Catalyst-controlled and visible-light-induced acylmethylation and

bromoacylmethylation of Morita-Baylis-Hillman acetates with a-

bromo ketones: access to highly functionalized 1,5-dicarbonyl

compounds

De-Run Zhang^a, Lin-Ping Hu^a, Feng-Lin Liu^a, Xiao-Hong Huang^a, Xia Li^b, Bo Liu^a, Ming-Yu Teng^a and Guo-Li Huang^{*a}

^{*a*} School of Chemistry and Chemical Engineering, ^{*b*} Department of Library, Yunnan Normal

University, Kunming, P. R. China

Tel & Fax: +86-871-65941087; E-mail: hgli2005@126.com

Table of Contents

1	Experimental section	S2
2	Experimental procedures	S3-S4
3	Optimization of the reaction conditions	S4-S5
4	Evidence for a radical pathway	S5-S7
5	NMR data of acylmethylated products (3aa-3ma and 3ab-3ap)	S7-S15
6	NMR data of bromoacylmethylated products (4aa-4oa and 4ab-	S15-S25
	4ao)	
7	NMR spectra of acylmethylated products (3aa-3ma and 3ab-3ap)	S26-S53
8	NMR spectra of bromoacylmethylated products (4aa-4oa and 4ab-	S54-S85
	4ao)	
9	References	S85

1. Experimental section

All reagents were used directly as obtained commercially unless otherwise noted and were used directly without any purification. Solvents were freshly distilled prior to use. All reactions were carried out under argon atmosphere unless noted. ¹H NMR and ¹³C NMR spectra were recorded with a Bruker Avance III 500 MHz spectrometer in CDCl₃ solution. High resolution mass (HRMS) spectra were measured with a VG Auto Spec-3000 spectrometer. Melting points (Mp) were determined with a digital electro thermal apparatus without further correction. TLC analyses were performed on commercial glass plates bearing a 0.25mm layer of Merck silica gel 60 F254. Silica gel (200-300 mesh) was used for column chromatography. Morita-Baylis-Hillman acetates **1** were prepared according to the previous reported protocols.^[1] The *a*-bromo ketones **2** were purchased from the Wencai New Material Technology and Merck in high purity.

2. Experimental procedures

A. General procedure for preparation of Morita-Baylis-Hillman acetates (1a-m)¹

The Morita-Baylis-Hillman (MBH) adducts was synthesized by the literature². To a stirred solution of MBH products (1.0 equiv.) in dichloromethane was added acetic anhydride (1.5 equiv.) and N,N-dimethylaminopyridine (0.2 equiv.) at room temperature. After stirring at the same temperature for 1 hour, the reaction mixture was treated with water and extracted with dichlorormethane. The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was removed under reduced pressure and purified by silica gel column chromatography.

Morita-Baylis-Hillman acetates (1a-1o) were synthesized using the above method:

B. General experimental procedure for photocatalytic acylmethylation of Morita-Baylis-Hillman acetates with *a*-bromo ketones

An 10 mL oven-dried Schlenk tube was equipped with a stirring bar, Morita-Baylis-Hillman acetates 1 (0.2 mmol), *a*-bromo ketones 2 (0.3 mmol, 1.5 equiv.), and Rose bengal (0.004 mmol, 2 mol%). The mixture was degassed by using standard Schlenk techniques with an oil pump. Then TIPA (0.4 mmol, 2.0 equiv.) and MeOH (2 mL) were injected into the reaction tube. The solution was placed in a distance of 3 cm from 15 W blue LED at room temperature for 12 h under argon atmosphere. Upon completion, quench the reaction with saturated NaCl (10 mL), and the mixture was extracted with dichloromethane (3×15 mL). The combined organic layer was washed three times with H₂O (3×10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The crude product was purified by SiO₂ column chromatography to afford the desired products.

C. General experimental procedure for photocatalytic bromoacylmethylation of Morita-Baylis-Hillman acetates with *a*-bromo ketones

An 10 mL oven-dried Schlenk tube was equipped with a stirring bar, Morita-Baylis-Hillman acetates 1 (0.2 mmol), *a*-bromo ketones 2 (0.3 mmol, 1.5 equiv.), *fac*-Ir(ppy)₃ (0.01 mmol, 5 mol%), and K₂HPO₄ (0.1 mmol, 0.5 equiv.). The mixture was degassed by using standard Schlenk techniques with an oil pump. Then CH₂Cl₂ (2 mL) were injected into the reaction tube. The solution was placed in a distance of 3 cm from 15 W blue LED at room temperature for 24 h under argon atmosphere. Upon completion, quench the reaction with saturated NaCl (10 mL), and the mixture was extracted with dichloromethane (3×15 mL). The combined organic layer was washed three times with H₂O (3×10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The crude product was purified by SiO₂ column chromatography to afford the desired products.

3. Optimization of the reaction conditions

3.1 Table S1 Optimization of the reaction conditions for photocatalytic bromoacylmethylation of Morita-Baylis-Hillman acetates with *a*-bromo ketones^[a]

Entry	Photocatalyst	Base	Solvent	Yield (%) ^[b]
1	Ir(ppy) ₃	K ₂ HPO ₄	DMF	73(60) ^[c]
2	Ru(bpy) ₃ Cl ₂ •6H ₂ O	K ₂ HPO ₄	DMF	N.R. ^[d]
3	[Ir(dtbbpy)(bpy) ₂]PF ₆	K ₂ HPO ₄	DMF	N.R. ^[d]
4	$Ru(bpy)_3PF_6$	K ₂ HPO ₄	DMF	trace
5	Na ₂ -eosin Y	K ₂ HPO ₄	DMF	trace
6	4-CzIPN	K ₂ HPO ₄	DMF	trace
7	Rose Bengal	K ₂ HPO ₄	DMF	trace
8	Ir(ppy)3	DIPEA	DMF	N.R. ^[d]
9	Ir(ppy)3	Et ₃ N	DMF	trace
10	Ir(ppy) ₃	DMAP	DMF	16
11	Ir(ppy)3	DABCO	DMF	24
12	Ir(ppy)3	DBU	DMF	trace
13	Ir(ppy)3	K ₃ PO ₄	DMF	35
14	Ir(ppy)3	Cs ₂ CO ₃	DMF	trace
15	Ir(ppy)3	K ₂ CO ₃	DMF	trace
16	Ir(ppy)3	NaHCO ₃	DMF	50
17	Ir(ppy) ₃	K ₂ HPO ₄	THF	58
18	Ir(ppy)3	K ₂ HPO ₄	DCE	74

19	Ir(ppy) ₃	K_2HPO_4	CH_2Cl_2	92
20	Ir(ppy) ₃	K ₂ HPO ₄	CH ₃ CN	91
21	Ir(ppy)3	K ₂ HPO ₄	DMA	77
22	Ir(ppy) ₃	K ₂ HPO ₄	DMSO	49
23	Ir(ppy)3	K ₂ HPO ₄	DCE/H ₂ O	86
24	Ir(ppy) ₃	K ₂ HPO ₄	CH ₃ CN/H ₂ O	48
25	Ir(ppy) ₃	K ₂ HPO ₄	CH ₂ Cl ₂ /H ₂ O	67

^[a] Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.), photocatalyst (5.0 mol%, 0.01mmol), Base (0.1 mmol, 0.5 equiv.) solvent (2 mL) at room temperature under visible light irradiation (blue LEDs 15 W) in argon for 24 h. ^[b] NMR yield based on **1a** using 1,3,5-trimethoxybenzene as the internal standard. ^[c] Using 2.0 mol% Ir(ppy)₃. ^[d] N.R. = no reaction.

4. Evidence for a radical pathway

Catalytic reaction interfered with a radical quencher:

A. acylmethylation: An 10 mL oven-dried Schlenk tube was equipped with a stirring bar, Morita-Baylis-Hillman acetate **1a** (0.2 mmol), *a*-bromo ketone **2a** (0.3 mmol, 1.5 equiv.), rose bengal (0.004 mmol, 2 mol%) and 1,1-diphenylethylene (0.6 mmol, 3.0 equiv.). The mixture was degassed by using standard Schlenk techniques with an oil pump. Then TIPA (0.4 mmol, 2.0 equiv.) and MeOH (2 mL) were in jected into the reaction tube. The solution was placed in a distance of 3 cm from 15 W blue LED at room temperature. After being stirred at room temperature for 12 h under argon atmosphere, the solution was used directly for HRMS analysis.

B. bromoacylmethylation: An 10 mL oven-dried Schlenk tube was equipped with a stirring bar, Morita-Baylis-Hillman acetate **1a** (0.2 mmol), *a*-bromo ketone **2a** (0.3 mmol, 1.5 equiv.), *fac*-Ir(ppy)₃ (0.01 mmol, 5 mol%), K₂HPO₄ (0.1 mmol, 0.5 equiv.) and 1,1-diphenylethylene (0.6 mmol, 3.0 equiv.). The mixture was degassed by using standard Schlenk techniques with an oil pump. Then CH_2Cl_2 (2 mL) were in jected into the reaction tube. The solution was placed in a distance of 3 cm from 15 W blue LED at room temperature. After being stirred at room temperature for 24 h under argon atmosphere, the solution was used directly for HRMS analysis.

定性化合物报告

数据文件	12016481-ZDR-90-57. d	样品名称	12016481-ZDR-90-57
样品类型	Sample	位置	P1-B6
仪器名称	Instrument 1	用户名称	
采集方法	pos-1min.m	采集时间	2022-12-08 17:49:49
IRM 校正状态	成功	数据方法	ZNZ-2022. m
注释			
设备类型	QuadrupoleTimeOfFlight	Sample Group	
Info.		Stream Name	LC 1
Acquisition SW Version	6200 series TOF/6500 series Q-TOF B.08.00 (BS058.0)		

化合物列表

化合物标签	RT	质量数	丰度	分子式	目标质量	误差 (ppm)
Cpd 1: C23 H20 02	0.18	328. 1467	559707	C23 H20 02	328. 1463	1.14
MS 缩放的质谱图						
x10 5 Cpd 1: C23 H20	0 02: + FBF Spect	rum (rt: 0.15	2 min) 12016481	-ZDR-90-57. d	扣除	
6 -	Ph	Ph	329.1538 ([C23H20D2]+H)	+		
5 -						
4 -	0					
3 -	5	OMe				
2 -	HRMS (ESI, m/z)				
1 -	calcd fo [M+H] ⁺ :	r C ₂₃ H ₂₁ O2 ⁺ 329.1536				
0 -	found: 3	29.1538				
305	310 315	320 Count	325 330 ts vs. 质荷比	335 340 (m/z)	345 350	355
MS 质谱图峰列表						
m/z z 丰度	分子式		离子			

m/z	z	丰度	分子式	离子
329.1538	1	559706.56	C23H2002	(M+H) +
330. 1577	1	129032.55	C23H2002	(M+H) +
331.1625	1	18435.92	C23H2002	(M+H) +
332.1666	1	2135.94	C23H2002	(M+H) +
All the Advante				

--- 报告结束 ----

5. NMR data of acylmethylated products (3aa-3ma and 3ab-3ap)

methyl (*E*)-2-benzylidene-5-(4-methoxyphenyl)-5oxopentanoate (3aa): Yellow liquid, yield: 71%. ¹H NMR (500 MHz, CDCl₃) δ = 7.96 (d, *J* = 8.9 Hz, 2H), 7.76 (s, 1H), 7.34 (m, 5H), 6.92 (d, *J* = 8.8 Hz, 2H), 3.85 (s, 3H), 3.83 (s, 3H), 3.21-3.12 (m, 2H), 3.00-2.92 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 197.7, 168.6, 163.5, 140.2, 135.3, 131.8, 130.4, 129.7, 129.2, 128.7, 128.6,

113.7, 55.4, 52.1, 37.7, 22.9 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₀H₂₁O₄: 325.1434, Found: 325.1440.

methyl(E)-5-(4-methoxyphenyl)-2-(4-methylbenzylidene)-5-oxopentanoate(3ba):Colourless liquid, yield: 62%. ¹H NMR (500 MHz,CDCl₃) δ = 7.97 (d, J = 8.8 Hz, 2H), 7.73 (s, 1H), 7.29(d, J = 8.1 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 6.92 (d, J =8.9 Hz, 2H), 3.86 (s, 3H), 3.83 (s, 3H), 3.19-3.15 (m, 2H),3.00-2.95 (m, 2H), 2.35 (s, 3H) ppm. ¹³C NMR (126

MHz, CDCl₃) δ = 197.8, 168.7, 163.5, 140.2, 138.9, 132.4, 130.9, 130.4, 129.8, 129.4, 129.3, 113.7, 55.4, 52.0, 37.7, 22.9, 21.3 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₁H₂₃O₄: 339.1591, Found: 339.1595.

methyl(E)-2-(4-methoxybenzylidene)-5-(4-methoxyphenyl)-5-oxopentanoate(3ca):Colourless liquid, yield:65%. ¹H NMR (500 MHz,CDCl₃) δ = 7.98 (d, J = 8.9 Hz, 2H), 7.70 (s, 1H),7.37 (d, J = 8.7 Hz, 2H), 6.91 (dd, J = 10.6, 8.7 Hz,4H), 3.86 (s, 3H), 3.82 (s, 3H), 3.81 (s, 3H), 3.20-3.16 (m, 2H), 3.01-2.96 (m, 2H) ppm. ¹³C NMR (126)

MHz, CDCl₃) δ = 198.1, 169.0, 163.6, 160.1, 139.9, 131.3, 130.6, 129.6, 127.8, 114.3, 113.8, 55.6, 55.4, 52.1, 37.7, 23.1 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₁H₂₃O₅: 355.1540, Found: 355.1548.

methyl(E)-2-(2-fluorobenzylidene)-5-(4-methoxyphenyl)-5-oxopentanoate (3da): Colourless liquid,yield: 60%. ¹H NMR (500 MHz, CDCl₃) δ = 7.94 (d, J = 8.8Hz, 2H), 7.76 (s, 1H), 7.31 (m, 2H), 7.16-7.05 (m, 2H), 6.91(d, J = 8.8 Hz, 2H), 3.85 (s, 3H), 3.84 (s, 3H), 3.18-3.14 (m,2H), 2.88-2.83 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃)

 δ = 197.7, 168.1, 163.6, 160.3 (d, *J*_{CF} = 249.5 Hz), 134.3, 133.1 (d, *J*_{CF} = 3.8 Hz), 130.5, 130.1 (d, *J*_{CF} = 2.5 Hz), 129.8, 124.3 (d, *J*_{CF} = 3.8 Hz), 123.4 (d, *J*_{CF} = 13.9 Hz), 115.8 (d, *J*_{CF} = 22.7 Hz), 113.8, 55.6, 52.3, 37.6, 23.4 ppm. ¹⁹F NMR (471 MHz, CDCl₃) δ = -113.1 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₀H₂₀FO₄: 343.1340, Found: 343.1348.

methyl(E)-2-(2-chlorobenzylidene)-5-(4-methoxyphenyl)-5-oxopentanoate(3ea):Colourlessliquid, yield: 65%. ¹H NMR (500 MHz, CDCl₃) δ = 7.91 (d,J = 8.9 Hz, 2H), 7.80 (s, 1H), 7.43-7.39 (m, 1H), 7.28 (dd, J= 7.6, 3.8 Hz, 2H), 7.21 (d, J = 32.2 Hz, 1H), 6.90 (d, J =8.9 Hz, 2H), 3.85 (s, 6H), 3.14-3.09 (m, 2H), 2.83-2.77 (m,2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 197.6, 168.1,

163.6, 137.7, 134.2, 133.9, 133.9, 130.5, 123.0, 129.8, 129.8, 126.9, 113.8, 55.6, 52.3, 37.8, 23.1 ppm. HRMS (ESI) $[M+H^+]$ Calcd For $C_{20}H_{20}ClO_4$: 359.1045, Found: 359.1040.

methyl (*E*)-2-(2-bromobenzylidene)-5-(4methoxyphenyl)-5-oxopentanoate (3fa): Colourless liquid, yield: 66%. ¹H NMR (500 MHz, CDCl₃) δ = 7.90 (d, *J* = 8.8 Hz, 2H), 7.73 (s, 1H), 7.59 (d, *J* = 8.3 Hz, 1H), 7.32-7.26 (m, 2H), 7.18-7.15 (m, 1H), 6.89 (d, *J* = 8.9 Hz, 2H), 3.85 (s, 3H), 3.84 (s, 3H), 3.12-3.08 (m, 2H), 2.81-2.76 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 197.6, 168.0, 163.5, 139.8, 136.1, 133.6, 132.9, 130.5,

123.0, 129.8, 129.7, 127.5, 123.8, 113.8, 55.5, 52.3, 37.7, 23.0 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₀H₂₀BrO₄: 403.0539, Found: 403.0544.

methyl(E)-2-(2-iodobenzylidene)-5-(4-methoxyphenyl)-5-oxopentanoate(3ga):Colourlessliquid, yield:61%.¹H NMR (500 MHz, CDCl₃) δ = 7.89(d, J = 8.8 Hz, 3H), 7.62 (s, 1H), 7.33 (d, J = 7.4 Hz, 1H),7.22 (d, J = 9.4 Hz, 1H), 6.99 (d, J = 7.7 Hz, 1H), 6.89 (d,J = 9.1 Hz, 2H), 3.85 (s, 3H), 3.84 (s, 3H), 3.12-3.06 (m,2H), 2.78-2.72 (m, 2H) ppm.¹³C NMR (126 MHz, CDCl₃)

 δ = 197.5, 167.9, 163.5, 143.8, 139.8, 139.2, 133.2, 130.4, 129.8, 129.7, 129.3, 128.3, 113.8, 99.1, 55.6, 52.3, 37.6, 22.9 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₀H₂₀IO₄: 451.0401, Found: 451.0405.

methyl (*E*)-2-(4-bromobenzylidene)-5-(4methoxyphenyl)-5-oxopentanoate (3ha): Colourless liquid, yield: 65%. ¹H NMR (500 MHz, CDCl₃) δ = 7.94-7.91 (m, 2H), 7.65 (s, 1H), 7.51-7.47 (m, 2H), 7.25-7.21 (m, 2H), 6.93-6.89 (m, 2H), 3.85 (s, 3H), 3.82 (s, 3H), 3.17-3.12 (m, 2H), 2.94-2.89 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 197.6, 168.4,

163.6, 138.9, 134.3, 132.6, 131.9, 130.8, 130.5, 129.7, 122.9, 113.8, 55.5, 52.2, 37.5, 22.9 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₀H₂₀BrO₄: 403.0539, Found: 403.0542.

methyl (*E*)-5-(4-methoxyphenyl)-5-oxo-2-(4-(trifluoromethyl)benzylidene)pentanoate (3ia): Colourless liquid, yield: 62%. ¹H NMR (500 MHz, CDCl₃) δ = 7.93 (d, *J* = 8.9 Hz, 2H), 7.74 (s, 1H), 7.62 (d, *J* = 8.2 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 8.9 Hz, 2H), 3.85 (s, 3H), 3.84 (s, 3H), 3.18-3.13 (m, 2H), 2.95-2.89 (m, 2H) ppm. ¹³C NMR (126 MHz,

CDCl₃) δ = 197.5, 168.2, 163.7, 139.0, 138.6, 134.1, 130.5, 129.7, 129.4, 125.7 (q, *J*_{CF} = 3.8 Hz), 113.9, 55.6, 52.4, 38.1, 23.0 ppm. ¹⁹F NMR (471 MHz, CDCl₃) δ = -62.7. HRMS (ESI) [M+H⁺] Calcd For C₂₁H₂₀F₃O₄: 393.1308, Found: 393.1310.

ethyl (*E*)-2-benzylidene-5-(4-methoxyphenyl)-5oxopentanoate (3ja): Colourless liquid, yield: 64%. ¹H NMR (500 MHz, CDCl₃) δ = 7.96 (d, *J* = 8.9 Hz, 2H), 7.76 (s, 1H), 7.38 (d, *J* = 4.8 Hz, 4H), 7.34-7.30 (m, 1H), 6.92 (d, *J* = 8.9 Hz, 2H), 4.30 (q, *J* = 7.1 Hz, 2H), 3.86 (s, 3H), 3.20-3.14 (m, 2H), 2.99-2.93 (m, 2H), 1.36 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 197.9, 168.2,

163.6, 140.6, 135.5, 132.2, 130.5, 129.8, 129.3, 128.7, 128.7, 113.8, 61.0, 55.5, 37.8, 23.0, 14.4 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₁H₂₃O₄: 339.1591, Found: 339.1595.

butyl (*E*)-2-benzylidene-5-(4-methoxyphenyl)-5oxopentanoate (3ka): Colourless liquid, yield: 70%. ¹H NMR (500 MHz, CDCl₃) δ = 7.96 (d, *J* = 8.8 Hz, 2H), 7.75 (s, 1H), 7.38 (d, *J* = 4.8 Hz, 4H), 7.31 (m, 1H), 6.92 (d, *J* = 8.9 Hz, 2H), 4.24 (t, *J* = 6.7 Hz, 2H), 3.86 (s, 3H), 3.21-3.15 (m, 2H), 2.95 (d, *J* = 7.9 Hz, 2H), 1.70 (dd, *J* = 15.3, 6.4 Hz, 2H), 1.48-1.40 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 197.8,

168.3, 163.6, 140.0, 135.5, 132.2, 130.5, 129.9, 129.3, 128.7, 113.8, 65.4, 55.5, 39.2, 32.4, 23.0, 19.4, 13.9 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₃H₂₇O₄: 367.1904, Found: 367.1906.

iso-butyl (*E*)-2-benzylidene-5-(3-methoxyphenyl)-5-oxopentanoate (3la): Colourless liquid, yield: 78%. ¹H NMR (500 MHz, CDCl₃) δ = 7.96 (d, *J* = 8.8 Hz, 2H), 7.77 (s, 1H), 7.39-7.34 (m, 4H), 7.33-7.29 (m, 1H), 6.91 (d, *J* = 8.9 Hz, 2H), 4.02 (d, *J* = 6.6 Hz, 2H), 3.85 (s, 3H), 3.21-3.16 (m, 2H), 3.00-2.93 (m, 2H), 2.08-1.99 (m, 1H), 0.99 (d, *J* = 6.7 Hz, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 197.8, 168.2, 163.5, 140.0, 135.4, 132.2, 130.5, 129.8,

129.3, 128.7, 113.8, 71.2, 55.5, 37.8, 27.9, 23.0, 19.3 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₃H₂₇O₄: 367.1904, Found: 367.1909.

tert-butyl (*E*)-2-benzylidene-5-(4methoxyphenyl)-5-oxopentanoate (3ma): White solid, yield: 78%, Mp: 89-91 °C. ¹H NMR (500 MHz, CDCl₃) $\delta = 7.95$ (d, J = 8.9 Hz, 2H), 7.66 (s, 1H), 7.38-7.29 (m, 5H), 6.92 (d, J = 8.9 Hz, 2H), 3.86 (s, 3H), 3.18-3.13 (m, 2H), 2.94-2.89 (m, 2H), 1.55 (s, 9H). ¹³C NMR (126

MHz, CDCl₃) δ = 198.0, 167.4, 163.6, 139.2, 135.8, 133.8, 130.5, 130.0, 129.2, 128.7, 113.8, 81.0, 55.6, 37.9, 28.3, 23.1 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₃H₂₇O₄: 367.1904, Found: 367.1905.

methyl (*E*)-2-benzylidene-5-oxo-5-(*p*tolyl)pentanoate (3ab): White solid, yield: 77%, Mp: 74-76 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.88 (d, *J* = 8.3 Hz, 2H), 7.77 (s, 1H), 7.38 (d, *J* = 4.4 Hz, 4H), 7.35-7.29 (m, 1H), 7.25 (d, *J* = 7.9 Hz, 2H), 3.84 (s, 3H), 3.23-3.18 (m, 2H), 3.01-2.94 (m, 2H), 2.40 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 198.9, 168.7, 143.9, 140.4, 135.4, 134.3, 131.9,

129.4, 129.3, 128.8, 128.7, 128.4, 52.2, 38.0, 22.8, 21.7 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₀H₂₁O₃: 309.1485, Found: 309.1489.

methyl (*E*)-2-benzylidene-5-(2-methoxyphenyl)-5oxopentanoate (3ac): Colourless liquid, yield: 56%. ¹H NMR (500 MHz, CDCl₃) δ = 7.73 (s, 1H), 7.70 (dd, *J* = 7.7, 1.9 Hz, 1H), 7.47-7.42 (m, 1H), 7.38 (d, *J* = 6.6 Hz, 4H), 7.32 (d, *J* = 6.6 Hz, 1H), 6.99 (m, 1H), 6.94 (d, *J* = 8.3 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 3.26-3.21 (m, 2H), 2.98-2.94 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 201.5, 168.8, 158.7, 140.0,

135.6, 133.5, 132.3, 130.4, 129.4, 128.7, 128.6, 128.3, 120.7, 111.6, 55.6, 52.1, 42.9, 22.7 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₀H₂₁O₄: 325.1434, Found: 325.1439.

methyl (*E*)-2-benzylidene-5-(3-methoxyphenyl)-5oxopentanoate (3ad): Colourless liquid, yield: 65%. ¹H NMR (500 MHz, CDCl₃) δ = 7.77 (s, 1H), 7.58-7.49 (m, 2H), 7.39-7.31 (m, 6H), 7.10 (d, *J* = 8.3 Hz, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.24-3.20 (m, 2H), 3.00-2.95 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 199.0, 168.6, 160.0, 140.4, 138.1, 135.4, 131.7, 129.7, 129.3, 128.8,

120.9, 119.7, 112.4, 55.5, 52.2, 38.8, 16.5 ppm. HRMS (ESI) $[M+H^+]$ Calcd For C₂₀H₂₁O₄: 325.1434, Found: 325.1438.

methyl (*E*)-2-benzylidene-5-oxo-5-phenylpentanoate (3ae): Colourless liquid, yield: 80%. ¹H NMR (500 MHz, CDCl₃) δ = 8.00 (d, *J* = 7.1 Hz, 2H), 7.80 (s, 1H), 7.58 (m, 1H), 7.48 (m, 2H), 7.40 (d, *J* = 2.8 Hz, 4H), 7.37-7.34 (m, 1H), 3.86 (s, 3H), 3.28-3.24 (m, 2H), 3.04-2.97 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 199.1, 168.6, 140.4, 136.6, 135.3, 133.1, 131.7, 129.2, 128.7, 128.6, 128.1, 52.1, 38.0, 22.6 ppm. HRMS

(ESI) [M+H⁺] Calcd For C₁₉H₁₉O₃: 295.1329, Found: 295.1335.

methyl (*E*)-2-benzylidene-5-(4-fluorophenyl)-5oxopentanoate (3af): Colourless liquid, yield: 60%. ¹H NMR (500 MHz, CDCl₃) δ = 8.00 (dd, *J* = 8.7, 5.5 Hz, 2H), 7.77 (s, 1H), 7.40-7.31 (m, 5H), 7.11 (m, 2H), 3.84 (s, 3H), 3.24-3.12 (m, 2H), 3.02-2.90 (m, 2H)) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 197.7, 168.6, 165.9 (d, *J*_{CF} = 254.6 Hz), 140.6, 135.3, 133.1 (d, *J*_{CF} = 2.9 Hz), 131.6, 130.90 (d, *J*_{CF} = 9.3 Hz), 129.3, 128.8, 115.8 (d, *J*_{CF} = 21.8 Hz), 52.2, 38.0, 22.8 ppm. ¹⁹F NMR (471 MHz, CDCl₃) δ = -105.3 ppm. HRMS (ESI) [M+H⁺] Calcd For C₁₉H₁₈FO₃: 313.1234, Found: 313.1236.

methyl (*E*)-2-benzylidene-5-(4-chlorophenyl)-5oxopentanoate (3ag): White solid, yield: 78%, Mp: 81-83 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.90 (d, *J* = 8.5 Hz, 2H), 7.77 (s, 1H), 7.43-7.33 (m, 7H), 3.83 (s, 3H), 3.22-3.16 (m, 2H), 2.99-2.94 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 198.0, 168.9, 140.6, 139.6, 135.3, 135.0, 131.5, 129.7, 129.2, 129.0,

128.8, 128.3, 128.2, 55.0, 40.5, 22.7 ppm. HRMS (ESI) [M+H⁺] Calcd For C₁₉H₁₈ClO₃: 329.0939, Found: 329.0938.

methyl (*E*)-2-benzylidene-5-(4-bromophenyl)-5oxopentanoate (3ah): White solid, yield: 68%, Mp: 75-77 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.83 (d, *J* = 8.6 Hz, 2H), 7.77 (s, 1H), 7.58 (d, *J* = 8.5 Hz, 2H), 7.39-7.30 (m, 5H), 3.83 (s, 3H), 3.21-3.16 (m, 2H), 2.98-2.94 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 198.2, 168.5, 140.6, 135.4, 135.3, 132.0, 131.5, 129.8, 129.2, 128.8, 128.3, 52.2, 38.1,

22.7 ppm. HRMS (ESI) [M+H⁺] Calcd For C₁₉H₁₈BrO₃: 373.0434, Found: 373.0437.

methyl (*E*)-2-benzylidene-5-(4-iodophenyl)-5oxopentanoate (3ai): Yellow solid, yield: 70%, Mp: 81-83 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.80 (d, *J* = 8.5 Hz, 2H), 7.77 (s, 1H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.39-7.32 (m, 5H), 3.83 (s, 3H), 3.20-3.15 (m, 2H), 2.98-2.93 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 198.5, 168.5, 140.6, 138.0, 135.9, 135.3,

131.5, 129.7, 129.2, 128.8, 128.8, 101.2, 52.2, 38.0, 22.7 ppm. HRMS (ESI) [M+H⁺] Calcd For C₁₉H₁₈IO₃: 421.0295, Found: 421.0299.

methyl(E)-2-benzylidene-5-oxo-5-(4-(trifluoromethyl)phenyl)pentanoate(3aj):Colourlessliquid, yield: 64%. ¹H NMR (500 MHz, CDCl₃) δ = 8.07 (d,J = 8.1 Hz, 2H), 7.79 (s, 1H), 7.71 (d, J = 8.1 Hz, 2H), 7.41-7.30 (m, 5H), 3.83 (s, 3H), 3.27-3.22 (m, 2H), 3.01-2.96 (m,2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 198.3, 168.5,140.8, 139.3, 135.3, 134.5 (q, J_{CF} = 37.8 Hz), 131.4, 129.2,

128.9, 128.8, 128.6, 125.8 (q, $J_{CF} = 3.8 \text{ Hz}$), 124.8 (q, $J_{CF} = 273.4 \text{ Hz}$), 52.3, 38.4, 22.7 ppm. ¹⁹F NMR (471 MHz, CDCl₃) $\delta = -63.1$ ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₀H₁₈F₃O₃: 363.1203, Found: 363.1209.

methyl (*E*)-5-([1,1'-biphenyl]-4-yl)-2-benzylidene-5oxopentanoate (3ak): White solid, yield: 72%, Mp: 65-67 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.05 (d, *J* = 8.2 Hz, 2H), 7.79 (s, 1H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.48 (m, 2H), 7.39 m, 5H), 7.33 (dd, *J* = 9.0, 4.3 Hz, 1H), 3.85 (s, 3H), 3.29-3.24 (m, 2H), 3.03-2.99 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 198.9, 168.7, 145.9,

140.5, 140.0, 135.5, 135.4, 131.8, 129.3, 129.1, 128.9, 128.8, 128.8, 128.4, 127.4, 127.4, 52.3, 38.2, 22.9 ppm. HRMS (ESI) $[M+H^+]$ Calcd For C₂₅H₂₃O₃: 371.1642, Found: 371.1648.

methyl (*E*)-2-benzylidene-5-(3,4dimethoxyphenyl)-5-oxopentanoate (3al): White solid, yield: 54%, Mp: 65-67 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.75 (s, 1H), 7.61 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.54 (d, *J* = 2.0 Hz, 1H), 7.34 (dd, *J* = 30.0, 4.3 Hz, 5H), 6.86 (d, *J* = 8.4 Hz, 1H), 3.92 (s, 3H), 3.92

(s, 3H), 3.82 (s, 3H), 3.21-3.15 (m, 2H), 2.99-2.93 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 197.8, 168.5, 153.3, 149.0, 140.2, 135.3, 131.7, 129.9, 129.2, 128.6, 122.8, 110.3, 110.1, 56.0, 56.0, 52.1, 37.6, 23.1 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₁H₂₃O₅: 355.1540, Found: 355.1549.

methyl(E)-2-benzylidene-5-(2,4-difluorophenyl)-5-oxopentanoate(3am):Whitesolid, yield: 63%, Mp: 65-67 °C. ¹H NMR (500 MHz,CDCl3) δ = 7.97-7.90 (m, 1H), 7.76 (s, 1H), 7.39-7.30(m, 5H), 6.98-6.92 (m, 1H), 6.84 (m, 1H), 3.82 (s, 3H),3.24-3.17 (m, 2H), 3.01-2.94 (m, 2H) ppm. ¹³C NMR

(126 MHz, CDCl₃) δ = 195.7, 168.4, 164.3 (dd, J_{CF} = 376.0, 257.3 Hz), 140.4, 135.3, 132.6 (dd, J_{CF} = 10.5, 4.3 Hz), 131.5, 129.1, 128.6, 128.1 (d, J_{CF} = 5.5 Hz), 122.0 (d, J_{CF} = 13.2 Hz), 112.1 (dd, J_{CF} = 21.4, 3.4 Hz), 104.7 (dd, J_{CF} = 27.8, 25.4 Hz), 52.1, 42.5, 22.1 ppm. HRMS (ESI) [M+H⁺] Calcd For C₁₉H₁₇F₂O₃: 331.1140, Found: 331.1148.

methyl (*E*)-2-benzylidene-4-methyl-5-oxo-5phenylpentanoate (3ap): Colourless liquid, yield: 18%. ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 7.3 Hz, 2H), 7.79 (s, 1H), 7.54 (m, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.41-7.32 (m, 5H), 3.89-3.82 (m, 1H), 3.82 (s, 3H), 2.97-2.78 (m, 2H), 1.08 (d, *J* = 6.9 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 203.8, 168.7,

141.7, 136.5, 135.6, 133.1, 130.9, 129.2, 128.7, 128.6, 128.2, 52.1, 39.7, 31.0, 16.4. HRMS (ESI) [M+H⁺] Calcd For C₂₀H₂₁O₃: 309.1485, Found: 309.1489.

6. NMR data of bromoacylmethylated products (4aa-4oa and 4ab-4ao)

methyl 2-(acetoxy(phenyl)methyl)-2-bromo-5-(4methoxyphenyl)-5-oxopentanoate (4aa): White solid, yield: 92%, Mp: 110-112 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.92 (d, J = 8.9 Hz, 2H), 7.48-7.40 (m, 2H), 7.34 (dd, J = 5.1, 1.9 Hz, 3H), 6.91 (d, J = 8.9 Hz, 2H), 6.38 (s, 1H), 3.85 (s, 3H), 3.78 (s, 3H), 3.28-3.05 (m, 2H), 2.72-2.23 (m, 2H), 2.15 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 197.0, 169.3, 169.1, 163.7, 135.0, 130.4, 129.9, 129.2,

128.4, 128.3, 113.9, 78.7, 70.7, 55.6, 53.6, 35.4, 30.7, 21.1 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₂H₂₄BrO₆: 463.0751, Found: 463.0757.

methyl 2-(acetoxy(p-tolyl)methyl)-2-bromo-5-(4methoxyphenyl)-5-oxopentanoate (4ba): Yellow liquid, yield: 83%. ¹H NMR (500 MHz, CDCl₃) δ = 7.92 (d, *J* = 8.8 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 6.35 (s, 1H), 3.86 (s, 3H), 3.77 (s, 3H), 3.29-3.02 (m, 2H), 2.75-2.33 (m, 2H), 2.32 (s, 3H), 2.14 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ

= 196.9, 169.1, 169.0, 163.6, 139.0, 131.9, 130.3, 129.8, 129.0, 128.1, 113.7, 78.5, 70.6, 55.5, 53.4, 35.3, 30.5, 21.2, 20.9 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₃H₂₆BrO₆: 477.0907, Found: 477.0909.

methyl 2-(acetoxy(4-methoxyphenyl)methyl)-2bromo-5-(4-methoxyphenyl)-5-oxopentanoate (4ca): Yellow liquid, yield: 89%. ¹H NMR (500 MHz, CDCl₃) $\delta = 7.91$ (d, J = 8.8 Hz, 2H), 7.35 (d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 6.33 (s, 1H), 3.84 (s, 3H), 3.77 (s, 3H), 3.76 (s, 3H), 3.28-3.04 (m, 2H), 2.57-2.24 (m, 2H), 2.13 (s, 3H) ppm. ¹³C

NMR (126 MHz, CDCl₃) δ = 197.0, 169.2, 169.1, 163.7, 160.2, 130.4, 129.8, 129.6, 127.0, 113.9, 113.8, 78.4, 70.9, 55.6, 55.3, 53.5, 35.4, 30.7, 21.0 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₃H₂₆BrO₇: 493.0856, Found: 493.0859.

methyl2-(acetoxy(2-fluorophenyl)methyl)-2-bromo-5-(4-methoxyphenyl)-5-oxopentanoate(4da):Yellow solid, yield: 85%, Mp: 100-102 °C. ¹H NMR (500MHz, CDCl₃) δ = 7.88 (d, J = 8.9 Hz, 2H), 7.77-7.56 (m,1H), 7.40-7.35 (m, 1H), 7.32-7.26 (m, 2H), 6.90 (d, J = 8.9Hz, 2H), 6.82 (s, 1H), 3.84 (d, J = 6.0 Hz, 3H), 3.78 (d, J =20.1 Hz, 3H), 3.28-3.15 (m, 1H), 2.98-2.57 (m, 2H), 2.11

(m, 1H), 2.08 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 196.4, 168.8 (d, *J*_{CF} = 7.6 Hz), 163.7, 134.5, 133.3, 130.6, 130.3, 130.2, 129.7, 129.6, 126.6, 113.9, 74.2, 73.5, 55.5, 54.0, 34.9, 31.9, 20.8 ppm. ¹⁹F NMR (471 MHz, CDCl₃) δ = -63.0 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₂H₂₃BrFO₆: 481.0657, Found: 481.0659.

methyl 2-(acetoxy(2-chlorophenyl)methyl)-2bromo-5-(4-methoxyphenyl)-5-oxopentanoate (4ea): White solid, yield: 94%, Mp: 110-112 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.90 (d, J = 8.8 Hz, 2H), 7.61 (m, 1H), 7.33 (m, 1H), 7.16 (m, 1H), 7.05 (m, 1H), 6.90 (d, J = 8.8 Hz, 2H), 6.64 (s, 1H), 3.84 (s, 3H), 3.79 (s, 3H), 3.27-3.14 (m, 1H), 3.06-2.94 (m, 1H), 2.66 (m, 1H), 2.21 (m, 1H), 2.11 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 196.4,

168.8, 168.7, 163.6, 130.7, 130.3, 129.9, 129.7, 124.0, 122.7, 122.6, 115.3, 113.8, 77.3, 71.8, 55.5, 53.8, 34.7, 31.4, 20.7 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₂H₂₃BrClO₆: 497.0361, Found: 497.0369.

methyl2-(acetoxy(2-bromophenyl)methyl)-2-bromo-5-(4-methoxyphenyl)-5-oxopentanoate(4fa):Yellow liquid, yield: 93%. ¹H NMR (500 MHz, CDCl₃) δ =7.87 (d, J = 8.8 Hz, 2H), 7.76 (d, J = 7.9 Hz, 1H), 7.56 (d, J= 7.9 Hz, 1H), 7.33 (m, 1H), 7.19 (m, 1H), 6.88 (d, J = 8.8Hz, 2H), 6.80 (s, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.21 (dd, J= 21.5, 9.8 Hz, 1H), 3.03-2.58 (m, 2H), 2.07 (s, 3H), 2.02

(m, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 196.3, 168.8, 168.7, 163.6, 134.9, 132.9, 130.9, 130.5, 130.2, 129.6, 127.1, 125.0, 113.8, 76.3, 73.6, 55.5, 54.0, 34.9, 32.1, 20.7 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₂H₂₃Br₂O₆: 540.9856, Found: 540.9858.

methyl 2-(acetoxy(2-iodophenyl)methyl)-2-bromo-5-(4-methoxyphenyl)-5-oxopentanoate (4ga): Brown solid, yield: 90%, Mp: 131-133 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.88 (m, 3H), 7.74 (dd, J = 7.9, 1.6 Hz, 1H), 7.36 (m, 1H), 7.04 (m, 1H), 6.90 (d, J = 8.9 Hz, 2H), 6.65 (s, 1H), 3.84 (s, 3H), 3.81 (s, 3H), 3.29-3.02 (m, 2H), 2.95-2.62 (m, 1H), 2.07 (s, 3H), 2.04-2.01 (m, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃)

 δ = 196.3, 168.8, 168.7, 163.6, 139.9, 138.0, 130.7, 130.5, 130.3, 129.6, 127.9, 113.8, 101.2, 80.7, 73.8, 55.5, 54.0, 35.0, 32.6, 20.7 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₂H₂₃BrIO₆: 588.9717, Found: 588.9723.

methyl 2-(acetoxy(4-bromophenyl)methyl)-2bromo-5-(4-methoxyphenyl)-5-oxopentanoate (4ha): Yellow solid, yield: 95%, Mp: 83-85 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.90 (d, J = 8.6 Hz, 2H), 7.47 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 7.2 Hz, 2H), 6.95-6.86 (m, 2H), 6.29 (s, 1H), 3.83 (s, 3H), 3.76 (s, 3H), 3.27-3.01 (m, 2H), 2.73-2.45 (m, 1H), 2.27 (m, 1H), 2.12 (s, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ = 196.7, 169.0, 168.8, 163.7, 134.1, 131.5, 130.3, 130.0, 129.7, 123.4, 113.8, 78.0, 70.3, 55.5, 53.6, 35.1, 30.9, 20.9 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₂H₂₃Br₂O₆: 540.9856, Found: 540.9859.

methyl

2-(acetoxy(4-

(trifluoromethyl)phenyl)methyl)-2-bromo-5-(4methoxyphenyl)-5-oxopentanoate (4ia): Yellow solid, yield: 92%, Mp: 123-125 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.91 (d, J = 8.9 Hz, 2H), 7.64-7.50 (m, 4H), 6.91 (d, J = 8.7 Hz, 2H), 6.38 (s, 1H), 3.84 (s, 3H), 3.78 (s, 3H), 3.29-3.00 (m, 2H), 2.76-2.49 (m, 1H), 2.47-

2.22 (m, 1H), 2.15 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 196.6, 168.9 (d, *J*_{CF} = 41.6 Hz), 163.8, 139.1, 131.3 (d, *J*_{CF} = 32.8 Hz), 130.4, 129.4 (d, *J*_{CF} = 71.8 Hz), 128.9, 125.3 (q, *J*_{CF} = 3.8 Hz), 122.8, 113.9, 78.1, 70.1, 55.6, 53.7, 35.1, 31.1, 20.9 ppm. ¹⁹F NMR (471 MHz, CDCl₃) δ = -62.8 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₃H₂₃BrF₃O₆: 531.0625, Found: 531.0626.

methyl 2-(acetoxy(4-nitrophenyl)methyl)-2bromo-5-(4-methoxyphenyl)-5-oxopentanoate (4ja): Yellow liquid, yield: 33%. ¹H NMR (500 MHz, CDCl₃) δ = 8.32-8.16 (m, 2H), 7.98-7.75 (m, 3H), 7.56 (m, 1H), 6.92 (d, *J* = 8.8 Hz, 2H), 6.40 (s, 1H), 3.86 (s, 3H), 3.82 (s, 3H), 3.31-3.02 (m, 2H), 2.55 (m, 1H), 2.46-2.19 (m, 1H), 2.20 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 196.5, 169.1, 168.6, 163.9, 148.2, 137.4,

134.5, 130.4, 129.7, 129.4, 124.2, 123.5, 114.0, 77.7, 69.9, 55.6, 53.9, 35.0, 31.3, 20.9 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₂H₂₃BrNO₈: 508.0602, Found: 508.0609.

ethyl 2-(acetoxy(phenyl)methyl)-2-bromo-5-(4methoxyphenyl)-5-oxopentanoate (4ka): Yellow solid, yield: 86%, Mp: 107-109 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.91 (d, J = 8.9 Hz, 2H), 7.44 (d, J = 5.5 Hz, 2H), 7.37-7.29 (m, 3H), 6.91 (d, J = 8.9 Hz, 2H), 6.37 (s, 1H), 4.31-4.14 (m, 2H), 3.84 (s, 3H), 3.30-3.02 (m, 2H), 2.61-2.21 (m, 2H), 2.14 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 196.8, 169.0, 168.3, 163.6, 135.0, 130.3, 129.7,

129.0, 128.3, 128.2, 113.8, 78.6, 71.2, 62.9, 55.5, 35.2, 30.9, 20.9, 14.0 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₃H₂₆BrO₆: 477.0907, Found: 477.0912.

butyl 2-(acetoxy(phenyl)methyl)-2-bromo-5-(4methoxyphenyl)-5-oxopentanoate (4la): Yellow liquid, yield: 88%. ¹H NMR (500 MHz, CDCl₃) δ = 7.91 (d, J = 8.9 Hz, 2H), 7.49-7.40 (m, 2H), 7.36-7.29 (m, 3H), 6.91 (d, J = 8.9 Hz, 2H), 6.36 (s, 1H), 4.24-4.07 (m, 2H), 3.84 (s, 3H), 3.28-2.97 (m, 2H), 2.75-2.22 (m, 2H), 2.13 (s, 3H), 1.71-1.52 (m, 2H), 1.37 (q, J = 7.5 Hz, 2H), 0.92 (t, J = 7.4 Hz,

3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 196.9, 169.1, 168.5, 163.7, 135.1, 130.3, 129.8, 129.1, 128.4, 128.3, 113.8, 78.8, 71.2, 66.8, 55.5, 35.3, 30.9, 30.5, 21.0, 19.1, 13.7 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₅H₃₀BrO₆: 505.1220, Found: 505.1225.

iso-butyl 2-(acetoxy(phenyl)methyl)-2-bromo-5-(4methoxyphenyl)-5-oxopentanoate (4ma): Yellow solid, yield: 88%, Mp: 97-99 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.91 (d, J = 8.8 Hz, 2H), 7.44 (dd, J = 7.5, 2.0 Hz, 2H), 7.37-7.29 (m, 3H), 6.90 (d, J = 8.9 Hz, 2H), 6.36 (s, 1H), 4.01-3.86 (m, 2H), 3.84 (s, 3H), 3.31-2.99 (m, 2H), 2.74-2.26 (m, 2H), 2.13 (s, 3H), 2.03-1.89 (m, 1H), 0.94 (s, 3H), 0.93 (s,

3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 196.9, 169.1, 168.5, 163.7, 135.1, 130.3, 129.8, 129.1, 128.3, 128.3, 113.8, 78.8, 72.9, 71.2, 55.5, 35.3, 30.9, 27.7, 21.0, 19.1 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₅H₃₀BrO₆: 505.1220, Found: 505.1226.

tert-butyl 2-(acetoxy(phenyl)methyl)-2-bromo-5-(4methoxyphenyl)-5-oxopentanoate (4na): Yellow liquid, yield: 95%. ¹H NMR (500 MHz, CDCl₃) δ = 7.91 (d, J = 8.9 Hz, 2H), 7.54-7.44 (m, 2H), 7.34 (d, J = 9.3 Hz, 3H), 6.91 (d, J = 8.9 Hz, 2H), 6.30 (s, 1H), 3.84 (s, 3H), 3.34-2.92 (m, 2H), 2.70-2.17 (m, 2H), 2.13 (s, 3H), 1.47 (s, 9H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 196.9, 169.1, 166.9, 163.7, 135.3,

130.3, 129.8, 129.0, 128.7, 128.1, 113.9, 84.0, 79.0, 73.3, 55.5, 35.0, 31.7, 27.8, 21.0 ppm. HRMS (ESI) [M+H+] Calcd For C₂₅H₃₀BrO₆ [M+H⁺]: 505.1220, Found: 505.1221.

2-bromo-2-cyano-5-(4-methoxyphenyl)-5-oxo-1phenylpentyl acetate (40a): Colourless liquid, yield: 68%. ¹H NMR (500 MHz, CDCl₃) δ = 7.93 (d, *J* = 8.9 Hz, 2H), 7.60-7.50 (m, 2H), 7.42 (m, 3H), 6.99-6.89 (m, 2H), 6.09 (s, 1H), 3.87 (s, 3H), 3.48-3.21 (m, 2H), 2.66-2.23 (m, 2H), 2.22 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 195.4, 169.0, 164.0, 133.8, 130.4, 129.4, 129.0, 128.6, 128.3, 117.0, 114.0, 78.9, 55.6, 53.2,

35.4, 33.4, 20.9 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₁H₂₁BrNO₄: 430.0648, Found: 430.0653.

methyl 2-(acetoxy(phenyl)methyl)-2-bromo-5-(2methoxyphenyl)-5-oxopentanoate (4ab): Yellow solid, yield: 78%, Mp: 110-112 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.65 (d, J = 9.2 Hz, 1H), 7.47-7.40 (m, 3H), 7.34 (d, J = 5.1 Hz, 3H), 7.01-6.89 (m, 2H), 6.35 (s, 1H), 3.85 (s, 3H), 3.76 (s, 3H), 3.39-3.07 (m, 2H), 2.72-2.24 (m, 2H), 2.14 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 200.5, 169.1, 169.0, 158.7, 135.1, 133.6,

130.3, 129.1 128.4, 128.2, 128.0, 120.7, 111.7, 78.7, 70.9, 55.6, 53.5, 40.7, 31.1, 21.0 ppm. HRMS (ESI) [M+H⁺] Calcd ForC₂₂H₂₄BrO₆: 463.0751, Found: 463.0756

methoxyphenyl)-5-oxopentanoate (4ac): Yellow solid, yield: 60%, Mp: 122-124 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.52 (d, J = 7.5 Hz, 1H), 7.48-7.39 (m, 3H), 7.38-7.31 (m, 4H), 7.09 (dd, J = 8.1, 2.3 Hz, 1H), 6.39 (s, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 3.33-3.10 (m, 2H), 2.60-2.25 (m, 2H), 2.15 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 198.3, 169.2,

2-(acetoxy(phenyl)methyl)-2-bromo-5-(3-

169.0, 160.0, 138.1, 135.0, 129.7, 129.2, 128.4, 128.3, 120.7, 119.6, 112.5, 78.6, 70.3, 55.5, 53.6, 36.0, 30.5, 21.0 ppm. HRMS (ESI) [M+H⁺] Calcd ForC₂₂H₂₄BrO₆: 463.0751, Found: 463.0755

methyl 2-(acetoxy(phenyl)methyl)-2-bromo-5-oxo-5-(p-tolyl)pentanoate (4ad): White solid, yield: 80%, Mp: 114-116 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.84 (dd, J = 8.2, 6.4 Hz, 2H), 7.50-7.39 (m, 2H), 7.39-7.29 (m, 3H), 7.24 (d, J = 8.1 Hz, 2H), 6.39 (s, 1H), 3.77 (s, 3H), 3.31-3.05 (m, 2H), 2.77-2.49 (m, 1H), 2.39 (s, 3H), 2.38-2.26 (m, 1H), 2.15 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 198.0, 169.2,

169.0, 144.1, 135.0, 134.3, 129.4, 129.2, 128.4, 128.3, 128.2, 78.6, 70.6, 53.5, 35.6, 30.5, 21.7, 21.0 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₂H₂₄BrO₅: 447.0802, Found: 447.0803.

methyl 2-(acetoxy(phenyl)methyl)-2-bromo-5-oxo-5phenylpentanoate (4ae): Yellow liquid, yield: 98%. ¹H NMR (500 MHz, CDCl₃) δ = 7.94 (d, *J* = 7.3 Hz, 2H), 7.55 (m, 1H), 7.49-7.39 (m, 4H), 7.39-7.30 (m, 3H), 6.39 (d, *J* = 11.5 Hz, 1H), 3.78 (s, 3H), 3.35-3.12 (m, 2H), 2.47 (m 2H), 2.16 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 198.4, 169.2, 169.0, 136.7, 135.0, 133.3, 129.2, 128.7, 128.4, 128.3, 128.1, 78.6, 70.4, 53.5,

35.8, 30.4, 21.0 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₁H₂₂BrO₅: 433.0645, Found: 433.0649.

methyl 2-(acetoxy(phenyl)methyl)-2-bromo-5-(4fluorophenyl)-5-oxopentanoate (4af): White solid, yield: 90%, Mp: 106-108 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.97 (d, J = 8.8 Hz, 2H), 7.50-7.39 (m, 2H), 7.38-7.30 (m, 3H), 7.12 (d, J = 8.6 Hz, 2H), 6.39 (s, 1H), 3.78 (s, 3H), 3.31-3.07 (m, 2H), 2.59-2.26 (m, 2H), 2.15 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 196.9, 169.1 (d, J_{CF} = 25.2 Hz), 165.9 (d, J_{CF} =

255.8 Hz), 134.9, 133.2 (d, $J_{CF} = 2.5$ Hz), 130.7 (d, $J_{CF} = 8.8$ Hz), 129.2, 128.4, 128.2, 115.8 (d, $J_{CF} = 22.7$ Hz), 78.6, 70.2, 53.5, 35.8, 30.3, 21.0 ppm. ¹⁹F NMR (471 MHz, CDCl₃) δ = -105.0 ppm. HRMS (ESI) [M+H⁺] Calcd ForC₂₁H₂₁BrFO₅: 451.0551, Found: 451.0556

methyl 2-(acetoxy(phenyl)methyl)-2-bromo-5-(4chlorophenyl)-5-oxopentanoate (4ag): White solid, yield: 93%, Mp: 164-166 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.87 (d, J = 8.6 Hz, 2H), 7.42 (d, J = 8.4 Hz, 4H), 7.38-7.30 (m, 3H), 6.40 (s, 1H), 3.78 (s, 3H), 3.32-3.03 (m, 2H), 2.45 (m, 2H), 2.16 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 197.3, 169.2, 169.0, 139.8, 135.1, 134.9, 129.5, 129.3, 129.1, 128.5, 128.2, 78.6, 70.2, 53.6, 35.9, 30.2, 21.0 ppm. HRMS

(ESI) [M+H⁺] Calcd For C₂₁H₂₁BrClO₅: 467.0255, Found: 467.0259.

methyl 2-(acetoxy(phenyl)methyl)-2-bromo-5-(4bromophenyl)-5-oxopentanoate (4ah): White solid, yield: 80%, Mp: 107-109 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.80 (d, J = 8.6 Hz, 2H), 7.59 (d, J = 8.6 Hz, 2H), 7.41 (dd, J = 6.6, 2.9 Hz, 2H), 7.38-7.31 (m, 3H), 6.39 (s, 1H), 3.78 (s, 3H), 3.29-3.05 (m, 2H), 2.59-2.30 (m, 2H), 2.16 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 197.4, 169.1, 168.8, 135.3, 134.8,

131.9, 129.5, 129.1, 128.4, 128.3, 128.1, 78.5, 70.0, 53.5, 35.8, 30.0, 20.9 ppm. HRMS (ESI) $[M+H^+]$ Calcd For C₂₁H₂₁Br₂O₅: 510.9750, Found: 510.9751.

methyl 2-(acetoxy(phenyl)methyl)-2-bromo-5-(4iodophenyl)-5-oxopentanoate (4ai): White solid, yield: 85%, Mp: 137-139 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.80 (d, *J* = 7.2 Hz, 2H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.41 (dd, *J* = 6.5, 2.8 Hz, 2H), 7.34 (d, *J* = 4.9 Hz, 3H), 6.38 (d, *J* = 12.3 Hz, 1H), 3.78 (s, 3H), 3.28-3.08 (m, 2H), 2.57-2.27 (m, 2H), 2.15 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 197.8, 169.2, 168.9, 138.1,

136.0, 134.9, 129.5, 129.3, 128.4, 128.2, 101.3, 78.6, 70.1, 53.6, 35.8, 30.1, 21.0 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₁H₂₁BrIO₅: 558.9612, Found: 558.9615.

methyl 2-(acetoxy(phenyl)methyl)-2-bromo-5-oxo-5-(4-(trifluoromethyl)phenyl)pentanoate (4aj): Yellow solid, yield: 80%, Mp: 110-112 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.04 (d, *J* = 8.1 Hz, 2H), 7.71 (d, *J* = 8.2 Hz, 2H), 7.42 (d, *J* = 9.4 Hz, 2H), 7.38-7.30 (m, 3H), 6.42 (s, 1H), 3.79 (s, 3H), 3.36-3.16 (m, 2H), 2.60-2.28 (m, 2H), 2.16 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 197.4, 168.9 (d, *J*_{CF} = 29.0 Hz),

139.3, 134.8, 129.2, 128.6, 128.4, 128.3, 128.1, 125.7 (q, $J_{CF} = 3.6 \text{ Hz}$), 78.4, 69.8, 53.5, 36.2, 29.8, 20.9 ppm. ¹⁹F NMR (471 MHz, CDCl₃) $\delta = -61.3$ ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₂H₂₁BrF₃O₅: 501.0519, Found: 501.0521.

methyl 2-(acetoxy(phenyl)methyl)-2-bromo-5-(4cyanophenyl)-5-oxopentanoate (4ak): White solid, yield: 91%, Mp: 133-135 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.01 (d, J = 8.2 Hz, 2H), 7.74 (d, J = 8.2 Hz, 2H), 7.48-7.30 (m, 5H), 6.39 (s, 1H), 3.78 (s, 3H), 3.36-3.12 (m, 2H), 2.65-2.27 (m, 2H), 2.15 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 197.1, 169.1, 168.8, 139.5, 134.7, 132.5, 129.2, 128.4, 128.4, 128.0,

117.9, 116.5, 78.4, 69.6, 53.5, 36.3, 29.6, 20.9 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₂H₂₁BrNO₅ [M+H⁺]: 458.0598, Found: 458.0596.

methyl5-([1,1'-biphenyl]-4-yl)-2-(acetoxy(phenyl)methyl)-2-bromo-5-oxopentanoate(4al):Yellow solid, yield: 94%, Mp: 106-108 °C. ¹H NMR (500MHz, CDCl₃) δ = 8.02 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.4Hz, 2H), 7.62 (d, J = 7.2 Hz, 2H), 7.51-7.43 (m, 4H), 7.35 (s,4H), 6.41 (d, J = 11.4 Hz, 1H), 3.80 (s, 3H), 3.42-3.09 (m,2H), 2.83-2.34 (m, 2H), 2.17 (s, 3H) ppm. ¹³C NMR (126

MHz, CDCl₃) δ = 198.0, 169.2, 169.0, 146.0, 139.9, 135.4, 135.0, 129.1, 128.7, 128.4, 128.3, 127.3, 78.6, 70.5, 53.6, 35.9, 30.4, 21.0 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₇H₂₆BrO₅: 509.0958, Found: 509.0962.

methyl 2-(acetoxy(phenyl)methyl)-2-bromo-5-(2,5dimethoxyphenyl)-5-oxopentanoate (4am): Yellow liquid, yield: 72%. ¹H NMR (500 MHz, CDCl₃) δ = 7.57-7.53 (m, 1H), 7.47 (d, *J* = 1.8 Hz, 1H), 7.45-7.37 (m, 2H), 7.32 (dd, *J* = 5.0, 2.2 Hz, 3H), 6.85 (d, *J* = 8.4 Hz, 1H), 6.37 (s, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 3.76 (s, 3H), 3.28-3.03 (m, 2H), 2.59-2.29 (m, 2H), 2.13 (s, 3H) ppm. ¹³C NMR (126 MHz,

CDCl₃) δ = 197.0, 169.1, 168.9, 153.5, 149.1, 134.9, 129.9, 129.1, 128.3, 128.2, 122.8, 110.2, 110.1, 78.6, 70.5, 56.1, 56.0, 53.5, 35.2, 30.8, 20.9 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₃H₂₆BrO₇: 493.0856, Found: 493.0858.

methyl 2-(acetoxy(phenyl)methyl)-2-bromo-5-(2,4difluorophenyl)-5-oxopentanoate (4an): Yellow liquid, yield: 98%. ¹H NMR (500 MHz, CDCl₃) δ = 7.95-7.85 (m, 1H), 7.46-7.32 (m, 5H), 6.99-6.81 (m, 2H), 6.39 (s, 1H), 3.77 (s, 3H), 3.37-3.08 (m, 2H), 2.45 (m, 2H), 2.15 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 195.0, 168.9 (d, *J*_{CF} = 25.2 Hz), 165.8 (dd, *J*_{CF} = 257.1, 12.3 Hz), 162.8 (dd, *J*_{CF} = 257.8, 12.5 Hz),

134.9, 132.5 (dd, $J_{CF} = 10.6$, 4.1 Hz), 129.1, 128.3, 128.1, 112.2 (dd, $J_{CF} = 3.8$ Hz), 105.0, 104.8 (dd, $J_{CF} = 27.8$, 25.3 Hz), 78.5, 69.7, 53.4, 40.4, 29.9, 20.9 ppm. ¹⁹F NMR (471 MHz, CDCl₃) $\delta = -101.6$, -104.0 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₁H₂₀BrF₂O₅: 469.0457, Found: 469.0465.

methyl 2-(acetoxy(phenyl)methyl)-2-bromo-5-(3,4dichlorophenyl)-5-oxopentanoate (4ao): Colourless liquid, yield: 61%. ¹H NMR (500 MHz, CDCl₃) δ = 7.99 (d, *J* = 2.0 Hz, 1H), 7.75 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.40 (dd, *J* = 6.6, 3.0 Hz, 2H), 7.37-7.31 (m, 3H), 6.40 (s, 1H), 3.79 (s, 3H), 3.28-3.09 (m, 2H), 2.45 (m, 2H), 2.16 (s, 3H).ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 196.3, 169.2,

168.9, 137.9, 136.2, 134.8, 133.5, 130.9, 130.19, 129.3, 128.5, 128.2, 127.1, 78.5, 69.8, 53.6, 36.0, 29.9, 21.0 ppm. HRMS (ESI) [M+H⁺] Calcd For C₂₁H₂₀BrCl₂O₅: 500.9866, Found: 500.9867.

7. NMR spectra of acylmethylated products (3aa-3ma and 3ab-3ap)

¹H NMR of **3aa** in CDCl₃

S27

¹H NMR of **3ca** in CDCl₃

210 190 170 150 130 110 90 70 50 30 10 -10 f1 (ppm) ¹⁹F NMR of 7da in CDCl₃

¹³C NMR of **3ea** in CDCl₃

¹³C NMR of **3fa** in CDCl₃

¹³C NMR of **3ga** in CDCl₃

¹³C NMR of **3ha** in CDCl₃

 $^{13}\mathrm{C}$ NMR of **3ia** in CDCl₃

S35

¹H NMR of **3ma** in CDCl₃

¹H NMR of **3ac** in CDCl₃

¹³C NMR of **3ac** in CDCl₃

¹H NMR of **3ae** in CDCl₃

¹³C NMR of **3ag** in CDCl₃

¹³C NMR of **3ah** in CDCl₃

¹³C NMR of **3ai** in CDCl₃

¹³C NMR of **3aj** in CDCl₃

¹H NMR of **3ak** in CDCl₃

¹H NMR of **3al** in CDCl₃

¹H NMR of **3am** in CDCl₃

¹H NMR of **3ap** in CDCl₃

8. NMR spectra of bromoacylmethylated products (4aa-4oa and 4ab-4ao) ¹H NMR of 4aa in CDCl₃

¹H NMR of **4ba** in CDCl₃

¹H NMR of **4ca** in CDCl₃

¹H NMR of 4da in CDCl₃

¹H NMR of **4ea** in CDCl₃

¹³C NMR of **4fa** in CDCl₃

 ^{13}C NMR of 4ga in CDCl_3

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 f1 (ppm)

 1 H NMR of **4ia** in CDCl₃

¹H NMR of **4ja** in CDCl₃

¹H NMR of **4ka** in CDCl₃

f1 (ppm)

¹H NMR of **4la** in CDCl₃

f1 (ppm)

¹H NMR of 4ma in CDCl₃

¹H NMR of **4na** in CDCl₃

¹H NMR of **40a** in CDCl₃

¹H NMR of **4ab** in CDCl₃

¹H NMR of 4ad in CDCl₃

¹H NMR of 4ae in CDCl₃

¹H NMR of **4af** in CDCl₃

¹⁹F NMR of **4af** in CDCl₃

¹³C NMR of 4ag in CDCl₃

¹³C NMR of **4ah** in CDCl₃


```
<sup>1</sup>H NMR of 4ai in CDCl<sub>3</sub>
```


¹³C NMR of 4ai in CDCl₃

¹³C NMR of **4aj** in CDCl₃

¹H NMR of 4am in CDCl₃

S82

¹H NMR of 4an in CDCl₃

¹³C NMR of **4ao** in CDCl₃

9. References

- [1] W.-X. Wang, Q.-Z. Zhang, T.-Q. Zhang, Z.-S. Li, W. Zhang, W. Yu, Adv. Synth. Catal. 2015, 357, 221.
- [2] Z. He, B. Wibbeling, A. Studer, *Adv. Synth. Catal.* 2013, **355**, 3639.