Supplementary Information

Polyhaloalkanes as the C1 Source: Radical-Mediated Migratory Carbonylation of Alkenes with Polyhaloalkanes toward α,β -Unsaturated Carbonyls

Tian-Bao Zhang, Yong Yao, Jing-Hao, Qin, Qing Sun, Aimin Li, Qing He,* Jin-Heng Li* and Xuan-Hui Ouyang*

Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China;
State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China,
School of Chemistry and Chemical Engineering, Henan Normal University, Kaifeng, Henan, 453007, China;

E-mail: heqing85@hnu.edu.cn, jhli@hnu.edu.cn, xuanhuiouyang@163.com,

List of Contents

(A) Typical experimental procedure	S2-S3
(B) General procedure for the starting materials	S4-S7
(C) Mechanistic Studies	S8-24
(D) Analytical data	S26-S42
(E) Spectra	S43-90
(F) References	S91-93

(A) Typical experimental procedure

(a) General

The ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker 500 (500, 125, and 471 MHz) advance spectrometer at room temperature in CDCl₃ (solvent signals, δ 7.26 and 77.0 ppm) using TMS as internal standard. Low-resolution mass spectra (LRMS) data were measured on GCMS-QP2010 Ultra. High-resolution mass spectra (HRMS) was recorded on an electrospray ionization (ESI)apparatus using time-of-flight (TOF) mass spectrometry. Unless otherwise noted, all reactions were carried out using standard Schlenk techniques, and all starting materials and solvents were commercially available and were used without further purification. Column chromatography was performed on silica gel (300-400 mesh) using petroleum ether (PE)/ethyl acetate (EA).

(b) General procedure for the synthesis of α,β -unsaturated esters 4.

To a Schlenk tube were added Cu(MeCN)₄PF₆ (10 mol%), 4-MeOC₆H₄N₂BF₄ (0.4 mmol, 2 equiv), Na₂CO₃ (0.4 mmol, 2 equiv), alkene 1 (0.2 mmol), alcohol **3** (0.6 mmol), H₂O (5 equiv, 18 mg), CHCl₃ **2a** (2 mL), the tube was then charged with argon. The mixture was stirred at 120 °C (oil bath) until complete consumption of starting material as monitored by TLC and/or GC-MS analysis (about 6 h). After the reaction was finished, the combined organic phases concentrated, and the resulting residue was purified by silica gel column chromatography (petroleum/ethyl acetate) to afford the desired product **4**.

(c) General procedure for the synthesis of α,β -unsaturated aldehydes 5

 $\begin{array}{c} R^{2} \\ R^{1} \\ 1 \end{array} + \begin{array}{c} CHBrCl_{2} \\ R^{2} \\ R^{1} \\ 1 \end{array} + \begin{array}{c} CHBrCl_{2} \\ CHBrCl_{2} \\ R^{2} \\ R$

To a Schlenk tube were added $Cu(OTf)_2$ (10 mol%), 4-MeOC₆H₄N₂BF₄ (0.4 mmol, 2 equiv), Na₂CO₃ (0.4 mmol, 2 equiv), alkenes 1 (0.2 mmol), CHBrCl₂ 2c (0.6 mmol, 3 equiv), H₂O (1 mmol), DMSO (2 mL), the tube was then charged with argon. The mixture was stirred at 120 °C (oil bath) until complete consumption of starting material as monitored by TLC and/or GC-MS analysis (about 12 h). After the reaction was finished, the combined organic phases concentrated, and the resulting residue was purified by silica gel column chromatography (petroleum/ethyl acetate) to afford the desired product **5**.

MeO	1a	+ CHBrCl ₂ $\frac{Cu(OTf)_{2} (10 \text{ mol \%})}{4-MeOC_{4}H_{4}N_{2}BF_{4} (2 \text{ equiv})}$ $\frac{4-MeOC_{4}H_{4}N_{2}BF_{4} (2 \text{ equiv})}{H_{2}O (5 \text{ equiv}), Na_{2}CO_{3} (2 \text{ equiv})}$ Ar, DMSO, 120 °C, 6 h	MeO 5aa
	Entry	Variation from the Standard Conditions	5aa
	1	None	64
	2	CuCl	51
	3	FeCl ₂	43
	4	Cu(MeCN) ₄ PF ₄	52
	5	Cu(MeCN) ₄ BF ₄	45
	6	$Cu(acac)_2$	40
	7	Without Na ₂ CO ₃	NR
	8	Without 4-MeOC ₆ H ₄ N ₂ BF ₄	NR
	9	K ₃ PO ₄ instead of Na ₂ CO ₃	43
	10	NaHCO3 instead of Na2CO3	trace
	11	NaOH instead of Na ₂ CO ₃	33
	12	EA instead of DMSO	NR
	13	MeCN instead of DMSO	NR
	14	DMA instead of DMSO	NR
	15	1,4-dioxane instead of DMSO	NR
	16	PhCF ₃ instead of DMSO	NR
	17	DMSO: $H_2O = 1:1$	trace

[a] Reaction conditions: **1a** (0.2 mmol), CBrHCl₂ **2c** (0.6 mmol), Cu(OTf)₂ (0.02 mmol), Na₂CO₃ (0.4 mmol), 4-MeOC₆H₄N₂BF₄ (0.4 mmol), H₂O (1 mmol), at 120 °C under argon atmosphere for 12 h.

Table S1. Screening of optimal reaction conditions for α,β -unsaturated aldehydes 5.

(B) General procedure for the synthesis of the starting materials

The common alkene, polyhaloalkane and alcohol substrates were commercially available. The synthesis of the substrate 1x, 1y, 1w and 1z was described as follows:

Synthesis of S2¹

3-(Trifluoromethanesulfonyl)estrone (S2) was synthesized according to the reported procedure. Under nitrogen atmosphere, to a 50 mL flamed dried round bottom charged with S1 (2700 mg, 10.0 mmol, 1.0 equiv) was added DCM (30.0 mL) and pyridine (1580 mg, 1.60 mL, 20.0 mmol, 2.0 equiv). The resulting mixture was cooled to 0°C in an ice/water bath. Tf₂O (3390 mg, 2.10 mL, 15.0 mmol, 1.5 equiv) was added dropwise over ca. 5 minutes. The reaction mixture was warmed to room temperature and stirred for 5 hours. The resulting brown reaction was then quenched by water (15 mL). The layers were separated, and the aqueous layer was extracted with DCM (3 × 20 mL). The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, to afford the S2 as a white solid.

Synthesis of S31

A mixture of **S2** (1610 mg, 4.0 mmol, 1.00 equiv), ethynyltrimethylsilane (0.85 mL, 6.0 mmol, 1.5 equiv), Et₃N (3.0 mL), and Pd(PPh₃)₂Cl₂ (84 mg, 0.12 mmol, 0.03 equiv) in 15 mL DMF was stirred at 90 °C for 4 h under nitrogen. The reaction mixture was then diluted with water, extracted with 1:1 petroleum ether/ether, washed with water until neutral, and dried (Na₂SO₄), after filtration the filtrate was evaporated. Chromatography of the residue on silica gel provided the corresponding product **S3**.

Synthesis of S4¹

To S3 (1160 mg, 3.30 mmol, 1.00 equiv) a solution of K₂CO₃ (520 mg, 4.95 mmol,

1.5equiv) in 10 mL MeOH was added and the mixture was stirred at room temperature, until TLC analysis showed that S3 was completely consumed. The reaction mixture was filtered through a short plug of silica gel. The filtration was concentrated and then purified by flash chromatography to give the corresponding product **S4**.

Synthesis of 1x and 1y²

Under nitrogen atmosphere, to a 25 mL flamed dried round bottom charged with S4 (278 mg, 1 mmol, 1.0 equiv), Arylboronic acid (2.0 mmol, 2.0 equiv), and Pd(PPh₃)₄ (33 mg, 0.03 mmol, 0.03 equiv) was added 1,4-dioxane (8.0 mL) and HOAc (0.10-0.15 equiv), then stirred at 80 °C for 10 h. The reaction mixture was then diluted with water, and the aqueous layer was extracted with ethyl acetate (3×10 mL). The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated in vacuo. Chromatography of the residue on silica gel provided the corresponding product 1x and 1y.

Synthesis of 1w^{1,3}

Under nitrogen atmosphere, to a 50 mL flamed dried round bottom charged with Vitamin E (4300 mg, 10.0 mmol, 1.0 equiv) was added DCM (30.0 mL) and pyridine (1580 mg, 1.6 mL, 20.0 mmol, 2.0 equiv). The resulting mixture was cooled to 0°C in an ice/water bath. Tf₂O (3390 mg, 2.1 mL, 15.0 mmol, 1.5 equiv) was added dropwise

over ca. 5 minutes. The reaction mixture was warmed to room temperature and stirred for 5 hours. The resulting reaction was then quenched by water (15 mL). The layers were separated, and the aqueous layer was extracted with DCM (3×20 mL). The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, to afford the S5.

Under nitrogen atmosphere, to a 25 mL flamed dried round bottom charged with **S5** (562 mg, 1 mmol, 1.0 equiv), 4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane (308 mg, 2.0 mmol, 2.0 equiv), Pd(PPh₃)₄ (139 mg, 0.12 mmol, 0.12 equiv), and $K_2CO_3(414 \text{ mg}, 3 \text{ mmol}, 3\text{ equiv})$, was added dioxane-water (4:1) mixture at 120 °C for 18 h. The reaction mixture was then diluted with water, and the aqueous layer was extracted with ethyl acetate (3×10 mL). The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated in vacuo. Chromatography of the residue on silica gel provided the corresponding product **1w**.

Synthesis of S6¹

HO
$$I$$
 + TMS \longrightarrow I + TMS + I + +

A mixture of (4-iodophenyl)methanol (2400 mg, 10.0 mmol, 1.0 equiv), ethynyltrimethylsilane (2.2 mL, 15.0 mmol, 1.5 equiv), triethylamine (7.5 mL), CuI (190 mg, 1 mmol, 0.1 equiv), and Pd(PPh₃)₂Cl₂ (210 mg, 0.30 mmol, 0.03 equiv) in 30 mL THF was stirred at 80 °C for 10 h under nitrogen. The reaction mixture was then diluted with water, extracted with 1:1 petroleum ether/ether, washed with water until neutral, and dried (Na₂SO₄), after filtration the filtrate was evaporated. Chromatography of the residue on silica gel provided the corresponding product (4-((trimethylsilyl)ethynyl)phenyl)methanol.

To (4-((trimethylsilyl)ethynyl)phenyl)methanol (2041 mg, 10.0 mmol, 1.0 equiv) a solution of K_2CO_3 (2070 mg, 15.0 mmol, 1.5 equiv) in 30 mL MeOH was added and the mixture was stirred at room temperature, until TLC analysis showed that L2 was

completely consumed. The reaction mixture was filtered through a short plug of silica gel. The filtration was concentrated and then purified by flash chromatography to give the corresponding product **S6**.

Synthesis of S7²

Under nitrogen atmosphere, to a 50 mL flamed dried round bottom charged with S6 (660 mg, 5.0 mmol, 1.0 equiv), phenylboronic acid (1220 mg, 10.0 mmol, 2.0 equiv), and Pd(PPh₃)₄ (165 mg, 0.15 mmol, 0.03 equiv) was added 1,4-dioxane (20 mL) and HOAc (0.1-0.15 equiv), then stirred at 80 °C for 10 h. The reaction mixture was then diluted with water, and the aqueous layer was extracted with ethyl acetate (3×10 mL). The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated in vacuo. Chromatography of the residue on silica gel provided the corresponding product **S7**.

Synthesis of 1z⁴

Under nitrogen atmosphere, a 25 mL flamed dried round bottom flask was charged with **S7** (210 mg, 1.0 mmol, 1.0 equiv), dehydrocholic acid (804 mg, 2.0 mmol, 1.5 equiv), DMAP (12.2 mg, 0.10 mmol, 10.0 mol%), DCC (412 mg, 2.0 mmol, 2.0 equiv), and DCM (8.0 mL). After the reaction mixture was then stirred at 25 °C for 24 hours, it was concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, to afford the compound **1z** as a white solid.

(C) Mechanistic Studies

(a) Isolation of 6b-D3.

$$\begin{array}{c} R^{1} \\ R^{2} \\ 1a \end{array} + \begin{array}{c} CHCl_{3} + alcohol \\ 1a \end{array} + \begin{array}{c} Cu(MeCN)_{4}BF_{4} (10 \text{ mol}\%) \\ \begin{array}{c} 4-MeOC_{6}H_{4}N_{2}BF_{4} (2 \text{ equiv}) \\ \hline Na_{2}CO_{3} (2 \text{ equiv}) \\ Ar, 80 \ ^{\circ}C, 6 \text{ h} \end{array} + \begin{array}{c} OR \\ R^{1} \\ R^{2} \\ \hline CCl_{3} \\ \hline R^{2} \\ 6 \end{array} + \begin{array}{c} CCl_{3} \\ \hline CCl_{3} \\ \hline$$

To a Schlenk tube were added substrates $Cu(MeCN)_4BF_6$ (10 mol%), 4-MeOC₆H₄N₂BF₄ (0.4 mmol, 2 equiv), Na₂CO₃ (0.4 mmol, 2 equiv), alkene **1** (0.2 mmol), CD₃OD **3b-D4** (0.6 mmol), CHCl₃ **2a** (2 mL), the tube was then charged with argon. The mixture was stirred at 80 °C until for 6 h. After the reaction was finished, the combined organic phases concentrated, and the resulting residue was purified by silica gel column chromatography (petroleum/ethyl acetate) to afford the desired product **6**.

Methoxy-4-(3,3,3-trichloro-1-(methoxy-D3)propyl)benzene (6b-D3):

Reaction Time: 1.5 h, at 120 °C; Yield: 82%, Yellow oil; ¹H MeO MeO Reaction Time: 1.5 h, at 120 °C; Yield: 82%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.27 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 8.5 Hz, 2H), 4.56-4.54 (m, 1H), 3.82 (s, 3H), 3.29-3.24 (m, 1H), 2.99-2.96 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.5, 132.6, 127.9, 114.1, 97.4, 80.5, 62.1, 55.3, 55.2; LRMS (EI, 70eV) m/z (%): 287 (M⁺+2, 2), 285 (M⁺, 2), 54 (100), 135 (20), 111 (4); HRMS m/z (ESI) calcd for C₁₁H₁₁O₂D₃Cl₃ ([M⁺H]⁺) 286.0242, found 286.0239.

Me	OEt 6a	CCl ₃ Cu(MeCN) ₄ PF ₆ (10 mol%) <u>4-MeOC₆H₄N₂BF₄ (2 equiv)</u> H ₂ O (5 equiv), Na ₂ CO ₃ (2 equiv) Ar, 130 °C, 6 h	MeO 4aa
-	Entry	Variation from the Standard Conditions	4 aa
-	1	None	36
	2	Without Cu(MeCN) ₄ PF ₆	33
	3	Without 4-MeOC ₆ H ₄ N ₂ BF ₄	NR
	4	Without Na ₂ CO ₃	37
	5	Without Na ₂ CO ₃ and Cu(MeCN) ₄ PF ₆	75
	6 ^[b]	PhCl instead of CHCl ₃	36
	7 ^[b]	PhCF ₃ instead of CHCl ₃	21
	8 ^[b]	DMF instead of CHCl ₃	trace
	9 ^[b]	DMSO instead of CHCl ₃	trace
	10 ^[b]	DMA instead of CHCl ₃	trace
	11 ^[b]	MeCN instead of CHCl ₃	trace
_	12 ^[b]	130 °C	78

(b) Transformation of olefin alkoxy polychloroalkylation product 6a.

[a] Reaction conditions: **6a** (0.2 mmol), Cu(MeCN)₄PF₆ (0.02 mmol), Na₂CO₃ (0.4 mmol), 4-MeOC₆H₄N₂BF₄ (0.4 mmol), and CHCl₃ (2 mL) at 120 °C under argon atmosphere for 6 h. [b] **6a** (0.2 mmol), 4-MeOC₆H₄N₂BF₄ (0.4 mmol), and CHCl₃ (2 mL) at 120 °C under argon atmosphere for 6 h.

Table S2. Transformation of 6a.

(c) Transformation of the intermediate 7a.

1-(3,3-dichloro-1-ethoxyallyl)-4-methoxybenzene (7a)

EtO
CI

$$I$$
H NMR (400 MHz, CDCl₃) δ 7.28 (d, $J = 8.4$ Hz, 2H), 6.89 (d,
 $J = 8.8$ Hz, 2H), 6.06 (d, $J = 8.8$ Hz, 1H), 5.07 (d, $J = 8.8$ Hz, 1H),
3.80 (s, 3H), 3.57-3.43 (m, 2H), 1.23 (t, $J = 6.8$ Hz, 3H).¹³C

NMR (101 MHz, CDCl₃) δ 159.46, 131.89, 131.20, 127.69, 122.53, 114.08, 78.27, 64.06, 55.29, 15.20 .LRMS (EI, 70 eV) m/z (%): 262 (M⁺+2, 2), 260 (M⁺, 3), 225(100), 197 (49), 137 (16).

(d) Transformation of olefin alkoxy polychloroalkylation product 6b-D3.

1-Methyl-D3 (E)-3-(4-methoxyphenyl)acrylate (4ab-D3):

Yield: 73%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ MeO Yield: 73%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 16.0 Hz, 1H), 7.48 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 8.5 Hz, 2H), 6.31 (d, J = 16.0 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.8, 161.4, 144.5, 129.7, 127.1, 115.2, 114.3, 55.4; LRMS (EI, 70eV) m/z (%): 195 (M⁺, 74), 161 (100), 133 (43), 89 (23); HRMS m/z (ESI) calcd for C₁₁H₁₀O₃D₃ ([M+H]⁺) 196.1048, found 196.1052.

Performing the alkoxypolychloroalkylation of product **6a** in the presence of 4-MeOC₆H₄N₂BF₄ (2 equiv) and CH₃OH (20.0 equiv) obtained the products **4aa** and **4ab** in a 1:30 ratio, while performing the alkoxypolychloroalkylation of products **6b**- **D**₃ (0.2 mmol) and **6c** (0.2 mmol) in the presence of 4-MeOC₆H₄N₂BF₄ (4 equiv) delivered the α,β -unsaturated esters **4aa**, **4ab-D**₃, **4ta** and **4tb-D**₃. The results of these two cross-control experiments reveal that the alkoxy group of products **6** migrate between molecules, and the alkoxy group is most likely to be removed firstly and then react with an intermediate to form an α,β -unsaturated esters **4**.

(f) Experiment probing the role of water

Figure S2. Experiment probing the role of water

Ethyl (*E*)-3-(4-methoxyphenyl)acrylate (4aa-O¹⁸⁽¹⁶⁾)

Yield: 86%; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ MeO Yield: 86%; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 16.0 Hz, 1H), 7.48 (d, J = 9.0 Hz, 2H), 6.90 (d, J= 9.0 Hz, 2H), 6.31 (d, J = 16.0 Hz, 1H), 4.27-4.23 (m, 2H), 3.83 (s, 3H), 1.33 (t, J =7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.3 (2C), 144.2, 129.7, 127.1, 115.7, 114.3, 60.3, 55.3, 14.3; LRMS (EI, 70eV) m/z (%): 208 (M⁺, 42), 206 (69), 161 (100), 134 (92); HRMS m/z (ESI) calcd for C₁₂H₁₅O₂ ([M+H]⁺) 209.1058, found 209.1059.

Ethyl (E)-3-(4-methoxyphenyl)acrylate (4aa-O¹⁸⁽¹⁶⁾)

[MS Spectrum] # of Peaks 419 Raw Spectrum 10.640 (scan : 1329) Background No Background Spectrum Base Peak m/z 225.00 (Inten : 7,436) Event# 1 m/z Absolute Intensity Relative Intensity

197.00	38 0.	03	212.00	11	0.01	227.00	19	0.02
198.00	29 0.	02	213.00	22	0.02	228.00	11	0.01
199.00	27 0.	02	214.00	5	0.00	229.00	19	0.02
200.00	11 0.	01	215.00	16	0.01	230.00	31	0.03
201.00	24 0.	02	216.00	14	0.01	231.00	21	0.02
202.00	47 0.	04	217.00	29	0.02	232.00	39	0.03
203.00	162 0.	14	218.00	22	0.02	233.00	29	0.02
204.00	62 0.	05	219.00	36	0.03	234.00	36	0.03
205.05	1701	1.45	220.00	13	0.01	235.00	42	0.04
206.00	84252	71.68	221.00	63	0.05	236.00	24	0.02
207.00	11122	9.46	222.00	16	0.01	237.00	41	0.03
208.00	1255	1.07	223.00	30	0.03	238.00	21	0.02
209.00	151 0.	13	224.00	41	0.03	239.00	42	0.04
210.00	10 0.	01	225.00	26	0.02	240.00	8	0.01
211.00	21 0.	02	226.00	29	0.02	241.00	24	0.02

[MS Spectrum] # of Peaks 419 Raw Spectrum 10.640 (scan : 1329) Background No Background Spectrum Base Peak m/z 225.00 (Inten : 7,436) Event# 1 m/z Absolute Intensity Relative Intensity

189.05 635 0.38

190.10 684 0.40

191.10 5546 3.28

192.10	1066 0.63	203.15	281 0.17	214.00	41 0.02
193.05	3136 1.86	204.05	544 0.32	215.00	49 0.03
194.10	649 0.38	205.15	3219 1.90	216.00	218 0.13
195.10	281 0.17	206.05	115964 68.60	217.00	65 0.04
196.10	78 0.05	207.05	20779 12.29	218.00	106 0.06
197.10	164 0.10	208.10	71332 42.20	219.00	158 0.09
198.10	102 0.06	209.00	10300 6.09	220.00	118 0.07
199.10	57 0.03	210.00	948 0.56	221.00	276 0.16
200.10	490 0.29	211.00	252 0.15	222.00	33 0.02
201.10	124 0.07	212.00	27 0.02	223.00	132 0.08
202.10	196 0.12	213.00	46 0.03	224.00	95 0.06

(g) HMRS Analysis of intermediates

To a Schlenk tube were added substrates $Cu(MeCN)_4PF_6$ (10 mol%), 4-MeOC₆H₄N₂BF₄ (0.4 mmol, 2 equiv), Na₂CO₃ (0.4 mmol, 2 equiv), alkene **1a** (0.2 mmol), EtOH **3a** (0.6 mmol), H₂O (5equiv), CHCl₃ **2a** (2 mL), the tube was then charged with argon. The mixture was stirred at 120 °C for 1.5 h. The reaction solution was collected for in-situ HMRS analysis.

Figure S3. The proposed reaction pathway based on experimental and DFT data calculated data using M06-2X/6-31G* SMD=chloroform.

Figure S4. HMRS monitoring of intermediate E.

Figure S5. HMRS monitoring of intermediate F.

(g) Computational Details:

All of the quantum chemical calculations were performed using the Gaussian 09 program.⁵ Geometry optimizations and frequency calculations were performed at the M06-2X/6-31G* level of theory with SMD solvation in CDCl₃.⁶⁻⁸ The stationary points were characterized by the presence of only positive eigenvalues of the Hessian for minima or a single negative eigenvalue of the Hessian for transition structures. Single point calculations of the potential energy were carried out using M06-2X/6-311++G** level of theory with SMD solvation in chloroform.

Cartesian Coordinates of DFT Optimized Structures

Structure: E

ĢEt ⊕ MeO

Charge, Spin Multiplicity: 1, 1 Number of imaginary frequencies: 0 SCF Energy: -1075.930697 hartree SCF Energy + ZPVE: -1075.693685 hartree Free Energy: -1075.738162 hartree

Symbol	Х	Y	Z
С	-3.09762400	-0.17304600	0.06958800
С	-2.14229700	-0.00918300	-0.94243100
С	-0.79642500	0.06033800	-0.60349800
С	-0.38953700	-0.01657200	0.72884600
С	-1.35026500	-0.18650100	1.73425700
С	-2.69170000	-0.26351100	1.41082300
Н	-2.43598200	0.06355900	-1.98280700
Н	-0.05065400	0.19027600	-1.38357600
Н	-1.04222700	-0.24585900	2.77546300
Н	-3.45255300	-0.38247200	2.17504600
0	-4.42391800	-0.25243100	-0.14275200
С	-4.89972700	-0.14165800	-1.47693700
Н	-4.50611200	-0.94871400	-2.10429900
Н	-5.98440900	-0.22596700	-1.41367900
Н	-4.63217400	0.82867000	-1.90923600
С	1.06679500	0.05264400	1.07105300
С	1.67081500	-1.39717000	0.97167300
С	2.62076300	-1.50966000	0.13521800
0	1.83703000	0.82341000	0.19497600
С	1.65489300	2.23565800	0.35388700
Н	0.60782700	2.49389700	0.15705500
Н	1.89161700	2.50859300	1.39062200
С	2.58128100	2.92276300	-0.62314000

Н	2.33781800	2.63497700	-1.64997000
Н	2.47381400	4.00705700	-0.53395900
Н	3.62310900	2.65963600	-0.41951600
Н	1.22199900	0.34144400	2.12138900
Cl	3.76551800	-1.51380600	-0.95289900
Н	1.26738500	-2.20283500	1.58291400

Structure: F

Charge, Spin Multiplicity: 1, 1 Number of imaginary frequencies: 0 SCF Energy: -1152.414601 hartree SCF Energy + ZPVE: -1152.147902 hartree Free Energy: -1152.192991 hartree

Symbol	Х	Y	Z
С	-2.86251000	-0.62027800	0.18257800
С	-2.27629600	-0.04313000	-0.94979800
С	-0.97396500	0.44289200	-0.87524800
С	-0.24449000	0.36941700	0.31016500
С	-0.84673000	-0.19131600	1.44109000
С	-2.14079600	-0.68844800	1.38071000
Н	-2.82255600	0.03417900	-1.88282300
Н	-0.52295800	0.90105400	-1.75204000
Н	-0.30472600	-0.22090800	2.38478900
Н	-2.62196000	-1.11944600	2.25299400
0	-4.11284900	-1.13152000	0.21909600
С	-4.88973300	-1.07414400	-0.96687800

Н	-4.41345000	-1.63235400	-1.78081500
Н	-5.84537800	-1.53792100	-0.72158600
Н	-5.05852700	-0.03779300	-1.28017500
С	1.18447300	0.89041000	0.35271100
С	2.11490300	-0.03414100	-0.40499900
С	2.44610600	-1.25207600	-0.02230200
0	1.33352200	2.13821200	-0.27593000
С	0.73693200	3.20753200	0.45158800
Н	-0.33161500	3.00596700	0.60397700
Н	1.21159200	3.27973600	1.44132300
С	0.93838100	4.47761100	-0.34422600
Н	0.45535100	4.39497300	-1.32198100
Н	0.50068200	5.32653400	0.18824300
Н	2.00350700	4.67331800	-0.49668700
Н	1.51280200	0.94621900	1.40379800
Cl	3.43600200	-2.41307800	-0.77996900
Н	2.51824400	0.32453700	-1.34841600
0	1.86023500	-1.72733800	1.21948500
Н	2.49596900	-2.17186700	1.83934800
Н	1.04609200	-2.28470900	1.09596600

Structure: G

Charge, Spin Multiplicity: 0, 1 Number of imaginary frequencies: 0 SCF Energy: -1152.062255 hartree SCF Energy + ZPVE: -1151.85189 hartree Free Energy: -1151.85189 hartree

Symbol	Х	Y	Z
С	3.35421600	0.10362000	-0.01850800
С	2.47513300	-0.96357500	0.16087000
С	1.12039600	-0.79662500	-0.13600500
С	0.62935600	0.41214000	-0.61475200
С	1.52699000	1.47459800	-0.79076600
С	2.87115000	1.32945400	-0.49977100
Н	2.82505000	-1.92142500	0.52742600
Н	0.44436800	-1.63497500	0.00585600
Н	1.15746600	2.42958400	-1.15747900
Н	3.57335600	2.14614300	-0.63483000
0	4.68477100	0.05410700	0.23918900
С	5.21131700	-1.16526400	0.73076700
Н	5.08080300	-1.97569600	0.00407700
Н	6.27591700	-0.99125200	0.89056100
Н	4.74373400	-1.44748800	1.68127800
С	-0.84196000	0.65360900	-0.89860500
С	-1.67169000	-0.60291200	-1.02800500
С	-2.28325200	-1.14749600	0.02532900
0	-1.32267900	1.49537500	0.16168300
С	-2.55026000	2.16004100	-0.14188100
Н	-2.40397700	2.77899300	-1.03764300
Н	-3.33300800	1.42214500	-0.36414100
С	-2.92523300	3.00480500	1.05560700
Н	-2.13637900	3.72888100	1.27738100
Н	-3.85355800	3.54780500	0.85658400
Н	-3.07952200	2.37409900	1.93707100
Н	-0.92650900	1.22061300	-1.83717000
Cl	-3.22475000	-2.61174800	-0.11635000
Н	-1.74766100	-1.08070100	-1.99677100
0	-2.29477700	-0.69347600	1.28594800
Н	-1.83482100	0.18058400	1.26550100

Structure: H

EtQ^{+H} MeO

Charge, Spin Multiplicity: 0, 1 Number of imaginary frequencies: 1 SCF Energy: -1152.035988 hartree SCF Energy + ZPVE: -1151.7831 hartree Free Energy: -1151.827949 hartree

Symbol	Х	Y	Z
С	-3.41775300	-0.29610000	0.21006300
С	-2.58649500	-0.81129700	-0.79130600
С	-1.20687200	-0.69431100	-0.66080800
С	-0.63708500	-0.07020600	0.45028500
С	-1.48263800	0.45929800	1.43389800
С	-2.85749100	0.34287700	1.32403200
Н	-3.00144500	-1.29810100	-1.66591600
Н	-0.56220800	-1.08868600	-1.44174200
Н	-1.05218200	0.95517700	2.30060600
Н	-3.52292700	0.73693400	2.08518500
0	-4.76730200	-0.36404700	0.18810800
С	-5.38031400	-1.01294300	-0.91411800
Н	-5.05915600	-2.05803500	-0.98670300
Н	-6.45324000	-0.97708000	-0.72380100
Н	-5.15971800	-0.49317800	-1.85327100
С	0.83318500	0.05664100	0.58336900
С	1.67254000	-1.06417200	0.20697600
С	3.01727500	-0.78373000	0.16764500
0	1.29584300	1.30273900	-0.45853300
С	0.89334300	2.63487000	-0.05327000
Н	-0.18340000	2.68221700	-0.22481600
Н	1.09456700	2.75203900	1.01790200
С	1.64861700	3.64987200	-0.88220100

Н	1.44733500	3.50626400	-1.94674200
Н	1.33102700	4.65735700	-0.59897900
Н	2.72689100	3.57200200	-0.70974400
Н	1.12893300	0.56856100	1.50505100
Cl	4.11905400	-2.19456600	-0.17466000
0	3.56027000	0.32931400	0.29189800
Н	2.29795200	1.19602300	-0.31127000
Н	1.25530300	-2.01270700	-0.09569700

Structure: I

Charge, Spin Multiplicity: 0, 1 Number of imaginary frequencies: 0 SCF Energy: -997.0503865 hartree SCF Energy + ZPVE: -996.8805885 hartree Free Energy: -996.9204395 hartree

Symbol	Х	Y	Z
С	3.14193800	0.14664900	-0.00009200
С	2.29332400	-0.96941700	0.00010700
С	0.91880400	-0.78310800	0.00023400
С	0.35640600	0.50092400	0.00015600
С	1.22607500	1.60644700	0.00008800
С	2.59737900	1.43835900	-0.00007600
Н	2.69630100	-1.97509800	0.00017100
Н	0.27513000	-1.65773000	0.00039800
Н	0.80877000	2.61009400	0.00008400
Н	3.27261300	2.28769200	-0.00019600
0	4.48809400	0.07333500	-0.00023500

С	5.08578700	-1.21367900	0.00001700
Н	4.80812200	-1.78013500	-0.89566500
Н	6.16224500	-1.04239000	-0.00003400
Н	4.80810300	-1.77975700	0.89592600
С	-1.07785500	0.74178200	0.00019300
С	-2.06110800	-0.18146900	-0.00024000
С	-3.44151600	0.28852100	-0.00008800
Н	-1.38004600	1.78873700	0.00059700
Cl	-4.63771700	-1.08685600	-0.00001200
0	-3.85780400	1.40487900	-0.00003600
Н	-1.88776700	-1.25061800	-0.00070400

Structure: Hexafluorophosphate acid

Charge, Spin Multiplicity: 0, 1 Number of imaginary frequencies: 0 SCF Energy: -941.1279378 hartree SCF Energy + ZPVE: -941.1008898 hartree Free Energy: -941.1321488 hartree

Symbol	Х	Y	Z
Р	0.44502600	0.45811500	0.36331600
F	0.44502600	2.00734800	0.06058700
F	0.44502600	0.45811500	1.91029400
F -	-1.10420700	0.45811500	0.06058700
F	0.44502600	-1.09111800	0.06058700
F	1.99425900	0.45811500	0.06058700
F	0.44502600	0.45811500	-2.05415500
Н	0.44502600	0.45811500	-2.99324700

Structure: Hexafluorophosphate (PF₆⁻)

Charge, Spin Multiplicity: -1, 1 Number of imaginary frequencies: 0 SCF Energy: -940.748092 hartree SCF Energy + ZPVE: -940.728252 hartree Free Energy: -940.755367 hartree

Symbol	Х	Y	Ζ
Р	0.44502600	0.45811500	0.00000000
F	0.44502600	2.08037400	0.00000000
F	0.44502600	0.45811500	1.62225800
F ·	-1.17723200	0.45811500	0.00000000
F	0.44502600	-1.16414300	0.00000000
F	2.06728500	0.45811500	0.00000000
F	0.44502600	0.45811500	-1.62225800

Structure: EtOH

Charge, Spin Multiplicity: 0, 1 Number of imaginary frequencies: 0 SCF Energy: -155.0197931 hartree SCF Energy + ZPVE: -154.9640201 hartree Free Energy: -154.9640201 hartree

Symbol	Х	Y	Z
0	-1.23144700	-0.26080700	-0.11074500
Н	-1.23414300	-0.89470900	0.62296200
С	-0.08370300	0.55828700	0.04731700
Н	-0.12392800	1.28714000	-0.76798800
Н	-0.13342200	1.12146400	0.99071000
С	1.20704900	-0.24016700	-0.02174600

Н	2.07911700	0.41649300	0.06060400
Н	1.25589900	-0.96899500	0.79568500
Н	1.26798100	-0.78365200	-0.96944200

Structure: **H₂O** Charge, Spin Multiplicity: 0, 1 Number of imaginary frequencies: 0 SCF Energy: -76.42827179 hartree SCF Energy + ZPVE: -76.40690279 hartree Free Energy: -76.42456779 hartree

Symbol	Х	Y	Ζ
0	0.00000000	0.00000000	0.11951500
Н	0.00000000	0.76152500	-0.47805800
Н	0.00000000	-0.76152500	-0.47805800

(D) Analytical data

Ethyl (*E*)-3-(4-methoxyphenyl)acrylate (4aa)⁹:

Yield: 86%, Yellow oil; ¹H NMR (500 MHz, CDCl₃)
$$\delta$$
 7.64
(d, J = 16.0 Hz, 1H), 7.47 (d, J = 9.0 Hz, 2H), 6.90 (d, J = 9.0 Hz, 2H), 6.31 (d, J = 16.0 Hz, 1H), 4.27-4.23 (m, 2H), 3.83 (s, 3H), 1.25 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.3, 161.3, 144.2, 129.6, 127.2, 115.7, 114.3, 60.3, 55.3, 14.3; LRMS (EI, 70eV) *m/z* (%): 206 (M⁺, 73), 160 (100), 134 (64), 133 (39); HRMS *m/z* (ESI) calcd for C₁₂H₁₅O₃ ([M+H]⁺) 207.1010, found 207.1013.

Methyl (*E*)-3-(4-methoxyphenyl)acrylate (4ab)⁹:

Yield: 73%, Yellow oil; ¹H NMR (500 MHz, CDCl₃)
$$\delta$$
 7.65 (d,
 $J = 16.0$ Hz, 1H), 7.47 (d, $J = 8.5$ Hz, 2H), 6.90 (d, $J=9.0$ Hz,

2H), 6.31 (d, J = 16.0 Hz, 1H), 3.83 (s, 3H), 3.79 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.7, 161.3, 144.5, 129.7, 127.1, 115.2, 114.3, 55.3, 51.5; LRMS (EI, 70eV) m/z (%): 192 (M⁺, 72), 161 (100), 133 (37), 89 (27); HRMS m/z (ESI) calcd for C₁₁H₁₃O₃ ([M+H]⁺) 193.0859, found 193.0860.

Butyl (*E*)-3-(4-methoxyphenyl)acrylate (4ac)¹⁰:

Yield: 77%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 16.0 Hz, 1H), 7.48 (d, J = 8.5 Hz, 2H), 6.90

(d, J = 8.5 Hz, 2H), 6.31 (d, J = 16.0 Hz, 1H), 4.20 (t, J = 6.5 Hz, 2H), 3.83 (s, 3H), 1.70-1.67 (m, 2H), 1.46-1.43 (m, 2H), 0.96 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.4, 161.3, 144.2, 129.6, 127.2, 115.7, 114.3, 64.2, 55.3, 30.8, 19.2, 13.7; LRMS (EI, 70eV) m/z (%): 234 (M⁺, 38), 178 (100), 161 (98), 134 (39); HRMS m/z(ESI) calcd for C₁₂H₁₉O₃ ([M+H]⁺) 235.1329, found 235.1333. Dodecyl (E)-3-(4-methoxyphenyl)acrylate (4ad):

Hz, 1H), 7.48 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.5 Hz, 2H), 6.31 (d, J = 16.0 Hz, 1H), 4.18 (t, J = 7.0 Hz, 2H), 3.84 (s, 3H), 1.71-1.64 (m, 2H), 1.26 (s, 18H), 0.88 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.5, 161.3, 144.2, 129.7, 127.2, 115.7, 114.3, 64.6, 55.3, 31.9, 29.6(3C), 29.5, 29.3(2C), 26.0, 22.7, 14.1; LRMS (EI, 70eV) m/z (%): 346 (M⁺, 15), 178 (100), 161 (63), 134 (27); HRMS m/z (ESI) calcd for $C_{22}H_{35}O_3$ ([M+H]⁺) 347.2581, found 347.2582.

Neopentyl (E)-3-(4-methoxyphenyl)acrylate (4ae):

Yield: 58%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 16.0 Hz, 1H), 7.49 (d, J = 8.5 Hz, 2H), 6.90 (d,

J = 8.5 Hz, 2H), 6.34 (d, J = 16.0 Hz, 1H), 3.90 (s, 2H), 3.84 (s, 3H), 0.99 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 167.5, 161.3, 144.2, 129.7, 127.2, 115.8, 114.3, 73.7, 55.3, 31.5, 26.5; LRMS (EI, 70eV) *m/z* (%): 248 (M⁺, 38), 178 (24), 161 (100), 133 (21); HRMS *m/z* (ESI) calcd for C₁₅H₂₁O₃ ([M+H]⁺) 249.1485, found 249.1484.

But-3-en-1-yl (*E*)-3-(4-methoxyphenyl)acrylate (4af):

Yield: 78%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 16.0 Hz, 1H), 7.47 (d, J = 8.5 Hz, 2H), 6.90

(d, *J* = 8.5 Hz, 2H), 6.31 (d, *J* = 16.0 Hz, 1H), 5.87-5.82 (m, 1H), 5.17-5.09 (m, 2H), 4.25 (t, *J* = 7.0 Hz, 2H), 3.83 (s, 3H), 2.48-2.44 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 167.3, 161.3, 144.4, 134.1, 129.7, 127.1, 117.1 115.5, 114.3, 63.4, 55.3 (2C), 33.2; LRMS (EI, 70eV) *m/z* (%): 232 (M⁺, 32), 178 (100), 161 (98), 133 (34); HRMS *m/z* (ESI) calcd for C₁₄H₁₇O₃ ([M+H]⁺) 233.1172, found 233.1170.

3-Bromopropyl (*E*)-**3-**(**4-methoxyphenyl**)acrylate (4ag):

Yield: 53%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 16.0 Hz, 1H), 7.48 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 8.5 Hz, 2H), 6.31 (d, J = 16.0 Hz, 1H), 4.34 (t, J = 6.0 Hz, 2H), 3.84 (s, 3H), 3.52 (t, J = 6.5 Hz, 2H), 2.28-2.22 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 161.5, 144.8, 129.8, 127.0, 115.1, 114.3, 62.1, 55.4, 31.9, 29.5; LRMS (EI, 70eV) m/z(%): 300 (M⁺ + 2, 3), 298 (3), 268 (53), 253 (100), 145 (78); HRMS m/z (ESI) calcd for C₁₃H₁₆O₃Br ([M+H]⁺) 299.0277, found 299.0275.

Isopropyl (E)-3-(4-methoxyphenyl)acrylate (4ah)¹¹:

Yield: 58%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, J = 16.0 Hz, 1H), 7.48 (d, J = 9.0 Hz, 2H), 6.90 (d, J = 9.0 Hz, 2H), 6.29 (d, J = 16.0 Hz, 1H), 5.13 (m, 1H), 3.84 (s, 3H), 1.31 (d, J = 6.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 166.8, 161.2, 144.0, 129.6, 127.2, 116.2, 114.2,, 67.6, 55.3, 22.0; LRMS (EI, 70eV) *m/z* (%): 220 (M⁺, 97), 178 (92), 161(100), 134 (99); HRMS *m/z* (ESI) calcd for C₁₃H₁₇O₃ ([M+H]⁺) 211.1172, found 211.1172.

(1R,2R,5S)-2-Isopropyl-5-methylcyclohexyl (*E*)-3-(4-methoxyphenyl)acrylate (4ai)¹²:

Yield: 55%, Yellow solid; ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, J = 16.0 Hz, 1H), 7.48 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 6.30 (d, J = 16.0 Hz, 1H), 4.84-4.79 (m, 1H), 3.83 (s, 3H), 2.06 (d, J = 12.0 Hz, 1H), 1.95-1.91 (m, 1H), 1.71-1.68 (m, 2H), 1.63-1.56 (m, 1H), 1.47-1.42 (m, 2H), 1.12 – 1.00 (m, 2H), 0.93-0.90 (m, 6H), 0.79 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.9, 161.2, 144.0, 129.6, 127.3, 116.2, 114.3, 74.0, 55.3, 47.2, 41.0, 34.31 (s), 31.4, 26.3, 23.5, 22.0, 20.8, 16.4; LRMS (EI, 70eV) *m/z* (%): 316 (M⁺, 27), 178 (100), 133 (51), 95 (63); HRMS *m/z* (ESI) calcd for C₂₀H₂₉O₃ ([M+H]⁺) 317.2111, found 317.2108.

(1r,3r,5r,7r)-Adamantan-2-yl (E)-3-(4-methoxyphenyl)acrylate (4aj):

Yield: 48%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 16.0 Hz, 1H), 7.49 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.0 Hz, 2H), 6.35 (d, J = 16.0 Hz, 1H), 5.05 (s, 1H), 3.84 (s, 3H), 2.12-2.07 (m, 4H), 1.88-1.76 (m, 8H), 1.61-1.59 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 166.7, 161.2, 143.8, 129.6, 127.3, 116.6, 114.3, 55.3, 37.4, 36.4, 31.9 (2C), 27.3, 27.0; LRMS (EI, 70eV) m/z (%): 312 (M⁺, 74), 267 (33), 178 (83), 161 (100); HRMS m/z(ESI) calcd for C₂₀H₂₅O₃ ([M+H]⁺) 313.1798, found 313.1802.

Ethyl (*E*)-3-(4-ethoxyphenyl)acrylate (4ba)¹³:

Yield: 77%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 16.0 Hz, 1H), 7.45 (d, J = 8.5 Hz, 2H), 6.88 (d,

J = 9.0 Hz, 2H), 6.30 (d, *J* = 16.0 Hz, 1H), 4.25 (m, 2H), 4.05 (m, 2H), 1.42 (t, *J* = 7.0 Hz, 3H), 1.33 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.4, 160.7, 144.3, 129.6, 126.9, 115.5, 114.7, 63.5, 60.3, 14.7, 14.3; LRMS (EI, 70eV) *m/z* (%):220 (M⁺, 100), 175 (59), 147 (97), 120 (59); HRMS *m/z* (ESI) calcd for C₁₃H₁₇O₃ ([M+H]⁺) 221.1172, found 211.1169.

Ethyl (*E*)-3-(4-(benzyloxy)phenyl)acrylate (4ca)¹⁴:

Ethyl (*E*)-3-(4-(methylthio)phenyl)acrylate (4da)¹⁵:

Yield: 45%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, J = 16.0 Hz, 1H), 7.44 (d, J = 7.5 Hz, 2H), 7.23 (d, J = 8.0

Hz, 2H), 6.39 (d, *J* = 16.0 Hz, 1H), 4.28-4.24 (m, 2H), 2.50 (s, 3H), 1.34 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 144.0, 141.8, 131.0, 128.4, 126.0, 117.2, 60.4, 15.2, 14.3; LRMS (EI, 70eV) *m/z* (%): 222 (M⁺, 100), 177 (62), 150 (65), 134 (49); HRMS *m/z* (ESI) calcd for C₁₂H₁₅O₂S ([M+H]⁺) 223.0787, found 223.0791.

Ethyl (*E*)-3-(2-methoxyphenyl)acrylate (4ga)⁹:

Yield: 67%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, J = 16.0 Hz, 1H), 7.52-7.50 (m, 1H), 7.37-7.32 (m, 1H), 6.97-6.94 (m, 1H), 6.91(d, J = 8.0 Hz, 1H), 6.53 (d, J = 16.0 Hz, 1H), 4.28-4.24 (m, 2H), 3.89 (s, 3H), 1.34 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.5, 158.3, 140.0, 131.4, 128.9, 123.4, 120.6, 118.8, 111.1, 60.3, 55.4, 14.4; LRMS (EI, 70eV) m/z (%): 206 (M⁺, 69), 161 (100), 147 (91), 118 (53); HRMS m/z (ESI) calcd for C₉H₁₅O₃ ([M+H]⁺) 207.1016, found 207.1016.

Ethyl (*E*)-3-(4-methoxy-3-methylphenyl)acrylate (4ha)

Yield: 67%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, *J* = 16.0 Hz, 1H), 7.34 (s, 2H), 6.81 (d, *J* = 9.0 Hz, 1H), 6.30 (d, *J* = 16.0 Hz, 1H), 4.25 (m, 2H), 3.85 (s, 3H), 2.22 (s, 3H), 1.33 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.4, 159.6, 144.5, 130.0, 127.7, 127.2, 126.6, 115.3, 109.8, 60.2, 55.4, 16.2, 14.3; LRMS (EI, 70eV) *m/z* (%): 220 (M⁺, 100), 175 (99), 148 (94), 115 (36); HRMS *m/z* (ESI) calcd for C₁₃H₁₇O₃ ([M+H]⁺) 221.1172, found 221.1168.

Ethyl (*E*)-3-(3-methylthiophen-2-yl)acrylate (4ja):

Yield: 52%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 16.0 Hz, 1H), 7.25 (d, *J* = 5.0 Hz, 1H), 6.86 (d, *J* = 5.5 Hz, 1H), 6.17 (d, *J* = 16.0 Hz, 1H), 4.25 (m, 2H), 2.34 (s, 3H), 1.33 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 141.2, 135.4, 133.6, 131.1, 126.8, 115.9, 60.4, 14.3, 14.1; LRMS (EI, 70eV) *m/z* (%): 196 (M⁺, 98), 151 (100), 123 (99), 97 (33); HRMS *m/z* (ESI) calcd for C₁₀H₁₃SO₂ ([M+H]⁺) 197.0631, found 197.0629.

Ethyl (2*E*,4*E*)-5-(4-methoxyphenyl)penta-2,4-dienoate (4ka):

Yield: 47%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.46-7.43 (m, 1H), 7.42-7.40 (m, 2H), 6.89-6.87 (m, 2H), 6.84 (s, 1H), 6.78-6.72 (m, 1H), 5.94 (d, J = 16.0 Hz, 1H), 4.24-4.20 (m, 2H), 3.83 (s, 3H), 1.31 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.3, 160.4, 145.0, 140.1, 128.8, 128.6, 124.1, 120.0, 114.2, 60.2, 55.3, 14.3; LRMS (EI, 70eV) *m/z* (%): 232 (M⁺, 58), 187 (27), 159 (100), 115 (52); HRMS *m/z* (ESI) calcd for C₁₄H₁₇O₃ ([M+H]⁺) 233.1172, found 233.1171.

Ethyl -3-(naphthalen-2-yl)-3-phenylacrylate (4ma):

1.04 (t, J = 7.0 Hz, 1.3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.1, 156.4, 129.2, 128.8, 128.6, 128.4 (2C), 128.2 (2C), 127.9, 127.5, 127.3 (2C), 127.0, 126.4, 125.1, 117.8, 117.7, 60.1, 14.0(2C); LRMS (EI, 70eV) m/z (%): 302 (M⁺, 100), 257 (63), 229 (80),202 (19); HRMS m/z (ESI) calcd for C₂₁H₁₉O₂ ([M+H]⁺) 303.1380, found 303.1378.

Ethyl-3-phenyl-3-(o-tolyl)acrylate (4na):

J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.8, 155.9, 139.2, 138.6, 135.3, 129.8, 129.4, 128.5, 128.4, 127.7, 127.4, 125.4, 117.6, 59.9, 19.5, 13.9; LRMS (EI, 70eV) m/z (%): 266 (M⁺, 18), 221 (83), 192 (89), 178 (100); HRMS m/z (ESI) calcd for C₁₈H₁₉O₂ ([M+H]⁺) 267.1380, found 267.1385.

Ethyl-3-phenyl-3-(*m*-tolyl)acrylate (40a):

Yield: 74%, E/Z = 1:1; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.31 (m, 4H), 7.22-7.00 (m, 5H), 6.35 (s, 0.5H), 6.34 (s, 0.5H), 4.08-4.03 (m, 2H), 2.35 (s, 1.5H), 2.32 (s, 1.5H), 1.13-1.10 (m 3H);

¹³C NMR (125 MHz, CDCl₃) δ 166.2(2C), 156.7, 156.6, 129.1, 129.8, 128.8, 128.3(2C), 128.2, 127.8, 117.3(2C), 60.0, 21.40 (2C), 14.0; LRMS (EI, 70eV) *m/z*(%): 266 (M⁺, 18), 221 (83), 192 (89), 178 (100); HRMS *m/z* (ESI) calcd for C₁₈H₁₉O₂ ([M+H]⁺) 267.1380, found 267.1385.

Ethyl-3-(3-chlorophenyl)-3-phenylacrylate (4pa):

Yield: 65%, E/Z = 1.5:1; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.31 (m, 5H), 7.28-7.17 (m, 3H), 7.11-7.10 (m, 1H), 6.38 (s, 0.6H), 6.34 (s, 0.4H), 4.05 (m, 2H), 1.12 (m, 3H); ¹³C NMR (125)

MHz, CDCl₃) δ 165.72 (2C), 154.8,154.7, 142.7, 140.7, 140.0, 138.2, 134.4, 133.8, 129.6 (2C), 129.3, 129.1(2C),129.0, 128.5, 128.4, 128.2, 128.1, 128.0, 127.3, 126.4, 118.6, 118.1, 60.2, 13.9; LRMS (EI, 70eV) *m/z* (%): 286 (M⁺, 37), 241 (55), 214 (42), 178 (100); HRMS *m/z* (ESI) calcd for C₁₇H₁₆O₂Cl ([M+H]⁺) 287.0833, found 287.0833.

Ethyl-3-phenyl-3-(p-tolyl)acrylate (4qa):

Yield: 73%, E/Z = 1:1;Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.30 (m, 4H), 7.21-7.10 (m, 5H), 6.35 (s, 0.5H), 6.32 (s, 0.5H), 4.09-4.03 (m, 2H), 2.39 (s, 1.5H), 2.35 (s, 1.5H), 1.15 (t, *J* = 7.0 Hz, 1.5H), 1.10 (t, *J* = 7.0 Hz, 1.5H); ¹³C NMR (125 MHz, CDCl₃) δ 166.2, 166.1, 156.8, 156.5, 129.1, 129.0, 128.5, 128.3 (2C), 128.2, 127.8, 117.0, 116.4, 59.9 (2C), 21.4, 21.2, 14.0 (2C); LRMS (EI, 70eV) *m/z* (%): 266 (M⁺, 88), 221 (100), 194 (80), 178 (72); HRMS *m/z* (ESI) calcd for C₁₈H₁₉O₂ ([M+H]⁺) 267.1380, found 267.1385.

Ethyl-3-(4-methoxyphenyl)-3-phenylacrylate (4ra):

Yield: 76%, Red oil; E/Z = 1.5:1; ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.37 (m, 2H), 7.31 (m, 2H), 7.23-7.15 (m, 3H), 6.90 (d, J = 9.0 Hz, 0.8H), 6.84 (d, J = 9.0 Hz, 1.2H), 6.31 (s, 0.6H),

6.28 (s, 0.4H), 4.11-4.01 (m, 2H), 3.84 (s, 1.2H), 3.81 (s, 1.8H), 1.19-1.10 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.3, 160.7, 156.3, 139.2, 130.9, 129.7, 129.0, 128.5, 128.3, 127.9127.8, 116.8, 115.3, 113.7, 113.2,60.0, 59.9, 55.3, 55.2, 14.1,14.0; LRMS (EI, 70eV) *m/z* (%): 282 (M⁺, 94), 237 (69), 210 (100), 165 (68); HRMS *m/z* (ESI) calcd for C₁₈H₁₉O₃ ([M+H]⁺) 283.1329, found 283.1331.

Ethyl-3-(4-fluorophenyl)-3-phenylacrylate (4sa):

Yield: 45%, E/Z > 20:1;Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.38 (m, 3H), 7.29-7.28 (m, 2H), 7.20-7.19 (m, 2H), 7.01 (t, J = 8.5 Hz, 2H), 6.31 (s, 1H), 4.07-4.03 (m, 2H), 1.11 (t, J =

7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 164.5, 162.5, 155.4, 138.7,136.9, 136.8, 130.2,130.1, 129.0,128.2, 127.9, 117.2, 115.5, 115.3, 60.1, 13.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -111.7; LRMS (EI, 70eV) *m/z* (%): 270 (M⁺, 68), 225 (100), 196 (81), 177 (22); HRMS *m/z* (ESI) calcd for C₁₇H₁₆O₂F ([M+H]⁺) 271.1129, found 271.1129.

Ethyl 3,3-diphenylacrylate (4ta):

166.1, 156.5, 140.7, 138.9, 129.1, 128.3, 128.2, 127.8, 117.4, 60.0, 13.9; LRMS (EI, 70eV) *m/z* (%): 252 (M⁺, 77), 207 (98), 178 (100), 152 (23); HRMS *m/z* (ESI) calcd for C₁₇H₁₇O₂ ([M+H]⁺) 253.1223, found 253.1224.

Ethyl 3,3-di-p-tolylacrylate (4ua):

Yield: 69%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.19 (t, J = 7.0 Hz, 4H), 7.13-7.09 (m, 4H), 6.30 (s, 1H), 4.09-4.04 (m, 2H), 2.39 (s, 3H), 2.35 (s, 3H), 1.15 (t, J = 7.0 Hz, 3H); ¹³C

NMR (125 MHz, CDCl₃) δ 166.3, 156.9, 139.6, 138.2, 137.9, 136.1, 129.1, 128.5, 128.3, 116.1, 59.9, 21.4, 21.2, 14.1; LRMS (EI, 70eV) *m/z* (%): 280 (M⁺, 88), 235 (87), 208 (100), 193 (49); HRMS *m/z* (ESI) calcd for C₁₉H₂₁O₂ ([M+H]⁺) 281.1536, found 281.1531.

Ethyl 3,3-bis(4-fluorophenyl)acrylate (4va):

Yield: 38%, Yellow solid; ¹H NMR (500 MHz, CDCl₃) δ 7.28-7.25 (m, 2H), 7.20-7.17 (m, 2H), 7.09-7.06 (m, 2H), 7.03-7.00 (m, 2H), 6.30 (s, 1H), 4.09-4.05 (m, 2H), 1.15 (t, *J* = 7.0 Hz,

3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.8, 164.5, 163.7, 162.5, 161.7, 154.4, 134.5, 131.0 (2H), 130.2, 130.1, 117.5, 115.5, 115.4, 115.1, 114.9, 60.1, 14.0; ¹⁹F NMR (471 MHz, CDCl₃) δ -111.4, -113.2; LRMS (EI, 70eV) *m/z* (%): 288 (M⁺, 62), 243 (100),

214 (72), 123 (42); HRMS *m*/*z* (ESI) calcd for C₁₇H₁₅O₂F₂ ([M+H]⁺) 289.1035, found 289.1031.

Ethyl 3,3-bis(4-methoxyphenyl)acrylate (4wa):

Yield: 89%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, *J* = 8.5 Hz, 2H), 7.15 (d, *J* = 8.5 Hz, 2H), 6.90 (d, *J* = 8.5 Hz, 2H), 6.83 (d, *J* = 9.0 Hz, 2H), 6.22 (s, 1H), 4.09-4.05 (m,

2H), 3.83 (s, 3H), 3.80 (s, 3H), 1.15 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.3, 160.6, 159.6, 156.3, 133.7, 131.2, 130.8, 129.9, 114.8, 113.6, 113.1, 59.7, 55.2, 55.1, 14.1; LRMS (EI, 70eV) *m/z* (%): 312 (M⁺, 81), 240 (100), 225 (51), 135 (98); HRMS *m/z* (ESI) calcd for C₁₉H₂₁O₄ ([M+H]⁺) 313.1434, found 313.1431.

Ethyl (*E*)-3-(4-methoxyphenyl)-2-methylacrylate (4xa):

Ethyl (*E*)-2-methyl-3-(2,4,5-trimethoxyphenyl)acrylate (4ya):

Yield: 47%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.81
(s, 1H), 6.90 (s, 1H), 6.54 (s, 1H), 4.29-4.24 (m, 2H), 3.93 (s, 3H), 3.85 (s, 6H), 2.08 (s, 3H), 1.35 (t, J = 7.0 Hz, 3H); ¹³C

NMR (125 MHz, CDCl₃) δ 168.8, 152.7, 150.3, 142.4, 134.1, 126.9, 116.3, 113.8,
96.9, 60.6, 56.6, 56.3, 56.0, 14.3 (2C); LRMS (EI, 70eV) *m/z* (%): 280 (M⁺, 100), 249 (23), 221 (36), 205 (29); HRMS *m/z* (ESI) calcd for C₁₅H₂₁O₅ ([M+H]⁺) 281.1384, found 281.1381.

Ethyl-(*E*)-3-((R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-

trimethyltridecyl)chroman-6-yl)acrylate (4za):

Yield: 61%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, J = 16.5 Hz, 1H), 5.89 (d, J = 16.5 Hz, 1H), 4.29-4.25 (m, 2H), 2.62 (t, J = 6.5 Hz, 2H), 2.22 (s, 3H), 2.18 (s, 3H), 2.12 (s, 3H), 1.86-1.76 (m, 2H), 1.66 (s, 1H), 1.59-1.50 (m, 4H), 1.34 (t, J = 7.5 Hz, 6H), 1.26 (s, 6H), 1.16-1.12 (m, 4H), 1.09-1.05 (m, 4H), 0.87-0.84 (m, 14H); ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 151.8, 145.4, 133.5, 132.2, 126.1, 123.4, 122.7, 117.2, 75.3, 60.3, 40.0, 39.3, 37.4 (2C), 37.3, 32.8, 32.7, 31.2, 28.0, 24.8, 24.4, 23.9, 22.7, 22.6, 21.0, 20.7, 19.7, 19.6, 17.3, 16.4, 14.3, 11.8; HRMS *m/z* (ESI) calcd for C₃₄H₅₇O₃ ([M+H]⁺) 513.4302, found 513.4300.

Cyclopenta[*a*]phenanthren-2-yl)-3-phenylacrylate (4aaa):

Yield: 55%, E/Z =1.6:1; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.39 (s, 2H), 7.33-7.32 (m, 2H), 7.24 (s, 1H), f7.21 (s, 1H), 7.09-7.01 (m, 1H), 6.36-6.31 (m, 1H), 4.11-4.02 (m, 2H), 2.87 (d, J = 6.0 Hz, 2H), 2.54-2.49 (m, 1H), 2.42-2.30 (m, 2H), 2.20-2.12 (m, 2H), 2.03-1.96 (m, 2H), 1.68-1.58 (m, 4H), 1.55-1.44 (m, 3H), 1.17 (t, J = 7.0 Hz, 1H), 1.12 (t, J = 7.0 Hz, 2H), 0.94-0.91 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 220.8, 220.6, 166.1 (2C), 156.7, 156.4, 141.4, 141.2, 139.6, 139.0, 138.1, 136.5, 136.1, 135.7, 129.6, 129.2, 129.0, 128.7, 128.3, 128.2, 127.9, 127.7, 126.7, 125.7, 125.3, 124.6, 117.1, 116.6, 60.3, 59.9, 50.5, 50.4, 47.9, 47.8, 44.4, 37.9 (2C), 35.8, 35.7, 31.5 (2C), 29.3, 29.2, 26.4, 26.3, 25.5, 21.5 (2C), 21.0, 14.1, 14.0, 13.9, 13.8, 13.7; HRMS *m/z* (ESI) calcd for C₂₉H₃₃O₃ ([M+H]⁺) 429.2424, found 429.2428.

Decahydro-6*H*-cyclopenta[*a*]phenanthren-2-yl)acrylate (4baa):

3.82 (s, 3H), 2.87 (m, 2H), 2.53-2.47 (m, 2H), 2.40-2.29 (m, 2H), 2.16-2.05 (m, 4H), 1.67-1.58 (m, 4H), 1.53-1.49 (m, 1H), 1.18-1.13 (m, 3H), 0.92 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 220.8, 220.6, 166.2, 160.6, 159.5, 156.5 (2C), 141.3, 139.5, 138.8, 136.4, 135.7, 133.4, 131.0, 130.7, 129.8, 129.5, 128.9, 126.7, 125.9, 125.2, 124.5, 116.0, 115.0, 113.6, 113.1, 59.8, 59.7, 55.2, 55.1, 50.5,50.4, 47.9, 47.8, 44.4, 37.9 (2C), 35.8, 35.7, 31.5 (2C), 29.3, 29.2, 26.4, 26.3, 25.5, 21.5, 14.0 (2C), 13.8, 13.7; HRMS *m/z* (ESI) calcd for C₃₀H₃₅O₄ ([M+H]⁺) 459.2530, found 459.2533.

4-(3-Ethoxy-3-oxo-1-phenylprop-1-en-1-yl)benzyl-(4R)-4-((5S,8R,9S,10S,13R,14S)-10,13-dimethyl-3,7,12-trioxohexadecahydro-1*H*-cyclopenta[*a*]phenanthren-17-

yl)pentanoate (4caa):

Yield: 55%, E/Z = 1:1; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ

S38

7.80-7.71 (m, 2H), 7.55-7.50 (m, 1H), 7.42-7.36 (m, 2H), 7.33-7.29 (m, 2H), 7.21 (d, J = 8.5 Hz, 2H), 6.36 (s, 1H), 5.16 (s, 1H), 5.11 (s, 1H), 4.29-4.20 (m, 2H), 4.06-4.03 (m, 2H), 2.91-2.84 (m, 3H), 2.32-2.12 (s, 10H), 2.04-2.01 (m, 2H), 1.94-1.91 (m, 2H), 1.78-1.68 (m, 2H), 1.46-1.38 (m, 6H), 1.13-1.03 (m, 4H), 0.86 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 211.9, 209.0, 208.7, 173.8, 173.7, 167.7, 166.0, 156.8, 156.1, 155.8, 140.6, 140.6, 138.7, 137.3, 135.9, 130.9, 129.4, 129.3, 129.0, 128.8, 128.4, 128.3, 128.2, 128.1, 128.1, 127.9, 127.52, 117.8, 117.6, 66.2, 65.8, 65.45, 65.3, 60.0, 56.8, 51.7, 49.0, 48.9, 46.8, 45.6, 45.6, 45.5, 44.9, 42.7, 38.6, 36.4, 36.0, 35.4, 35.4, 35.2, 33.9, 33.4, 31.5, 31.4, 30.4, 29.6, 27.6, 25.6, 25.4, 25.1, 24.9, 24.7, 21.8, 18.6, 14.6, 14.2, 14.4, 13.9, 11.8; HRMS *m*/*z* (ESI) calcd for C₄₂H₅₁O₇ ([M+H]⁺) 677.3629, found 677.3641.

(E)-3-(4-Methoxyphenyl)acrylaldehyde (5a)¹⁶:

Yield: 64%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 9.65 (d, J = 8.0 Hz, 1H), 7.54-7.52 (m, 2H), 7.43 (d, J = 16.0 Hz, 1H), 6.96-6.93 (m, 2H), 6.64-6.60 (m, 1H), 3.87 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 193.8, 162.2, 152.8, 130.3, 126.7, 126.5, 114.5, 55.4; LRMS (EI, 70eV) *m/z* (%): 162 (M⁺, 100), 131 (78), 91 (57), 89 (36); HRMS *m/z* (ESI) calcd for C₁₀H₁₁O₂ ([M+H]⁺) 163.0754, found 163.0757.

(E)-3-(4-Ethoxyphenyl)acrylaldehyde (5b):

1H), 6.93 (d, J = 9.0 Hz, 2H), 6.63-6.58 (m, 1H), 4.10-4.06 (m, 2H), 1.44 (d, J = 7.0

Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 193.7, 161.6, 152.8, 130.3, 126.5, 126.3, 115.0, 63.7, 14.6; LRMS (EI, 70eV) *m/z* (%): 176 (M⁺, 100), 147 (98), 131 (58), 91 (44); HRMS *m/z* (ESI) calcd for C₁₁H₁₃O₂ ([M+H]⁺) 177.0910, found 177.0910.

(*E*)-3-(2-Methoxyphenyl)acrylaldehyde (5c)¹⁶:

Yield: 53%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 9.69 (d, J =8.0 Hz, 1H), 7.84 (d, J =16.0 Hz, 1H), 7.56-7.54 (m, 1H), 7.43-7.40 (m, 1H), 7.00 (t, J =7.5 Hz, 1H), 6.95 (d, J =8.0 Hz, 1H), 6.82-6.77 (m, 1H), 3.91 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 194.6, 158.2, 148.3, 132.7, 129.0, 128.8, 122.9, 120.8, 111.2, 55.51 (s); LRMS (EI, 70eV) m/z (%): 162 (M⁺, 38), 131 (100), 119 (31), 91 (59); HRMS m/z (ESI) calcd for C₉H₈O₂ ([M+H]⁺) 163.0754, found 163.0754.

3-(Naphthalen-2-yl)-3-phenylacrylaldehyde (5d):

Yield: 49%, E:Z = 1.5:1; Yellow solid; ¹H NMR (500 MHz, CDCl₃) δ 9.59-9.56 (m, 1H), 7.95-7.71 (m, 5H), 7.57-7.48 (m, 4H), 7.39-7.31 (m, 3H), 6.74 (d, J = 8.0, 0.6H), 6.69 (d, J = 8.0, 0.4H);

¹³C NMR (125 MHz, CDCl₃) δ 193.5, 162.3, 162.1, 130.8 (2C), 129.6, 129.5, 128.8 (2C), 128.6, 128. 4, 128.3, 128.11, 127.8, 127.7, 127.6 (3C), 127.5, 126.7, 125.0; LRMS (EI, 70eV) *m/z* (%): 258 (M⁺, 100), 229 (64), 128 (42), 102 (37); HRMS *m/z* (ESI) calcd for C₁₉H₁₅O ([M+H]⁺) 259.1117, found 259.1118.

3,3-diphenylacrylaldehyde (5e)¹⁶:

Yield: 56%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 9.53 (d, J =7.5 Hz, 1H), 7.5-7.4 (m, 5H), 7.4-7.3 (m, 5H), 6.61 (d, J = 8.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 193.6, 162.3, 139.7, 136.6, 130.7, 130.5, 129.5, 128.7, 128.6; 128.3, 127.2; LRMS (EI, 70eV) m/z (%): 208 (M⁺, 78), 207 (100), 178 (56), 102 (51); HRMS *m/z* (ESI) calcd for C₁₅H₁₃O ([M+H]⁺) 209.0961, found 209.0961.

3,3-Di-*p*-tolylacrylaldehyde (5f):

Yield: 57%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 9.51 (d, *J* = 8.0 Hz, 1H), 7.27-7.24 (m, 4H), 7.20-7.17 (m, 4H), 6.55 (d, *J* = 8.0 Hz, 1H), 2.43 (s, 3H), 2.38 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 193.8, 162.6, 140.9, 139.6, 137.1, 133.9, 130.8, 129.3, 128.9, 128.7,

126.4, 21.4, 21.3; LRMS (EI, 70eV) *m/z* (%): 236 (M⁺, 28), 221 (100), 178 (19), 115 (33); HRMS *m/z* (ESI) calcd for C₁₇H₁₇O ([M+H]⁺) 237.1274, found 237.1272.

3,3-Bis(4-fluorophenyl)acrylaldehyde (5g):

Yield: 34%, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 9.50 (d, *J* = 8.0 Hz, 1H), 7.36-7.28 (m, 4H), 7.19-7.15 (m, 2H), 7.10-7.07 (m, 2H), 6.54 (d, *J* = 8.0Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 192.9, 165.2, 164.5, 163.2, 162.5, 159.8, 135.7, 132.6, 132.5, 130.7, 127.3, 115.9, 115.8, 115.6; ¹⁹F NMR (471 MHz, CDCl₃) δ -109.3, -110.6; LRMS (EI, 70eV) *m/z* (%): 244 (M⁺, 84), 243 (85), 214 (44), 120 (100); HRMS *m/z* (ESI) calcd for C₁₅H₁₁OF₂ ([M+H]⁺) 245.0772, found 245.0770.

3-(4-Bromophenyl)-3-phenylacrylaldehyde (5h):

Yield: 48%, E/Z = 1.5:1; Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 9.54-9.51 (m, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.52-7.38 (m, 4H), 7.35-7.26 (m, 2H), 7.23-7.19 (m, 2H), 6.61-6.56 (m, 1H); ¹³C

NMR (125 MHz, CDCl₃) δ 193.3, 192.9, 161.0, 160.9, 139.2, 138.6, 136.1, 135.5,

132.2, 131.9, 131.7, 130.7 (2C), 130.1, 129.7, 128.7, 128.6, 128.5, 127.5, 127.3, 125.1,
124.0; LRMS (EI, 70eV) *m/z* (%): 286 (M⁺, 45), 207 (65), 178 (100), 102 (52);
HRMS *m/z* (ESI) calcd for C₁₅H₁₂OBr ([M+H]⁺) 287.0066, found 287.0069.

3-(4-Methoxyphenyl)-3-(13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-2-yl)acrylaldehyde (5i):

OMe Vield: 58%, E/Z = 2:1, Yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 9.53-9.48 (m, 1H), 7.34-7.32 (m, 2H), 7.24 (d, J = 8.5 Hz, 1H), 7.11-7.03 (m, 2H), 6.96 (d, J = 8.5 Hz, 1H),

6.88 (d, J = 9.0 Hz, 1H), 6.53-6.50 (m, 1H), 3.88 (s, 1H), 3.84 (s, 2H), 2.94-2.90 (m, 2H), 2.56-2.48 (m, 2H), 2.22-2.11 (m, 2H), 2.06-1.99 (m, 2H), 1.70-1.46 (m, 7H), 0.96 (s, 2H), 0.92 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 220.6 (2C), 193.7, 193.6, 162.2 (2C), 161.6, 160.7, 142.6, 141.2, 137.7, 136.8, 136.5, 134.3, 132.5, 132.1, 131.3, 130.4, 129.4, 129.0, 128.3, 126.5, 126.4, 125.6, 125.5, 125.2, 113.9, 113.6, 55.4, 50.5 (2C), 47.9 (2C), 44.5, 44.4, 38.0 (2C), 35.8, 31.5, 29.7, 29.3 (2C), 26.3 (2C), 25.6 (2C), 21.6, 14.1, 13.8 (2C); HRMS *m*/*z* (ESI) calcd for C₂₈H₃₁O₃ ([M+H]⁺) 415.2268, found 415.2265.

S42

(E) Spectra

1-Methoxy-4-(3,3,3-trichloro-1-(methoxy-D3)propyl)benzene (6b-D3):

Methyl-D3 (E)-3-(4-methoxyphenyl)acrylate (4ab-D3):

Ethyl (E)-3-(4-methoxyphenyl)acrylate (4aa):

Methyl (E)-3-(4-methoxyphenyl)acrylate (4ab):

S46

Butyl (*E*)-3-(4-methoxyphenyl)acrylate (4ac):

Dodecyl (*E*)-3-(4-methoxyphenyl)acrylate (4ad):

Neopentyl (*E*)-3-(4-methoxyphenyl)acrylate (4ae):

But-3-en-1-yl (*E*)-3-(4-methoxyphenyl)acrylate (4af):

40 30 20 10 Ó -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 f1 (ppm)

3-Bromopropyl (*E*)-**3-(4-methoxyphenyl)acrylate** (4ag):

S51

Isopropyl (E)-3-(4-methoxyphenyl)acrylate (4ah):

(1R,2R,5S)-2-Isopropyl-5-methylcyclohexyl (4ai):

(E)-3-(4-methoxyphenyl)acrylate

S53

(1r,3r,5r,7r)-Adamantan-2-yl (E)-3-(4-methoxyphenyl)acrylate (4aj):

Ethyl (E)-3-(4-ethoxyphenyl)acrylate (4ba):

Ethyl (E)-3-(4-(methylthio)phenyl)acrylate (4da):

Ethyl (E)-3-(3-methylthiophen-2-yl)acrylate (4ga):

Ethyl (2*E*,4*E*)-5-(4-methoxyphenyl)penta-2,4-dienoate (4ha):

Ethyl-3-(naphthalen-2-yl)-3-phenylacrylate (4ja):

Ethyl (*E*)-3-phenyl-3-(o-tolyl)acrylate (4ka):

Ethyl-3-phenyl-3-(*m*-tolyl)acrylate (4la):

Ethyl-3-(3-chlorophenyl)-3-phenylacrylate (4ma):

Ethyl-3-phenyl-3-(p-tolyl)acrylate (4na):

Ethyl-3-(4-methoxyphenyl)-3-phenylacrylate (40a):

Ethyl-3-(4-fluorophenyl)-3-phenylacrylate (4pa):

---111.679

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

Ethyl 3,3-diphenylacrylate (4qa):

Ethyl 3,3-di-*p*-tolylacrylate (4ra):

Ethyl 3,3-bis(4-fluorophenyl)acrylate (4sa):

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 f1 (ppm) -210 -130 -150 -170 -190

Ethyl 3,3-bis(4-methoxyphenyl)acrylate (4ta):

Ethyl (*E*)-3-(4-methoxyphenyl)-2-methylacrylate (4ua):

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Ethyl (*E*)-2-methyl-3-(2,4,5-trimethoxyphenyl)acrylate (4va):

Ethyl-(*E*)-3-(2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)chroman-6-yl)acrylate (4wa):

Ethyl-3-(13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-2-yl)-3-phenylacrylate (4xa):

Ethyl-3-(4-methoxyphenyl)-3-(13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-2-yl)acrylate (4ya):

4-(3-Ethoxy-3-oxo-1-phenylprop-1-en-1-yl)benzyl-(4R)-4-((5S,8R,9S,10S,13R,14S)-10,13-dimethyl-3,7,12-trioxohexadecahydro-1*H*-cyclopenta[*a*]phenanthren-17yl)pentanoate (4za):

(E)-3-(4-methoxyphenyl)acrylaldehyde (5a):

(E)-3-(4-Ethoxyphenyl)acrylaldehyde (5b):

(E)-3-(2-Methoxyphenyl)acrylaldehyde (5c):

S83

3-(Naphthalen-2-yl)-3-phenylacrylaldehyde (5d):

3,3-Diphenylacrylaldehyde (5e):

S85

3,3-Di-p-tolylacrylaldehyde (5f):

S86

3,3-Bis(4-fluorophenyl)acrylaldehyde (5g):

20190507-1jh-1yy-052

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 f1 (ppm) -130 -150 -170 -190 -210

3-(4-Bromophenyl)-3-phenylacrylaldehyde (5h):

3-(4-Methoxyphenyl)-3-(13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-

decahydo-6*H*-cyclopenta[*a*]phenanthren-2-yl)acrylaldehyde (5i):

(F) References

- 1. Z.-F. Xu, H. Dai, L. Shan, C.-Y. Li, Org. Lett. 2018, 20, 1054.
- C. H. Oh, H. H. Jung, K. S. Kim, N. Kim, Angew. Chem. 2003, 115, 829; Angew. Chem. Int. Ed. 2003, 42, 805.
- 3. A. Jana, K. Misztal, A. Żak, K. Grela, J. Org. Chem. 2017, 82, 4226.
- X. Wang, X. Qiao, X. Yin, Z. Cui, P. Fu, M. Liu, G. Wang, X. Pan, X. Pang, Chem Asian J. 2020, 15, 1014.
- Gaussian 09, Revision A.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 6. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
- V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, L.A. J. Curtiss, *Comp. Chem.* 2001, 22, 976.
- 8. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B, 2009, 113, 6378.
- B. Lakshminarayana, L. Mahendar, P. Ghosal, B. Sreedhar, G. Satyanarayana, Ch. Subrahmanyam, *New J. Chem.* 2018, 42, 1646.
- D. B. Eremin, E. A. Denisova, A. Yu. Kostyukovich, J. Martens, G. Berden, J. Oomens, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, *Chem. Eur. J.* 2019, 25, 16564.
- 11. R. Imashiro, M. Seki, J. Org. Chem. 2004, 69, 4216.

- 12. Q. Zhao, J.-K. Jin, J. Wang, F.-L. Zhang, Y.-F. Wang, Chem. Sci. 2020, 11, 3909.
- 13. S. Puri, M. H. Babua, M. S. Reddy, Org. Biomol. Chem. 2016, 14, 7001.
- 14. E. Korytiakova', N. O. Thiel, F. Pape, J. F. Teichert, Chem. Commun. 2017, 53, 732.
- 15. W. C. Shearouse, C. M. Korte, J. Mack, Green Chem. 2011, 13, 598.
- Y. Bao, G.-Y. Wang, Y.-X. Zhang, K.-J. Bian and X.-S. Wang, *Chem. Sci.* 2018, 9, 2986