 2557.

2. Typical experimental procedure for the preparation of substrate 1 and organo-/iodine sequential catalysis, and characterization of products 4

Isatins (10 mmol) and benzyl bromide (12 mmol) were stirred in CH₃CN (25 mL) in the presence of K_2CO_3 (12 mmol) at 85 °C for 2 h. Reactions were monitored by TLC. After completion, the reaction mixture was concentrated under reduced pressure. The residue was added into H₂O (50 mL) and extracted with EtOAc (3×20 mL), then the mixture was dried and concentrated.

The above solid and hydrazine hydrate (10 mL) was directly added in DMF (10 mL), the mixture was stirred at 120 °C for 5 h. After completion, the reaction mixture was concentrated. The residue was purified by flash chromatography (petroleum ether/ethyl acetate =10:1) to give the oxindole.

The oxindole, 3,3,3-trifluoromethyl pyruvic acid ethyl ester (1.98 mL, 15 mmol) and piperidine (0.27 mL, 3 mmol) were stirred in toluene (25 mL) at 110 °C for 4 h. After completion, the reaction mixture was extracted with EtOAc (3×20 mL), washed with water, dried and concentrated. The residue was purified by flash chromatography (petroleum ether/ethyl acetate =10:1) to give **1**.

 α -Trifluoromethyl acrylates **1** (0.4 mmol) and pyrazolones **2** (0.2 mmol) were stirred in CH₂Cl₂ (2 mL) in the presence of catalyst **3b** (0.02 mmol) at room temperature for 36 h, then I₂ (0.04 mmol) and 30% H₂O₂ aqueous solution (0.4 mmol) were added, and the mixture was stirred for 2 h at room temperature. The reaction was

monitored by TLC. After completion, the mixture was dried and concentrated. The residue was purified by flash chromatography (petroleum ether/ethyl acetate =10:1) to give products **4**.

ethyl-(4R,5R)-1'-benzyl-5'-chloro-3-methyl-2'-oxo-1-phenyl-4-(trifluoromethyl)-1,4-dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp 178-180 °C, 90.6 mg, 78% yield, 96% ee, >20:1 dr. HPLC (ID-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 14.4 min (minor), 19.1 min (major). [a]²⁰_D= -70 (c = 0.56 in CH₂Cl₂). ¹**H NMR** (500 MHz, CDCl₃) δ 7.70 – 7.63 (m, 3H), 7.42 – 7.37 (m, 6H), 7.35 – 7.30 (m, 2H), 7.25 – 7.19 (m, 1H), 6.69 (d, *J* = 8.5 Hz, 1H), 5.02 (d, *J* = 15.9 Hz, 1H), 4.74 (d, *J* = 15.9 Hz, 1H), 4.50 – 3.76 (m, 2H), 2.44 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.5, 166.0, 158.8, 145.1, 143.0, 137.5, 134.3, 132.3, 129.2 (×2), 129.0 (×2), 128.8, 128.6, 128.0, 127.4 (×2), 126.0, 123.7 (*J* = 286 Hz), 122.1, 118.5 (×2), 111.2, 100.4, 98.2, 77.2, 63.6, 44.4, 13.8, 13.6 ppm. HRMS (ESI+) calcd for [C₃₀H₂₃ClF₃N₃O₄ + Na]⁺ m/z 604.1221, found 604.1224 .

ethyl-(4R,5R)-1'-benzyl-5'-fluoro-3-methyl-2'-oxo-1-phenyl-4-(trifluoromethyl)-1,4dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp150-152 °C, 74.6 mg, 66% yield, 92% ee, >20:1 dr. HPLC (ID-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 12.1 min (minor), 14.3 min (major). [a]²⁰_D= -6 (c = 0.57 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.64 (m, 2H), 7.48 – 7.45 (m, 1H), 7.43 – 7.34 (m, 6H), 7.35 – 7.30 (m, 1H), 7.25 – 7.17 (m, 1H), 7.10 – 7.05 (m, 1H), 6.71 – 6.68 (m, 1H), 5.03 (d, *J* = 15.9 Hz, 1H), 4.73 (d, *J* = 15.9 Hz, 1H), 4.32 – 4.27 (m, 2H), 2.43 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.7, 166.0, 159.1 (d, ¹*J*_{C-F} = 241.9 Hz), 158.8, 145.0, 140.4 (d, ${}^{4}J_{C-F} = 2.1$ Hz), 137.6, 134.4, 129.2 (×2), 129.0 (×2), 128.0, 127.4 (×2), 125.9, 123.8 (J = 286 Hz), 122.6 (d, ${}^{3}J_{C-F} = 8.82$ Hz), 118.8 (d, ${}^{2}J_{C-F} = 23.7$ Hz), 118.5 (×2), 116.3 (d, ${}^{2}J_{C-F} = 21.4$ Hz), 110.9 (d, ${}^{3}J_{C-F} = 8.82$ Hz), 100.4, 98.3, 77.2, 63.6, 44.4, 13.8, 13.6 ppm. HRMS (ESI+) calcd for [C₃₀H₂₃F₄N₃O₄ + Na]⁺ m/z 588.1517, found 588.1521.

ethyl-(4R,5R)-1'-benzyl-6'-chloro-3-methyl-2'-oxo-1-phenyl-4-(trifluoromethyl)-1,4dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp162-164 °C, 95.3 mg, 82% yield, 96% ee, >20:1 dr. HPLC (ID-H, *i*-PrOH/n-hexane = 10/90, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 5.8 min (minor), 7.8 min (major). [α]²⁰_D= -36 (c = 0.53 in CH₂Cl₂). ¹**H NMR** (500 MHz, CDCl₃) δ 7.77 – 7.58 (m, 3H), 7.42 – 7.38 (m, 7H), 7.23 – 7.18 (m, 1H), 7.14 – 7.09 (m, 1H), 6.78 (d, *J* = 1.9 Hz, 1H), 5.01 (d, *J* = 15.9 Hz, 1H), 4.73 (d, *J* = 15.9 Hz, 1H), 4.36 – 4.18 (m, 2H), 2.43 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.0, 166.0, 158.8, 145.8, 145.1, 138.5, 137.6, 134.2, 129.3, 129.2 (×2), 129.0 (×2), 128.1, 127.4 (×2), 125.9, 123.8 (*J* = 286 Hz), 123.3, 119.7, 118.4 (×2), 110.8, 100.4, 98.0, 77.2, 63.6, 44.5, 13.8, 13.6 ppm. HRMS (ESI+) calcd for [C₃₀H₂₃ClF₃N₃O₄ + Na]⁺ m/z 604.1221, found 604.1229 .

ethyl-(4R,5R)-1'-benzyl-7'-chloro-3-methyl-2'-oxo-1-phenyl-4-(trifluoromethyl)-1,4dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp142-144 °C, 93.0 mg, 80% yield, 96% ee, >20:1 dr. HPLC (ID-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 16.1 min (minor), 19.5 min (major). [a]²⁰_D= -9 (c = 0.56 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.69 – 7.61 (m, 3H), 7.41 – 7.37 (m, 3H), 7.36 – 7.33 (m, 4H), 7.30 – 7.25 (m, 1H), 7.24 – 7.20 (m, 1H), 7.13 – 7.08 (m, 1H), 5.40 – 5.20 (m, 2H), 4.25 – 4.20 (m, 2H), 2.41 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.6, 165.9, 158.8, 145.1, 140.6, 137.6, 136.6, 135.0, 129.2 (×2), 128.6 (×2), 127.4, 127.0, 126.7 (×2), 125.9, 124.2, 124.1, 123.8 (J = 283 Hz), 118.4 (×2), 116.2, 100.5, 97.7, 77.2, 63.6, 45.6, 13.8, 13.6 ppm. HRMS (ESI+) calcd for $[C_{30}H_{23}ClF_3N_3O_4 + Na]^+$ m/z 604.1221, found 604.1224.

ethyl-(4R,5R)-1'-benzyl-5'-bromo-3-methyl-2'-oxo-1-phenyl-4-(trifluoromethyl)-1,4-dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp182-184 °C, 86.3 mg, 69% yield, 94% ee, >20:1 dr. HPLC (ID-H, *i*-PrOH/n-hexane = 10/90, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 6.4 min (minor), 9.0 min (major). [α]²⁰_D= -18 (c = 0.50 in CH₂Cl₂). ¹**H NMR** (500 MHz, CDCl₃) δ 7.82 (d, *J* = 1.9 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.49 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.42 – 7.36 (m, 6H), 7.35 – 7.30 (m,1H), 7.25 – 7.18(m, 1H), 6.64 (d, *J* = 8.4 Hz,1H), 5.02 (d, *J* = 15.9 Hz, 1H), 4.73 (d, *J* = 15.8 Hz, 1H), 4.33 – 4.26 (m, 2H), 2.44 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 171.5, 166.0, 158.8, 145.0, 143.5, 137.5, 135.2 134.2, 131.3, 129.2 (×2), 129.0 (×2), 128.0, 127.3 (×2), 125.9, 123.7 (*J* = 283 Hz), 123.1, 118.5 (×2), 115.9, 111.7, 100.4, 98.1, 77.2, 63.6, 44.4, 13.8, 13.6 ppm. HRMS (ESI+) calcd for [C₃₀H₂₃BrF₃N₃O₄ + Na]⁺ m/z 648.0716, found 648.0718.

ethyl-(4R,5R)-1'-benzyl-6'-bromo-3-methyl-2'-oxo-1-phenyl-4-(trifluoromethyl)-1,4-dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp195-197 °C, 98.8 mg, 79% yield, 97% ee, >20:1 dr. HPLC (ID-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 11.6 min (minor), 14.6 min (major). [a]²⁰_D= -3 (c = 0.54 in CH₂Cl₂). ¹**H NMR** (500 MHz, CDCl₃) δ 7.68 – 7.62 (m, 2H), 7.58 – 7.52 (m, 1H), 7.42 – 7.36 (m, 6H), 7.31 – 7.25 (m, 2H), 7.24 – 7.21 (m, 1H), 6.93 (d, *J* = 1.8 Hz, 1H), 5.00 (d, *J* = 15.8 Hz, 1H), 4.73 (d, *J* = 15.8 Hz, 1H), 4.38 – 4.09 (m, 2H), 2.42 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 166.0, 158.8, 145.8, 145.1, 137.6, 134.2, 129.5, 129.2 (×2), 129.0 (×2), 128.1, 127.4 (×2), 126.6, 126.3, 125.9, 123.8 (*J* = 281 Hz), 120.2, 118.4 (×2), 113.6, 100.4, 98.1, 77.2, 63.6, 44.5, 13.8, 13.6 ppm. HRMS (ESI+) calcd for [C₃₀H₂₃BrF₃N₃O₄ + Na]⁺ m/z 648.0716, found 648.0719.

ethyl-(4R,5R)-1'-benzyl-5'-iodo-3-methyl-2'-oxo-1-phenyl-4-(trifluoromethyl)-1,4dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp181-183 °C, 91.5 mg, 68% yield, 92% ee, >20:1 dr. HPLC (ID-H, *i*-PrOH/n-hexane = 10/90, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 6.7 min (minor), 9.7 min (major). [a]²⁰_D= -27 (c = 0.7 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.97 (s, 1H), 7.76 – 7.57 (m, 3H), 7.43 – 7.35 (m, 6H), 7.35 – 7.30 (m, 1H), 7.25 – 7.17 (m, 1H), 6.54 (d, *J* = 8.3 Hz, 1H), 5.01 (d, *J* = 15.9 Hz, 1H), 4.73 (d, *J* = 15.9 Hz, 1H), 4.33 – 4.15 (m, 2H), 2.44 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.2, 166.0, 158.8, 145.0, 144.1, 141.1, 137.5, 136.8, 134.2, 129.2 (×2), 129.0 (×2), 128.0, 127.3 (×2), 126.0, 123.7 (*J* = 286 Hz), 123.4, 118.5 (×2), 112.2, 100.4, 97.9, 85.5, 77.3, 63.6, 44.3, 13.8, 13.6 ppm. HRMS (ESI+) calcd for [C₃₀H₂₃F₃IN₃O₄ + Na]⁺ m/z 696.0578, found 696.0578.

ethyl-(4R,5R)-1'-benzyl-3-methyl-2'-oxo-1-phenyl-4-(trifluoromethyl)-1,4dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp128-130 °C, 67.8 mg, 62% yield, 94% ee, >20:1 dr. HPLC (IF-H, *i*-PrOH/n-hexane = 7/93, flow rate = 0.7 mL/min, 1 = 254 nm) t_R = 13.8 min (minor), 17.4 min (major). [a]²⁰_D= -30 (c = 0.56 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.76 - 7.64 (m, 3H), 7.45 - 7.29 (m, 8H), 7.24 - 7.09 (m, 2H), 6.79 (d, *J* = 8.0 Hz, 1H), 5.04 (d, *J* = 15.8 Hz, 1H), 4.76 (d, *J* = 15.9 Hz, 1H), 4.42 - 4.21 (m, 2H), 2.44 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 166.1, 159.0, 155.1, 145.1, 144.4, 137.7, 134.8, 132.3, 129.2 (×2), 128.9 (×2), 128.2, 127.8, 127.4 (×2), 124.4 (*J* = 283 Hz), 123.2, 121.3, 118.4 (×2), 110.1, 77.2, 63.4, 44.3, 29.7, 13.8, 13.6 ppm. HRMS (ESI+) calcd for [C₃₀H₂₄F₃N₃O₄ + Na]⁺ m/z 570.1611, found 570.1616.

ethyl-(4R,5R)-1'-benzyl-3,5'-dimethyl-2'-oxo-1-phenyl-4-(trifluoromethyl)-1,4dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp194-196 °C, 56.1 mg, 50% yield, 90% ee, >20:1 dr. HPLC (IE-H, *i*-PrOH/n-hexane = 10/90, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 8.2 min (minor), 11.2 min (major). [a]²⁰_D= -27 (c = 0.53 in CH₂Cl₂). ¹**H NMR** (500 MHz, CDCl₃) δ 7.70 – 7.67 (m, 2H), 7.53 (s, 1H), 7.43 – 7.35 (m, 6H), 7.33 – 7.29 (m, 1H), 7.23 – 7.14 (m, 2H), 6.67 (d, *J* = 8.1 Hz, 1H), 5.01 (d, *J* = 15.8 Hz, 1H), 4.74 (d, *J* = 15.8 Hz, 1H), 4.32 – 4.22 m, 2H), 2.45 (s, 3H), 2.35 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C **NMR** (126 MHz, CDCl₃) δ 171.8, 166.1, 159.1, 145.1, 142.0, 137.7, 134.9, 132.9, 132.6, 129.2 (×2), 128.9, 128.8 (×2), 127.8, 127.4 (×2), 125.8, 123.9 (*J* = 286 Hz), 121.3, 118.4 (×2), 109.9, 100.6, 99.0, 77.2, 63.4, 44.3, 21.1, 13.8, 13.6 ppm. HRMS (ESI+) calcd for [C₃₁H₂₆F₃N₃O₄ + Na]⁺ m/z 584.1768, found 584.1773.

ethyl-(4R,5R)-1'-benzyl-5'-methoxy-3-methyl-2'-oxo-1-phenyl-4-(trifluoromethyl)-1,4-dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp175-177 °C, 81.9 mg, 71% yield, 88% ee, >20:1 dr. HPLC (ID-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 260 nm) t_R = 17.6 min (minor), 24.4 min (major). [a]²⁰_D= -58 (c = 0.64 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.43 – 7.34 (m, 6H), 7.33 – 7.29 (m, 2H), 7.25 – 7.17 (m, 1H), 6.93 – 6.85 (m, 1H), 6.66 (d, *J* = 8.7 Hz, 1H), 5.00 (d, *J* = 15.8 Hz, 1H), 4.73 (d, *J* = 15.8 Hz, 1H), 4.32-4.14 (m, 2H), 3.79 (s, 3H), 2.44 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.6, 166.0, 159.0, 156.1, 145.1, 137.7, 137.6 134.8, 129.2 (×2), 128.9 (×2), 127.8, 127.4 (×2), 125.8, 123.8 (*J* = 279 Hz), 122.3, 118.5 (×2), 117.2, 115.2, 110.6, 100.6, 99.0, 77.2, 63.5, 55.9, 44.3, 13.8, 13.6 ppm. HRMS (ESI+) calcd for [C₃₁H₂₆F₃N₃O₅ + Na]⁺ m/z 600.1717, found 600.1720.

ethyl-(4R,5R)-1'-benzyl-3,5',7'-trimethyl-2'-oxo-1-phenyl-4-(trifluoromethyl)-1,4dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp178-180 °C, 70.2 mg, 61% yield, 97% ee, >20:1 dr. HPLC (ID-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 18.8 min (minor), 22.5 min (major). [a]²⁰_D= -30 (c = 0.52 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.64 (m, 2H), 7.43 – 7.32 (m, 6H), 7.32 – 7.24 (m, 2H), 7.20 (t, *J* = 7.5 Hz, 1H), 6.97 (s, 1H), 5.31 – 4.98 (m, 2H), 4.32 – 4.20 (m, 2H), 2.42 (s, 3H), 2.32 (s, 3H), 2.24 (s, 3H), 1.31 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.2, 166.5, 159.3, 145.3, 140.2, 138.0, 137.1(×2), 133.1, 129.4(×2), 129.1(×2), 127.5, 127.0, 126.1, 125.9(×2), 124.1(*J* = 286 Hz), 122.4, 120.5, 118.6(×2), 100.9, 98.9, 77.5, 63.6, 45.9, 21.0, 19.0, 14.0, 13.8 ppm. HRMS (ESI+) calcd for [C₃₂H₂₈F₃N₃O₆ + Na]⁺ m/z 614.1276, found 614.1274.

methyl-(4R,5R)-1'-benzyl-5'-chloro-3-methyl-2'-oxo-1-phenyl-4-(trifluoromethyl)-1,4-dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp190-192 °C, 87.3 mg, 77% yield, 93% ee, >20:1 dr. HPLC (ID-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 17.9 min (minor), 33.1 min (major). [a]²⁰_D= -6 (c = 0.50 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.60 (m, 3H), 7.42 – 7.31 (m, 8H), 7.25 – 7.19 (m, 1H), 6.72 (d, *J* = 8.5 Hz, 1H), 5.05 (d, *J* = 15.8 Hz, 1H), 4.71 (d, *J* = 15.9 Hz, 1H), 3.77 (s, 3H), 2.42 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.5, 166.3, 158.8, 145.1, 142.9, 137.5, 134.3, 132.3, 129.2 (×2), 129.0 (×2), 128.9, 128.6, 128.1, 127.4 (×2), 125.9, 123.8 (*J* = 279 Hz), 122.8, 118.5 (×2), 111.2, 100.3, 98.2, 77.2, 53.9, 44.4, 13.5 ppm. HRMS (ESI+) calcd for [C₂₉H₂₁ClF₃N₃O₄ + Na]⁺ m/z 590.1065, found 590.1061.

l'-(tert-butyl)4-ethyl-(4R,5R)-5'-chloro-3-methyl-2'-oxo-1-phenyl-4-(*trifluoromethyl)-1,4-dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-1',4dicarboxylate*, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp165-167 °C, 79.2 mg, 67% yield, 93% ee, >20:1 dr. HPLC (IC-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 9.5 min (minor), 10.9 min (major). [a]²⁰_D= -21 (c = 0.50 in CH₂Cl₂). ¹**H NMR** (500 MHz, CDCl₃) δ 8.02 (d, *J* = 8.9 Hz, 1H), 7.74 – 7.69 (m, 1H), 7.68 – 7.61 (m, 2H), 7.56 – 7.50(m, 1H), 7.42 – 7.34 (m, 2H), 7.24 – 7.17 (m, 1H), 4.41 – 4.16 (m, 2H), 2.42 (s, 3H), 1.61 (s, 9H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 169.6, 165.5, 158.8, 148.3, 145.1, 139.8, 137.4, 132.7, 130.5, 129.2 (×2), 128.0, 126.0, 123.4 (*J* = 286 Hz), 121.7, 118.5 (×2), 116.9, 99.9, 97.6, 85.5, 77.2, 63.7, 28.0 (×3), 13.6, 13.5 ppm. HRMS (ESI+) calcd for [C₂₈H₂₅ClF₃N₃O₆ + Na]⁺ m/z 614.1276, found 614.1274.

ethyl-(4R,5R)-1'-benzyl-5'-chloro-3-ethyl-2'-oxo-1-phenyl-4-(trifluoromethyl)-1,4dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp151-153 °C, 65.5 mg, 55% yield, 95% ee, >20:1 dr. HPLC (IB-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 11.9 min (major), 14.4 min (minor). [a]²⁰_D= -44 (c = 0.51 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.72 – 7.63 (m, 3H), 7.44 – 7.35 (m, 6H), 7.36 – 7.31 (m, 2H), 7.27 – 7.18 (m, 1H), 6.69 (d, *J* = 8.5 Hz, 1H), 5.02 (d, *J* = 15.9 Hz, 1H), 4.74 (d, *J* = 15.9 Hz, 1H), 4.28 (dd, *J* = 10.6, 7.1 Hz, 2H), 2.87 – 2.79 (m, 2H), 1.40 (t, *J* = 7.6 Hz, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.6, 166.0, 158.6, 149.9, 142.9, 137.7, 134.3, 132.2, 129.2 (×2), 129.0 (×2), 128.8, 128.8, 128.0, 127.4 (×2), 125.8, 123.9 (*J* = 285 Hz), 123.0, 118.6 (×2), 111.1, 99.6, 98.1, 77.2, 63.6, 44.4, 21.1, 13.8, 12.5 ppm. HRMS (ESI+) calcd for [C₃₁H₂₅ClF₃N₃O₄ + Na]⁺ m/z 618.1378, found 618.1374.

ethyl-(4R,5R)-1'-benzyl-5'-chloro-2'-oxo-1-phenyl-3-propyl-4-(trifluoromethyl)-1,4dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp157-159 °C, 95.0 mg, 78% yield, 95% ee, >20:1 dr. HPLC (IB-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 12.5 min (major), 15.2 min (minor). [α]²⁰_D= -11 (c = 0.51 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.69 – 7.63 (m, 3H), 7.42 – 7.30 (m, 8H), 7.21 (t, *J* = 7.4 Hz, 1H), 6.68 (d, *J* = 8.5 Hz, 1H), 5.02 (d, *J* = 15.8 Hz, 1H), 4.73 (d, *J* = 15.8 Hz, 1H), 4.28 (t, *J* = 7.2 Hz, 2H), 2.85 – 2.65 (m, 2H), 1.87 (q, *J* = 7.6 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.08 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.7, 166.1, 158.8, 149.0, 143.1, 137.9, 134.5, 132.4, 129.4(×2), 129.2(×2), 128.9, 128.7, 128.2, 127.5(×2), 126.0, 123.9(*J* = 286 Hz), 123.2, 118.7(×2), 111.3, 100.1, 98.3, 77.5, 63.7, 44.6, 30.1, 21.8, 14.4, 14.0 ppm. HRMS (ESI+) calcd for [C₃₂H₂₇CIF₃N₃O₄ + Na]⁺ m/z 632.1534, found 632.1529.

ethyl-(4R,5R)-1'-benzyl-5'-chloro-3-cyclopropyl-2'-oxo-1-phenyl-4-(*trifluoromethyl)-1,4-dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate*, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp164-166 °C, 99.5 mg, 82% yield, 92% ee, >20:1 dr. HPLC (IB-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 12.9 min (major), 15.3 min (minor). $[a]^{20}_{D}$ = -43 (c = 0.54 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.69 (s, 1H), 7.64 – 7.61 (m, 2H), 7.42 – 7.31 (m, 8H), 7.22 – 7.16 (m, 1H), 6.69 (d, *J* = 8.5 Hz, 1H), 5.03 (d, *J* = 15.9 Hz, 1H), 4.74 (d, *J* = 15.9 Hz, 1H), 4.35 – 4.26 (m, 2H), 2.14 – 2.05 (m, 1H), 1.32 (t, *J* = 7.1 Hz, 3H), 1.24 – 1.17 (m, 1H), 1.11 – 1.05 (m, 1H), 0.98 – 0.90 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 171.6, 166.1, 158.5, 149.7, 143.0, 137.7, 134.3, 132.2, 129.1 (×2), 129.0 (×2), 128.8, 128.6, 128.0, 127.4 (×2), 125.7, 123.8 (*J* = 286 Hz), 123.0, 118.4 (×2), 111.2, 100.6, 98.1, 77.2, 63.5, 44.4, 13.8, 8.5, 8.0, 7.7 ppm. HRMS (ESI+) calcd for [C₃₂H₂₅ClF₃N₃O₄ + Na]⁺ m/z 630.1378, found 630.1378.

ethyl-(4R,5R)-1'-benzyl-5'-chloro-1-(4-fluorophenyl)-3-methyl-2'-oxo-4-(trifluoromethyl)-1,4-dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp174-176 °C, 110.2 mg, 92% yield, 91% ee, >20:1 dr. HPLC (IB-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 17.9 min (major), 24.3 min (minor). [a]²⁰_D= -50 (c = 0.53 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 2.0 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.40 – 7.29 (m, 6H), 7.13-7.04 (m, 2H), 6.69 (d, *J* = 8.5 Hz, 1H), 5.03 (d, *J* = 15.8 Hz, 1H), 4.73 (d, *J* = 15.9 Hz, 1H), 4.37 – 4.21 (m, 2H), 2.41 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.5, 165.9, 160.6 (d, ¹*J*_{C-F}=245.6 Hz), 158.6, 145.1, 143.0, 134.2, 133.8 (d, ⁴*J*_{C-F}= 2.6 Hz), 132.3, 129.0 (×2), 128.8, 128.6, 128.1, 127.3 (×2), 123.8 (*J* = 286 Hz), 122.6, 120.3 (d, ³*J*_{C-F}= 8.2 Hz) (×2), 116.0 (d, ²*J*_{C-F}= 22.7 Hz) (×2), 111.2, 100.4, 98.2, 77.2, 63.7, 44.4, 13.8, 13.6 ppm. HRMS (ESI+) calcd for [C₃₀H₂₂ClF₄N₃O₄ + Na]⁺ m/z 622.1127, found 622.1123.

ethyl-(4R,5R)-1'-benzyl-5'-chloro-1-(4-chlorophenyl)-3-methyl-2'-oxo-4-(trifluoromethyl)-1,4-dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp154-156 °C, 102.1 mg, 83% yield, 88% ee, >20:1 dr. HPLC (IB-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 268 nm) t_R = 13.6 min (major), 18.6 min (minor). [α]²⁰_D= -45 (c = 0.51 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 2.0 Hz, 1H), 7.60 (d, *J* = 8.6 Hz, 2H), 7.40 – 7.30 (m, 8H), 6.70 (d, *J* = 8.4 Hz, 1H), 5.02 (d, *J* = 15.8 Hz, 1H), 4.73 (d, *J* = 15.9 Hz, 1H), 4.34 – 4.23 (m, 2H), 2.42 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.5, 165.8, 158.7, 145.4, 143.0, 136.0, 134.2, 132.4, 131.3, 129.3 (×2), 129.0 (×2), 128.9, 128.6, 128.1, 127.3 (×2), 123.7 (*J* = 286 Hz), 122.6, 119.6 (×2), 111.3, 100.7, 98.3, 77.2, 63.7, 44.4, 13.8, 13.6 ppm. HRMS (ESI+) calcd for [C₃₀H₂₂Cl₂F₃N₃O₄ + Na]⁺ m/z 638.0832, found 638.0827.

ethyl-(4R,5R)-1'-benzyl-5'-chloro-1-(3-chlorophenyl)-3-methyl-2'-oxo-4-(trifluoromethyl)-1,4-dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp163-165 °C, 92.3 mg, 75% yield, 89% ee, >20:1 dr. HPLC (IB-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 15.6 min (major), 19.3 min (minor). $[a]^{20}_{D}$ = -16 (c = 0.58 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 7.9 Hz, 2H), 7.57 (s, 1H), 7.41 – 7.31 (m, 7H), 7.19 (d, *J* = 7.5 Hz, 1H), 6.70 (d, *J* = 8.5 Hz, 1H), 5.04 (d, *J* = 15.9 Hz, 1H), 4.74 (d, *J* = 15.8 Hz, 1H), 4.34 – 4.07 (m, 2H), 2.43 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.7, 166.0, 159.1, 145.8, 143.2, 138.7, 135.3, 134.4, 132.6, 130.5, 129.2(×2), 129.1, 128.9, 128.3, 127.5(×2), 126.1, 123.9(*J* =286 Hz), 122.8, 118.7, 116.5, 111.5, 101.0, 98.6, 77.5, 63.9, 44.7, 14.0, 13.8 ppm. HRMS (ESI+) calcd for [C₃₀H₂₂Cl₂F₃N₃O₄ + Na]⁺ m/z 638.0832, found 638.0832.

ethyl-(4R,5R)-1'-benzyl-1-(3-bromophenyl)-5'-chloro-3-methyl-2'-oxo-4-(*trifluoromethyl)-1,4-dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate*, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp177-179°C, 104.1 mg, 79% yield, 91% ee, >20:1 dr. HPLC (IB-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 13.8 min (major), 17.6 min (minor). $[a]^{20}_{D}=$ -41 (c = 0.54 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.88 – 7.82 (m, 1H), 7.72 – 7.66 (m, 1H), 7.63 – 7.58 (m, 1H), 7.42 – 7.30 (m, 7H), 7.25 (t, *J* = 8.1 Hz, 1H), 6.70 (d, *J* = 8.5 Hz, 1H), 5.04 (d, *J* = 15.8 Hz, 1H), 4.74 (d, *J* = 15.9 Hz, 1H), 4.37 – 4.21 (m, 2H), 2.42 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.5, 165.8, 158.8, 145.6, 143.0, 138.6, 134.2, 132.4, 130.5, 129.0 (×2), 128.9, 128.9, 128.6, 128.1, 127.3 (×2), 123.9 (*J* = 273 Hz), 122.9, 122.5, 121.3, 116.8, 111.3, 100.8, 98.4, 77.2, 63.7, 44.4, 13.8, 13.6 ppm. HRMS (ESI+) calcd for [C₃₀H₂₂BrClF₃N₃O₄ + Na]⁺ m/z 682.0327, found 682.0325.

ethyl-(4R,5R)-1'-benzyl-5'-chloro-3-methyl-2'-oxo-4-(trifluoromethyl)-1-(4-(trifluoromethyl)phenyl)-1,4-dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp147-149 °C, 92.2 mg, 71% yield, 90% ee, >20:1 dr. HPLC (IB-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 14.6 min (major), 19.7 min (minor). $[a]^{20}_{D}= -34$ (c = 0.50 in CH₂Cl₂). ¹H **NMR** (500 MHz, CDCl₃) δ 7.79 (d, J = 8.4 Hz, 2H), 7.71 – 7.60 (m, 3H), 7.41 – 7.30 (m, 6H), 6.71 (d, J = 8.5 Hz, 1H), 5.02 (d, J = 15.8 Hz, 1H), 4.75 (d, J = 15.9 Hz, 1H), 4.39 – 4.23 (m, 2H), 2.44 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.6, 166.0, 159.4, 146.3, 143.2, 140.4, 134.4, 132.7, 129.2(×2), 129.1, 128.8(q, ${}^{3}J_{CF3}=5.0$ Hz), 128.3, 127.9(q, ${}^{2}J_{CF3}=32.8$ Hz), 127.66(×2), 127.4, 126.7(q, ${}^{3}J_{CF3}=3.8$ Hz), 124.1(q, ${}^{1}J_{CF3}=273$ Hz), 123.9(J = 286 Hz), 122.7, 118.3(×2), 111.5, 101.4, 98.7, 77.5, 64.0, 44.7, 14.0, 13.8 ppm. HRMS (ESI+) calcd for [C₃₁H₂₂ClF₆N₃O₄ + Na]⁺ m/z 672.1095, found 672.1099.

ethyl-(4R,5R)-1'-benzyl-5'-chloro-3-methyl-2'-oxo-1-(p-tolyl)-4-(trifluoromethyl)-1,4-dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp150-152°C, 77.4 mg, 65% yield, 94% ee, >20:1 dr. HPLC (IB-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 280 nm) t_R = 14.1 min (major), 17.6 min (minor). [a]²⁰_D= -22 (c = 0.53 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, *J* = 2.0 Hz, 1H), 7.52 (d, *J* = 8.2 Hz, 2H), 7.41 – 7.30 (m, 6H), 7.18 (d, *J* = 7.9 Hz, 2H), 6.68 (d, *J* = 8.5Hz, 1H), 5.01 (d, *J* = 15.9 Hz, 1H), 4.73 (d, *J* = 15.8 Hz, 1H), 4.37 – 4.21 (dd, *J* = 7.1, 5.1 Hz, 2H), 2.42 (s, 3H), 2.35 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.8, 166.3, 158.9, 144.9, 143.2, 135.9, 135.4, 134.5, 132.4, 129.9(×2), 129.2(×2), 129.0, 128.7, 128.2, 127.5(×2), 124.0(*J*) =286 Hz), 123.0, 118.7(×2), 111.4, 100.3, 98.3, 77.5, 63.8, 44.6, 21.1, 14.0, 13.8 ppm. HRMS (ESI+) calcd for $[C_{31}H_{25}ClF_3N_3O_4 + Na]^+ m/z$ 618.1378, found 618.1373.

ethyl-(4R,5R)-1-(benzo[d]thiazol-2-yl)-1'-benzyl-5'-chloro-3-methyl-2'-oxo-4-(trifluoromethyl)-1,4-dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp149-151°C, 85.5 mg, 67% yield, 98% ee, >20:1 dr. HPLC (AD-H, *i*-PrOH/n-hexane = 7/93, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 12.4 min (major), 17.3 min (minor). $[a]^{20}D= -36$ (c = 0.51 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.94 – 7.89 (m, 1H), 7.87 – 7.80 (m, 1H), 7.75 – 7.69 (m, 1H), 7.46 – 7.29 (m, 8H), 6.68 (d, *J* = 8.5 Hz, 1H), 5.09 (d, *J* = 15.9 Hz, 1H), 4.65 (d, *J* = 15.9 Hz, 1H), 4.40 – 4.23 (m, 2H), 2.45 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 165.7, 159.8, 158.0, 151.4, 148.3, 143.4, 134.4, 132.8, 132.7, 129.1(×2), 129.1, 128.2, 127.6(×2), 127.5, 126.6, 125.1, 123.8(*J* = 286 Hz), 123.0, 122.5, 121.6, 111.4, 102.6, 99.0, 77.5, 64.0, 44.8, 14.0, 13.9 ppm. HRMS (ESI+) calcd for [C₃₁H₂₂ClF₃N₄O₄S + Na]⁺ m/z 661.0895, found 661.0887.

ethyl-(4R,5R)-1'-benzyl-5'-chloro-1-isopropyl-3-methyl-2'-oxo-4-(trifluoromethyl)-1,4-dihydrospiro[furo[2,3-c]pyrazole-5,3'-indoline]-4-carboxylate, purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate 15/1 (v/v); white solid, mp153-155°C, 79.9 mg, 73% yield, 99% ee, >20:1 dr. HPLC (IB-H, *i*-PrOH/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 15.8 min (major), 19.4 min (minor). [α]²⁰_D= -19 (c = 0.52 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.64 (s, 1H), 7.39 – 7.34 (m, 4H), 7.33 – 7.29 (m, 2H), 6.66 (d, *J* = 8.5 Hz, 1H), 4.98 (d, *J* = 15.9 Hz, 1H), 4.75 (d, *J* = 16.0 Hz, 1H), 4.37 – 4.29 (m, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 2.34 (s, 3H), 1.46 (dd, *J* = 6.8, 1.9 Hz, 6H), 1.30 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.8, 166.2, 158.8, 143.1, 143.0, 134.4, 132.0, 128.9 (×2), 128.6, 128.5, 128.0, 127.3 (×2), 123.8 (*J* = 286 Hz), 122.9, 111.1, 98.2, 97.4, 77.2, 63.4, 51.6, 44.3, 21.9, 21.6, 13.8, 13.4 ppm. HRMS (ESI+) calcd for [C₂₇H₂₅ClF₃N₃O₄ + Na]⁺ m/z 570.1378, found 570.1379.

3. Scale-up experiment

(Z)-ethyl 2-(1-benzyl-5-chloro-2-oxoindolin-3-ylidene)-3,3,3-

trifluoropropanoate **1a** (4 mmol) and pyrazolone **2a** (2 mmol) were stirred in CH₂Cl₂ (20 mL) in the presence of catalyst **3b** (0.02 mmol) at room temperature for 36 h, then I₂ (0.4 mmol) and 30% H₂O₂ aqueous solution (4 mmol) were added, and the mixture was stirred for 2 h at room temperature. The reaction was monitored by TLC. After completion, the mixture was dried and concentrated. The residue was purified by flash chromatography (petroleum ether/ethyl acetate =10:1) to give the product **4a** in 75% yield (0.87 g, > 20:1 dr and 95% ee).

4. ESI-MS spectrum

Figure S1 ESI-MS spectrum (positive mode) of the reaction

5.¹H, ¹³C NMR spectra and HPLC chromatograms of compounds 4a-4x ¹H NMR spectrum of 4a (CDCl₃, 500 MHz)

HPLC chromatograms of 4a

#	Start time[min]	Time[min]	End time[min]	Area%
1	13.388	13.932	15.306	50.080
2	18.263	18.932	20.541	49.920

4a-chr

¹H NMR spectrum of 4b (CDCl₃, 500 MHz)

¹³C NMR spectrum of 4b (CDCl₃, 125 MHz)

HPLC chromatograms of 4b

#	Start time[min]	Time[min]	End time[min]	Area%
1	11.498	12.092	12.721	3.800
2	13.560	14.279	15.832	96.200

 1.333
 2.4
 2.4
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.6
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7
 2.7</

S23

HPLC chromatograms of 4c

4c-rac

#	时间	峰面积	衅高	峰宽	对称因子	峰面积%	类型
1	5.852	689.1	43	0.2348	0.519	47.641	BB
2	7.828	757.3	27.2	0.405	0.737	52.359	88

4c-chr

#	时间	峰面积	峰高	峰宽	对称因子	峰面积%	类型
1	5.799	58.5	5.2	0.1748	0.904	2.080	BB
2	7.756	2753.3	98.4	0.3944	0.779	97.920	BB

¹H NMR spectrum of 4d (CDCl₃, 500 MHz)

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

¹³C NMR spectrum of 4d (CDCl₃, 125 MHz)

HPLC chromatograms of 4d

4d-chr

#	Start time[min]	Time[min]	End time[min]	Area%
1	15.530	16.132	16.839	1.760
2	18.396	19.452	20.978	98.240

¹H NMR spectrum of 4e (CDCl₃, 500 MHz)

¹³C NMR spectrum of 4e (CDCl₃, 125 MHz)

HPLC chromatograms of 4e

4e-rac

#	时间	鮮面积	解高	峰宽	对称因子	峰面积%	类型
1	6.494	12002.7	506.6	0.3304	0.741	50.940	68
2	9.321	11559.5	341.6	0.4788	0.746	49.050	68A

4e-chr

#	时间	峰面积	鮮高	峰宽	对称因子	峰面积%	类型
1	6.434	1013	54.2	0.2722	0.511	2.897	88
2	9.031	33951.5	936.3	0.6044	0.372	97.103	MM

¹H NMR spectrum of 4f (CDCl₃, 500 MHz)

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

¹³C NMR spectrum of 4f (CDCl₃, 125 MHz)

HPLC chromatograms of 4f

#	Start time[min]	Time[min]	End time[min]	Area%
1	11.148	11.639	12.228	1.639
2	13.865	14.626	16.165	98.307

¹H NMR spectrum of 4g (CDCl₃, 500 MHz)

¹³C NMR spectrum of 4g (CDCl₃, 125 MHz)

HPLC chromatograms of 4g

#	时间	峰面积	峰高	峰宽	对称因子	峰面积%	类型
1	6.844	738.3	26.8	0.4588	0.758	50.807	MM
2	9.996	714.8	20	0.4983	1.013	49.193	BB

4g-chr

#	时间	峰面积	峰高	峰宽	对称因子	峰面积%	类型
1	6.727	1329.1	51.5	0.365	1.027	4.053	BB
2	9.731	31467.7	747.9	0.7012	0.762	95.947	MM

¹H NMR spectrum of 4h (CDCl₃, 500 MHz)

¹³C NMR spectrum of 4h (CDCl₃, 125 MHz)

HPLC chromatograms of 4h

4h-rac

#	时间	峰面积	峰高	峰宽	对称因子	峰面积%	类型
1	13.729	15297.7	796.2	0.3202	0.672	50.072	MM
2	16.978	15253.9	446.6	0.5693	0.875	49.928	MM

4h-chr

#	时间	峰面积	峰高	峰宽	对称因子	峰面积%	类型
1	13.818	1234	57.3	0.3252	0.792	3.048	VB
2	17.415	39252.7	1369.9	0.4776	0.653	96.952	MM

¹H NMR spectrum of 4i (CDCl₃, 500 MHz)

¹³C NMR spectrum of 4i (CDCl₃, 125 MHz)

— 171.8 — 166.1	159.142.142.142.142.142.142.142.142.142.142	/ / 99.0	77.3	- 63.4	 - 21.1 <13.8 13.6

HPLC chromatograms of 4i

4i-rac

#	时间	峰面积	峰高	峰宽	对称因子	峰面积%	类型
1	8.173	5289.6	356	0.2294	0.877	50.412	BB
2	11.12	5203.1	289.8	0.2774	0.868	49.588	BB

4i-chr

#	时间	峰面积	峰高	峰宽	对称因子	峰面积%	类型
1	8.239	560.9	38.6	0.2216	1.038	4.824	BB
2	11.175	11065.1	611	0.2793	0.825	95.176	BB

¹H NMR spectrum of 4j (CDCl₃, 500 MHz)

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\$

¹³C NMR spectrum of 4j (CDCl₃, 125 MHz)

HPLC chromatograms of 4j

#	Start time[min]	Time[min]	End time[min]	Area%
1	16.665	17.612	18.839	5.951
2	23.050	24.385	30.574	94.049

¹H NMR spectrum of 4k (CDCl₃, 500 MHz)

¹³C NMR spectrum of 4k (CDCl₃, 125 MHz)

HPLC chromatograms of 4k

4k-chr

#	Start time[min]	Time[min]	End time[min]	Area%
1	17.973	18.785	19.701	1.750
2	21.314	22.465	26.613	98.250

¹H NMR spectrum of 4l (CDCl₃, 500 MHz)

¹³C NMR spectrum of 4l (CDCl₃, 125 MHz)

HPLC chromatograms of 4l

#	Start time[min]	Time[min]	End time[min]	Area%
1	17.151	17.892	18.781	3.400
2	31.829	33.118	36.195	96.600

¹H NMR spectrum of 4m (CDCl₃, 500 MHz)

 8
 8

 775
 8

 775
 7

 766
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 755
 7

 756
 7

 757
 <t

¹³C NMR spectrum of 4m (CDCl₃, 125 MHz)

HPLC chromatograms of 4m

4m-chr

#	Start time[min]	Time[min]	End time[min]	Area%
1	8.976	9.479	10.167	3.317
2	10.371	10.946	12.921	96.683

¹H NMR spectrum of 4n (CDCl₃, 500 MHz)

 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7

¹³C NMR spectrum of 4n (CDCl₃, 125 MHz)

HPLC chromatograms of 4n

4n-chr

#	Start time[min]	Time[min]	End time[min]	Area%
1	11.359	11.932	12.995	97.475
2	13.939	14.386	14.930	2.525

¹H NMR spectrum of 40 (CDCl₃, 500 MHz)

¹³C NMR spectrum of 40 (CDCl₃, 125 MHz)

HPLC chromatograms of 40

#	Start time[min]	Time[min]	End time[min]	Area%
1	11.951	12.466	13.684	97.335
2	14.770	15.186	15.779	2.665

¹H NMR spectrum of 4p (CDCl₃, 500 MHz)

¹³C NMR spectrum of 4p (CDCl₃, 125 MHz)

HPLC chromatograms of 4p

4p-chr

#	Start time[min]	Time[min]	End time[min]	Area%
1	12.292	12.892	14.181	96.150
2	14.707	15.292	15.927	3.850

¹H NMR spectrum of 4q (CDCl₃, 500 MHz)

¹³C NMR spectrum of 4q (CDCl₃, 125 MHz)

HPLC chromatograms of 4q

4q-chr

#	Start time[min]	Time[min]	End time[min]	Area%
1	17.031	17.852	19.751	95.337
2	23.552	24.252	25.341	4.663

¹H NMR spectrum of 4r (CDCl₃, 500 MHz)

¹³C NMR spectrum of 4r (CDCl₃, 125 MHz)

HPLC chromatograms of 4r

#	Start time[min]	Time[min]	End time[min]	Area%
1	12.839	13.586	15.146	93.928
2	18.025	18.639	19.636	6.072

¹H NMR spectrum of 4s (CDCl₃, 500 MHz)

¹³C NMR spectrum of 4s (CDCl₃, 125 MHz)

HPLC chromatograms of 4s

#	Start time[min]	Time[min]	End time[min]	Area%
1	14.626	15.599	17.344	94.342
2	18.416	19.279	20.276	5.658

¹H NMR spectrum of 4t (CDCl₃, 500 MHz)

¹³C NMR spectrum of 4t (CDCl₃, 125 MHz)

HPLC chromatograms of 4t

4t-chr

#	Start time[min]	Time[min]	End time[min]	Area%
1	13.169	13.759	15.162	95.348
2	17.128	17.559	18.251	4.652

¹H NMR spectrum of 4u (CDCl₃, 500 MHz)

¹³C NMR spectrum of 4u (CDCl₃, 125 MHz)

HPLC chromatograms of 4u

4u-rac

4u-chr

#	Start time[min]	Time[min]	End time[min]	Area%
1	13.627	14.599	16.499	95.117
2	19.004	19.732	20.440	4.883

¹H NMR spectrum of 4v (CDCl₃, 500 MHz)

¹³C NMR spectrum of 4v (CDCl₃, 125 MHz)

HPLC chromatograms of 4v

4v-chr

#	Start time[min]	Time[min]	End time[min]	Area%
1	13.065	14.106	15.756	96.993
2	16.802	17.625	18.563	3.007

¹H NMR spectrum of 4w (CDCl₃, 500 MHz)

¹³C NMR spectrum of 4w (CDCl₃, 125 MHz)

HPLC chromatograms of 4w

4w-rac

#	时间	峰面积	峰高	峰宽	对称因子	峰面积%	类型
1	12.592	4048.7	103.8	0.5809	0.581	50.724	VB
2	17.414	3933.1	68.4	0.8687	0.652	49.276	BB

4w-chr

#	时间	峰面积	峰高	峰宽	对称因子	峰面积%	类型
1	12.37	40244	1002	0.6694	0.545	99,196	MM
2	17.266	326.1	5,8	0.6617	0.808	0.804	BB

¹H NMR spectrum of 4x (CDCl₃, 500 MHz)

¹³C NMR spectrum of 4x (CDCl₃, 125 MHz)

HPLC chromatograms of 4x

#	Start time[min]	Time[min]	End time[min]	Area%
1	14.909	15.799	17.326	99.705
2	17.700	18.359	19.402	0.295

6. X-ray crystal structure of the compound 4c

Suitable crystals of enantiopure 4c for X-ray analysis were obtained from crystallization in CH₂Cl₂.

The thermal ellipsoids are shown at 50% probability level

Parameter	Value		
Formula weight	581.96		
Temperature	193(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P212121		
	$a = 9.5219(5) \text{ Å}$ $\alpha = 90^{\circ}$		
Unit cell dimensions	$b = 11.5329(6)$ Å $\beta = 90^{\circ}$		
	$c = 24.5713(14) \text{ Å} \qquad \gamma = 90^{\circ}$		
Volume	2698.3(3) Å ³		
Ζ	4		
Density (calculated)	1.433 Mg/m ³		
Absorption coefficient	0.205 mm ⁻¹		
F_{000}	1200		
Crystal size	0.120 x 0.110 x 0.080 mm ³		
Theta range for data collection	1.951° to 27.502°		
	$-11 \le h \le 12$		
Index ranges	$-14 \le k \le 14$		
	$-28 \le l \le 31$		
Reflections collected	25178		
Independent reflections	6159 [R(int) = 0.0476]		
Completeness to theta = 25.242°	99.2 %		
Refinement method	Full-matrix least-squares on F ²		

 Table S1. Crystal data and structure refinement parameters of the compound 4c

Data / restraints / parameters	6159 / 6 / 383
Goodness-of-fit on F2	1.030
Final R indices [I>2sigma(I)]	$R_1 = 0.0348, \omega R_2 = 0.0824$
R indices (all data)	$R_1 = 0.0400, \omega R_2 = 0.0863$
Absolute structure parameter	0.07(3)
Extinction coefficient	n/a
Largest diff. peak and hole	0.196 and -0.239 e.Å $^{\text{-3}}$