Umpolung α-regioselective 1,3-dipolar cycloaddition and internal recycle of byproduct as two key strategies: access to diverse chiral bipyridines

Yu-Heng Wang^{a,c}, Xi-Rui Wang^{a,c}, Ke-Lan Xu^{a,c}, Zi-Yue Chen^a, Bo-Wen Pan^b, Li-Jun Peng^{a,*},

Ying Zhou^b, and Xiong-Li Liu^{a,*}

^a National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, Guizhou, China.

^b College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025.

^c These three authors contributed equally to this work.

*E-mail address: ljpeng@gzu.edu.cn, xlliu1@gzu.edu.cn

Table of Contents

Table of contents	S1
1. General experimental information	S2
2. The synthesis of perhydroindole-bipyridines 3	S2
3. Characterization data of compounds 3	S2
4. The synthesis of pyrrolidine-bipyridines 4	S9
5. Characterization data of compounds 4	S10
6. Preparative scale synthesis of two diastereoisomers 3a-1 and 3a-2	S11
7. The further chemical transformations of the compounds 3 into compounds 6	S12
8. Characterization data of compounds 6	S12
9. Figure S1: reaction solution detected by ESI-MS analysis	S16
10. X-ray crystal data for compounds 3b-2 , 3g-2 , 4d-1 and 6c-1	S17
11. The copies of ¹ H NMR and ¹³ C NMR spectra for compounds 3 , 4 and 6	

1. General information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel or just by simple filtration and washing. ¹H and ¹³CNMR spectra were obtained using a Bruker DPX-400 spectrometer. ¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Melting points were measured on an electrothermal digital melting point apparatus.

2. The synthesis of perhydroindole-bipyridines 3

In a sealed tube equipped with a magnetic stirring bar, a mixture of optically pure perhydroindole-2-carboxylic acid 1 (0.6 mmol) and pyridinecarboxaldehyde 2 (0.4 mmol) in 2.0 mL of toluene was stirred at 80 °C for 1 h, and then was directly loaded onto a silica gel and purified by flash chromatography to give the desired product 3, using hexane/EtOAc (7/1, v/v) as the eluent.

3. Characterization data of compounds 3

3a-1: Light yellow oil; 27.8 mg, yield 33%; ¹H NMR (CDCl₃, 400 MHz) δ : 1.07-1.13 (m, 1H), 1.18-1.20 (m, 1H), 1.36-1.44 (m, 3H), 1.52-1.59 (m, 3H), 1.92-1.96 (m, 1H), 2.16-2.23 (m, 2H), 3.22 (d, J = 3.6 Hz, 1H), 4.68 (d, J = 6.0 Hz, 1H), 5.41-5.43 (m, 1H), 5.49 (d, J = 7.2 Hz, 1H), 7.36-7.41 (m, 2H), 7.51-7.57 (m, 2H), 7.69-7.73 (m, 3H), 7.78 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.8 Hz, 1H), 8.08 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.1, 23.8, 26.5, 28.2, 36.5, 37.9, 62.0, 73.1, 86.1, 98.1, 118.0, 118.7, 124.7, 124.9, 126.2, 126.4, 127.9, 128.0, 128.2, 135.4, 135.5, 146.2, 146.3, 159.2, 161.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₈H₂₈N₃O [M+H]⁺: 422.2227; Found: 422.2231.

3a-2: Light yellow oil; 31.2 mg, yield 37%; ¹H NMR (CDCl₃, 400 MHz) δ : 1.12-1.24 (m, 3H), 1.40-1.59 (m, 4H), 1.72 (d, J = 11.6 Hz, 1H), 1.99-2.10 (m, 2H), 2.16-2.20 (m, 1H), 3.30 (d, J = 4.0 Hz, 1H), 4.92 (d, J = 6.8 Hz, 1H), 5.73 (d, J = 6.8 Hz, 1H), 5.99-6.02 (m, 1H), 6.81 (d, J = 8.4 Hz, 1H), 7.22-7.30 (m, 2H), 7.32-7.36 (m, 3H), 7.40-7.43 (m, 2H), 7.47-7.53 (m, 2H), 7.72 (d, J = d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 18.4, 23.3, 26.8, 27.1, 36.6, 37.6, 61.7, 70.8, 80.0, 98.0, 117.4, 118.5, 123.9, 124.0, 125.3, 125.4, 126.9, 127.0, 127.1, 127.2, 133.1, 133.7, 145.0, 145.3, 157.7, 158.7; HRMS (ESI-TOF) m/z: Calcd. for C₂₈H₂₈N₃O [M+H]⁺: 422.2227; Found: 422.2225.

3b-1: Light yellow solid; 17.7 mg, yield 21%; ¹H NMR (CDCl₃, 400 MHz) δ: 1.07-1.12 (m, 2H), 1.33-1.46 (m, 3H), 1.53-1.56 (m, 3H), 2.01-2.05 (m, 1H), 2.24-2.27 (m, 2H), 3.44 (d, *J* = 2.8 Hz, 1H), 5.30 (d, *J* = 7.6 Hz, 1H), 5.57-5.58 (m, 1H), 6.01 (d, *J* = 7.6 Hz, 1H), 6.77-6.80 (m, 1H), 6.84-6.88 (m, 1H), 7.53-7.57 (m, 3H), 7.60-7.64 (m, 2H), 7.77-7.83 (m, 3H), 8.18 (d, *J* = 6.4 Hz, 1H), 8.24-8.26 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 19.5, 24.2, 26.9, 28.6, 36.7, 38.5, 63.6, 69.1, 83.3, 97.4, 118.8, 119.0, 125.4, 125.5, 125.6, 134.1, 134.3, 138.2, 141.1, 145.2, 145.3, 146.3, 146.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₈H₂₈N₃O [M+H]⁺: 422.2227; Found: 422.2224.

3b-2: Light yellow solid; 32.0 mg, yield 38%; ¹H NMR (CDCl₃, 400 MHz) δ: 1.17-1.22 (m, 3H), 1.43-1.59 (m, 4H), 1.84 (d, *J* = 7.2 Hz, 1H), 1.99-2.10 (m, 2H), 2.15-2.19 (m, 1H), 3.59 (s, 1H), 5.84-5.87 (m, 2H), 6.60-6.68 (m, 2H), 6.80 (d, *J* = 5.6 Hz, 2H), 7.03-7.06 (m, 1H), 7.19-7.25 (m, 1H), 7.33-7.38 (m, 2H), 7.57-7.61 (m, 2H), 7.73-7.77 (m, 2H), 8.93 (s, 1H); ¹³C NMR (CDCl₃,

100 MHz) δ: 19.2, 24.4, 27.9, 28.2, 37.0, 38.9, 62.8, 64.3, 73.1, 96.9, 118.4, 119.1, 123.6, 124.8, 124.9, 125.0, 125.5, 125.8, 125.9, 127.4, 133.9, 134.5, 135.6, 144.6, 145.6, 145.8, 147.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₈H₂₈N₃O [M+H]⁺: 422.2227; Found: 422.2229.

3c: Light yellow solid; 37.1 mg, yield 41%, 17:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.12-1.18 (m, 1H), 1.27-1.30 (m, 1H), 1.35-1.48 (m, 2H), 1.54-1.60 (m, 3H), 1.75 (d, J = 13.2 Hz, 1H), 1.98-2.11 (m, 2H), 2.18-2.22 (m, 1H), 3.28 (d, J = 2.8 Hz, 1H), 4.88 (d, J = 6.4 Hz, 1H), 5.68 (d, J = 6.8 Hz, 1H), 5.84-5.86 (m, 1H), 6.83 (d, J = 7.2 Hz, 1H), 6.98-7.04 (m, 4H), 7.15-7.24 (m, 3H), 7.40 (d, J = 8.4 Hz, 1H), 7.61 (d, J = 8.8 Hz, 1H), 7.80 (d, J = 8.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.2, 24.1, 27.7, 28.0, 37.4, 38.4, 62.4, 70.8, 80.1, 98.5, 108.5, 108.8, 116.3, 116.6, 119.0, 120.1, 126.0, 126.1, 134.6, 135.0, 135.7, 135.9, 150.5, 150.6, 156.5, 157.2; HRMS (ESI-TOF) m/z: Calcd. for C₂₈H₂₈N₃O₃ [M+H]⁺: 454.2125; Found: 454.2115.

3d: Light yellow oil; 24.3 mg, yield 34%, 12:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.06-1.18 (m, 2H), 1.27-1.34 (m, 2H), 1.41-1.48 (m, 3H), 1.63-1.67 (m, 1H), 1.81-1.85 (m, 1H), 2.09-2.16 (m, 2H), 3.32-3.35 (m, 1H), 4.86 (d, J = 6.8 Hz, 1H), 5.43-5.45 (m, 1H), 5.76 (d, J = 6.8 Hz, 1H), 7.08-7.16 (m, 2H), 7.20-7.27 (m, 2H), 8.33-8.37 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.2, 23.9, 26.8, 28.2, 36.0, 37.7, 62.6, 65.5, 78.5, 98.7, 121.9, 122.1 (d, $J_{CF} = 4.2$ Hz), 122.3 (d, $J_{CF} = 2.4$ Hz), 123.3 (d, $J_{CF} = 4.1$ Hz), 144.0 (d, $J_{CF} = 5.2$ Hz), 144.3 (d, $J_{CF} = 5.3$ Hz), 145.0 (d, $J_{CF} = 12.3$ Hz), 148.6 (d, $J_{CF} = 13.1$ Hz), 156.6 (d, $J_{CF} = 257.0$ Hz), 157.5 (d, $J_{CF} = 258.2$ Hz); HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₂₂F₂N₃O [M+H]⁺: 358.1725; Found: 358.1721.

3e-1: Light yellow oil; 19.5 mg, yield 25%; ¹H NMR (CDCl₃, 400 MHz) δ: 1.09-1.15 (m, 1H),

1.25-1.27 (m, 1H), 1.34-1.42 (m, 3H), 1.48-1.57 (m, 3H), 1.87-1.92 (m, 1H), 2.08-2.13 (m, 2H), 3.07 (d, J = 2.8 Hz, 1H), 4.39 (d, J = 6.0 Hz, 1H), 5.06 (d, J = 5.6 Hz, 1H), 5.24-5.26 (m, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.56-7.59 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.4, 24.0, 26.6, 28.5, 36.8, 37.9, 61.8, 71.7, 85.4, 98.1, 121.1, 121.2, 129.3, 129.7, 135.3, 135.4, 147.1, 147.2, 157.5, 159.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₂₂Cl₂N₃O [M+H]⁺: 390.1134 and 392.1105; Found: 390.1132 and 392.1108.

3e-2: Light yellow oil; 16.3 mg, yield 21%; ¹H NMR (CDCl₃, 400 MHz) δ : 1.11-1.18 (m, 1H), 1.24-1.30 (m, 1H), 1.33-1.42 (m, 2H), 1.45-1.51 (m, 1H), 1.53-1.57 (m, 2H), 1.64-1.68 (m, 1H), 1.87-1.93 (m, 1H), 1.99-2.04 (m, 1H), 2.09-2.16 (m, 1H), 3.16 (d, *J* = 4.0 Hz, 1H), 4.59 (d, *J* = 6.4 Hz, 1H), 5.40 (d, *J* = 6.4 Hz, 1H), 5.72-5.75 (m, 1H), 6.83 (d, *J* = 8.4 Hz, 1H), 7.17-7.20 (m, 1H), 7.25-7.28 (m, 1H), 7.37-7.40 (m, 1H), 8.05 (d, *J* = 2.4 Hz, 1H), 8.28 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.1, 24.1, 27.6, 27.8, 37.1, 38.3, 62.4, 70.0, 79.1, 98.2, 121.0, 122.0, 128.6, 129.0, 134.4, 134.6, 145.9, 146.3, 155.8, 157.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₂₂Cl₂N₃O [M+H]⁺: 390.1134 and 392.1105; Found: 390.1134 and 392.1104.

3f: Light yellow oil; 17.9 mg, yield 23%, 5:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 1.10-1.16 (m, 1H), 1.24-1.28 (m, 1H), 1.34-1.43 (m, 3H), 1.50-1.56 (m, 3H), 1.85-1.89 (m, 1H), 2.08-2.16 (m, 2H), 3.17 (d, *J* = 2.8 Hz, 1H), 4.35 (d, *J* = 6.0 Hz, 1H), 5.02 (d, *J* = 5.6 Hz, 1H), 5.23-5.25 (m, 1H), 7.10-7.16 (m, 2H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.52-7.59 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 19.4, 24.1, 26.5, 28.5, 36.6, 37.9, 61.7, 71.7, 85.3, 98.2, 118.7, 119.1, 121.5, 122.2, 138.1, 138.2, 149.5, 149.8, 159.9, 162.5; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₂₂Cl₂N₃O [M+H]⁺: 390.1134 and 392.1105; Found: 390.1137 and 392.1102.

3g-1: Light yellow solid; 20.0 mg, yield 21%; ¹H NMR (CDCl₃, 400 MHz) δ : 1.10-1.16 (m, 1H), 1.25-1.27 (m, 1H), 1.34-1.42 (m, 3H), 1.48-1.54 (m, 3H), 1.88-1.92 (m, 1H), 2.09-2.15 (m, 2H), 3.07 (d, J = 3.2 Hz, 1H), 4.37 (d, J = 6.0 Hz, 1H), 5.05 (d, J = 6.0 Hz, 1H), 5.24-5.26 (m, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.71-7.74 (m, 2H), 8.51 (d, J = 2.4 Hz, 1H), 8.57 (d, J = 2.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.4, 24.1, 26.6, 28.5, 36.8, 37.9, 61.8, 71.7, 85.4, 98.1, 117.8, 118.4, 121.7, 138.2, 149.2, 149.4, 157.9, 160.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₂₂Br₂N₃O [M+H]⁺: 478.0124 and 480.0104; Found: 478.0123 and 480.0107.

3g-2: Light yellow solid; 28.6 mg, yield 30%; ¹H NMR (CDCl₃, 400 MHz) δ : 1.11-1.18 (m, 1H), 1.24-1.27 (m, 1H), 1.32-1.42 (m, 2H), 1.45-1.58 (m, 3H), 1.63-1.67 (m, 1H), 1.86-1.92 (m, 1H), 1.99-2.04 (m, 1H), 2.10-2.14 (m, 1H), 3.15 (d, J = 3.6 Hz, 1H), 4.56 (d, J = 6.4 Hz, 1H), 5.37 (d, J = 6.4 Hz, 1H), 5.71-5.74 (m, 1H), 6.78 (d, J = 8.4 Hz, 1H), 7.13 (d, J = 8.4 Hz, 1H), 7.41-7.43 (m, 1H), 7.52-7.54 (m, 1H), 8.16 (d, J = 2.0 Hz, 1H), 8.38 (d, J = 2.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.1, 24.1, 27.6, 27.8, 37.1, 38.3, 62.4, 70.0, 79.1, 98.2, 117.4, 117.6, 121.6, 122.6, 137.3, 137.5, 148.1, 148.5, 156.2, 157.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₂₂Br₂N₃O [M+H]⁺: 478.0124 and 480.0104; Found: 478.0127 and 480.0107.

3h-1: Light yellow solid; 19.1 mg, yield 20%; ¹H NMR (CDCl₃, 400 MHz) δ: 1.10-1.16 (m, 1H), 1.24-1.28 (m, 1H), 1.33-1.43 (m, 3H), 1.50-1.56 (m, 3H), 1.84-1.89 (m, 1H), 2.07-2.16 (m, 2H), 3.18 (d, *J* = 3.2 Hz, 1H), 4.35 (d, *J* = 5.6 Hz, 1H), 5.01 (d, *J* = 5.6 Hz, 1H), 5.21-5.23 (m, 1H), 7.25-7.31 (m, 2H), 7.43-7.48 (m, 3H), 7.56 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 19.2, 23.8, 26.3, 28.2, 36.3, 37.6, 61.4, 71.4, 85.1, 97.9, 118.7, 119.1, 125.0, 125.7, 137.6, 137.7,

140.0, 140.3, 160.1, 162.7; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₂₂Br₂N₃O [M+H]⁺: 478.0124 and 480.0104; Found: 478.0127 and 480.0099.

3h-2: Light yellow solid; 30.5 mg, yield 32%; ¹H NMR (CDCl₃, 400 MHz) δ : 1.12-1.17 (m, 1H), 1.25-1.31 (m, 1H), 1.33-1.50 (m, 3H), 1.52-1.58 (m, 2H), 1.65-1.68 (m, 1H), 1.89-2.02 (m, 2H), 2.09-2.15 (m, 1H), 3.12-3.14 (m, 1H), 4.64 (d, J = 6.4 Hz, 1H), 5.40 (d, J = 6.8 Hz, 1H), 5.71-5.74 (m, 1H), 6.86 (d, J = 7.6 Hz, 1H), 7.00-7.02 (m, 1H), 7.09-7.11 (m, 1H), 7.15-7.20 (m, 1H), 7.23-7.30 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 20.2, 25.2, 28.4, 29.0, 38.3, 39.2, 63.0, 70.8, 80.3, 99.5, 120.1, 121.0, 125.5, 126.2, 137.8, 138.1, 140.3, 140.7, 160.3, 161.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₂₂Br₂N₃O [M+H]⁺: 478.0124 and 480.0104; Found: 478.0126 and 480.0101.

3i-1: Light yellow oil; 23.0 mg, yield 33%; ¹H NMR (CDCl₃, 400 MHz) δ : 1.09-1.15 (m, 1H), 1.18-1.24 (m, 1H), 1.35-1.42 (m, 3H), 1.51-1.55 (m, 3H), 1.86-1.90 (m, 1H), 2.09-2.15 (m, 2H), 2.38 (s, 3H), 2.44 (s, 3H), 3.19 (d, J = 2.4 Hz, 1H), 4.36 (d, J = 6.0 Hz, 1H), 5.00 (d, J = 6.0 Hz, 1H), 5.27-5.29 (m, 1H), 6.90 (d, J = 7.2 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 7.31 (d, J = 7.6 Hz, 1H), 7.41-7.49 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.5, 23.4, 23.5, 24.1, 26.7, 28.5, 36.8, 38.0, 61.8, 72.4, 86.8, 97.9, 117.0, 117.4, 120.3, 121.0, 135.6, 135.7, 156.4, 156.7, 158.5, 161.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₈N₃O [M+H]⁺: 350.2227; Found: 350.2228.

3i-2: Light yellow oil; 28.6 mg, yield 41%; ¹H NMR (CDCl₃, 400 MHz) δ: 1.11-1.18 (m, 1H), 1.24-1.26 (m, 1H), 1.35-1.48 (m, 3H), 1.55 (d, *J* = 12.0 Hz, 2H), 1.69-1.71 (m, 1H), 1.89-1.94 (m, 1H), 1.97-2.02 (m, 1H), 2.06 (s, 3H), 2.09-2.13 (m, 1H), 2.36 (s, 3H), 3.19 (d, *J* = 1.6 Hz, 1H), 4.61 (d, *J* = 6.4 Hz, 1H), 5.41 (d, *J* = 6.4 Hz, 1H), 5.74-5.77 (m, 1H), 5.52 (d, *J* = 7.6 Hz, 1H),

6.63 (d, J = 7.6 Hz, 1H), 6.90 (d, J = 7.6 Hz, 1H), 7.05-7.08 (m, 2H), 7.25-7.29 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 20.2, 23.9, 24.3, 25.3, 28.6, 29.0, 38.2, 39.5, 63.2, 71.6, 81.2, 99.2, 118.1, 118.9, 120.3, 120.9, 135.3, 135.8, 156.2, 156.7, 158.3, 159.4; HRMS (ESI-TOF) m/z: Calcd. for $C_{22}H_{28}N_3O [M+H]^+$: 350.2227; Found: 350.2229.

3j: Light yellow oil; 16.1 mg, yield 23%, 12:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.07-1.10 (m, 2H), 1.26-1.32 (m, 1H), 1.40-1.45 (m, 5H), 1.84-1.90 (m, 1H), 2.01 (s, 3H), 2.06-2.09 (m, 1H), 2.16-2.19 (m, 4H), 3.24-3.27 (m, 1H), 4.84 (d, J = 7.6 Hz, 1H), 5.48 (d, J = 7.6 Hz, 1H), 5.53-5.55 (m, 1H), 6.91-6.94 (m, 1H), 6.97-7.00 (m, 1H), 7.21-7.27 (m, 2H), 8.39-8.43 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 17.2, 17.7, 19.5, 23.7, 27.5, 28.0, 36.0, 37.8, 63.7, 68.8, 83.8, 98.5, 120.5, 121.8, 130.2, 131.6, 136.9, 137.1, 145.9, 146.3, 153.9, 158.5; HRMS (ESI-TOF) m/z: Calcd. for $C_{22}H_{28}N_3O$ [M+H]⁺: 350.2227; Found: 350.2228.

3k-1: Light yellow oil; 25.9 mg, yield 34%; ¹H NMR (CDCl₃, 400 MHz) δ : 1.09-1.17 (m, 1H), 1.27-1.31 (m, 1H), 1.37-1.65 (m, 6H), 1.80-1.84 (m, 1H), 2.08-2.16 (m, 2H), 3.40-3.43 (m, 1H), 3.66 (s, 3H), 3.80 (s, 3H), 4.45 (d, J = 5.6 Hz, 1H), 4.99 (d, J = 5.6 Hz, 1H), 5.17-5.19 (m, 1H), 6.47 (d, J = 8.4 Hz, 1H), 6.54 (d, J = 8.8 Hz, 1H), 6.97 (d, J = 7.2 Hz, 1H), 7.16 (d, J = 7.6 Hz, 1H), 7.41-7.46 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.6, 24.3, 26.5, 28.8, 36.5, 37.7, 51.9, 52.1, 60.7, 70.8, 85.6, 98.0, 107.5, 108.7, 112.0, 114.0, 137.7, 137.8, 156.8, 159.8, 162.4, 162.8; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₈N₃O₃ [M+H]⁺: 382.2125; Found: 382.2126.

3k-2: Light yellow oil; 16.8 mg, yield 22%; ¹H NMR (CDCl₃, 400 MHz) δ: 1.15 (m, 1H), 1.25-1.28 (m, 1H), 1.36-1.40 (m, 1H), 1.47-1.58 (m, 4H), 1.70-1.73 (m, 1H), 1.92-1.96 (m, 2H), 2.09-

2.14 (m, 1H), 3.15-3.16 (m, 1H), 3.43 (s, 3H), 3.69 (s, 3H), 4.50 (d, J = 6.8 Hz, 1H), 5.31 (d, J = 6.8 Hz, 1H), 5.74-5.77 (m, 1H), 6.25 (d, J = 8.0 Hz, 1H), 6.30 (d, J = 8.0 Hz, 1H), 6.50 (d, J = 7.6 Hz, 1H), 6.89 (d, J = 6.8 Hz, 1H), 7.14-7.17 (m, 1H), 7.25-7.29 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.3, 24.2, 27.5, 28.2, 37.3, 38.2, 51.7, 52.1, 61.9, 69.8, 79.9, 98.0, 106.8, 107.1, 113.2, 113.6, 137.0, 137.1, 156.1, 157.1, 161.3, 161.8; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₈N₃O₃ [M+H]⁺: 382.2125; Found: 382.2127.

3I: Light yellow oil; 33.5 mg, 43% yield, 6:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 1.11-1.22 (m, 3H), 1.32-1.38 (m, 3H), 1.50-1.59 (m, 2H), 1.96-2.01 (m, 1H), 2.07-2.13 (m, 1H), 2.19-2.24 (m, 1H), 3.14-3.17 (m, 1H), 4.18 (d, *J* = 7.6 Hz, 1H), 5.02 (d, *J* = 8.0 Hz, 1H), 5.36-5.39 (m, 1H), 7.20-7.25 (m, 2H), 7.93-7.95 (m, 1H), 8.06-8.09 (m, 1H), 8.22-8.28 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ: 18.9, 24.0, 27.4, 28.0, 36.7, 38.3, 63.2, 64.6, 73.3, 97.3, 120.6, 121.2, 130.0, 132.8, 135.9, 137.8, 147.0, 147.7, 149.1, 149.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₂₂Cl₂N₃O [M+H]⁺: 390.1134 and 392.1105; Found: 390.1137 and 392.1106.

3m: Light yellow oil; 48.7 mg, 51% yield, 12:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.18-1.22 (m, 2H), 1.25-1.31 (m, 2H), 1.35-1.42 (m, 2H), 1.56-1.57 (m, 2H), 1.96-2.01 (m, 1H), 2.08-2.14 (m, 1H), 2.18-2.25 (m, 1H), 3.05-3.07 (m, 1H), 3.61 (d, J = 7.6 Hz, 1H), 4.45 (d, J = 7.6 Hz, 1H), 5.27-5.30 (m, 1H), 6.99-7.03 (m, 2H), 7.39-7.42 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 20.3, 24.6, 27.8, 29.2, 37.2, 39.4, 65.1, 74.5, 86.9, 99.5, 120.4, 121.1, 125.3, 126.1, 142.8, 142.9, 150.4, 150.5, 150.6, 153.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₂₂Br₂N₃O [M+H]⁺: 478.0124 and 480.0104; Found: 478.0121 and 480.0100.

4. The synthesis of pyrrolidine-bipyridines 4

In a sealed tube equipped with a magnetic stirring bar, a mixture of L-proline (0.6 mmol) and

pyridinecarboxaldehyde 2 (0.4 mmol) in 2.0 mL of toluene was stirred at 80 °C for 1 h, and then was directly loaded onto a silica gel and purified by flash chromatography to give the desired product 4, using hexane/EtOAc (6/1, v/v) as the eluent.

5. Characterization data of compounds 4

4a: Light yellow oil; 21.9 mg, yield 41%, 10:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.74-1.80 (m, 1H), 1.89-1.99 (m, 1H), 2.09-2.13 (m, 2H), 2.79-2.85 (m, 1H), 3.11-3.16 (m, 1H), 4.49 (d, *J* = 6.0 Hz, 1H), 5.17 (d, *J* = 5.6 Hz, 1H), 5.30 (d, *J* = 1.2 Hz, 1H), 7.04-7.08 (m, 2H), 7.39-7.46 (m, 2H), 7.53-7.59 (m, 2H), 8.47-8.51 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 21.4, 28.6, 52.6, 73.7, 83.5, 97.0, 118.3, 119.5, 119.6, 119.9, 134.1, 134.2, 146.8, 147.1, 157.8, 159.1; HRMS (ESI-TOF) m/z: Calcd. for C₁₆H₁₈N₃O [M+H]⁺: 268.1444; Found: 268.1445.

4b: Light yellow oil; 52.1 mg, yield 71%, 19:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.78-1.86 (m, 1H), 1.94-2.04 (m, 1H), 2.12-2.22 (m, 2H), 2.88-2.95 (m, 1H), 3.18-3.24 (m, 1H), 4.83 (d, J = 5.6 Hz, 1H), 5.43-5.44 (m, 1H), 5.54 (d, J = 6.0 Hz, 1H), 7.38-7.43 (m, 2H), 7.55-7.58 (m, 2H), 7.66-7.72 (m, 4H), 7.91-7.96 (m, 2H), 8.07-8.10 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 22.9, 30.2, 54.3, 75.7, 85.0, 98.8, 117.8, 119.5, 125.1, 125.2, 126.4, 126.5, 126.6, 128.2, 128.3, 128.4, 128.5, 135.7, 135.8, 146.6, 146.7, 159.7, 160.8; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₂N₃O [M+H]⁺: 368.1757; Found: 368.1754.

4c: Light yellow oil; 48.7 mg, yield 61%, 15:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ: 1.79-1.88 (m, 1H), 1.96-2.06 (m, 1H), 2.13-2.19 (m, 2H), 2.86-2.92 (m, 1H), 3.21-3.26 (m, 1H), 4.67 (d, *J* = 6.0 Hz, 1H), 5.31-5.32 (m, 1H), 5.49 (d, *J* = 6.0 Hz, 1H), 7.05-7.08 (m, 2H), 7.21-7.24 (m, 2H), 7.30-

7.35 (m, 2H), 7.63-7.67 (m, 2H), 7.90 (br s, 2H), 8.07-8.11 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz)
δ: 24.1, 31.1, 55.8, 76.8, 86.0, 99.7, 110.3, 110.4, 117.7, 117.8, 120.9, 127.5, 127.7, 137.0, 137.2, 137.5, 137.6, 152.0, 152.1, 158.5, 159.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₂N₃O₃ [M+H]⁺: 400.1656; Found: 400.1656.

4d-1: Light yellow oil; 27.2 mg, yield 37%; ¹H NMR (CDCl₃, 400 MHz) δ : 1.850-1.87 (m, 1H), 2.13-2.27 (m, 3H), 3.11-3.22 (m, 2H), 5.53-5.55 (m, 2H), 6.21 (d, J = 7.6 Hz, 1H), 6.92-6.97 (m, 2H), 7.51-7.60 (m, 4H), 7.84-7.88 (m, 2H), 7.99-8.00 (m, 1H), 8.07-8.08 (m, 1H), 8.15 (d, J = 7.2 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 21.8, 29.2, 53.7, 69.1, 80.0, 96.3, 117.8, 117.9, 124.1, 124.2, 124.3, 133.1, 133.2, 136.6, 138.8, 143.8, 144.1, 145.7, 145.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₂N₃O [M+H]⁺: 368.1757; Found: 368.1760.

4d-2: Light yellow oil; 29.4 mg, yield 40%; ¹H NMR (CDCl₃, 400 MHz) δ : 1.84-1.89 (m, 1H), 1.97-2.08 (m, 3H), 2.27-2.33 (m, 1H), 3.31-3.37 (m, 1H), 3.48-3.52 (m, 1H), 5.79-5.81 (m, 1H), 6.17 (d, *J* = 6.0 Hz, 1H), 6.75-6.80 (m, 2H), 7.07-7.12 (m, 2H), 7.18-7.21 (m, 1H), 7.29-7.36 (m, 2H), 7.62-7.68 (m, 2H), 7.73-7.76 (m, 1H), 7.86-7.88 (m, 1H), 8.85-8.86 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 23.0, 32.1, 54.6, 65.8, 73.7, 96.9, 118.6, 119.1, 123.7, 124.6, 124.8, 125.0, 125.4, 125.8, 125.9, 126.8, 134.0, 134.3, 137.6, 144.4, 145.0, 146.1, 147.5; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₂N₃O [M+H]⁺: 368.1757; Found: 368.1758.

6. Preparative scale synthesis of two diastereoisomers 3a-1 and 3a-2

In a sealed tube equipped with a magnetic stirring bar, a mixture of optically pure perhydroindole-2-carboxylic acid 1 (1.01 g, 6.0 mmol, 1.5 eq) and pyridinecarboxaldehyde 2 (0.63 g, 4.0 mmol, 1.0 eq) in 2.0 mL of toluene was stirred at 80 °C for 1 h, and then was directly loaded onto a silica gel and purified by flash chromatography (hexane/EtOAc, 8/1, v/v) to give the desired diastereoisomers **3a-1** (0.25 g, 30%) and **3a-2** (0.27 g, 32%) respectively.

7. The further chemical transformations of the compounds 3 into compounds 6

In a sealed tube equipped with a magnetic stirring bar, a mixture of 0.2 mmol of compound **3**, *m*-CPBA (2.0 eq) in 2.0 mL of CHCl₃ was stirred at rt for 0.5 h, and then was directly loaded onto a silica gel and purified by flash chromatography to give the desired product **6**, using hexane/EtOAc (1/2, v/v) as the eluent.

8. Characterization data of compounds 6

6a-1: Light yellow solid; 64.6 mg, yield 62%; ¹H NMR (CDCl₃, 400 MHz) δ: 1.16-1.21 (m, 4H), 1.28-1.35 (m, 1H), 1.46-1.52 (m, 4H), 2.05-2.13 (m, 1H), 2.15 (s, 3H), 2.35 (s, 3H), 2.59-2.65 (m, 1H), 3.21-3.24 (m, 1H), 4.33 (d, *J* = 6.8 Hz, 1H), 4.54 (br s, 1H), 4.90 (d, *J* = 6.8 Hz, 1H), 6.32 (d, *J* = 4.0 Hz, 1H), 6.79-6.82 (m, 3H), 7.20-7.27 (m, 3H), 7.30-7.34 (m, 1H), 7.44-7.47 (m, 1H), 7.91-7.93 (m, 1H), 7.97 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 19.9, 23.7, 24.2, 24.7, 27.5, 29.7, 30.2, 30.3, 61.4, 73.3, 74.4, 94.0, 119.1, 121.7, 122.0, 122.3, 128.0, 129.8, 131.9, 133.2, 134.6, 136.0, 136.1, 156.5, 157.2, 158.0, 158.8, 164.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₉H₃₃ClN₃O₄ [M+H]⁺: 522.2154 and 524.2125; Found: 522.2151 and 524.2127.

6b-1: Light yellow solid; 64.5 mg, yield 61%; ¹H NMR (CDCl₃, 400 MHz) δ : 1.05-1.13 (m, 1H), 1.18-1.27 (m, 3H), 1.32-1.36 (m, 1H), 1.50-1.59 (m, 4H), 2.09-2.17 (m, 1H), 2.65-2.68 (m, 1H), 3.33-3.37 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 18.7, 19.1, 23.9, 26.5, 29.2, 29.6, 61.2, 64.6, 65.2, 94.1, 121.5 (d, $J_{CF} = 20.3$ Hz), 121.9 (d, $J_{CF} = 20.2$ Hz), 122.8 (d, $J_{CF} = 4.3$ Hz), 123.0 (d, $J_{CF} = 4.1$ Hz), 126.9, 128.8 (d, $J_{CF} = 5.1$ Hz), 130.9, 132.1, 133.5, 143.6 (d, $J_{CF} = 5.1$ Hz), 144.1 (d, $J_{CF} = 5.0$ Hz), 145.1 (d, $J_{CF} = 13.4$ Hz), 145.7 (d, $J_{CF} = 13.1$ Hz), 156.2 (d, $J_{CF} = 259.2$ Hz), 157.7 (d, $J_{CF} = 257.4$ Hz), 163.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₇H₂₇ClF₂N₃O₄ [M+H]⁺: 530.1653 and 532.1623; Found: 530.1655 and 532.1620.

6c-1: Light yellow solid; 71.8 mg, yield 64%; ¹H NMR (CDCl₃, 400 MHz) δ: 0.96-1.03 (m, 1H), 1.10-1.22 (m, 2H), 1.31-1.41 (m, 2H), 1.51-1.56 (m, 4H), 2.08-2.16 (m, 1H), 2.63-2.67 (m, 1H), 3.14-3.19 (m, 1H), 4.14 (d, J = 8.4 Hz, 1H), 4.85 (d, J = 8.0 Hz, 1H), 6.39 (d, J = 3.6 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 7.04-7.08 (m, 2H), 7.32-7.37 (m, 2H), 7.44-7.47 (m, 2H), 7.50 (d, J = 7.6 Hz, 1H), 7.90-7.94 (m, 1H), 7.99-8.01 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 18.7, 20.0, 23.7, 26.4, 29.1, 29.3, 61.2, 72.9, 73.4, 93.1, 119.3, 122.0, 122.2, 126.9, 127.3, 128.8, 128.9, 129.2, 132.4, 132.7, 137.4, 137.8, 148.6, 149.2, 157.7, 159.3, 163.0; HRMS (ESI-TOF) m/z: Calcd. for $C_{27}H_{27}Cl_3N_3O_4$ [M+H]⁺: 562.1062 and 564.1032; Found: 562.1063 and 564.1037.

6d-1: Light yellow solid; 67.3 mg, yield 60%; ¹H NMR (CDCl₃, 400 MHz) δ : 0.96-1.03 (m, 2H), 1.16-1.24 (m, 1H), 1.31-1.35 (m, 2H), 1.50-1.57 (m, 4H), 2.07-2.15 (m, 1H), 2.64-2.67 (m, 1H), 3.14-3.19 (m, 1H), 4.23 (d, J = 8.4 Hz, 1H), 4.85 (d, J = 8.4 Hz, 1H), 6.40 (d, J = 4.0 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 7.31-7.38 (m, 2H), 7.45-7.49 (m, 3H), 7.93 (d, J = 8.0 Hz, 1H), 8.00-8.01 (m, 1H), 8.12 (d, J = 2.0 Hz, 1H), 8.26 (d, J = 2.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 18.6,

19.8, 23.7, 26.4, 29.1, 29.4, 61.3, 72.8, 73.3, 93.2, 122.1, 125.2, 126.9, 128.8, 128.9, 129.8, 130.1, 130.6, 132.4, 133.7, 134.6, 134.9, 146.2, 146.7, 154.9, 156.4, 163.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₇H₂₇Cl₃N₃O₄ [M+H]⁺: 562.1062 and 564.1032; Found: 562.1065 and 564.1026.

6e-1: Light yellow solid; 73.9 mg, yield 57%; ¹H NMR (CDCl₃, 400 MHz) δ: 0.96-1.03 (m, 1H), 1.12-1.22 (m, 2H), 1.30-1.42 (m, 2H), 1.51-1.55 (m, 4H), 2.07-2.15 (m, 1H), 2.63-2.66 (m, 1H), 3.13-3.18 (m, 1H), 4.12 (d, J = 8.0 Hz, 1H), 4.84 (d, J = 8.0 Hz, 1H), 6.38 (d, J = 3.6 Hz, 1H), 7.11-7.15 (m, 2H), 7.20 (d, J = 8.0 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 7.30-7.35 (m, 2H), 7.44-7.48 (m, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.91-7.94 (m, 1H), 7.98-7.99 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 18.7, 20.0, 23.7, 26.5, 29.1, 29.3, 61.1, 72.9, 73.3, 93.1, 119.5, 123.7, 125.8, 126.0, 126.9, 128.8, 128.9, 130.6, 132.4, 133.7, 137.0, 137.5, 139.1, 139.7, 158.3, 159.9, 163.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₇H₂₇Br₂ClN₃O₄ [M+H]⁺: 650.0051 and 652.0031; Found: 650.0051 and 652.0027.

6a-2: Light yellow solid; 61.5 mg, yield 59%; ¹H NMR (CDCl₃, 400 MHz) δ : 1.25-1.37 (m, 2H), 1.43-1.47 (m, 2H), 1.56-1.59 (m, 1H), 1.63-1.69 (m, 1H), 1.78 (s, 3H), 1.79-1.82 (m, 1H), 1.84-1.92 (m, 1H), 2.01-2.14 (m, 2H), 2.36 (s, 3H), 2.72-2.74 (m, 1H), 3.60-3.63 (m, 1H), 4.37 (d, J = 2.8 Hz, 1H), 5.19 (d, J = 2.8 Hz, 1H), 6.03 (d, J = 4.0 Hz, 1H), 6.63 (d, J = 7.6 Hz, 1H), 6.73 (d, J = 7.6 Hz, 1H), 6.78 (d, J = 7.6 Hz, 1H), 7.08-7.12 (m, 1H), 7.17-7.21 (m, 1H), 7.29-7.34 (m, 1H), 7.44-7.47 (m, 1H), 7.77-7.80 (m, 1H), 7.82-7.83 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 17.2, 19.3, 22.1, 22.9, 23.9, 26.4, 28.6, 29.3, 56.9, 66.7, 71.9, 92.3, 116.9, 120.3, 120.6, 121.4, 127.0, 128.5, 128.8, 131.3, 131.7, 133.3, 135.1, 135.4, 155.0, 155.6, 157.1, 159.7, 162.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₉H₃₂ClN₃NaO₄ [M+Na]⁺: 544.1974 and 546.1944; Found: 544.1969 and 546.1953.

6f-2: Light yellow solid; 82.9 mg, yield 64%; ¹H NMR (CDCl₃, 400 MHz) δ : 1.25-1.38 (m, 2H), 1.45-1.52 (m, 2H), 1.58-1.69 (m, 2H), 1.81-1.92 (m, 3H), 2.06-2.14 (m, 1H), 2.69-2.71 (m, 1H), 3.55-3.59 (m, 1H), 4.00 (d, J = 2.8 Hz, 1H), 5.15 (d, J = 2.8 Hz, 1H), 6.02 (d, J = 4.0 Hz, 1H), 6.73 (d, J = 8.4 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 7.33-7.37 (m, 2H), 7.46-7.52 (m, 2H), 7.65 (d, J = 2.0 Hz, 1H), 7.75-7.79 (m, 1H), 7.85-7.86 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 17.5, 19.3, 23.8, 26.4, 28.7, 29.2, 57.0, 66.0, 71.5, 92.3, 117.8, 118.2, 121.2, 125.6, 127.1, 128.6, 128.9, 131.0, 132.0, 133.4, 137.5, 138.0, 147.7, 148.3, 156.2, 158.8, 162.5; HRMS (ESI-TOF) m/z: Calcd. for C₂₇H₂₇Br₂ClN₃O₄ [M+H]⁺: 650.0051 and 652.0031; Found: 650.0053 and 652.0035.

9. Figure S1: reaction solution detected by ESI-MS analysis.

10. X-ray crystal data for compounds 3b-2, 3g-2, 4d-1 and 6c-1

Identification code	3b-2
Empirical formula	$C_{28}H_{27}N_{3}O$
Formula weight	421.52
Temperature/K	99.95(19)
Crystal system	monoclinic
Space group	P2 ₁
a/Å, b/Å, c/Å	7.5239(7), 9.0245(8), 16.1748(14)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 90.02(2), 90
Volume/Å ³	1098.26(17)
Z	2
$\rho_{calc}g/cm^3$	1.275
µ/mm ⁻¹	0.611
F(000)	448.0
Radiation	Cu Ka ($\lambda = 1.54184$)
Crystal size/mm ³	$0.14 \times 0.12 \times 0.11$
2Θ range for data collection/°	5.464 to 144.366
Index ranges	$-9 \le h \le 8, -10 \le k \le 10, -19 \le l \le 14$
Reflections collected	11455
Independent reflections	$3946 [R_{int} = 0.0312, R_{sigma} = 0.0302]$
Data/restraints/parameters	3946/1/289
Goodness-of-fit on F ²	1.077
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0331, wR_2 = 0.0871$
Final R indexes [all data]	$R_1 = 0.0344, wR_2 = 0.0880$
Largest diff. peak/hole / e Å ⁻³	0.39/-0.23
Flack parameter	-0.03(12)/-0.01(12)

Crystal Data for C₂₈H₂₇N₃O (*M* =421.52 g/mol): monoclinic, space group P2₁ (no. 4), *a* = 7.5239(7) Å, *b* = 9.0245(8) Å, *c* = 16.1748(14) Å, β = 90.02(2)°, *V* = 1098.26(17) Å³, *Z* = 2, *T* = 99.95(19) K, μ (Cu K α) = 0.611 mm⁻¹, *Dcalc* = 1.275 g/cm³, 11455 reflections measured (5.464° ≤ 2 Θ ≤ 144.366°), 3946 unique (R_{int} = 0.0312, R_{sigma} = 0.0302) which were used in all calculations. The final R_1 was 0.0331 (I > 2 σ (I)) and wR_2 was 0.0880 (all data).

Table S2 Crystal data and structure refinement for 3g-2		
Identification code	3g-2	
Empirical formula	$C_{20}H_{21}Br_2N_3O$	
Formula weight	479.22	
Temperature/K	169.99(10)	
Crystal system	monoclinic	
Space group	P21	
a/Å, b/Å, c/Å	6.02540(14), 17.1860(4), 9.4103(2)	
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 99.742(2), 90	
Volume/Å ³	960.41(4)	
Z	2	
$\rho_{calc}g/cm^3$	1.657	
µ/mm ⁻¹	5.463	
F(000)	480.0	
Radiation	Cu Ka ($\lambda = 1.54184$)	
Crystal size/mm ³	$0.16 \times 0.13 \times 0.12$	
2Θ range for data collection/°	9.536 to 147.002	
Index ranges	$-7 \le h \le 6, -20 \le k \le 14, -11 \le l \le 11$	
Reflections collected	4451	
Independent reflections	2900 [$R_{int} = 0.0706, R_{sigma} = 0.0603$]	
Data/restraints/parameters	2900/1/235	
Goodness-of-fit on F ²	1.186	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0868, wR_2 = 0.2504$	
Final R indexes [all data]	$R_1 = 0.0883, wR_2 = 0.2544$	
Largest diff. peak/hole / e Å ⁻³	1.71/-2.42	
Flack parameter	-0.09(5)/-0.053(15)	

Crystal Data for C₂₀H₂₁Br₂N₃O (M =479.22 g/mol): monoclinic, space group P2₁ (no. 4), a = 6.02540(14) Å, b = 17.1860(4) Å, c = 9.4103(2) Å, $\beta = 99.742(2)^{\circ}$, V = 960.41(4) Å³, Z = 2, T = 169.99(10) K, μ (Cu K α) = 5.463 mm⁻¹, *Dcalc* = 1.657 g/cm³, 4451 reflections measured (9.536° $\leq 2\Theta \leq 147.002^{\circ}$), 2900 unique ($R_{int} = 0.0706$, $R_{sigma} = 0.0603$) which were used in all calculations. The final R_1 was 0.0868 (I > 2 σ (I)) and wR_2 was 0.2544 (all data).

Table S3 Crystal data and structure refinement for 4d-1		
Identification code	4d-1	
Empirical formula	$C_{24}H_{21}N_{3}O$	
Formula weight	367.44	
Temperature/K	170.00(10)	
Crystal system	orthorhombic	
Space group	Pccn	
a/Å, b/Å, c/Å	21.3764(18), 11.6397(10), 15.2354(10)	
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 90, 90	
Volume/Å ³	3790.8(5)	
Z	8	
$\rho_{calc}g/cm^3$	1.288	
μ/mm^{-1}	0.632	
F(000)	1552.0	
Radiation	Cu Ka ($\lambda = 1.54184$)	
Crystal size/mm ³	$0.13 \times 0.12 \times 0.11$	
2Θ range for data collection/°	8.272 to 144.2	
Index ranges	$-23 \le h \le 26, -13 \le k \le 11, -18 \le l \le 15$	
Reflections collected	18443	
Independent reflections	$3680 [R_{int} = 0.1115, R_{sigma} = 0.1137]$	
Data/restraints/parameters	3680/0/253	
Goodness-of-fit on F ²	1.037	
Final R indexes [I>=2 σ (I)]	$R_1 = 0.1003, wR_2 = 0.2458$	
Final R indexes [all data]	$R_1 = 0.1320, wR_2 = 0.2740$	
Largest diff. peak/hole / e Å ⁻³	0.46/-0.27	

Crystal Data for C₂₄H₂₁N₃O (M=367.44 g/mol): orthorhombic, space group Pccn (no. 56), a = 21.3764(18) Å, b = 11.6397(10) Å, c = 15.2354(10) Å, V = 3790.8(5) Å³, Z = 8, T = 170.00(10) K, μ (Cu K α) = 0.632 mm⁻¹, *Dcalc* = 1.288 g/cm³, 18443 reflections measured ($8.272^{\circ} \le 2\Theta \le 144.2^{\circ}$), 3680 unique ($R_{int} = 0.1115$, $R_{sigma} = 0.1137$) which were used in all calculations. The final R_1 was 0.1003 (I > 2 σ (I)) and wR_2 was 0.2740 (all data).

Table S4 Crystal data and structure refinement for 6c-1

Identification code	6c-1
Empirical formula	$C_{27}H_{26}Cl_3N_3O_4$
Formula weight	562.86
Temperature/K	169.98(10)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å, b/Å, c/Å	6.0111(2), 12.8027(4), 34.2524(12)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 90, 90
Volume/Å ³	2636.01(15)
Z	4
$\rho_{calc}g/cm^3$	1.418
µ/mm ⁻¹	3.475
F(000)	1168.0
Radiation	Cu Ka ($\lambda = 1.54184$)
Crystal size/mm ³	$0.13 \times 0.1 \times 0.08$
2Θ range for data collection/°	5.16 to 147.44
Index ranges	$-5 \le h \le 7, -15 \le k \le 15, -42 \le l \le 41$
Reflections collected	10170
Independent reflections	5202 [$R_{int} = 0.0374, R_{sigma} = 0.0540$]
Data/restraints/parameters	5202/0/336
Goodness-of-fit on F ²	1.027
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0424, wR_2 = 0.1013$
Final R indexes [all data]	$R_1 = 0.0481, wR_2 = 0.1060$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.21
Flack parameter	-0.004(11)/-0.001(10)

Crystal Data for $C_{27}H_{26}Cl_3N_3O_4$ (M=562.86 g/mol): orthorhombic, space group $P2_12_12_1$ (no. 19), a = 6.0111(2) Å, b = 12.8027(4) Å, c = 34.2524(12) Å, V = 2636.01(15) Å³, Z = 4, T = 169.98(10) K, μ (Cu K α) = 3.475 mm⁻¹, *Dcalc* = 1.418 g/cm³, 10170 reflections measured ($5.16^{\circ} \le 2\Theta \le 147.44^{\circ}$), 5202 unique ($R_{int} = 0.0374$, $R_{sigma} = 0.0540$) which were used in all calculations. The final R_1 was 0.0424 (I > 2 σ (I)) and wR_2 was 0.1060 (all data).

11. The copies of ¹H NMR and ¹³C NMR spectra for compounds 3, 4 and 6 ¹H and ¹³C NMR of 3a-1

¹H and ¹³C NMR of 3a-2

¹H and ¹³C NMR of 3b-1

¹H and ¹³C NMR of 3c

¹H and ¹³C NMR of 3d

¹H and ¹³C NMR of 3e-1

S28

¹H and ¹³C NMR of 3f

S29

¹H and ¹³C NMR of 3h-1

¹H and ¹³C NMR of 3i-1

¹H and ¹³C NMR of 3j

S36

S41

¹H and ¹³C NMR of 4c

S46

¹H and ¹³C NMR of 6b-1

¹H and ¹³C NMR of 6d-1

S50

¹H and ¹³C NMR of 6a-2

