Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

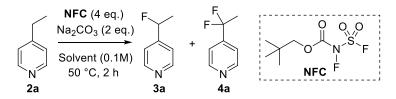
Supporting Information

Difluorination of Heterobenzylic C–H Bonds with *N*-Fluoro-*N*-(fluorosulfonyl)carbamate (NFC)

Akiya Adachi,^[a] Takuya Hashimoto,^{*[b]} Kohsuke Aikawa,^{*[a]} Kyoko Nozaki ^[c] and Takashi Okazoe ^[a,d]

[a]	A. Adachi, Dr. K. Aikawa,* and Dr. T. Okazoe
	Department of Chemistry and Biotechnology
	Graduate School of Engineering
	The University of Tokyo
	2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
	E-mail: aikawa@g.ecc.u-tokyo.ac.jp
[b]	Prof. Dr. T. Hashimoto*
	Molecular Synthesis and Function Laboratory
	RIKEN Cluster for Pioneering Research
	2-1 Hirosawa, Wako, Saitama 351-0198, Japan
	E-mail: takuya.hashimoto@riken.jp
[c]	Prof. Dr. K. Nozaki
	Department of Chemistry and Biotechnology
	Graduate School of Engineering
	The University of Tokyo
	7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
[d]	Dr. T. Okazoe
	Yokohama Technical Center, AGC Inc.
	1-1 Suehiro-cho, Tsurumi-ku
	Yokohama 230-0045, Japan

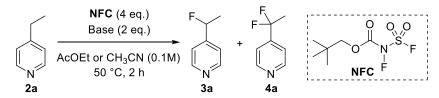
Table of Contents


S1. General Information	page 3
S2. Screening of Reaction Conditions in Fluorination of Pyridine 2a	page 3-4
S3. Substrate Scope	page 5-13
S4. Mechanistic Studies	page 13-18
S5. NMR Spectra	page 19-46
S6. References	page 47

S1. General Information

¹H, ¹³C, and ¹⁹F NMR spectra were measured on JEOL JNM-ECZ400S (¹H NMR: 400 MHz, ¹³C NMR: 100 MHz, ¹⁹F NMR: 376 MHz) spectrometers at ambient temperature. Analytical thin layer chromatography (TLC) was performed on glass plates pre-coated with silica-gel (Merck Kieselgel 60 F_{254} , layer thickness 0.25 nm). Column chromatography was performed on KANTO Silica Gel 60N (spherical, neutral). High-resolution mass (HRMS) spectra were measured on a JEOL JMS-T100LP spectrometer in the electron spray ionization time-of-flight (ESI-TOF) mode. Gas chromatography-mass spectroscopy (GC-MS) analyses (using CI as ionization mode) were performed using a Shimadzu GC-MS QP2020 gas chromatograph mass spectrometer equipped with an HP-5 capillary column (0.320 i.d.; 0.25 μ m df; 30 m; Agilent Technologies) with helium as the carrier gas. *N*-Fluoro-*N*-(fluorosulfonyl)-neopentylcarbamate (NFC) as a fluorinating reagent was synthesized according to the previous synthetic method.^[1]

S2. Screening of Reaction Conditions in Fluorination of Pyridine 2a


S2-1. Solvent

To a mixture of Na₂CO₃ (21.2 mg, 0.20 mmol, 2.0 equiv.) and **2a** (10.7 mg, 0.10 mmol) in solvent (0.1 M, 1.0 mL) was added **NFC** (92.5 mg, 0.40 mmol, 4.0 equiv.)^[1] at room temperature under N₂ atmosphere. After stirring for 2 h at 50 °C, the yield and selectivity were determined by ¹⁹F NMR spectroscopy analysis using benzotrifluoride as an internal standard.

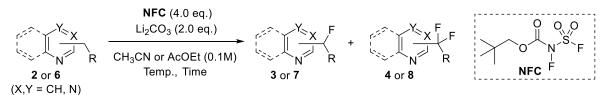
Enters	an large 4	¹⁹ F NMR	yield [%]
Entry	solvent	3a	4a
1	AcOEt	0	>99
2	CH ₃ CN	0	>99
3	Toluene	11	70
4	CH ₂ ClCH ₂ Cl	0	85
5	DMSO	<10	trace
6	DMF	56	12

S2-2. Base

To a mixture of organic/inorganic base (0.20 mmol, 2.0 equiv.) and **2a** (10.7 mg, 0.10 mmol) in AcOEt or CH₃CN (0.1 M, 1.0 mL) was added **NFC** (92.5 mg, 0.40 mmol, 4.0 equiv.) at room temperature under N₂ atmosphere. After stirring for 2 h at 50 °C, the yield and selectivity were determined by ¹⁹F NMR spectroscopy analysis using benzotrifluoride as an internal standard.

Enter	have	solvent	¹⁹ F NMR yield [%]	
Entry	base			4a
1	Li ₂ CO ₃	AcOEt	0	>99
2	Na ₂ CO ₃	AcOEt	0	>99
3	K ₂ CO ₃	AcOEt	0	98
4	Cs ₂ CO ₃	AcOEt	0	93
5	CaCO ₃	AcOEt	0	88
6	2,6-lutidine	AcOEt	0	98
7	<i>i</i> -Pr ₂ NEt	AcOEt	0	76
8	Li ₂ CO ₃	CH ₃ CN	0	>99
9	Na ₂ CO ₃	CH ₃ CN	0	>99

S2-3. Equivalence



To a mixture of Li_2CO_3 (Y equiv.) and **2a** (10.7 mg, 0.10 mmol) in CH₃CN (0.1 M, 1.0 mL) was added **NFC** (X equiv.) at room temperature under N₂ atmosphere. After stirring for 2 h at 50 °C, the yield and selectivity were determined by ¹⁹F NMR spectroscopy analysis using benzotrifluoride as an internal standard.

Enter	NFC [eq.]		¹⁹ F NMR yield [%]	
Entry		Li ₂ CO ₃ [eq.]		4 a
1	4.0	2.0	0	>99
2	3.0	2.0	0	88
3	2.0	2.0	27	64
4	4.0	1.5	0	97
5	4.0	1.0	0	97

S3. Substrate Scope

S3-1. Direct Fluorination of N-Heterocycles using with NFC

To a mixture of Li₂CO₃ (14.8 mg, 0.20 mmol, 2.0 equiv.) and **2** (0.10 mmol) in CH₃CN or AcOEt (0.1 M, 1.0 mL) was added **NFC** (92.5 mg, 0.40 mmol, 4.0 equiv.) at room temperature under N₂ atmosphere. After stirring for 2-48 h at 50-75 °C, the yield and selectivity were determined by ¹⁹F NMR spectroscopy analysis using benzotrifluoride as an internal standard. The resulting crude mixture was purified by silica-gel column chromatography to give the products **3** or **7** and **4** or **8**.

4-(1,1-Difluoroethyl)pyridine (4a)

The title compound was obtained from 4-ethylpyridine following the procedure above (CH₃CN, 50 °C, 2 h). The yield and ratio of compounds (>99%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (*n*-hexane/EtOAc = 7/1) gave the compound (12.6 mg, 88% yield) as a yellow oil. The product is known and the following data are identical to those given in corresponding literature.^[2-3]

¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 4.8 Hz, 2H), 7.38 (d, J = 4.8 Hz, 2H), 1.89 (t, J = 18.0 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.1 (q, J = 17.3 Hz, 2F).

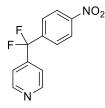
4-(1,1-Difluoro-2-phenylpropyl)pyridine (4b)

The title compound was obtained from 4-(3-phenylpropyl)pyridine following the procedure above (CH₃CN, 50 °C, 10 h). The yield and ratio of compounds (93%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (*n*-hexane/EtOAc = 3/1) gave the compound (16.7 mg, 72% yield)

as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.71 (t, *J* = 4.2 Hz, 2H), 7.39 (t, *J* = 4.2 Hz, 2H), 7.25 (d, *J* = 4.2 Hz, 2H), 7.20 (t, *J* = 8.0 Hz, 1H), 7.13 (d, *J* = 8.4 Hz), 2.75-2.80 (m, 2H), 2.33-2.47 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -99.19 (t, *J* = 17.3 Hz, 2F); ¹³C NMR (100MHz, CDCl₃) δ 150.43, 145.32 (t, *J*_{C-F} = 28.0 Hz), 139.85, 128.72, 128.30, 126.51, 121.30 (t, *J*_{C-F} = 241.9 Hz), 119.66 (t, *J*_{C-F} = 5.5 Hz), 40.48 (t, *J*_{C-F} = 26.5 Hz), 28.52 (t, *J*_{C-F} = 4.0 Hz); HRMS (ESI-TOF) calcd for C₁₄H₁₄F₂N [M+H]⁺: 234.1094, found:234.1090.

4-(Difluoro(phenyl)methyl)pyridine (4c)



The title compound was obtained from 4-(benzyl)pyridine following the procedure above (CH₃CN, 50 °C, 2 h). The yield and ratio of compounds (73%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (CH₂Cl₂) gave the compound (13.1 mg, 64% yield) as a yellow oil. The product is

known and the following data are identical to those given in corresponding literature.^[4]

¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 5.6 Hz, 1H), 7.41-7.50 (m, 7H); ¹⁹F NMR (376 MHz, CDCl₃) δ -92.5 (s, 2F).

4-(1,1-Difluoro-1-(4'-nitrophenyl)methyl)pyridine (4d)

The title compound was obtained from 4-((4'-nitrophenyl)methyl)pyridine following the procedure above (CH₃CN, 50 °C, 2 h). The yield and ratio of compounds (99%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (*n*-hexane/EtOAc =5/1) gave the compound (18.4 mg, 86% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 5.8 Hz, 2H), 8.31 (d, *J* = 9.0 Hz, 2H), 7.71 (d, *J* = 9.0 Hz, 2H), 7.12 (d, *J* = 5.8 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -93.63 (s, 2F); ¹³C NMR (100 MHz, CDCl₃) δ 150.68, 149.22, 144.47 (t, *J* = 29.8 Hz), 142.28 (t, *J* = 28.8 Hz), 126.97 (t, *J* = 5.8 Hz), 124.12, 119.90 (t, *J* = 5.3 Hz), 118.42 (t, *J* = 243.4 Hz); HRMS (ESI-TOF) calcd for C₁₂H₈F₂N₂NaO₂ [M+Na]⁺: 273.04515, found: 273.04410.

5,5-Difluoro-5,6,7,8-tetrahydroisoquinoline (4e)

The title compound was obtained from 5,6,7,8-tetrahydroisoquinoline following the procedure above (CH₃CN, 50 °C, 2 h). The yield and ratio of compounds (99%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (*n*-hexane/EtOAc =2/1) gave the compound (14.0 mg, 83% yield)

as a yellow oil. 4e was not identified through ESI-MS (TOF, HRMS), but was identified through GC-MS (CI, LRMS).

¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 4.8 Hz, 1H), 8.48 (s, 1H), 7.50 (d, J = 4.8 Hz, 1H), 2.81 (s, 2H), 2.22-2.32 (m, 2H), 1.98-2.05 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -87.7 (t, J = 11.3 Hz, 2F); ¹³C NMR (100MHz, CDCl₃) δ 150.69, 148.15, 139.95 (t, $J_{C-F} = 26.7$ Hz), 132.84 (t, $J_{C-F} = 5.7$ Hz), 119.38, 118.57 (t, $J_{C-F} = 237.4$ Hz), 33.08 (t, $J_{C-F} = 23.3$ Hz), 25.55, 19.70 (t, $J_{C-F} = 4.8$ Hz); LRMS (CI) calcd for C₉H₁₀F₂N [M+H]⁺: 170.08, found: 170.00.

4-(1,1-Difluoro-2-methylpropyl)pyridine (4f)

The title compound was obtained from 4-(2-methylpropyl)pyridine following the procedure above (CH₃CN, 50 °C, 10 h). The yield and ratio of compounds (74%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (*n*-hexane/EtOAc =4/1) gave the compound (8.0 mg, 48% yield) as

a colorless oil. 4f was not identified through ESI-MS (TOF, HRMS), but was identified through GC-MS (CI, LRMS).

¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, *J* = 4.4 Hz, 2H), 7.42 (d, *J* = 4.6 Hz, 2H), 2.30 (m, 1H), 0.98 (d, *J* = 6.8 Hz, 6H); ¹⁹F NMR (376 MHz, CDCl₃) δ -106.56 (d, *J* = 13.9 Hz, 2F); ¹³C NMR (100MHz, CDCl₃) δ 149.68, 145.27 (t, *J* = 28.5 Hz), 123.19 (t, *J* = 245.6 Hz), 120.56 (t, *J* = 5.7 Hz), 36.19 (t, *J* = 25.6 Hz), 15.65 (t, *J* = 4.3 Hz); LRMS (CI) calcd for C₉H₁₂F₂N [M+H]⁺: 172.09, found: 172.00.

4-(1,1-Difluoro-2-phetnylpropyl)pyridine (4g)

The title compound was obtained from 4-(2-phenylpropyl)pyridine following the procedure above (CH₃CN, 50 °C, 10 h). The yield and ratio of compounds (69%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (CH₂Cl₂) gave the compound (14.0 mg, 60% yield) as a yellow oil.

The product is known in the literature.^[5]

¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, *J* = 6.4 Hz, 2H), 7.22-7.24 (m, 3H), 7.04-7.10 (m, 4H), 3.35-3.44 (m, 1H), 1.47 (d, *J* = 6.8 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -101.03 (dd, *J* = 242.5, 11.7 Hz, 1F), -106.36 (dd, *J* = 242.9, 85.0 Hz, 1F).

4-(1,1-Difluoro-2,2-dimethylpropyl)pyridine (4h)

The title compound was obtained from 4-(2,2-dimethylpropyl)pyridine following the procedure above (0.050 mmol, AcOEt, 50 °C, 18 h). The yield and ratio of compounds (65%, mono/di-F = 13/87) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (*n*-hexane/EtOAc =4/1) solely gave the difluorinated compound (4.2 mg, 45% yield) as a yellow oil. **4h** was not identified through ESI-MS (TOF, HRMS), but was identified through GC-MS (CI, LRMS).

¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 4.0 Hz, 2H), 7.33 (d, *J* = 4.4 Hz, 2H), 1.03 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃) δ -108.2 (s, 2F); LRMS (CI) calcd for C₁₀H₁₄F₂N [M+H]⁺: 186.11, found: 186.05.

4-(1,1-Difluoroethyl)quinoline (4i)

The title compound was obtained from 4-ethylquinoline following the procedure above (0.050 mmol, AcOEt, 75 °C, 10 h). The yield and ratio of compounds (75%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (*n*-hexane/EtOAc =8/1) gave the compound (5.2 mg, 45% yield)

as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.97 (brs, 1H), 8.20 (t, *J* = 7.6 Hz, 2H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.63 (t, *J* = 7.6 Hz, 1H), 7.57 (d, *J* = 7.6 Hz, 1H), 2.13 (t, *J* = 18.6 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -86.51 (q, *J* = 18.4 Hz, 2F); ¹³C NMR (100 MHz, CDCl₃) δ 149.89, 149.01, 130.53, 129.67, 127.58, 124.75, 123.34, 121.62 (t, *J*_{C-F} = 235.5 Hz), 117.67, 117.38. 26.16 (t, *J*_{C-F} = 28.6 Hz); HRMS(ESI-TOF) calcd for C₁₁H₁₁ClF₂N [M+H]⁺: 230.0548, found: 230.0568.

4-(1,1-Difluoroethyl)pyrimidine (4j)

The title compound was obtained from 4-ethylpyrimidine following the procedure above (AcOEt, 75 °C, 10 h). The yield and ratio of compounds (71%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using hexafluorobenzene (δ -163) as an internal standard. Purification by silica-gel column chromatography (*n*-pentane/Et₂O = 5/1) afforded volatile **4j** containing solvents and some impurities. **4j**

was not identified through ESI-MS (TOF, HRMS), but was identified through GC-MS (CI, LRMS).

¹H NMR (400 MHz, CDCl₃) δ 9.30 (s, 1H), 8.91 (d, *J* = 5.2 Hz, 1H), 7.65 (dd, *J* = 5.2, 1.6 Hz, 1H), 2.00 (t, *J* = 18.8 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -93.61 (q, *J* = 18.6 Hz, 2F); LRMS (CI) calcd for C₆H₇F₂N₂ [M+H]⁺: 145.06, found: 145.10.

4-(Difluoromethyl)pyridine (4k)

F The title compound was obtained from 4-picoline following the procedure above (CH₃CN, 75 °C, 10 h). The yield and ratio of compounds (60%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (*n*-hexane/EtOAc =5/1) gave the compound (15.2 mg, 59% yield) as a yellow oil. The product is known

and the following data are identical to those given in corresponding literature.^[2] ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, *J* = 4.8 Hz, 2H), 7.36 (d, *J* = 4.8 Hz, 2H), 6.59 (t, *J* = 55.8 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -115.8 (d, *J* = 55.6 Hz, 2F).

4-(Difluoromethyl)-3-methyl-pyridine (4l)

The title compound was obtained from 3,4-lutidine following the procedure above (CH₃CN, 75 °C, 24 h). The yield and ratio of compounds (32%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using hexafluorobenzene (δ -163) as an internal standard. **4l** was volatile, therefore purification by silica-gel column chromatography was difficult.

¹⁹F NMR (376 MHz, CDCl₃, crude) δ -119.47 (d, J = 57.9 Hz, 2F); LRMS (CI) calcd for C₇H₈F₂N [M+H]⁺: 144.06, found: 144.15.

3-Bromo-4-(difluoromethyl)pyridine (4m)

The title compound was obtained from 3-bromo-4-picoline following the procedure above (CH₃CN, 75 °C, 10 h). The yield and ratio of compounds (90%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (*n*-hexane/EtOAc =10/1) gave the compound (15.1 mg, 73% yield) as a yellow

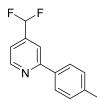
liquid. The product is known and the following data are identical to those given in corresponding literature.^[2] ¹H NMR (400 MHz, CDCl₃) δ 8.78 (s, 1H), 8.64 (d, *J* = 5.2 Hz, 1H), 7.52 (t, *J* = 5.2 Hz, 1H), 6.81 (t, *J* = 54.0 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -118.45 (d, *J* = 53.0 Hz, 2F).

3-Cyano-4-(difluoromethyl)pyridine (4n)

The title compound was obtained from 3-cyano-4-(methyl)pyridine following the procedure above (CH₃CN, 75 °C, 10 h). The yield and ratio of compounds (75%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (*n*-hexane/EtOAc =3/1) gave the compound (9.2 mg, 60% yield)

as a yellow oil. The product is known and the following data are identical to those given in corresponding literature.^[6]

¹H NMR (400 MHz, CDCl₃) δ 9.01 (s, 1H), 8.97 (d, J = 3.6 Hz, 1H), 7.67 (d, J = 4.0 Hz, 1H), 6.88 (t, J = 42.8 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -116.1 (d, J = 40.2 Hz, 2F).


3,5-Dibromo-4-(difluoromethyl)pyridine (40)

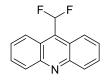
The title compound was obtained from 3,5-dibromo-4-methylpyridine following the procedure above (CH₃CN, 75 °C, 10 h). The yield and ratio of compounds (71%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (*n*-hexane/EtOAc = 15/1) gave the compound (6.4 mg, 45%)

yield) as a colorless liquid, containing 10% of impurity at around -139 ppm in ¹⁹F NMR spectra. ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 2H), 7.10 (t, *J* = 52.8 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -116.70 (d, *J* = 50.8 Hz, 2F); HRMS (ESI-TOF) calcd for C₆H₃Br₂F₂NNa [M+H]⁺: 307.8498, found: 307.8501.

4-(Difluoromethyl)-2-(p-tolyl)pyridine (4p)

The title compound was obtained from 2-(*p*-tolyl)pyridine (0.20 mmol) following the procedure above (AcOEt, 75 °C, 24 h). The yield and the ratio of compounds (40%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (*n*-hexane/EtOAc = 6/1) gave the compound (14.0 mg, 32% yield) as a colorless oil.

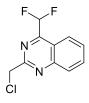
¹H NMR (400 MHz, CDCl₃) δ 8.79 (d, *J* = 4.8 Hz, 1H), 7.92 (d, *J* = 8.4 Hz, 2H), 7.81 (s, 1H), 7.26-7.32 (m, 3H), 6.69 (t, *J* = 56.0 Hz), 2.42 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -115.47 (d, *J* = 57.5 Hz, 2F); ¹³C NMR (100 MHz, CDCl₃) δ 158.58, 150.43, 143.04 (t, *J*_{C-F} = 23.0 Hz), 139.86, 135.83, 129.78, 127.01, 118.04, 116.46, 113.33 (t, *J*_{C-F} = 238.6 Hz), 21.47; HRMS (ESI-TOF) calcd for C₁₃H₁₁F₂NNa [M+Na]⁺: 242.0757, found: 242.0758.


4-(Difluoromethyl)quinoline (4s)

The title compound was obtained from 4-lepidine following the procedure above (AcOEt, 75 °C, 18 h). The yield and ratio of compounds (71%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (*n*-hexane/EtOAc = 8/1) gave the compound (5.5 mg, 58% yield) as a colorless oil.

The product is known and the following data are identical to those given in corresponding literature.^[7] ¹H NMR (400 MHz, CDCl₃) δ 9.02 (d, *J* = 4.8 Hz, 1H), 8.20 (d, *J* = 8.4 Hz, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.80 (t, *J* = 7.2 Hz, 1H), 7.66 (t, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 4.4 Hz, 1H), 7.16 (t, *J* = 54.4 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -115.0 (d, *J* = 53.4 Hz, 2F).

9-(Difluoromethyl)acridine (4t)



The title compound was obtained from 9-methylactidine following the procedure above (CH₃CN, 75 °C, 18 h). The yield and ratio of compounds (73%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (*n*-hexane/EtOAc = 10/1) gave the compound (11.7 mg, 51%)

yield) as a yellow powder.

¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 8.8 Hz, 2H), 8.31 (d, J = 8.8 Hz, 2H), 7.95 (t, J = 54.0 Hz, 1H), 7.84 (t, J = 6.8 Hz, 2H), 7.95 (t, J = 54.0 Hz, 1H), 7.84 (t, J = 6.8 Hz, 2H), 7.95 (t, J = 6.8 Hz, 2H), 7.84 (t, J = 6.8 Hz, 2H), 7.95 (t, J = 6.8 Hz, J = 7.6 Hz, 2H), 7.67 (dd, J = 8.6, 6.6 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -108.39 (d, J = 57.9 Hz, 2F); ¹³C NMR (100 MHz, CDCl₃) δ 148.91, 130.84, 130.69, 130.27, 123.48, 123.33, 112.85 (t, J_{C-F} = 237.5 Hz); HRMS (ESI-TOF) calcd for C₁₄H₁₀F₂N [M+H]⁺: 230.0781, found: 230.0768.

2-(Chloromethyl)-4-(difluoromethyl)quinazoline (4u)

The title compound was obtained from 2-(chloromethyl)-4-methylquinazoline (0.050 mmol) following the procedure above (AcOEt, 75 °C, 18 h). The yield and ratio of compounds (54%, mono-F/di-F = 37/63) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (n-hexane/EtOAc =15/1) solely gave the difluorinated compound (3.6 mg, 31% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 8.4 Hz, 1H), 8.15 (d, J = 8.4 Hz, 1H), 8.02 (t, J = 7.6 Hz, 1H), 7.77 (t, J= 7.6 Hz, 1H), 6.90 (t, J = 54.0 Hz, 1H), 4.92 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -111.7 (d, J = 53.4 Hz ,2F); ¹³C NMR (100 MHz, CDCl₃) δ 160.80, 160.21 (t, $J_{C-F} = 27.3$ Hz), 151.99, 135.08, 129.26, 129.23, 125.05 (t, $J_{C-F} = 27.3$ Hz) 3.3 Hz), 119.61, 116.44 (t, J_{C-F} = 242.9 Hz), 47.09; HRMS (ESI-TOF) calcd for C₁₀H₈ClF₂N₂ [M+H]⁺: 229.0344, found: 229.0355.

4-(3-Fluoro-3-pentyl)pyridine (5)

The title compound was obtained from 4-(3-pentyl)pyridine following the procedure above (CH₃CN, 50 °C, 2 h). The yield and ratio of compounds (92%) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (*n*-hexane/EtOAc =10/1) gave the compound (13.2 mg, 79% yield) as a yellow oil. 5 was not identified through ESI-MS (TOF, HRMS), but was identified through GC-MS (CI, LRMS).

¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 5.2 Hz, 2H), 7.15 (d, J = 4.8 Hz, 2H), 1.76-2.01 (m, 4H), 0.75 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -167.99 (m, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 151.92 (d, J_{C-F} = 19.2 Hz), 149.83, 120.06 (d, $J_{C-F} = 7.7$ Hz), 99.45 (d, $J_{C-F} = 141.1$ Hz), 32.98 (d, $J_{C-F} = 19.2$ Hz), 7.52 (d, $J_{C-F} = 3.9$ Hz); LRMS (CI) calcd for C₁₀H₁₅FN [M+H]⁺: 168.12, found: 168.10.

2-(1-Fluoro-2-phenylpropyl)pyridine (7a)

The title compound was obtained from 2-(2-phenylpropyl)pyridine following the procedure above (CH₃CN, 75 °C, 18 h). The yield and ratio of compounds (42%, mono-F/di-F = >99/<1) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (CH_2Cl_2) gave the compound (6.5 mg, 30% yield) as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 5.2 Hz, 1H), 7.72 (t, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.17-7.30 (m, 6H), 5.55 (ddd, J = 48.0, 8.0, 4.0 Hz, 1H), 2.77-2.87 (m, 2H), 2.22-2.39 (m, 2H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -186.71 (m, 1F); ¹³C-NMR (100 MHz, CDCl₃) δ 159.73 (d, J_{C-F} = 240.0 Hz), 149.08 (d, J_{C-F} = 3.0 Hz), 141.22,

136.92, 128.62, 128.56, 126.12, 122.95, 119.82 (d, $J_{C-F} = 7.0$ Hz), 94.02 (d, $J_{C-F} = 170.9$ Hz), 37.69 (d, $J_{C-F} = 22.0$ Hz), 31.25 (d, $J_{C-F} = 3.0$ Hz); HRMS (ESI-TOF) calcd for $C_{14}H_{14}FNNa$ [M+Na]⁺: 238.1008, found: 238.1035.

7-Fluoro-6,7-dihydro-5*H*-cyclopenta[*b*]pyridine (7b)

The title compound was obtained from 6,7-dihydro-5H-cyclopenta[b]pyridine (0.20 mmol) following the procedure above (CH₃CN, 50 °C, 24 h). The yield and ratio of compounds (55%, mono-F/di-F = 96/4) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (n-hexane/EtOAc =4/1) solely gave the monofluorinated compound (11.2 mg, 41% yield) as a brown oil. The product is known and the following data are identical to those given in corresponding literature.^[8]

¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 4.0 Hz, 1H), 7.65 (d, J = 6.0 Hz, 1H), 7.23-7.26 (m, 1H), 5.94 (ddd, J = 6.0 Hz, 1H), 7.23-7.26 (m, 1H), 5.94 (ddd, J = 6.0 Hz, 1H), 7.23-7.26 (m, 1H), 5.94 (ddd, J = 6.0 Hz, 1H), 7.23-7.26 (m, 1H), 5.94 (ddd, J = 6.0 Hz, 1H), 7.23-7.26 (m, 1H), 5.94 (ddd, J = 6.0 Hz, 1H), 7.23-7.26 (m, 1H), 5.94 (ddd, J = 6.0 Hz, 1H), 7.23-7.26 (m, 1H), 5.94 (ddd, J = 6.0 Hz, 1H), 7.23-7.26 (m, 1H), 5.94 (ddd, J = 6.0 Hz, 1H), 7.23-7.26 (m, 1H), 5.94 (ddd, J = 6.0 Hz, 1H), 7.23-7.26 (m, 1H), 5.94 (ddd, J = 6.0 Hz, 1H), 7.23-7.26 (m, 1H), 5.94 (ddd, J = 6.0 Hz, 1H), 7.23-7.26 (m, 1H), 5.94 (ddd, J = 6.0 Hz, 1H), 7.23-7.26 (m, 1H), 5.94 (ddd, J = 6.0 Hz, 1H), 7.23-7.26 (m, 1H), 5.94 (ddd, J = 6.0 Hz, 1H), 7.23-7.26 (m, 1H), 5.94 (ddd, J = 6.0 Hz, 1H), 7.23-7.26 (m, 1H), 5.94 (ddd, J = 6.0 Hz, 1H), 7.23-7.26 (m, 44.8, 5.2, 2.0 Hz, 1H), 3.15-3.22 (m, 1H), 2.87-2.94 (m, 1H), 2.32-2.53 (m, 2H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -167.54 (m, 1F).

8-Fluoro-5,6,7,8-tetrahydroquinoline (7c)

The title compound was obtained from 5,6,7,8-tetrahydroquinoline following the procedure above (CH₃CN, 50 °C, 24 h). The yield and ratio of compounds (85%, mono-F/di-F = 95/5) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (*n*-hexane/EtOAc =3/1) solely gave the monofluorinated compound (12.8 mg, 78% yield) as a yellow oil. The product is known and the following data are identical to those given in corresponding literature.^[9]

¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, J = 4.8 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.18-7.22 (m, 1H), 5.55 (d, J = 47.2 Hz, 1H), 2.69-2.88 (m, 2H), 2.35-2.40 (m, 1H), 1.92-2.08 (m, 2H), 1.81-1.91 (m, 1H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -163.00 (m, 1F).

2-(Fluoromethyl)pyridine (7d)

The title compound was obtained from 2-picoline following the procedure above (CH₃CN, 75 °C, 18 h). The yield and ratio of compounds (87%, mono-F/di-F = 98/2) were determined by ¹⁹F NMR analysis using benzotrifluoride (δ -63) as an internal standard. Purification by silica-gel column chromatography $(n-hexane/CH_2Cl_2 = 1/1 \text{ to } 2/3)$ gave the compound including starting material. The product is known and the following peaks are found in correspond to the literature.^[9]

¹H-NMR (400 MHz, CDCl₃) δ 8.56 (d, J = 4.4 Hz), 7.68-7.73 (m), 7.45 (d, J = 7.6 Hz), 7.20-7.24 (m), 5.47 (m), 5. 47.2 Hz); ¹⁹F-NMR (376 MHz, CDCl₃) δ -221.41 (t, J = 46.2 Hz, 1F).

6-(Difluoromethyl)nicotinonitrile (8e)

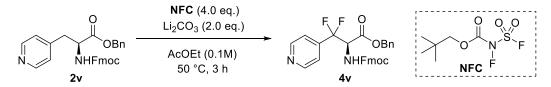
The title compound was obtained from 6-methylnicotinonitrile following the procedure above (CH₃CN, 75 °C, 24 h). The yield and ratio of compounds (89%, mono-F/di-F = 56/44) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard. Purification by silica-gel column chromatography (*n*-hexane/EtOAc =7/1) gave the difluorinated compound (5.4 mg, 35% yield) as a white powder. **8e** was not identified through ESI-MS (TOF, HRMS), but was identified through GC-MS (CI, LRMS).

¹H NMR (400 MHz, CDCl₃) δ 8.94 (s, 1H), 8.14 (m, 1H), 7.80 (m, 1H) , 6.67 (t, *J* = 55.2 Hz, 1H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -116.94 (d, *J* = 55.3 Hz, 2F); ¹³C-NMR (100 MHz, CDCl₃) δ 156.08 (t, *J*_{C-F} = 19.8 Hz), 152.27, 140.99, 120.43 (t, *J*_{C-F} = 3.1 Hz), 115.87, 112.95 (t, *J*_{C-F} = 242.0 Hz), 111.98; LRMS (CI) calcd for C₇H₅F₂N₂ [M+H]⁺: 155.04, found: 155.00

Methyl 6-(difluoromethyl)nicotinate (8f)

MeO₂C The title compound was obtained from methyl 6-(methyl)nicotinate following the procedure above (CH₃CN, 75 °C, 24 h). The yield and ratio of compounds (93%, mono-F/di-F = 57/43) were determined by ¹⁹F NMR analysis using benzotrifluoride as an internal standard.

Purification by silica-gel column chromatography (*n*-hexane/EtOAc =3/1) gave the difluorinated compound (5.7 mg, 38% yield) as a white solid. The product is known and the following data are identical to those given in corresponding literature.^[10]

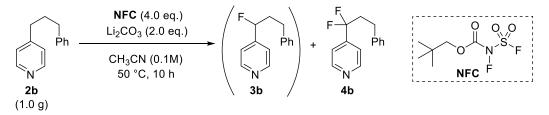

¹H NMR (400 MHz, CDCl₃) δ 9.24 (s, 1H), 8.45 (d, *J* = 7.6 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 6.68 (t, *J* = 55.2 Hz, 1H), 3.99 (s, 3H); ¹⁹F-NMR (376 MHz, CDCl₃) δ -116.52 (d, *J* = 57.9 Hz, 2F).

2-(Difluoromethyl)pyrazine (8h)

The title compound was obtained from 2-cyano-3-(methyl)pyridine following the procedure above (CH₃CN, 75 °C, 24 h). The yield and ratio of compounds (7%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR analysis using hexafluorobenzene (δ -163) as an internal standard. **8h** was not identified through ESI-MS (TOF, HRMS), but was identified through GC-MS (CI, LRMS).

¹⁹F-NMR (376 MHz, CDCl₃, crude) δ -96.47 (d, *J* = 46.2 Hz, 2F); LRMS (CI) calcd for C₅H₅F₂N₂ [M+H]⁺: 131.04, found: 131.15.

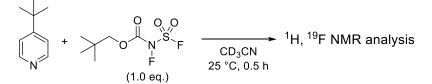
S3-2. Direct Fluorination of Amino Acid Derivative 2v



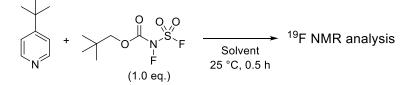
To a mixture of Li₂CO₃ (7.4 mg, 0.10 mmol, 2.0 equiv.) and **2v** (23.9 mg, 0.050 mmol) in AcOEt (0.1 M, 0.5 mL) was added **NFC** (46.2 mg, 0.40 mmol, 4.0 equiv.) at room temperature under N₂ atmosphere. After stirring for 3 h at 50 °C, the yield and selectivity were determined by ¹⁹F NMR spectroscopy analysis using benzotrifluoride as an internal standard (89%, mono-F/di-F = <1/>99). The resulting crude mixture was purified by silica-gel column chromatography to give the products **4v** (15.4 mg, 60 % yield) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 4.8 Hz, 2H), 7.77 (d, J = 7.6 Hz, 2H), 7.53 (d, J = 7.6 Hz, 2H), 7.41 (t, J = 7.4 Hz, 2H), 7.37 (t, J = 3.2 Hz, 3H), 7.31 (t, J = 7.2 Hz, 2H), 7.20-7.26 (m. 4H), 5.77 (d, J = 9.2 Hz, 1H),

5.07-5.22 (m, 3H), 4.41 (dd, J = 10.0 Hz, 7.6 Hz, 1H), 4.33 (dd, J = 10.0 Hz, 6.8 Hz, 1H), 4.10-4.18 (m, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -103.78 (d, J = 251.9 Hz, 1F), -105.65 (d, J = 251.9 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ166.11, 155.54, 150.28, 143.59, 141.44, 134.26, 129.04, 128.86, 128.80, 127.97, 127.26, 125.05, 120.19, 118.37 (t, J = 250.5 Hz), 68.50, 67.75, 59.06 (t, J = 29.0 Hz), 47.07, 21.18, 14.32; HRMS (ESI-TOF) calcd for $C_{30}H_{24}F_2N_2NaO_4$ [M+Na]⁺: 537.1602, found: 537.1609.

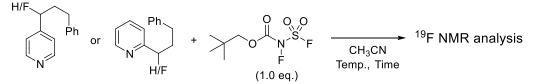

S3-3. Gram-Scale Synthesis

To a mixture of Li₂CO₃ (750 mg, 10.14 mmol, 2.0 equiv.) and **2b** (1.0 g, 5.07 mmol) in CH₃CN (0.1 M, 50 mL) was added **NFC** (4.69 g, 20.28 mmol, 4.0 equiv.) at room temperature under N₂ atmosphere. After stirring for 10 h at 50 °C, the yield and selectivity (88%, mono-F/di-F = <1/>99) were determined by ¹⁹F NMR spectroscopy analysis using benzotrifluoride as an internal standard. The resulting crude mixture was purified by silica-gel column chromatography to give the product **4b** (70%).

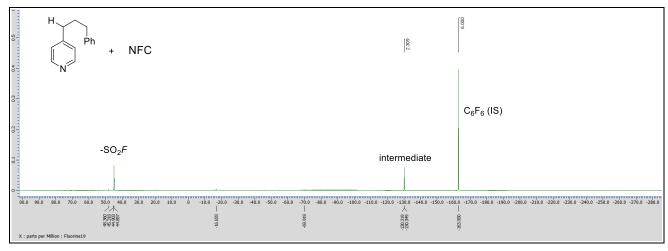

S4. Mechanistic Studies

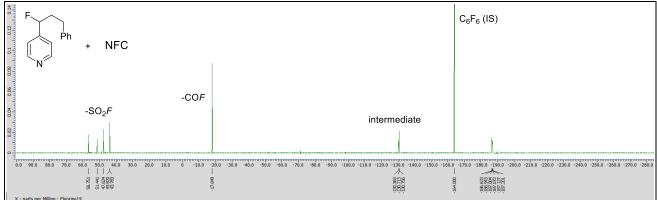
S4-1. Observation of Intermediates from Pyridine Derivative and NFC (Scheme 2a)

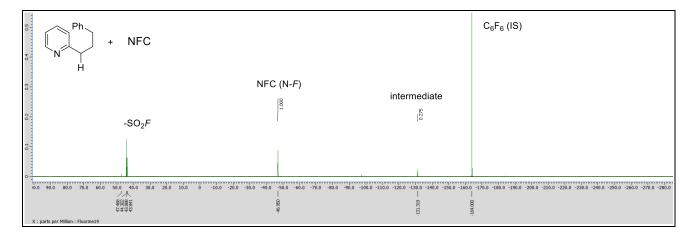
To a mixture of 4-(*tert*-butyl)pyridine (13.5 mg, 0.10 mmol) in CD₃CN (0.1 M, 1.0 mL) was added to NFC (23.1 mg, 0.10 mmol, 1.0 equiv.) at 25 °C under N₂ atmosphere and stirred for 30 min. The resulting crude mixture was analyzed by ¹⁹F NMR. The complete conversion from N-*F* of NFC (-47 ppm) to intermediate (-132 ppm) was observed, while RSO₂-*F* was almost not changed. Under the same conditions, NFSI instead of NFC gave no chemical shift.

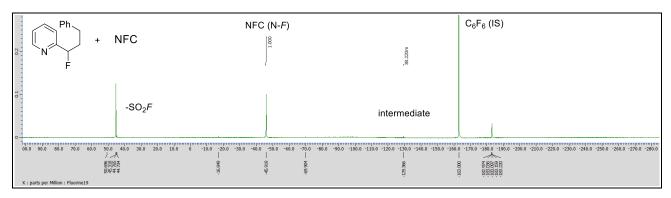

S4-2. Observation of intermediates from pyridine derivative and NFC in various solvents

To a mixture of 4-(*tert*-butyl)pyridine (13.5 mg, 0.10 mmol) in solvent (0.1 M, 1.0 mL) was added to NFC (23.1 mg, 0.10 mmol, 1.0 equiv.) at 25 °C under N₂ atmosphere and stirred for 30 min. The resulting crude mixture was analyzed by ¹⁹F NMR.

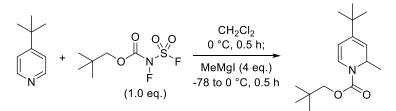

Entry	Solvent	Comments
1	CH ₃ CN	Intermediate was stable for >24 h (25 $^{\circ}$ C)
2	CHCl ₃	Intermediate decomposed within 6 h (25 $^{\circ}$ C)
3	THF	Intermediate decomposed within 2 h (25 °C)

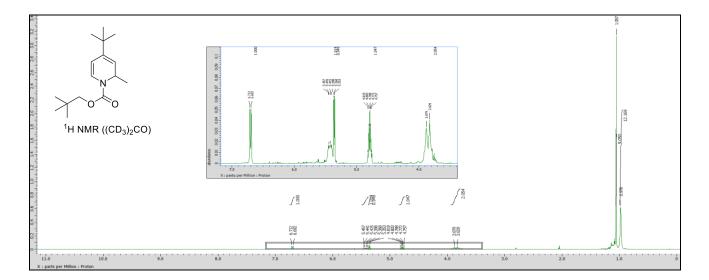

S4-3. Comparison in formation of intermediates from other pyridine derivatives

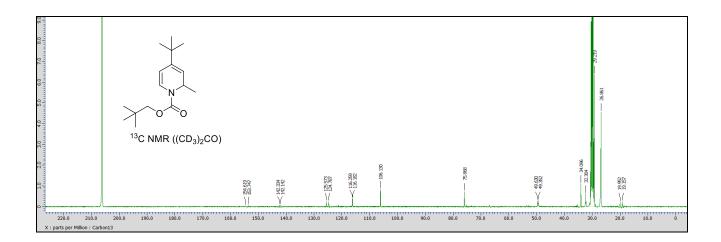


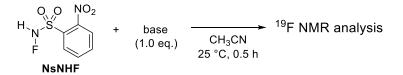

To a mixture of pyridines (0.050 mmol) in CH₃CN (0.1 M, 0.5 mL) was added NFC (0.050 mmol, 1.0 equiv.) at shown temperature under N_2 atmosphere and stirred for shown time. The resulting crude mixture was analyzed by ¹⁹F NMR.

Entry	Pyridine derivatives	Temp. [°C]	Time [h]	Ratio of NFC / intermediate in ¹⁹ F NMR
1	Ph	25	0.5	1 / >99
2	F Ph N	25	0.5	1 / >99
3	Ph	50	6	79 / 21
4	Ph N F	50	18	97 / 3

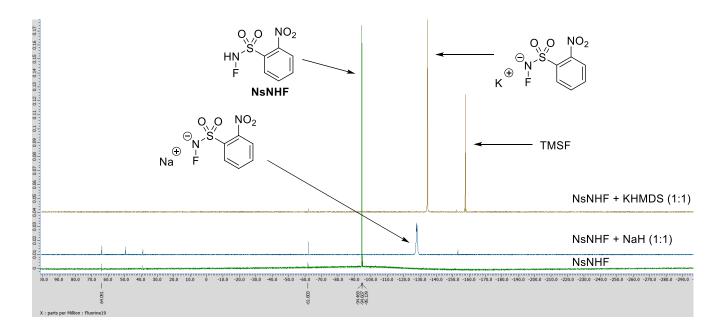




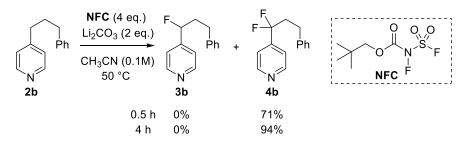

S4-4. Characterization as N-acylated dihydropyridine species (Scheme 2b)^[11]


To a mixture of 4-(*tert*-buyl)pyridine (13.5 mg, 0.10 mmol) in CH_2Cl_2 (0.1 M, 1.0 mL) was added NFC (23.1 mg, 0.10 mmol, 1.0 equiv.) at 0 °C under N₂ atmosphere and stirred for 30 min. MeMgI (0.2 mL, 0.4 mmol, 4.0 equiv., 2M in diethyl ether) was added at -78 °C, stirred for 30 min in ice bath, subsequently analyzed by ¹⁹F NMR using hexafluoro-*p*-xylene as internal standard (43% NMR yield). Resulting crude mixture was quenched by H₂O, extracted with CH₂Cl₂, combined organic layer was dried with Na₂SO₄, then evaporated under reduced pressure. Resulting crude mixture was purified by silica-gel column chromatography to give the product (31% yield).

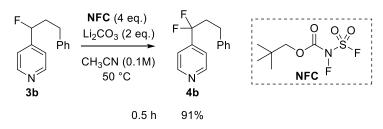
¹H NMR (400 MHz, (CD₃)₂CO) δ 6.70 (d, *J* = 8.0 Hz, 1H), 5.40-5.46 (m, 1H), 5.36 (d, *J* = 6.0 Hz, 1H), 4.79 (quin, *J* = 6.4 Hz, 1H), 3.83 and 3.88 (brs, 2H, 2 rotamers), 1.06 (s, 9H), 0.98 (brs, 12H); ¹³C-NMR (100 MHz, (CD₃)₂CO) δ 154.62 and 153.75 (2 rotamers), 142.33 and 142.14 (2 rotamers), 125.57 and 124.79 (2 rotamers), 116.26 and 116.18 (2 rotamers), 106.13, 75.87, 49.63 and 49.35 (2 rotamers), 34.10, 32.30, 29.22, 26.86, 19.95 and 19.16 (2 rotamers); HRMS (ESI-TOF) calcd for C₁₆H₂₇NNaO₂ [M+Na]⁺: 288.1940, found: 288.1951.



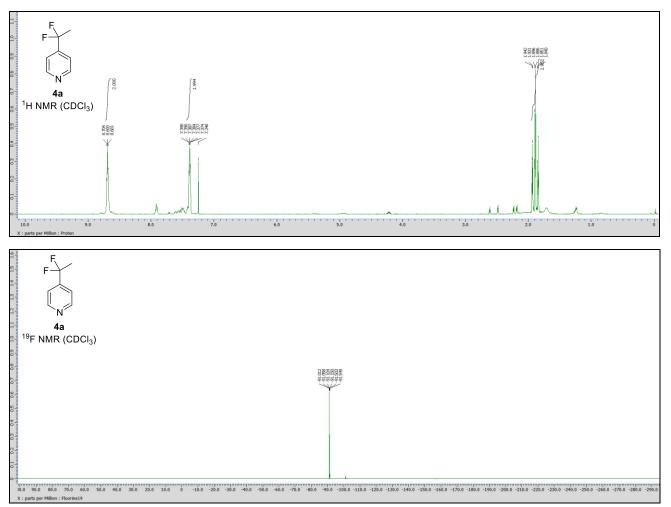
S4-5. Observation of N-Fluoro-sulfonamide anion species

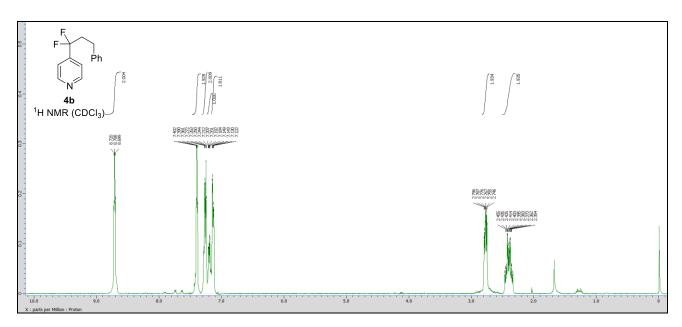


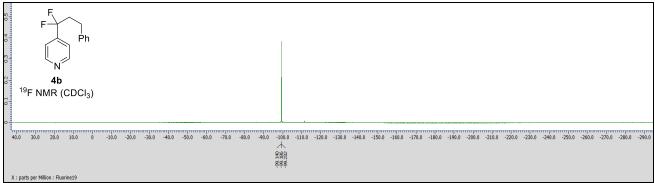
To a mixture of NsNHF (22.0 mg, 0.10 mmol)^[12] in CH₃CN (0.1 M, 1.0 mL) was added base (0.10 mmol) at -78 °C under N₂ atmosphere and stirred for 30 min at 25 °C. The resulting crude mixture was analyzed by ¹⁹F NMR.

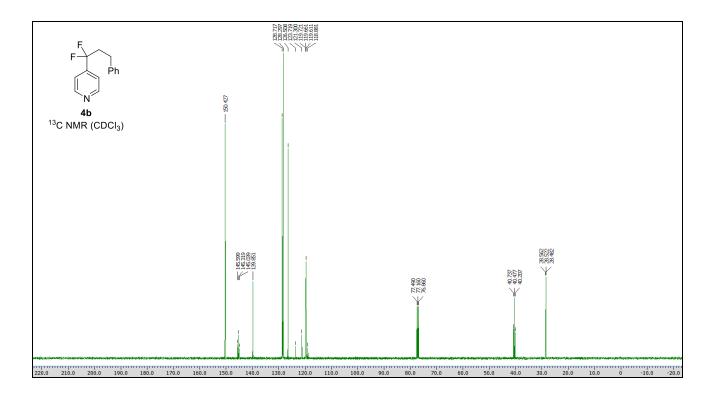

Entry	Base	Comment
1	NaH (oil dispersion)	Chemical shift change (-93 \rightarrow -134 ppm)
2	KHMDS (in 0.5 M toluene)	Chemical shift change (-93 \rightarrow -127 ppm)

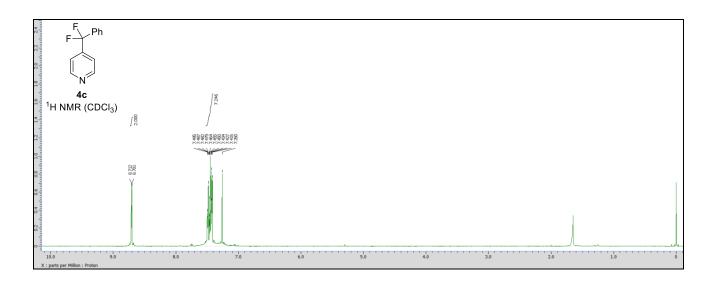
S4-6. Reaction ratio from non-/monofluorinated pyridine derivatives (Scheme 3)

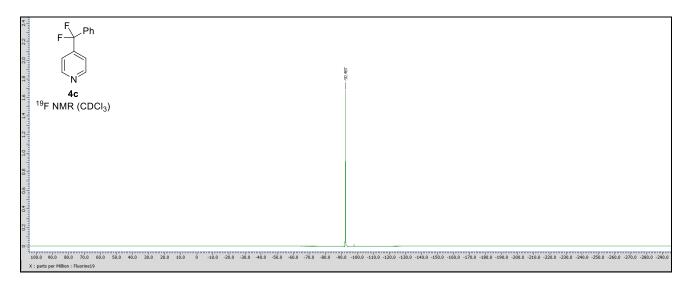


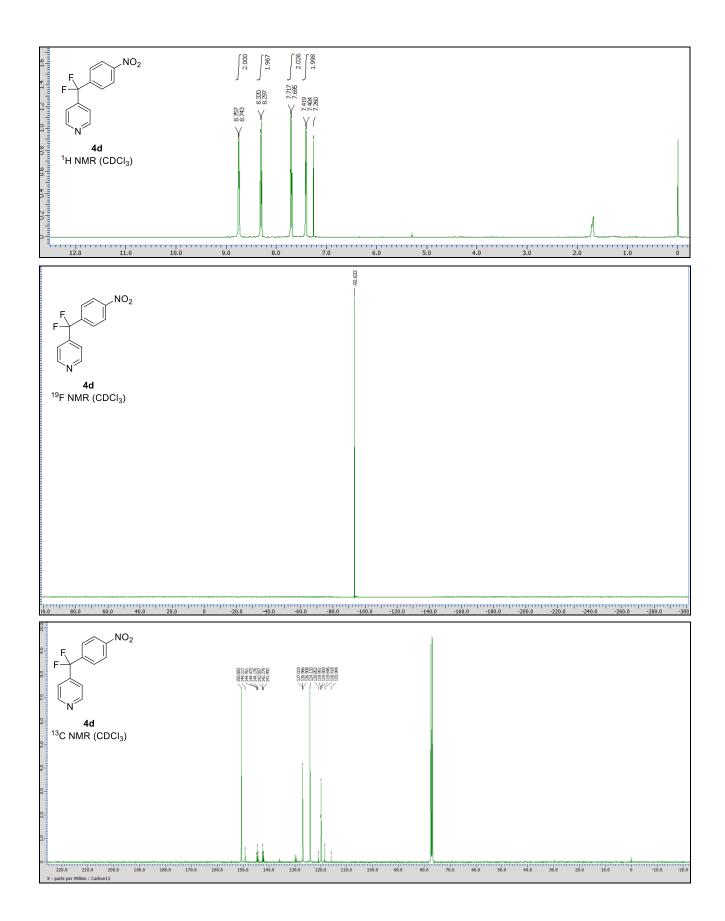

To a mixture of Li_2CO_3 (14.8 mg, 0.20 mmol, 2.0 equiv.) and **2b** (19.7 mg, 0.10 mmol) in CH₃CN (0.1 M, 1.0 mL) was added **NFC** (0.40 mmol) at room temperature under N₂ atmosphere. After stirring for shown time at 50 °C, the yield and selectivity were monitored by ¹⁹F NMR spectroscopy analysis using benzotrifluoride as an internal standard.

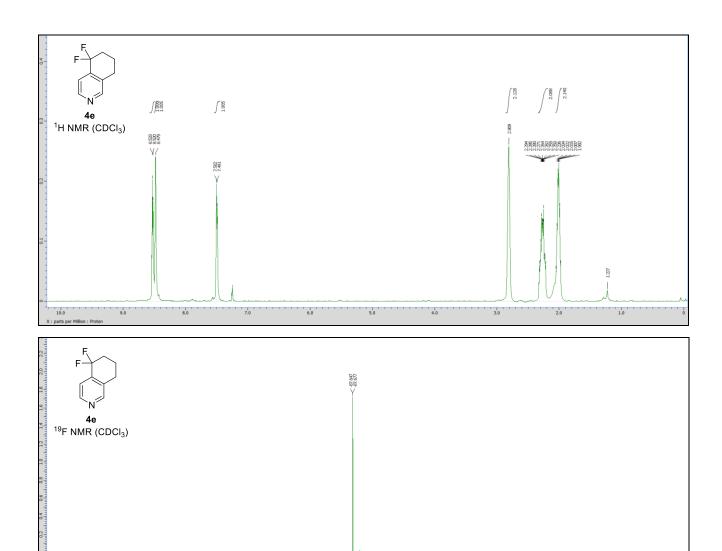


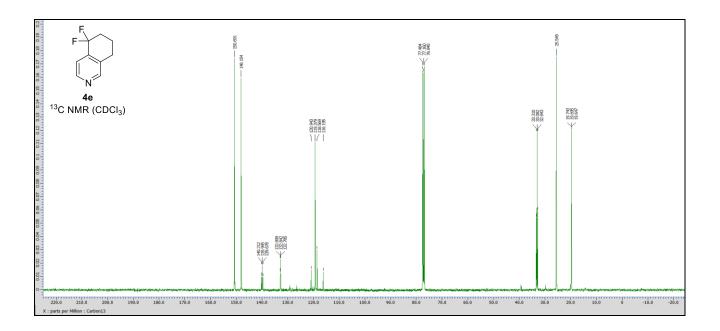

To a mixture of Li_2CO_3 (7.4 mg, 0.10 mmol, 1.0 equiv.) and **3b** (21.5 mg, 0.10 mmol) in CH₃CN (0.1 M, 1.0 mL) was added **NFC** (0.20 mmol) at room temperature under N₂ atmosphere. After stirring for 0.5 h at 50 °C, the yield and selectivity were monitored by ¹⁹F NMR spectroscopy analysis using benzotrifluoride as an internal standard.

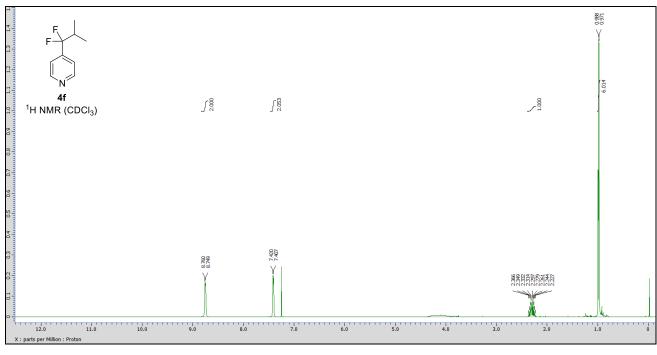

S5. NMR Spectra

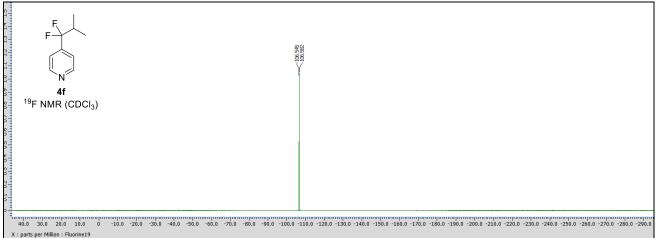


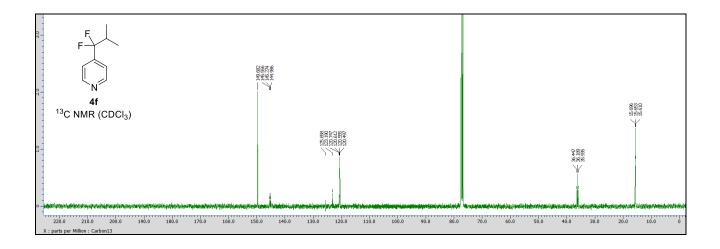


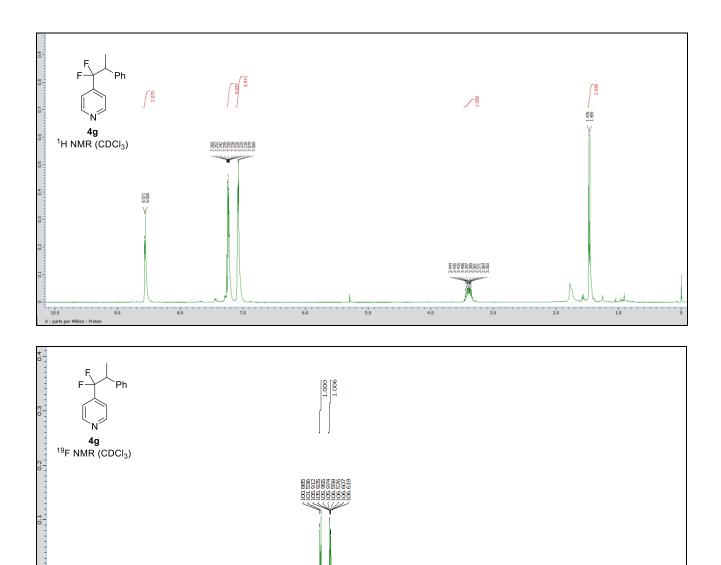




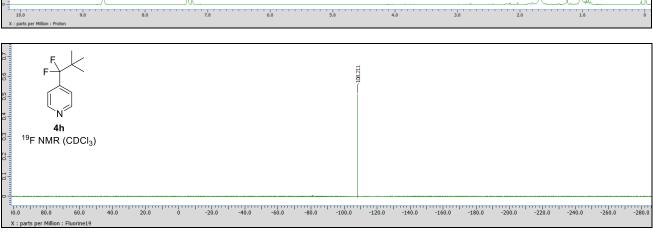


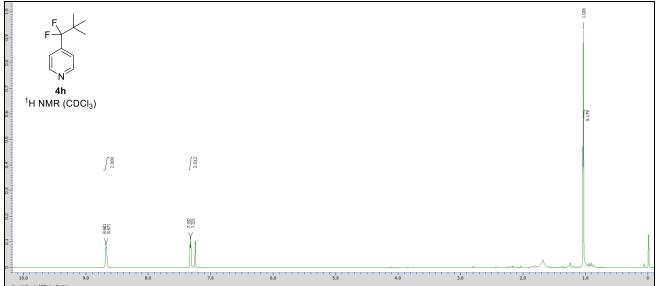


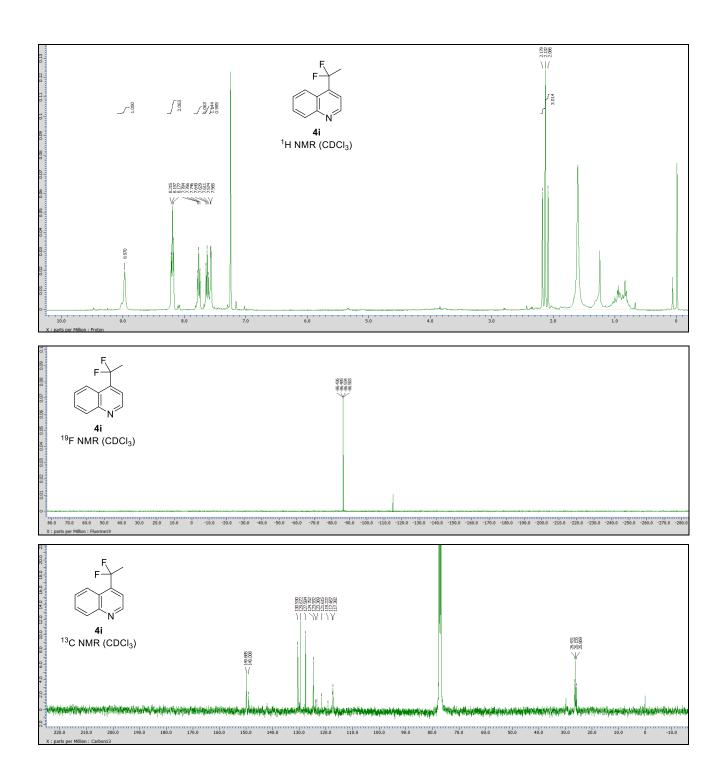


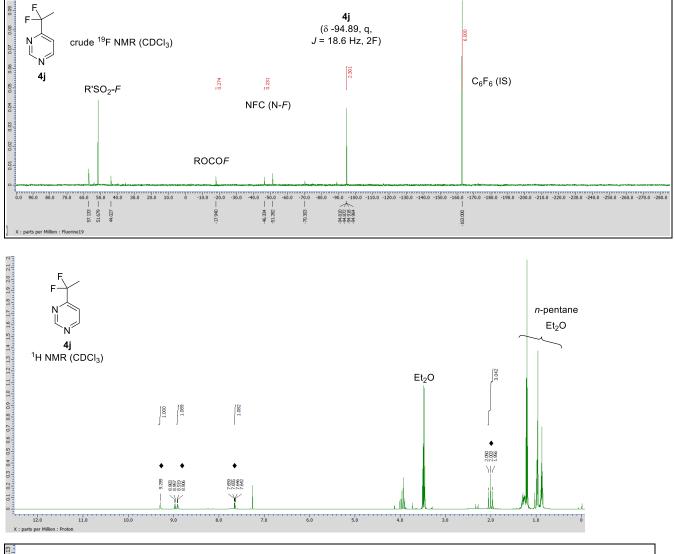


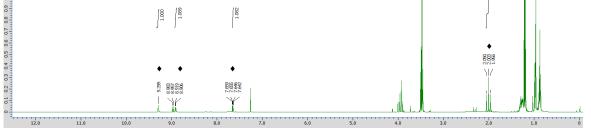
X : parts per Million : Fluo

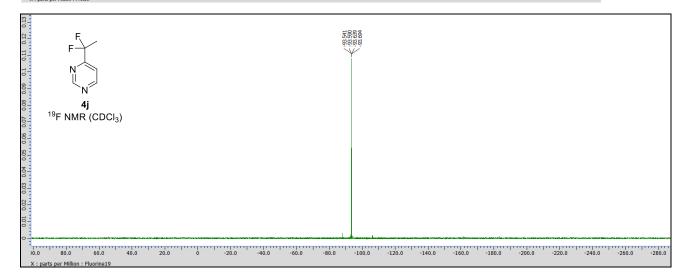


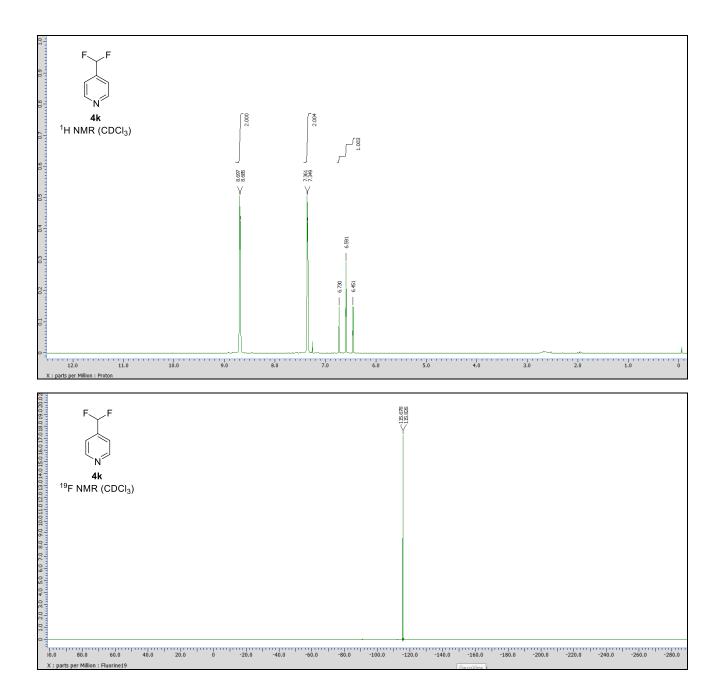


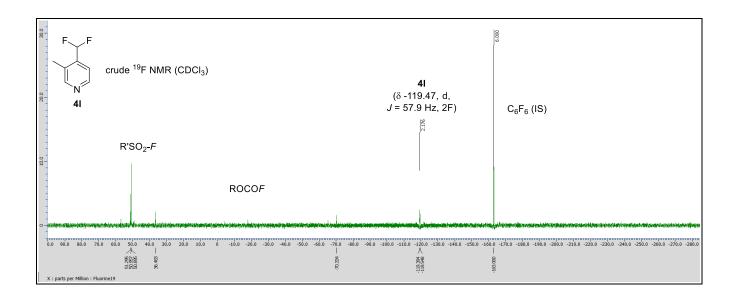


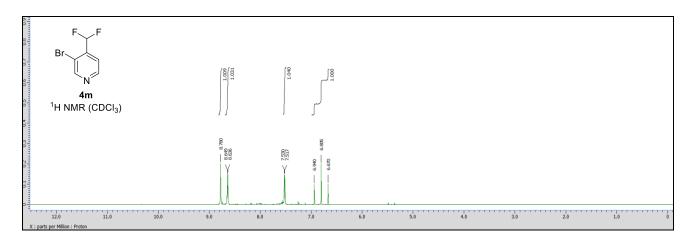


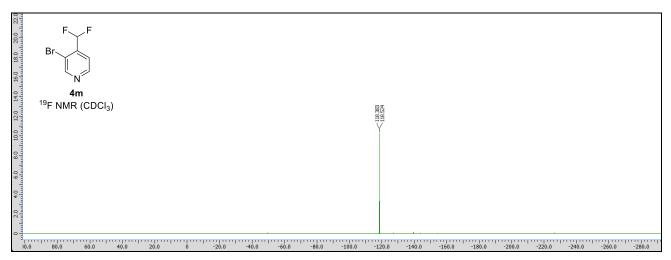

4. A manufacture proceeding of the second second

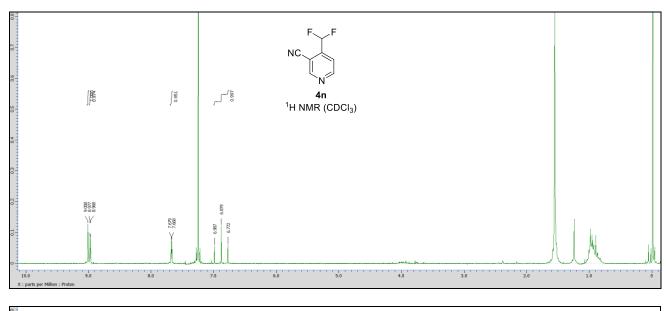


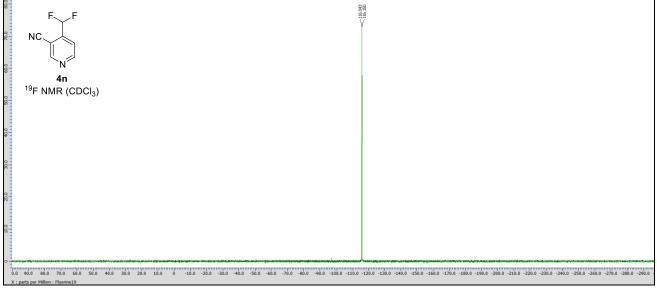


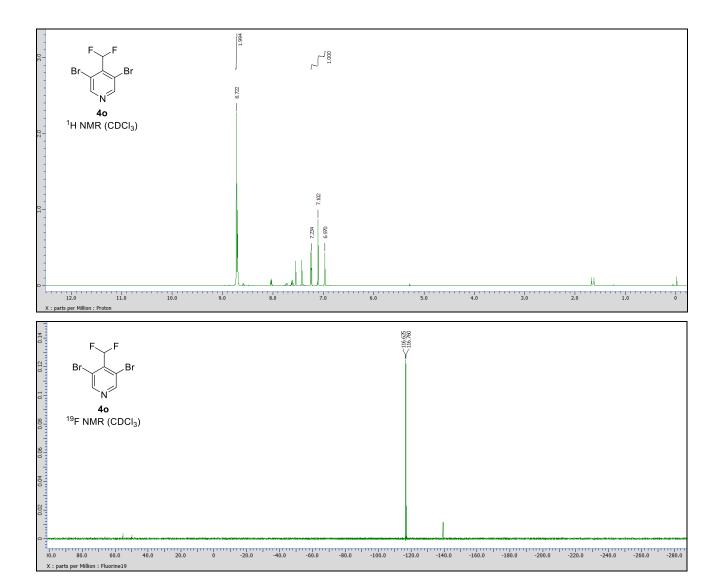


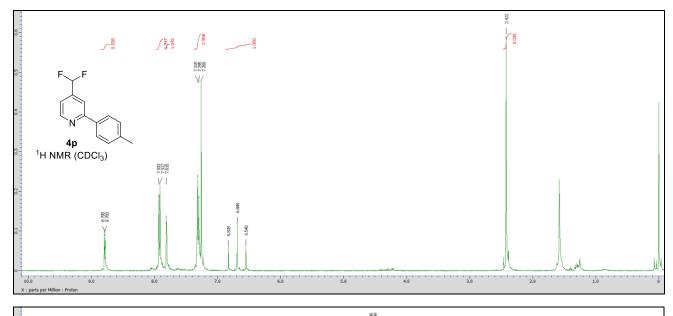


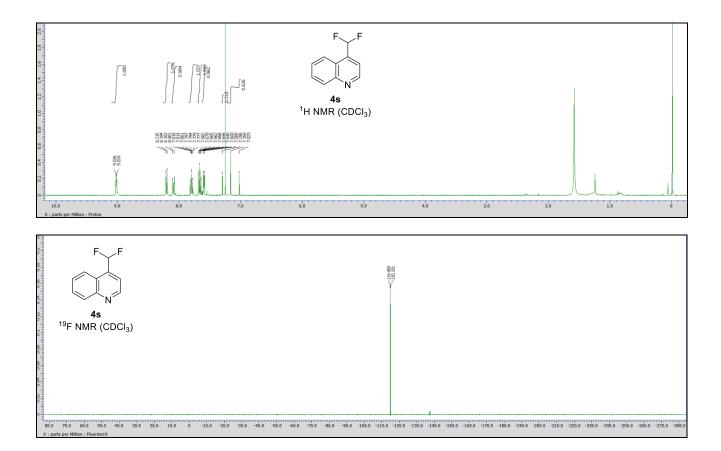


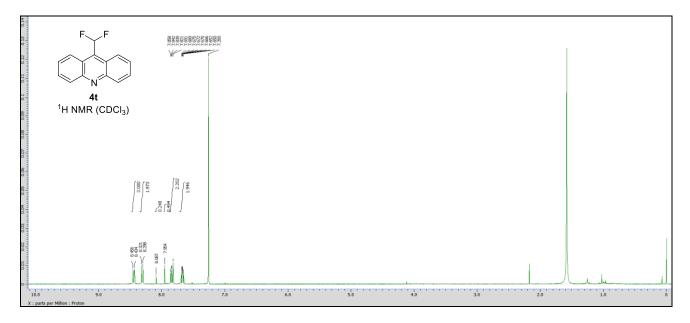


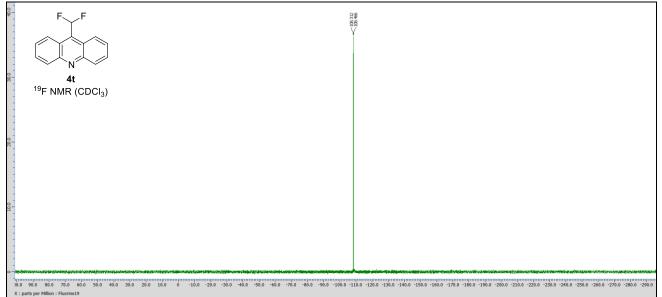


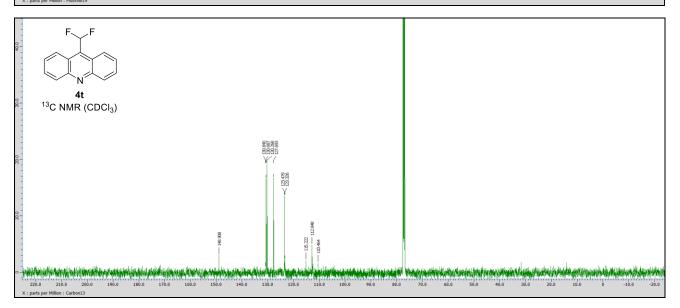


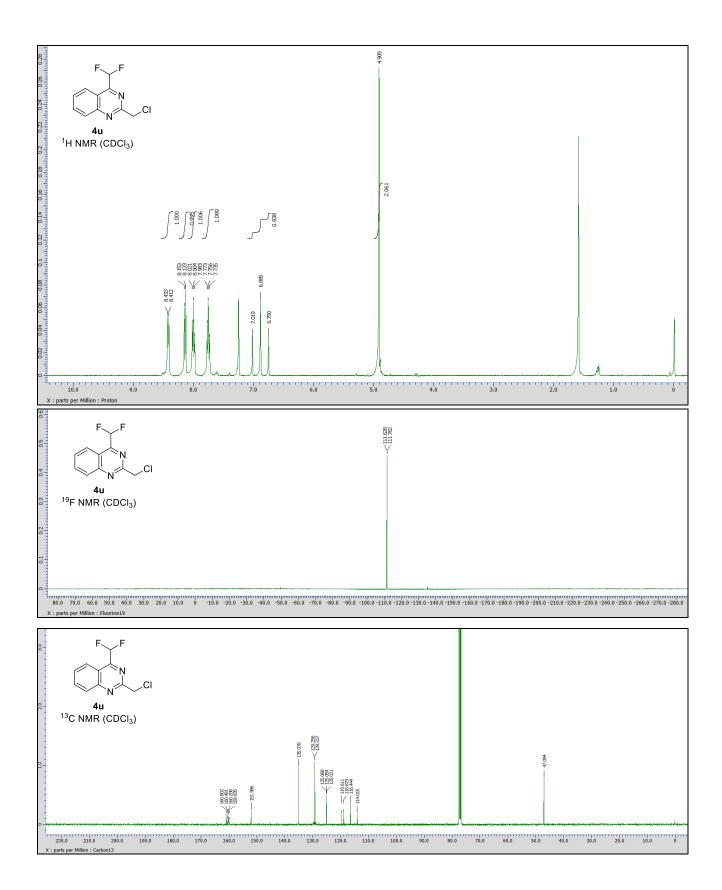


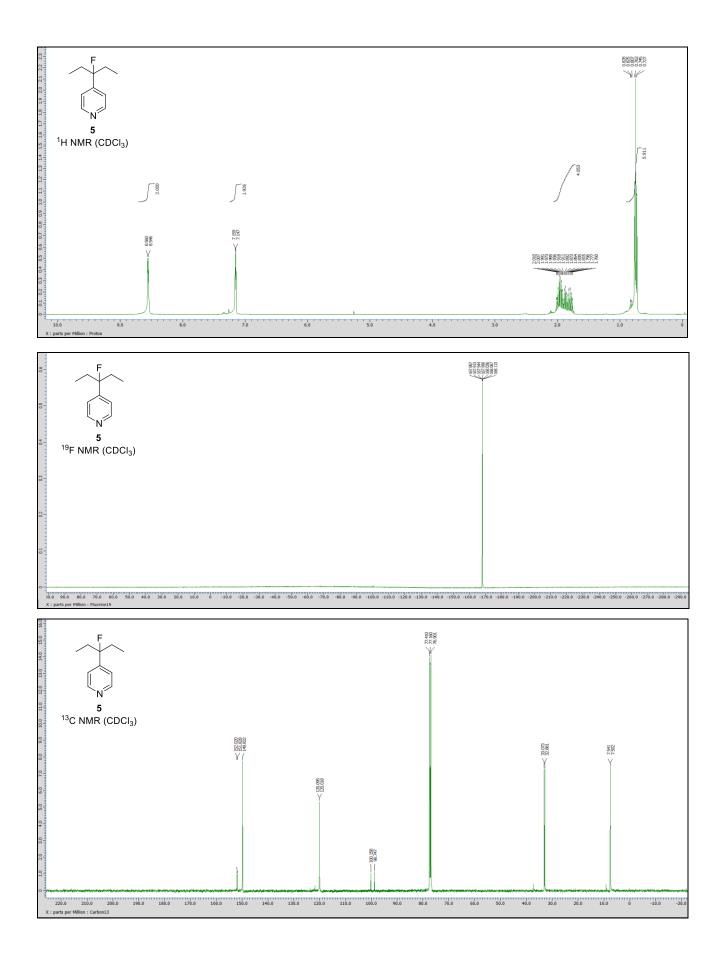


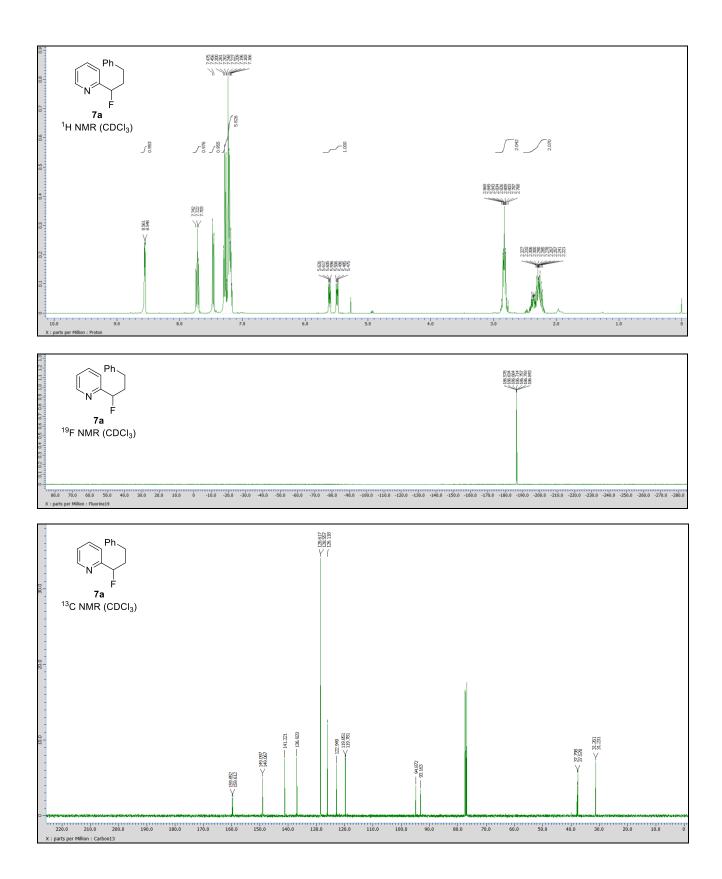


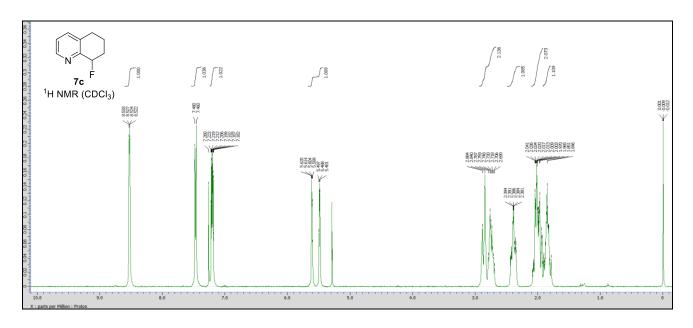


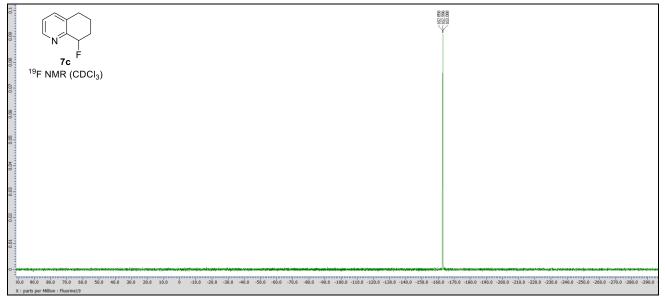




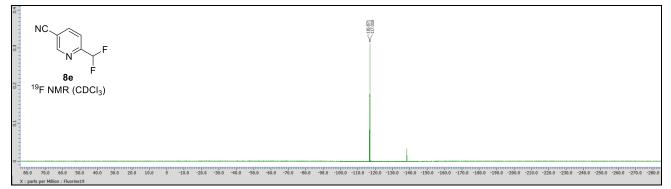


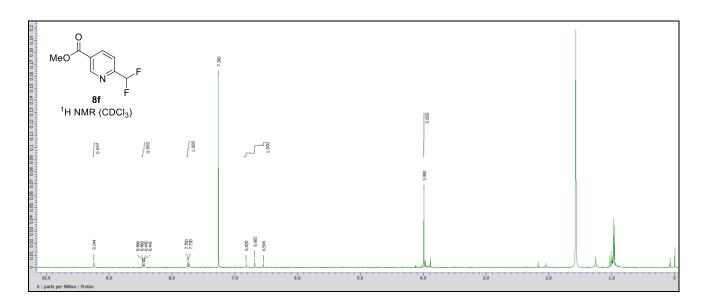


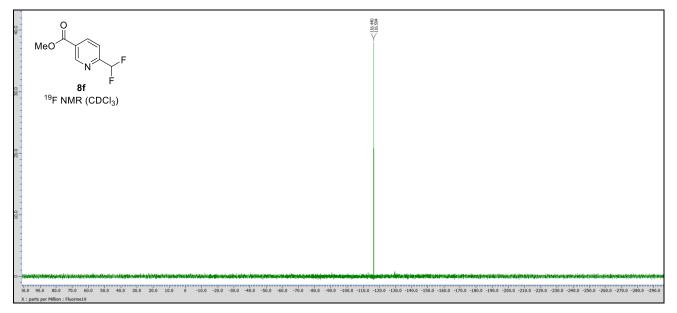


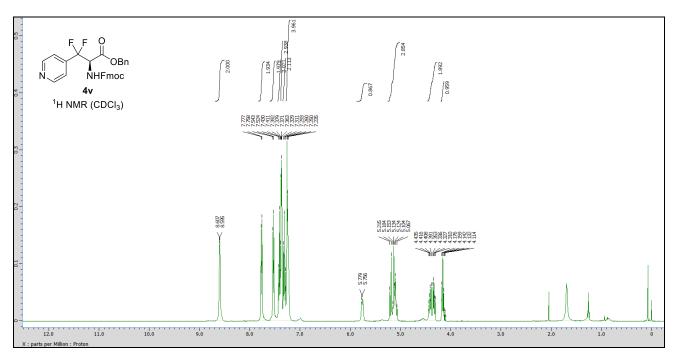


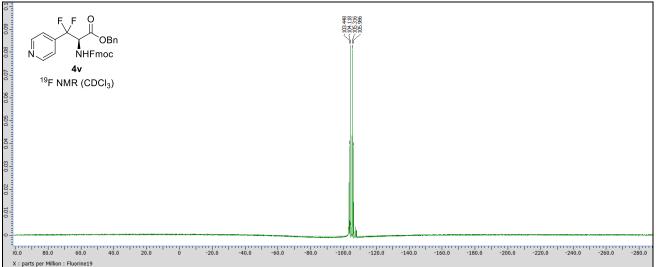


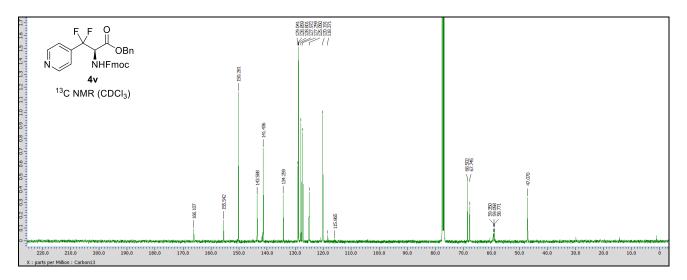












R'SO ₂ -F	NFC	, ,	8i (δ -96.47, d, J = 46.2 Hz, 2F)	₈ C ₆ F ₆ (IS)
50.0 40.0 30.0 20.0 10.0 0 Å \$ 6 8 8 15 4 6	X		X	8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9
	R'SO ₂ -F	R'SO ₂ -F	NFC (N-F) R'SO ₂ -F ROCOF	NFC (N- <i>F</i>) R'SO ₂ - <i>F</i> $ \begin{array}{c c} & & & & & & & & & \\ \hline ROCOF & & & & & & & \\ & & & & & & & & \\ & & & & $

S6. References

- Y. Oe, R. Yoshida, A. Tanaka, A. Adachi, Y. Ishibashi, T. Okazoe, K. Aikawa, T. Hashimoto, J. Am. Chem. Soc. 2022, 144, 2107–2113.
- [2] A. Haas, M. Spitzer, M. Lieb, *Chemische Berichte* **1998**, *121*, 1329–1340.
- M. Meanwell, B. S. Adluri, Z. Yuan, J. Newton, P. Prevost, M. B. Nodwell, C. M. Friesen, P. Schaffer, R. E. Martin, R. Britton, *Chem. Sci.* 2018, 9, 5608–5613.
- [4] J. B. Geri, M. M. Wade Wolfe, N. K. Szymczak, J. Am. Chem. Soc. 2018, 140, 9404–9408.
- [5] C. Ye, J. M. Shreeve, J. Fluorine Chem. 2004, 125, 1869–1872.
- [6] WO202287129, 2022, A1.
- [7] M. Nagase, Y. Kuninobu, M. Kanai, J. Am. Chem. Soc. 2016, 138, 6103–6106.
- [8] M. Meanwell, M. B.Nodwell, R. E. Martin, R. Britton, Angew. Chem. Int. Ed. 2016, 128, 13438–13442.
- C. Le Guen, A. Mazzah, M. Penhoat, P. Melnyk, C. Rolando, L. Chausset-Boissarie, Synthesis 2021, 53, 1157–1162.
- [10] Y. Fujiwara, J. A. Dixon, R. A. Rodriguez, R. D. Baxter, D. D. Dixon, M. R. Collins, D. G. Blackmond, P. S. Baran, J. Am. Chem. Soc. 2012, 134, 1494–1497.
- [11] R. Yamaguchi, Y. Nakazono, M. Kawanisi, *Tetrahedron Lett.* 1983, 24, 1801–1804.
- [12] Y. Ito, A. Adachi, K. Aikawa, K. Nozaki, T. Okazoe, *Chem. Commun.* 2023, 59, 9195–9198.