Supporting Information

Supporting Information

Palladium catalyzed tandem cyclization of acryloylbenzamides and

N-arylacrylamides with epoxides: Access to functionalized

isoquinolinediones and oxindoles

Xiao-Yu Lu,* Fu-Yi Shui, Xiang Zhang, Rui Huang, Zi-Zhen Wang, Yi-Wei Song, Fan Jiang, Gui-Xian Yang and Yan-Xi Sun

E-mail: xiaoyulu@mail.ustc.edu.cn

School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.

Table of Contents

I. General Information	S2
a. Materials	S2
b. Analytical Methods	S2
II. General Experimental Procedures	S3
a. Optimization of the reaction conditions	S3
b. Experimental Procedures for Examples Described (General Procedure)	S4
III. Proposed Reaction Mechanism	S5
IV. Substrate Scope, Spectral Data and NMR Spectra	.S6

I. General Information

a. Materials

All the reactions were carried out in oven-dried schlenk tubes under argon atmosphere (purity $\geq 99.999\%$). Pd(PPh₃)₄ (CAS: 14221-01-3), PdCl₂(PPh₃)₂ (CAS: 13965-03-2), dppf (CAS: 548-26-5), xantphos (CAS: 161265-03-8), dpephos (CAS: 166330-10-5), BINAP (CAS: 98327-87-8), dppbz (CAS: 13991-08-7), dppm (CAS: 2071-20-7), dppe (CAS: 1663-45-2), dppp (CAS: 6737-42-4), dppb (CAS: 7688-25-7), 1,5-bis(diphenylphosphino)pentane (CAS: 27721-02-4), 1,1-bis(diisopropylphosphino)ferrocene (CAS: 97239-80-0), 1,1-Bis(di-tert-butylphosphino)ferrocene (CAS: 84680-95-5) and isobutylene oxide (CAS: 558-30-5) were purchased from Adamas. The following chemicals were purchased and used as received: PhCF₃ (Adamas), THF (Adamas) and 1,4-dioxane (Adamas) were stored over 4 Å molecular sieves under an argon atmosphere in a septum-capped bottle. All the other reagents and solvents mentioned in this text were purchased from commercial sources and used without purification.

b. Analytical Methods

¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded on a Bruker Avance 400 spectrometer at ambient temperature in Chloroform-*d* unless otherwise noted; Data for ¹H-NMR are reported as follows: chemical shift (δ ppm), multiplicity, integration, and coupling constant (Hz). Data for ¹³C NMR are reported in terms of chemical shift (δ ppm), multiplicity, and coupling constant (Hz). Gas chromatographic (GC) analysis was acquired on a Shimadzu GC-2014 Series GC System equipped with a flame-ionization detector. GC-MS analysis was performed on Thermo Scientific AS 3000 Series GC-MS System. HRMS analysis was performed on Finnigan LCQ advantage Max Series MS System. HPLC analysis was performed on Waters-Breeze (2487 Dual Absorbance Detector and 1525 Binary HPLC Pump). Chiralpak IC, AD, AS, KM columns were purchased from Daicel Chemical Industries, LTD. Organic solutions were concentrated under reduced pressure on a Buchi rotary evaporator. Flash column chromatographic purification of products was accomplished using forced-flow chromatography on Silica Gel (200-300 mesh). The mass analyzer type of the HRMS measurements was "LTQ Orbitrap".

II. General Experimental Procedures

a. Optimization of the reaction conditions

Table S1

		≗ -	[Pd], 8 mol% Ligand, 10 mol% Base, 3 equiv. Nal, 50 mol% Solvent, 1 mL 100 °C	OH ON O	
	1a , 0.2 mmol	2a , 0.6 mmol	Ar, 20 h	3a	
Entry	Catalyst	Ligand	Base	Solvent	Yield% ^c
1^a	PdCl ₂ (PPh ₃) ₄	dppf	Cy ₂ NMe	PhCF ₃	12
2^a	Pd(PPh ₃) ₄	dppf	Cy ₂ NMe	PhCF ₃	76
3 ^{<i>a</i>}	Pd(PPh ₃) ₄	dppf	Cy ₂ NMe	dioxane	40
4 ^{<i>a</i>}	Pd(PPh ₃) ₄	dppf	Cy ₂ NMe	THF	35
5 ^{<i>a</i>}	Pd(PPh ₃) ₄	dppf	Cy ₂ NMe	DMAc	Trace
6 ^{<i>a</i>}	Pd(PPh ₃) ₄	dppf	Cy ₂ NMe	toluene	31
7^a	Pd(PPh ₃) ₄	dppf	Cy ₂ NMe	DMSO	Trace
8 ^{<i>a</i>}	Pd(PPh ₃) ₄	dppf	Cy ₂ NMe	CH ₃ CN	< 5
9 ^{<i>a</i>}	Pd(PPh ₃) ₄	dppf	Cy ₂ NMe	DCE	Trace
10^{a}	Pd(PPh ₃) ₄	BINAP	Cy ₂ NMe	PhCF ₃	33
11^{a}	Pd(PPh ₃) ₄	dppm	Cy ₂ NMe	PhCF ₃	Trace
12^{a}	Pd(PPh ₃) ₄	dppe	Cy ₂ NMe	PhCF ₃	Trace
13 ^{<i>a</i>}	Pd(PPh ₃) ₄	dppp	Cy ₂ NMe	PhCF ₃	25
14 ^{<i>a</i>}	Pd(PPh ₃) ₄	dppb	Cy2NMe	PhCF ₃	93
15 ^{<i>a</i>}	Pd(PPh ₃) ₄	L1	Cy ₂ NMe	PhCF ₃	50
16 ^{<i>a</i>}	Pd(PPh ₃) ₄	DPEphos	Cy ₂ NMe	PhCF ₃	75
17^{a}	Pd(PPh ₃) ₄	dippf	Cy ₂ NMe	PhCF ₃	65
18^{a}	Pd(PPh ₃) ₄	xantphos	Cy ₂ NMe	PhCF ₃	78
19 ^{<i>a</i>}	Pd(PPh ₃) ₄	L2	Cy ₂ NMe	PhCF ₃	71
20^a	Pd(PPh ₃) ₄	dppb	Et ₃ N	PhCF ₃	Trace
21 ^{<i>a</i>}	Pd(PPh ₃) ₄	dppb	K_2CO_3	PhCF ₃	Trace
22^a	Pd(PPh ₃) ₄	dppb	Cs_2CO_3	PhCF ₃	Trace
23 ^b	w/o	dppb	Cy ₂ NMe	PhCF ₃	Trace

Reaction conditions: ^{*a*}1**a** (0.2 mmol), **2a** (3.0 equiv.), base (3.0 equiv.), catalyst (8 mol%), ligand (10 mol%) and NaI (50 mol %) in 1 mL solvent at 100 °C for 20 h under Ar. ^{*b*}No catalyst. ^{*c*}isolated yield. L1 = 1,5-Bis(Diphenylphosphino)Pentane, dippf = 1,1-bis(diisopropylphosphino)ferrocene, L2 = 1,1-Bis(di-*tert*-butylphosphino)ferrocene.

b. Experimental Procedures for Examples Described (General Procedure)

In air, acryloylbenzamide or *N*-arylacrylamide (0.2 mmol, 1.0 equiv.), Pd(PPh₃)₄ (18 mg, 8 mol%), dppb (9 mg, 10 mol%), and NaI (15 mg, 50 mol%) were added to a schlenk tube equipped with a stir bar. The vessel was evacuated and filled with argon (three cycles). PhCF₃ (1.0 mL, 0.5 M), epoxide (3.0 equiv.), and Cy₂NMe (128 μ L, 3.0 equiv.) were added in turn by syringe. The resulting reaction mixture was stirred at 100 °C for 20 h. (If acryloylbenzamide or *N*-arylacrylamide was a liquid, add it through the syringe after adding the solvent). The residue was purified by silica gel (200-300 mesh) columun chromatography using petroleum ether (PE) and ethyl acetate (EtOAc).

III. Proposed Reaction Mechanism

IV. Substrate Scope, Spectral Data and NMR Spectra

4-(3-hydroxy-3-methylbutyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione

Following the general procedure (**3a**, pale-yellow liquid, 51 mg, 93%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.68 – 7.55 (m, 1H), 7.48 – 7.37 (m, 2H), 3.36 (s, 3H), 2.38 (td, *J* = 13.0, 4.4 Hz, 1H), 1.99 (td, *J* = 13.1, 4.1 Hz, 1H), 1.61 (s, 3H), 1.08 (d, *J* = 6.5 Hz, 6H), 1.03 (dd, *J* = 13.0, 4.5 Hz, 1H), 0.85 (td, *J* = 13.0, 4.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.77, 164.54, 143.52, 134.26, 128.93, 127.44, 125.22, 124.97, 70.34, 47.56, 38.80, 37.28, 30.06, 29.41, 28.93, 27.24.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{16}H_{21}NNaO_3$: 298.1414; found: 298.1418.

 $\begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$

4-(3-hydroxy-3-methylbutyl)-2,4-dimethyl-6-(trifluoromethoxy)isoquinoline-1,3(2H, 4H)-dione

Following the general procedure (**3b**, pale-yellow liquid, 58 mg, 81%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.32 (d, *J* = 8.7 Hz, 1H), 7.36 – 7.24 (m, 2H), 3.38 (s, 3H), 2.44 (td, *J* = 13.1, 4.5 Hz, 1H), 1.96 (td, *J* = 13.1, 3.9 Hz, 1H), 1.64 (s, 3H), 1.40 (s, 1H), 1.16 – 1.04 (m, 7H), 0.87 (td, *J* = 13.0, 3.9 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.05, 163.38, 153.63, 146.06, 131.45, 123.39, 120.33 (q, *J* = 259.6 Hz), 119.62, 117.08, 70.27, 47.83, 38.77, 37.33, 29.97, 29.25, 29.00, 27.35. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -57.59. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₂₀F₃NNaO₄: 382.1237; found: 382.1235.

4-(3-hydroxy-3-methylbutyl)-2,4-dimethyl-6-(trifluoromethyl)isoquinoline-1,3(2H,4 H)-dione

Following the general procedure (**3c**, pale-yellow liquid, 43 mg, 63%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.38 (dt, *J* = 8.1, 0.9 Hz, 1H), 7.75 – 7.65 (m, 2H), 3.40 (s, 3H), 2.44 (td, *J* = 13.1, 4.5 Hz, 1H), 2.01 (td, *J* = 13.1, 4.0 Hz, 1H), 1.66 (s, 3H), 1.18 (s, 1H), 1.13 – 1.05 (m, 7H), 0.83 (td, *J* = 13.0, 4.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.90, 163.44, 144.37, 135.77 (q, *J* = 33.0 Hz), 129.89, 127.93, 124.32 (q, *J* = 3.5 Hz), 123.50 (q, *J* = 273.0 Hz), 122.49 (q, *J* = 3.7 Hz), 70.34, 47.82, 38.79, 37.39, 29.88, 29.38, 28.99, 27.51. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.13.

 $\label{eq:HRMS} \text{(ESI)} \ \text{m/z:} \ [\text{M} + \text{Na}]^+ \ \ \text{Calcd for} \ \text{C}_{17}\text{H}_{20}\text{F}_3\text{NNaO}_3\text{:} \ 366.1287\text{; found:} \ 366.1296\text{.}$

Supporting Information

S10

4-(3-hydroxy-3-methylbutyl)-2,4,6-trimethylisoquinoline-1,3(2H,4H)-dione

Following the general procedure (**3d**, pale-yellow liquid, 52 mg, 90%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (dt, J = 7.9, 1.5 Hz, 1H), 7.30 – 7.11 (m, 2H), 3.33 (t, J = 1.7 Hz, 3H), 2.42 (s, 3H), 2.35 (td, J = 13.0, 4.3 Hz, 1H), 1.96 (td, J = 13.1, 4.2 Hz, 1H), 1.58 (s, 3H), 1.41 (s, 1H), 1.08 (d, J = 6.6 Hz, 6H), 1.01 (dd, J = 12.9, 4.5 Hz, 1H), 0.87 (td, J = 13.1, 4.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.91, 164.54, 145.09, 143.54, 128.91, 128.54, 125.55, 122.47, 70.35, 47.47, 38.79, 37.35, 29.95, 29.40, 28.89, 27.13, 22.09.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₇H₂₃NNaO₃: 312.1570; found: 312.1576.

fl (ppm)

6-(tert-butyl)-4-(3-hydroxy-3-methylbutyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dio ne

Following the general procedure (**3e**, pale-yellow liquid, 54 mg, 82%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.13 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.44 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.39 (d, *J* = 1.7 Hz, 1H), 3.34 (t, *J* = 1.3 Hz, 3H), 2.44 – 2.30 (m, 1H), 1.98 (td, *J* = 13.0, 3.7 Hz, 1H), 1.60 (d, *J* = 1.3 Hz, 3H), 1.33 (s, 9H), 1.15 – 1.02 (m, 7H), 0.81 (td, *J* = 13.0, 3.6 Hz, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 177.00, 164.48, 158.00, 143.13, 128.74, 124.77, 122.47, 121.83, 70.37, 47.73, 38.87, 37.28, 35.43, 31.18, 30.25, 29.07, 29.05, 27.13.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{20}H_{29}NNaO_3$: 354.2040; found: 354.2045.

4-(3-hydroxy-3-methylbutyl)-2,4,5,7-tetramethylisoquinoline-1,3(2H,4H)-dione

Following the general procedure (**3f**, pale-yellow liquid, 45 mg, 75%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (s, 1H), 7.24 (s, 1H), 3.37 (s, 3H), 2.56 (s, 3H), 2.44 – 2.38 (m, 2H), 2.36 (s, 3H), 1.70 (s, 3H), 1.45 (s, 1H), 1.10 (d, *J* = 6.6 Hz, 6H), 1.03 – 0.92 (m, 1H), 0.90 – 0.81 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.93, 164.98, 139.83, 137.71, 137.10, 135.45, 128.13, 126.01, 70.48, 48.93, 39.50, 33.82, 29.63, 28.95, 27.56, 27.04, 22.64, 20.71.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{18}H_{25}NNaO_3$: 326.1727; found: 326.1733.

Supporting Information

6-fluoro-4-(3-hydroxy-3-methylbutyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione

Following the general procedure (**3g**, pale-yellow liquid, 45 mg, 77%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.33 – 8.22 (m, 1H), 7.16 – 7.03 (m, 2H), 3.34 (s, 3H), 2.39 (td, *J* = 13.1, 4.4 Hz, 1H), 1.93 (td, *J* = 13.1, 4.2 Hz, 1H), 1.78 (s, 1H), 1.60 (s, 3H), 1.13 – 1.00 (m, 7H), 0.89 (td, *J* = 13.0, 4.1 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -103.16 (q, *J* = 8.4 Hz). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.25, 166.63 (d, *J* = 255.7 Hz), 163.57, 146.75 (d, *J* = 8.5 Hz), 132.03 (d, *J* = 9.7 Hz), 121.54 (d, *J* = 2.5 Hz), 115.49 (d, *J* = 22.3 Hz), 112.14 (d, *J* = 23.0 Hz), 70.29, 47.89, 38.76, 37.41, 29.89, 29.50, 28.96, 27.23.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₆H₂₀FNNaO₃: 316.1319; found: 316.1325.

6-chloro-4-(3-hydroxy-3-methylbutyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione

Following the general procedure (**3h**, pale-yellow liquid, 38 mg, 62%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (d, *J* = 9.0 Hz, 1H), 7.46 – 7.36 (m, 2H), 3.36 (s, 3H), 2.40 (td, *J* = 13.0, 4.4 Hz, 1H), 1.95 (td, *J* = 13.0, 4.2 Hz, 1H), 1.62 (s, 3H), 1.16 – 1.01 (m, 7H), 0.90 (td, *J* = 13.0, 4.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.08, 163.71, 145.37, 140.90, 130.63, 128.19, 125.54, 123.62, 70.35, 47.77, 38.83, 37.45, 29.80, 29.56, 29.00, 27.35.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₆H₂₀ClNNaO₃: 332.1024; found: 332.1027.

6-(benzyloxy)-4-(3-hydroxy-3-methylbutyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-di one

Following the general procedure (**3i**, pale-yellow liquid, 65 mg, 86%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, J = 8.8 Hz, 1H), 7.46 – 7.30 (m, 5H), 7.03 (dd, J = 8.8, 2.4 Hz, 1H), 6.93 (d, J = 2.4 Hz, 1H), 5.14 (d, J = 2.5 Hz, 2H), 3.34 (s, 3H), 2.37 (td, J = 12.9, 4.4 Hz, 1H), 1.91 (td, J = 13.0, 4.2 Hz, 1H), 1.58 (s, 3H), 1.46 (s, 1H), 1.08 (d, J = 7.4 Hz, 7H), 0.89 (td, J = 12.9, 4.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.80, 164.12, 163.52, 145.88, 136.05, 131.30, 128.88, 128.49, 127.61, 118.32, 114.41, 111.08, 70.42, 70.35, 47.85, 38.86, 37.33, 30.11, 29.50, 28.92, 27.10.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₃H₂₇NNaO₄: 404.1832; found: 404.1839.

Supporting Information

4-(3-hydroxy-3-methylbutyl)-2,4-dimethyl-6-phenylisoquinoline-1,3(2H,4H)-dione

Following the general procedure (**3j**, pale-yellow liquid, 52 mg, 74%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.29 (d, J = 8.1 Hz, 1H), 7.68 – 7.58 (m, 4H), 7.53 – 7.40 (m, 3H), 3.38 (s, 3H), 2.44 (td, J = 13.0, 4.5 Hz, 1H), 2.09 (td, J = 13.0, 4.0 Hz, 1H), 1.67 (s, 3H), 1.55 (s, 1H), 1.11 (d, J = 7.2 Hz, 7H), 0.96 (td, J = 13.0, 4.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.73, 164.38, 147.05, 144.05, 139.78, 129.53, 129.15, 128.65, 127.43, 126.39, 123.84, 123.80, 70.33, 47.80, 38.90, 37.40, 30.04, 29.50, 28.92, 27.25, 27.22.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₂H₂₅NNaO₃: 374.1727; found: 374.1735.

4-(3-hydroxy-3-methylbutyl)-2,4-dimethyl-6-(methylthio)isoquinoline-1,3(2H,4H)-di one

Following the general procedure (**3k**, pale-yellow liquid, 45 mg, 70%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (dd, J = 8.4, 1.6 Hz, 1H), 7.38 – 7.22 (m, 2H), 3.41 (s, 3H), 2.59 (s, 3H), 2.45 (td, J = 13.0, 4.4 Hz, 1H), 2.03 (td, J = 13.1, 4.0 Hz, 1H), 1.72 – 1.54 (m, 4H), 1.16 (d, J = 6.2 Hz, 7H), 0.97 (td, J = 13.2, 4.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.49, 164.19, 147.33, 143.97, 129.28, 124.14, 121.49, 121.42, 70.33, 47.67, 38.81, 37.24, 30.00, 29.49, 28.91, 27.19, 27.16, 14.90.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{23}NNaO_3S$: 344.1291; found: 344.1295.

6-acetyl-4-(3-hydroxy-3-methylbutyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione

Following the general procedure (**31**, pale-yellow liquid, 24 mg, 37%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (1:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.35 (d, *J* = 8.1 Hz, 1H), 8.02 (d, *J* = 1.5 Hz, 1H), 7.96 (dd, *J* = 8.2, 1.6 Hz, 1H), 3.39 (s, 3H), 2.66 (s, 3H), 2.43 (td, *J* = 13.0, 4.5 Hz, 1H), 2.06 (td, *J* = 13.1, 4.1 Hz, 1H), 1.66 (s, 3H), 1.44 (s, 1H), 1.16 – 0.99 (m, 7H), 0.86 (td, *J* = 13.0, 4.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.33, 176.27, 163.81, 144.04, 141.34, 129.63, 128.43, 127.12, 125.14, 70.38, 47.91, 38.87, 37.38, 29.89, 29.54, 29.02, 27.46, 27.07.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₈H₂₃NNaO₄: 340.1519; found: 340.1526.

S24

Methyl-4-(3-hydroxy-3-methylbutyl)-2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoq uinoline-6-carboxylate

Following the general procedure (**3m**, pale-yellow liquid, 39 mg, 58%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (1:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.30 (d, *J* = 8.1 Hz, 1H), 8.09 (s, 1H), 8.04 (dd, *J* = 8.2, 1.5 Hz, 1H), 3.95 (s, 3H), 3.37 (s, 3H), 2.40 (td, *J* = 13.0, 4.4 Hz, 1H), 2.04 (td, *J* = 13.1, 4.2 Hz, 1H), 1.65 (s, 3H), 1.55 (s, 1H), 1.14 – 0.98 (m, 7H), 0.85 (td, *J* = 12.9, 4.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.27, 166.08, 163.81, 143.75, 135.19, 129.24, 128.39, 128.17, 126.77, 70.29, 52.79, 52.75, 47.78, 38.86, 37.49, 29.70, 29.41, 28.99, 27.42, 27.39.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{18}H_{23}NNaO_5$: 356.1468; found: 356.1473.

7-(3-hydroxy-3-methylbutyl)-7,9-dimethyl-2,3-dihydro-[1,4]dioxino[2,3-h]isoquinoli ne-8,10(7H,9H)-dione

Following the general procedure (**3n**, pale-yellow liquid, 34 mg, 51%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (1:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.10 (d, *J* = 8.6 Hz, 1H), 6.88 (d, *J* = 8.6 Hz, 1H), 4.44 – 4.38 (m, 2H), 4.29 (dd, *J* = 5.6, 2.8 Hz, 2H), 3.29 (s, 3H), 2.30 (td, *J* = 12.9, 4.6 Hz, 1H), 1.89 (td, *J* = 12.9, 4.3 Hz, 1H), 1.66 (s, 2H), 1.55 (s, 3H), 1.10 – 1.00 (m, 7H), 0.94 (td, *J* = 12.9, 4.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.38, 162.57, 145.10, 142.68, 137.62, 122.99, 117.53, 114.55, 70.33, 64.84, 63.70, 47.10, 38.79, 37.62, 29.99, 29.41, 28.98, 27.06.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{18}H_{23}NNaO_5$: 356.1468; found: 356.1477.

 $\mathbb{E} = \mathbb{E} = \mathbb$

2-ethyl-4-(3-hydroxy-3-methylbutyl)-4-methylisoquinoline-1,3(2H,4H)-dione

Following the general procedure (**30**, pale-yellow liquid, 42 mg, 72%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.21 (dd, J = 8.1, 1.5 Hz, 1H), 7.69 – 7.56 (m, 1H), 7.47 – 7.35 (m, 2H), 4.03 (q, J = 7.0 Hz, 2H), 2.36 (td, J = 13.0, 4.4 Hz, 1H), 1.97 (td, J = 13.0, 4.1 Hz, 1H), 1.59 (s, 3H), 1.19 (t, J = 7.0 Hz, 3H), 1.07 (d, J = 6.6 Hz, 7H), 0.87 (td, J = 12.9, 4.1 Hz, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 176.20, 163.99, 143.55, 134.15, 128.89, 127.38, 125.19, 125.14, 70.30, 47.32, 38.71, 37.36, 35.63, 29.81, 29.37, 28.91, 13.33.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{23}NNaO_3$: 312.1570; found: 312.1573.

Supporting Information

 $\label{eq:2-cyclopropyl-4-(3-hydroxy-3-methylbutyl)-4-methylisoquinoline-1, \ensuremath{3}(2H, 4H)-dione$

Following the general procedure (**3p**, pale-yellow liquid, 21 mg, 35%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (dd, J = 7.9, 1.4 Hz, 1H), 7.67 – 7.57 (m, 1H), 7.47 – 7.33 (m, 2H), 2.74 (tt, J = 7.1, 4.1 Hz, 1H), 2.37 (td, J = 13.0, 4.4 Hz, 1H), 1.99 (dd, J = 13.0, 4.2 Hz, 1H), 1.58 (s, 3H), 1.11 (d, J = 7.2 Hz, 9H), 0.92 (td, J = 13.0, 4.2 Hz, 1H), 0.76 – 0.56 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.66, 165.39, 143.57, 134.17, 128.97, 127.47, 125.62, 125.23, 70.45, 47.90, 38.91, 36.79, 29.59, 28.99, 24.65, 8.67, 8.59.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{18}H_{23}NNaO_3$: 324.1570; found: 324.1573.

7-chloro-4-(3-hydroxy-3-methylbutyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione and

5-chloro-4-(3-hydroxy-3-methylbutyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione

Following the general procedure (**3q:3q' = 11:1**, pale-yellow liquid, 53 mg, 85%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, J = 2.2 Hz, 1H), 7.58 (dd, J = 8.5, 2.4 Hz, 1H), 7.37 (d, J = 8.5 Hz, 1H), 3.35 (s, 3H), 2.38 (td, J = 13.0, 4.5 Hz, 1H), 2.05 – 1.91 (m, 1H), 1.59 (s, 3H), 1.08 (d, J = 7.3 Hz, 6H), 1.09 – 1.02 (m, 1H), 0.84 (td, J = 13.0, 4.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.24, 163.39, 141.84, 134.36, 133.73, 128.59, 127.01, 126.53, 70.27, 47.39, 38.72, 37.22, 29.96, 29.51, 28.94, 27.42.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₆H₂₀ClNNaO₃: 332.1024; found: 332.1031.

3-(3-hydroxy-3-methylbutyl)-1,3-dimethylindolin-2-one

Following the general procedure (**4a**, pale-yellow liquid, 47 mg, 95%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 (tdd, *J* = 7.7, 2.9, 1.4 Hz, 1H), 7.22 – 7.15 (m, 1H), 7.07 (td, *J* = 7.5, 2.5 Hz, 1H), 6.85 (dd, *J* = 7.8, 2.6 Hz, 1H), 3.21 (d, *J* = 2.7 Hz, 3H), 2.00 (tdd, *J* = 13.0, 4.7, 2.6 Hz, 1H), 1.85 (tt, *J* = 13.0, 3.4 Hz, 1H), 1.68 (s, 1H), 1.37 (d, *J* = 2.6 Hz, 3H), 1.23 – 1.07 (m, 7H), 0.98 (tt, *J* = 13.0, 3.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.71, 143.30, 134.02, 127.75, 122.63, 122.49, 108.02, 70.31, 48.08, 38.05, 32.96, 29.18, 29.00, 26.18, 24.03. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₂₁NNaO₂: 270.1465; found: 270.1471.

3-(3-hydroxy-3-methylbutyl)-1,3,5-trimethylindolin-2-one

Following the general procedure (**4b**, pale-yellow liquid, 47 mg, 90%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.12 – 7.01 (m, 1H), 6.97 (d, *J* = 1.6 Hz, 1H), 6.71 (d, *J* = 7.8 Hz, 1H), 3.17 (s, 3H), 2.33 (s, 3H), 1.97 (td, *J* = 12.9, 4.6 Hz, 1H), 1.80 (td, *J* = 13.0, 4.2 Hz, 1H), 1.64 (s, 1H), 1.34 (s, 3H), 1.11 (d, *J* = 5.9 Hz, 7H), 0.99 (td, *J* = 13.0, 4.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.70, 141.00, 134.12, 132.16, 128.03, 123.38, 107.77, 70.49, 48.19, 38.14, 33.02, 29.31, 29.02, 26.24, 24.14, 21.26.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{16}H_{23}NNaO_2$: 284.1621; found: 284.1626.

Supporting Information

3-(3-hydroxy-3-methylbutyl)-1,3,7-trimethylindolin-2-one

Following the general procedure (**4c**, pale-yellow liquid, 35 mg, 67%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.06 – 6.85 (m, 3H), 3.48 (s, 3H), 2.58 (s, 3H), 1.98 (td, *J* = 12.9, 4.6 Hz, 1H), 1.78 (td, *J* = 13.0, 4.1 Hz, 1H), 1.55 (s, 1H), 1.33 (s, 3H), 1.11 (d, *J* = 3.1 Hz, 7H), 0.95 (td, *J* = 13.0, 4.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.45, 141.15, 134.72, 131.55, 122.61, 120.44, 119.68, 70.54, 47.43, 38.17, 33.33, 29.57, 29.30, 29.02, 24.60, 19.17.

 $\label{eq:HRMS} \text{(ESI)} \ \text{m/z:} \ [\text{M} + \text{Na}]^+ \ \ \text{Calcd for } C_{16}H_{23}\text{NNaO}_2\text{:} \ 284.1621\text{; found:} \ 284.1628.$

3-(3-hydroxy-3-methylbutyl)-7-methoxy-1,3-dimethylindolin-2-one

Following the general procedure (**4d**, pale-yellow liquid, 39 mg, 70%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.10 – 6.92 (m, 1H), 6.81 (dd, J = 15.7, 7.9 Hz, 2H), 3.87 (s, 3H), 3.48 (s, 3H), 1.98 (td, J = 12.9, 4.6 Hz, 1H), 1.79 (td, J = 13.0, 4.1 Hz, 1H), 1.57 (s, 1H), 1.35 (s, 3H), 1.19 – 1.09 (m, 7H), 0.96 (td, J = 13.0, 4.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.94, 145.43, 135.79, 131.18, 123.24, 115.29, 111.71, 70.59, 56.01, 48.24, 38.20, 33.24, 29.52, 29.35, 29.01, 24.41.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{16}H_{23}NNaO_3$: 300.1570; found: 300.1577.

5-fluoro-3-(3-hydroxy-3-methylbutyl)-1,3-dimethylindolin-2-one

Following the general procedure (4e, pale-yellow liquid, 44 mg, 84%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.00 – 6.86 (m, 2H), 6.74 (dd, J = 8.4, 4.1 Hz, 1H), 3.18 (s, 3H), 1.99 (td, J = 13.0, 4.5 Hz, 1H), 1.80 (td, J = 13.0, 4.1 Hz, 1H), 1.66 (s, 1H), 1.35 (s, 3H), 1.11 (d, J = 4.4 Hz, 7H), 0.96 (td, J = 13.0, 4.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.38, 159.58 (d, J = 240.6 Hz), 139.29, 135.83 (d, J = 7.7 Hz), 113.99 (d, J = 23.6 Hz), 110.78 (d, J = 24.5 Hz), 108.51 (d, J = 8.1 Hz), 70.41, 48.69, 38.07, 32.99, 29.34, 29.05, 26.37, 24.02. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -120.69.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₅H₂₀FNNaO₂: 288.1370; found: 288.1378.

7-fluoro-3-(3-hydroxy-3-methylbutyl)-1,3-dimethylindolin-2-one

Following the general procedure (**4f**, pale-yellow liquid, 39 mg, 73%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.01 – 6.85 (m, 3H), 3.40 (d, *J* = 2.6 Hz, 3H), 1.98 (td, *J* = 13.0, 4.5 Hz, 1H), 1.80 (td, *J* = 13.0, 4.1 Hz, 1H), 1.70 (s, 1H), 1.34 (s, 3H), 1.10 (d, *J* = 4.7 Hz, 7H), 0.94 (td, *J* = 13.0, 4.1 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -136.75. ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.34, 147.84 (d, *J* = 243.5 Hz), 137.10 (d, *J* = 2.9 Hz), 129.88 (d, *J* = 7.9 Hz), 123.23 (d, *J* = 6.3 Hz), 118.36 (d, *J* = 3.2 Hz), 115.80 (d, *J* = 19.2 Hz), 70.38, 48.55, 38.06, 33.21, 29.30, 29.03, 28.67, 24.29.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₅H₂₀FNNaO₂: 288.1370; found: 288.1366.

5-chloro-3-(3-hydroxy-3-methylbutyl)-1,3-dimethylindolin-2-one

Following the general procedure (**4g**, pale-yellow liquid, 51 mg, 91%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.32 (m, 1H), 7.26 (s, 1H), 6.88 (dt, *J* = 8.3, 1.3 Hz, 1H), 3.33 – 3.28 (m, 3H), 2.16 – 2.07 (m, 1H), 1.98 – 1.87 (m, 2H), 1.51 – 1.44 (m, 3H), 1.28 – 1.17 (m, 7H), 1.14 – 1.04 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.23, 141.95, 135.85, 128.12, 127.80, 123.13, 109.02, 70.40, 48.48, 38.05, 32.96, 29.33, 29.06, 26.38, 26.35, 23.99.

 $\label{eq:HRMS} \text{(ESI)} \ \text{m/z:} \ [\text{M} + \text{Na}]^+ \ \text{Calcd for } C_{15}H_{20}\text{ClNNaO}_2\text{: } 304.1075\text{; found: } 304.1079\text{.}$

3-(3-hydroxy-3-methylbutyl)-1,3-dimethyl-5-(trifluoromethyl)indolin-2-one

Following the general procedure (**4h**, pale-yellow liquid, 43 mg, 69%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 – 7.45 (m, 1H), 7.39 (d, *J* = 1.7 Hz, 1H), 6.90 (d, *J* = 8.1 Hz, 1H), 3.23 (s, 3H), 2.01 (td, *J* = 13.0, 4.5 Hz, 1H), 1.85 (td, *J* = 13.1, 4.2 Hz, 1H), 1.60 (s, 1H), 1.38 (s, 3H), 1.11 (d, *J* = 2.8 Hz, 7H), 0.96 (td, *J* = 13.0, 4.2 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -61.30. ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.66, 146.38, 134.72, 125.79 (q, *J* = 3.9 Hz), 125.01 (q, *J* = 32.6 Hz), 124.58 (q, *J* = 271.3 Hz), 119.57 (q, *J* = 3.0 Hz), 107.86, 70.41, 48.21, 38.03, 33.01, 29.24, 29.08, 26.44, 23.91.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{16}H_{20}F_3NNaO_2$: 338.1338; found: 338.1340.

3-(3-hydroxy-3-methylbutyl)-1,3-dimethyl-7-(trifluoromethyl)indolin-2-one

Following the general procedure (**4i**, pale-yellow liquid, 44 mg, 70%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (dd, J = 8.2, 1.2 Hz, 1H), 7.33 (dd, J = 7.4, 1.2 Hz, 1H), 7.12 (t, J = 7.7 Hz, 1H), 3.40 (d, J = 2.5 Hz, 3H), 2.02 (td, J = 13.0, 4.6 Hz, 1H), 1.83 (td, J = 13.0, 4.0 Hz, 1H), 1.54 (s, 1H), 1.37 (s, 3H), 1.11 (d, J = 5.9 Hz, 7H), 0.91 (td, J = 13.0, 4.0 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -53.05. ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.43, 141.25, 136.67, 125.92, 125.84 (q, J = 6.1 Hz), 123.79 (q, J = 271.4 Hz), 122.03, 112.54 (q, J = 32.7 Hz), 70.41, 46.56, 37.89, 33.31, 29.42, 29.01, 28.81, 24.47.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{16}H_{20}F_3NNaO_2$: 338.1338; found: 338.1346.

3-(3-hydroxy-3-methylbutyl)-1,3-dimethyl-2-oxoindoline-5-carbonitrile

Following the general procedure (**4j**, pale-yellow liquid, 22 mg, 40%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (1:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (dd, J = 8.1, 1.6 Hz, 1H), 7.41 (d, J = 1.7 Hz, 1H), 6.90 (d, J = 8.1 Hz, 1H), 3.22 (s, 3H), 2.00 (td, J = 13.1, 4.5 Hz, 1H), 1.84 (td, J = 13.1, 4.1 Hz, 1H), 1.63 (s, 1H), 1.37 (s, 3H), 1.11 (d, J = 3.7 Hz, 7H), 0.94 (td, J = 13.0, 4.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.38, 147.26, 135.14, 133.33, 125.95, 119.35, 108.53, 105.79, 70.27, 48.03, 37.92, 32.88, 29.36, 29.05, 26.49, 26.46, 23.82.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{16}H_{20}N_2NaO_2$: 295.1417; found: 295.1422.

5-acetyl-3-(3-hydroxy-3-methylbutyl)-1,3-dimethylindolin-2-one

Following the general procedure (**4k**, pale-yellow liquid, 33 mg, 58%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (1:1) as an eluent. ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.92 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.81 (d, *J* = 1.6 Hz, 1H), 6.88 (d, *J* = 8.2 Hz, 1H), 3.24 (d, *J* = 1.2 Hz, 3H), 2.58 (d, *J* = 0.9 Hz, 3H), 2.01 (td, *J* = 13.0, 4.5 Hz, 1H), 1.87 (td, *J* = 13.0, 4.3 Hz, 1H), 1.60 (s, 1H), 1.39 (s, 3H), 1.15 – 1.05 (m, 7H), 0.96 (td, *J* = 12.9, 4.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.16, 181.08, 147.77, 134.34, 132.32, 130.13, 122.39, 107.53, 70.47, 48.06, 38.04, 33.00, 29.30, 29.07, 26.57, 26.52, 23.99.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{23}NNaO_3$: 312.1570; found: 312.1576.

$\begin{array}{c} 7.93\\ 7.133\\ 7.131\\ 7.131\\ 7.131\\ 7.131\\ 7.131\\ 7.131\\ 7.131\\ 7.131\\ 7.131\\ 7.131\\ 7.131\\ 7.131\\ 7.132\\ 7.1$

Methyl-3-(3-hydroxy-3-methylbutyl)-1,3-dimethyl-2-oxoindoline-5-carboxylate

Following the general procedure (**4**I, pale-yellow liquid, 37 mg, 61%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (1:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (dd, J = 8.2, 1.7 Hz, 1H), 7.82 (d, J = 1.6 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 3.88 (s, 3H), 3.22 (s, 3H), 1.99 (td, J = 13.0, 4.5 Hz, 1H), 1.86 (td, J = 13.0, 4.3 Hz, 1H), 1.37 (s, 3H), 1.14 – 1.04 (m, 7H), 0.94 (td, J = 12.9, 4.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.03, 167.08, 147.49, 133.96, 130.69, 124.60, 123.78, 107.67, 70.38, 52.16, 48.03, 38.00, 32.94, 29.25, 29.03, 26.45, 23.94.

 $\label{eq:HRMS} \text{(ESI)} \ \text{m/z:} \ [\text{M} + \text{Na}]^+ \ \ \text{Calcd for } C_{17}\text{H}_{23}\text{NNaO_4:} \ 328.1519\text{; found:} \ 328.1523\text{.}$

Supporting Information

3-(3-hydroxy-3-methylbutyl)-1-methyl-3-phenylindolin-2-one

Following the general procedure (**4m**, pale-yellow liquid, 57 mg, 92%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.40 (m, 2H), 7.39 – 7.24 (m, 5H), 7.16 (t, *J* = 7.5 Hz, 1H), 6.94 (d, *J* = 7.8 Hz, 1H), 3.26 (s, 3H), 2.51 (td, *J* = 12.8, 4.6 Hz, 1H), 2.34 (td, *J* = 12.9, 3.9 Hz, 1H), 1.71 (s, 1H), 1.33 (td, *J* = 13.0, 4.7 Hz, 1H), 1.19 (d, *J* = 3.2 Hz, 6H), 1.11 (td, *J* = 12.9, 4.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.68, 143.96, 140.26, 132.22, 128.62, 128.31, 127.38, 127.01, 124.85, 122.80, 108.44, 70.59, 56.38, 38.22, 32.69, 29.25, 29.20, 26.48. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₂₃NNaO₂: 332.1621; found: 332.1620.

1-ethyl-3-(3-hydroxy-3-methylbutyl)-3-methylindolin-2-one

Following the general procedure (**4n**, pale-yellow liquid, 46 mg, 88%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 – 7.22 (m, 1H), 7.17 (dd, *J* = 7.3, 1.2 Hz, 1H), 7.04 (td, *J* = 7.5, 1.0 Hz, 1H), 6.85 (d, *J* = 7.8 Hz, 1H), 3.82 – 3.68 (m, 2H), 1.98 (td, *J* = 12.9, 4.7 Hz, 1H), 1.82 (td, *J* = 12.9, 4.1 Hz, 1H), 1.62 (s, 1H), 1.35 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H), 1.18 – 1.08 (m, 7H), 0.95 (td, *J* = 13.0, 4.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.31, 142.46, 134.32, 127.77, 122.74, 122.46, 108.24, 47.98, 38.08, 34.62, 33.09, 29.27, 29.04, 24.08, 12.88.

 $\label{eq:HRMS} \text{(ESI)} \ \text{m/z:} \ [M + Na]^+ \ \ \text{Calcd for} \ C_{16}H_{23}NNaO_2\text{:} \ 284.1621\text{; found:} \ 284.1628.$

Supporting Information

3-(3-hydroxy-3-methylbutyl)-1-isopropyl-3-methylindolin-2-one

Following the general procedure (**40**, pale-yellow liquid, 46 mg, 83%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.21 (td, *J* = 7.7, 1.4 Hz, 1H), 7.16 (dd, *J* = 7.3, 1.3 Hz, 1H), 7.05 – 6.98 (m, 2H), 4.63 (p, *J* = 7.0 Hz, 1H), 1.97 (td, *J* = 12.9, 4.6 Hz, 1H), 1.79 (td, *J* = 13.0, 4.0 Hz, 1H), 1.63 (s, 1H), 1.46 (dd, *J* = 7.0, 2.3 Hz, 6H), 1.34 (s, 3H), 1.17 – 1.08 (m, 7H), 0.92 (td, *J* = 13.0, 4.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.38, 142.02, 134.56, 127.51, 122.78, 122.11, 109.84, 70.44, 47.69, 43.66, 38.03, 33.29, 29.24, 29.05, 24.22, 19.70, 19.53.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{25}NNaO_2$: 298.1778; found: 298.1781.

7.7.23 7.7.23 7.7.27 7.7.7.7 7.7.7.7 7.7.7.7 7.7.7

1-benzyl-3-(3-hydroxy-3-methylbutyl)-3-methylindolin-2-one

Following the general procedure (**4p**, pale-yellow liquid, 47 mg, 73%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 – 7.22 (m, 5H), 7.20 – 7.12 (m, 2H), 7.03 (td, *J* = 7.5, 1.0 Hz, 1H), 6.74 (d, *J* = 7.8 Hz, 1H), 4.91 (q, *J* = 15.6 Hz, 2H), 2.07 (td, *J* = 12.9, 4.6 Hz, 1H), 1.89 (td, *J* = 13.0, 4.0 Hz, 1H), 1.60 (s, 1H), 1.43 (s, 3H), 1.20 (td, *J* = 13.0, 4.6 Hz, 1H), 1.11 (d, *J* = 8.1 Hz, 6H), 0.99 (td, *J* = 13.0, 4.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.84, 142.49, 136.25, 134.06, 128.82, 127.76, 127.68, 127.45, 122.73, 122.63, 109.15, 70.45, 48.15, 43.75, 38.32, 33.08, 29.29, 29.06, 24.37.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₁H₂₅NNaO₂: 346.1778; found: 346.1783.

3-(3-hydroxy-3-methylbutyl)-3-methyl-1-phenylindolin-2-one

Following the general procedure (**4q**, pale-yellow liquid, 56 mg, 90%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.47 (m, 2H), 7.42 – 7.36 (m, 3H), 7.26 – 7.16 (m, 2H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.83 (d, *J* = 7.8 Hz, 1H), 2.10 (td, *J* = 13.1, 4.6 Hz, 1H), 1.92 (td, *J* = 13.1, 4.0 Hz, 1H), 1.62 (s, 1H), 1.49 (s, 3H), 1.30 (td, *J* = 13.3, 4.8 Hz, 1H), 1.13 (d, *J* = 4.6 Hz, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.19, 143.28, 134.71, 133.83, 129.64, 128.03, 127.74, 126.65, 123.19, 122.87, 109.43, 70.50, 48.21, 38.18, 33.55, 29.33, 29.05, 24.40.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{20}H_{23}NNaO_2$: 332.1621; found: 332.1626.

3-(3-(3-hydroxy-3-methylbutyl)-3-methyl-2-oxoindolin-1-yl)propanenitrile

Following the general procedure (**4r**, pale-yellow liquid, 40 mg, 70%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (1:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.26 (m, 1H), 7.20 (dd, *J* = 7.4, 1.2 Hz, 1H), 7.10 (td, *J* = 7.5, 0.9 Hz, 1H), 6.90 (d, *J* = 7.8 Hz, 1H), 4.07 (dt, *J* = 14.0, 6.9 Hz, 1H), 3.96 (dt, *J* = 14.0, 6.8 Hz, 1H), 2.76 (t, *J* = 6.7 Hz, 2H), 2.01 (td, *J* = 12.9, 4.6 Hz, 1H), 1.84 (td, *J* = 13.0, 4.1 Hz, 1H), 1.56 (s, 1H), 1.38 (s, 3H), 1.16 (td, *J* = 13.1, 4.7 Hz, 1H), 1.10 (d, *J* = 3.2 Hz, 6H), 0.97 (td, *J* = 13.0, 4.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.78, 141.22, 133.88, 128.04, 123.35, 123.12, 117.26, 107.94, 70.43, 48.06, 38.07, 35.80, 33.08, 29.20, 28.98, 24.16, 16.47.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{22}N_2NaO_2$: 309.1573; found: 309.1576.

3-(3-hydroxy-3-methylbutyl)-1,3-dimethyl-1,3-dihydro-2H-benzo[g]indol-2-one

Following the general procedure (**4s**, pale-yellow liquid, 35 mg, 59%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.59 – 7.49 (m, 2H), 7.42 (ddd, *J* = 8.1, 4.8, 3.7 Hz, 2H), 6.93 (dd, *J* = 7.6, 0.9 Hz, 1H), 3.52 (s, 3H), 2.50 (td, *J* = 12.8, 4.3 Hz, 1H), 1.99 (td, *J* = 12.9, 4.3 Hz, 1H), 1.66 (s, 3H), 1.22 (td, *J* = 13.0, 4.2 Hz, 1H), 1.09 (s, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.58, 138.11, 136.82, 133.38, 127.24, 126.44, 126.02, 122.69, 122.63, 119.85, 108.45, 70.60, 47.48, 39.23, 38.30, 31.98, 29.74, 29.19, 29.09.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₉H₂₃NNaO₂: 320.1621; found: 320.1629.

1-(3-hydroxy-3-methylbutyl)-1-methyl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-2(1 H)-one

Following the general procedure (**4t**, pale-yellow liquid, 38 mg, 70%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹**H** NMR (400 MHz, Chloroform-*d*) δ 6.99 (d, J = 6.6 Hz, 2H), 6.92 (dd, J = 8.6, 6.3 Hz, 1H), 3.75 – 3.61 (m, 2H), 2.77 (t, J = 6.1 Hz, 2H), 2.02 – 1.90 (m, 3H), 1.85 – 1.78 (m, 1H), 1.74 (s, 1H), 1.35 (s, 3H), 1.19 (td, J = 13.0, 4.7 Hz, 1H), 1.11 (d, J = 4.0 Hz, 6H), 1.04 (td, J = 12.9, 4.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.61, 139.08, 132.58, 126.59, 122.08, 120.43, 120.08, 49.46, 38.80, 38.21, 32.79, 29.23, 29.04, 24.72, 23.72, 21.39.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{23}NNaO_2$: 296.1621; found: 296.1620.

7/28 7/100 6.633 6.633 7.700 6.633 8.8355 8.8355 8.8355 8.8355 8.8355 8.8355 8.8355 8.8355 8.835

1-(3-hydroxy-3-methylbutyl)-1-methyl-4,5-dihydro-6H-pyrrolo[3,2,1-ij]quinoline-2,

6(1H)-dione

Following the general procedure (**4u**, pale-yellow liquid, 37 mg, 65%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (1:1) as an eluent. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.64 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.33 (dd, *J* = 7.3, 1.1 Hz, 1H), 7.06 (dd, *J* = 8.0, 7.2 Hz, 1H), 4.03 (t, *J* = 7.2 Hz, 2H), 2.83 (t, *J* = 7.2 Hz, 2H), 2.00 (td, *J* = 13.0, 4.7 Hz, 1H), 1.88 (td, *J* = 13.0, 4.3 Hz, 1H), 1.64 (s, 1H), 1.41 (s, 3H), 1.20 (td, *J* = 12.9, 4.7 Hz, 1H), 1.15 – 1.00 (m, 7H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 191.73, 179.59, 146.49, 133.50, 128.30, 124.14, 122.68, 116.80, 70.37, 49.54, 38.13, 37.77, 36.25, 32.79, 29.39, 29.10, 23.56.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₇H₂₁NNaO₃: 310.1414; found: 310.1416.

7-(3-hydroxy-3-methylbutyl)-7-methyl-1,2,3,4-tetrahydroazepino[3,2,1-hi]indol-6(7 H)-one

Following the general procedure (**4v**, pale-yellow liquid, 39 mg, 68%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.05 – 6.84 (m, 3H), 4.02 – 3.86 (m, 2H), 2.95 (dd, *J* = 7.5, 4.7 Hz, 2H), 2.07 – 1.90 (m, 5H), 1.78 (td, *J* = 13.0, 4.1 Hz, 1H), 1.69 (s, 1H), 1.34 (s, 3H), 1.19 – 1.08 (m, 7H), 0.98 (td, *J* = 13.0, 4.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.10, 142.02, 134.30, 129.14, 125.18, 122.48, 120.35, 70.47, 48.11, 40.78, 38.13, 33.29, 30.86, 29.23, 29.04, 26.58, 26.55, 24.34.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{18}H_{25}NNaO_2$: 310.1778; found: 310.1783.

200 190 180 140 130 120 fl (ppm)

6-chloro-3-(3-hydroxy-3-methylbutyl)-1,3-dimethylindolin-2-one

and

4-chloro-3-(3-hydroxy-3-methylbutyl)-1,3-dimethylindolin-2-one

Following the general procedure (**4w:4w' = 3.3:1**, pale-yellow liquid, 49 mg, 88%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 – 6.92 (m, 2H), 6.86 – 6.66 (m, 1H), 3.17 (d, *J* = 6.2 Hz, 3H), 2.31 (td, *J* = 13.2, 4.2 Hz, 1H), 1.97 (td, *J* = 13.0, 4.4 Hz, 1H), 1.47 (s, 2.29H), 1.32 (s, 0.70H), 1.13 – 1.06 (m, 6H), 0.98 (td, *J* = 13.1, 4.4 Hz, 1H), 0.89 – 0.80 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.65, 180.03, 145.09, 144.51, 133.49, 132.32, 130.51, 129.54, 129.11, 123.71, 123.45, 122.46, 108.84, 106.62, 70.45, 70.31, 50.05, 47.93, 38.62, 37.96, 32.85, 30.27, 29.24, 29.13, 29.00, 28.82, 26.47, 26.32, 23.99, 21.74.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₅H₂₀ClNNaO₂: 304.1075; found: 304.1078.

4-(3-hydroxybutyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione

Following the general procedure (**5a**, pale-yellow liquid, 42 mg, 81%, *d.r.* = 1.3:1). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.23 (dd, *J* = 8.3, 1.5 Hz, 1H), 7.75 – 7.58 (m, 2H), 7.42 (t, *J* = 7.2 Hz, 2H), 3.60 (dtd, *J* = 10.2, 6.5, 5.2 Hz, 1H), 3.36 (d, *J* = 1.2 Hz, 3H), 2.44 (td, *J* = 12.9, 4.5 Hz, 0.57H), 2.36 – 2.28 (m, 0.42H), 2.09 (td, *J* = 12.8, 4.3 Hz, 0.41H), 1.89 (td, *J* = 12.9, 4.5 Hz, 0.57H), 1.63 – 1.58 (m, 4H), 1.10 – 0.98 (m, 4H), 0.95 – 0.83 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.94, 176.73, 164.53, 143.58, 143.49, 134.29, 134.20, 128.98, 127.47, 125.35, 125.26, 125.06, 125.01, 67.65, 47.64, 47.61, 45.17, 38.93, 34.69, 34.65, 33.17, 31.57, 29.99, 29.55, 27.27, 23.67, 23.33.

4-(3-hydroxypentyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione

Following the general procedure (**5b**, pale-yellow liquid, 48 mg, 88%, *d.r.* = 1.1:1). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.23 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.63 (ddd, *J* = 8.3, 7.3, 1.5 Hz, 1H), 7.42 (ddd, *J* = 7.8, 5.8, 3.1 Hz, 2H), 3.41 – 3.25 (m, 4H), 2.46 (td, *J* = 12.8, 4.8 Hz, 0.5H), 2.33 (dd, *J* = 13.2, 4.9 Hz, 0.5H), 2.12 (td, *J* = 12.9, 4.3 Hz, 0.5H), 1.90 (td, *J* = 12.9, 4.8 Hz, 0.5H), 1.61 (d, *J* = 2.5 Hz, 4H), 1.39 – 1.22 (m, 2H), 1.12 – 0.71 (m, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.95, 176.75, 164.56, 143.64, 143.54, 134.27, 134.17, 128.96, 127.45, 125.37, 125.27, 125.07, 125.01, 72.83, 47.69, 47.65, 38.80, 32.39, 32.31, 30.18, 29.97, 29.80, 29.54, 27.24, 9.86, 9.79.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{16}H_{21}NNaO_3$: 298.1414; found: 298.1421.

Supporting Information

8.8.24 8.8.24 8.8.27 7.1557 7.1557 7.1557 7.1557 7.1557 7.15577 7.15577 7.155777 7.1

Tert-butyl-4-(2-(2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)ethyl)-4hydroxypiperidine-1-carboxylate

Following the general procedure (**5c**, pale-yellow liquid, 54 mg, 65%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.27 (dd, J = 7.9, 1.4 Hz, 1H), 7.67 (td, J = 7.6, 1.5 Hz, 1H), 7.50 – 7.43 (m, 2H), 3.71 (d, J = 12.9 Hz, 2H), 3.40 (s, 3H), 3.18 – 3.08 (m, 2H), 2.45 (td, J = 12.9, 4.4 Hz, 1H), 2.05 (td, J = 13.0, 4.2 Hz, 1H), 1.64 (s, 3H), 1.45 (s, 14H), 1.09 (td, J = 13.1, 4.4 Hz, 1H), 0.90 (td, J = 13.2, 4.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.72, 164.46, 154.82, 143.36, 134.34, 129.08, 127.59, 125.13, 125.08, 79.54, 69.32, 47.61, 39.77, 39.65, 38.19, 36.61, 35.50, 30.32, 28.55, 27.30.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₃H₃₂N₂NaO₅: 439.2203; found: 439.2207.

4-((2-hydroxycyclohexyl)methyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione

Following the general procedure (**major isomer 1**, **5d**, pale-yellow liquid, 34 mg). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 (dd, J = 8.1, 1.5 Hz, 1H), 7.62 (td, J = 7.6, 1.5 Hz, 1H), 7.42 (ddd, J = 8.1, 4.5, 3.1 Hz, 2H), 3.37 (s, 3H), 3.09 (td, J = 9.7, 4.3 Hz, 1H), 2.72 (dd, J = 14.5, 4.4 Hz, 1H), 1.83 (dd, J = 14.6, 5.3 Hz, 2H), 1.68 (s, 1H), 1.59 – 1.52 (m, 4H), 1.39 – 1.32 (m, 1H), 1.15 – 1.04 (m, 2H), 1.02 – 0.93 (m, 1H), 0.89 – 0.71 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.73, 164.69, 144.14, 133.70, 129.09, 127.34, 125.85, 124.88, 74.42, 47.75, 45.79, 42.62, 35.54, 32.97, 31.82, 27.38, 27.35, 25.47, 24.49.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₈H₂₃NNaO₃: 324.1570; found: 324.1576.

Supporting Information

4-((2-hydroxycyclohexyl)methyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione

Following the general procedure (**isomer 2:3** = **2.3:1**, **5d**, pale-yellow liquid, 21 mg). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 (dt, *J* = 8.0, 1.5 Hz, 1H), 7.63 (tt, *J* = 7.5, 1.7 Hz, 1H), 7.54 – 7.36 (m, 2H), 3.40 – 3.33 (m, 3H), 3.21 (dt, *J* = 6.1, 2.8 Hz, 0.3H), 3.07 (ddd, *J* = 13.1, 9.0, 4.3 Hz, 0.7H), 2.63 (dd, *J* = 14.2, 1.9 Hz, 0.7H), 2.36 – 2.30 (m, 0.3H), 2.28 – 2.14 (m, 1H), 1.62 – 1.53 (m, 4H), 1.51 – 1.38 (m, 2H), 1.26 – 0.77 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.37, 176.84, 164.58, 143.88, 143.61, 134.04, 133.96, 128.96, 127.46, 127.35, 126.22, 125.96, 124.84, 124.78, 74.24, 70.13, 47.00, 46.41, 43.92, 43.71, 42.44, 38.56, 35.91, 32.58, 32.01, 31.03, 30.55, 27.37, 27.27, 25.46, 24.59, 24.29, 20.61.

 HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₂₃NNaO₃: 324.1570; found: 324.1572.

 ^[2]
 ^[2]

3-(3-hydroxynonyl)-1,3-dimethylindolin-2-one

Following the general procedure (**5e**, pale-yellow liquid, 53 mg, 88%, *d.r.* = 1.2:1). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 (td, *J* = 7.6, 1.2 Hz, 1H), 7.19 (d, *J* = 7.2 Hz, 1H), 7.07 (td, *J* = 7.6, 1.0 Hz, 1H), 6.85 (dd, *J* = 7.8, 1.2 Hz, 1H), 3.42 (ddd, *J* = 10.2, 5.3, 2.6 Hz, 1H), 3.22 (d, *J* = 1.4 Hz, 3H), 2.13 – 2.05 (m, 0.45H), 2.00 – 1.94 (m, 1H), 1.88 (s, 1H), 1.78 (ddd, *J* = 13.4, 11.5, 5.2 Hz, 0.55H), 1.38 (s, 1H), 1.35 – 0.96 (m, 12H), 0.90 – 0.84 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.98, 180.78, 143.32, 143.29, 134.16, 133.98, 127.79, 122.70, 122.62, 122.54, 108.03, 71.68, 71.49, 48.25, 48.19, 37.37, 37.16, 34.32, 34.28, 32.30, 32.19, 31.84, 31.82, 29.33, 29.29, 26.20, 25.62, 25.53, 24.21, 23.81, 22.65, 14.12.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₉H₂₉NNaO₂: 326.2091; found: 326.2092.

3-((2-hydroxycyclopentyl)methyl)-1,3-dimethylindolin-2-one

Following the general procedure (**isomer 1:2:3** = **1:1.5:2.5**, **5f**, pale-yellow liquid, 44 mg, 85%). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.13 (m, 2H), 7.10 – 7.03 (m, 1H), 6.84 (dd, *J* = 7.8, 2.6 Hz, 1H), 3.73 – 3.66 (m, 0.2H), 3.57 (q, *J* = 6.5 Hz, 0.5H), 3.44 – 3.37 (m, 0.3H), 3.24 – 3.16 (m, 3H), 2.27 – 1.71 (m, 4H), 1.56 – 1.06 (m, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.29, 181.04, 143.37, 143.26, 143.13, 134.65, 134.43, 134.35, 132.25, 132.15, 132.03, 128.66, 128.54, 128.02, 127.90, 122.87, 122.76, 122.64, 122.58, 122.48, 108.20, 108.16, 79.46, 74.54, 48.65, 48.26, 48.09, 45.33, 45.19, 42.65, 42.47, 42.43, 37.60, 34.67, 34.24, 34.05, 31.92, 30.74, 29.43, 26.35, 25.17, 25.09, 24.79, 21.86, 21.75, 21.45.

181.29 181.29 182.13 183.13 183.13 183.13 183.13 183.13 183.13 183.13 184.15 184.15 184.15 184.15 184.15 184.15 184.15 184.15 184.15 184.15 184.15 184.15 184.15 184.15 184.15 184.15 184.16 18

4-(2-(3-hydroxycyclopentyl)ethyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione

Following the general procedure (**6a**, pale-yellow liquid, 25 mg, 42%, *d.r.* = 1.5:1). The residue was purified by silica gel-columun chromatography using PE/EtOAc (2:1) as an eluent. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.23 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.63 (tt, *J* = 7.7, 1.7 Hz, 1H), 7.47 – 7.36 (m, 2H), 4.30 – 4.11 (m, 1H), 3.37 (s, 3H), 2.34 – 2.22 (m, 1H), 2.08 – 1.77 (m, 3H), 1.72 – 1.47 (m, 7H), 1.21 – 0.68 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.84, 176.79, 164.63, 143.83, 143.79, 134.15, 128.90, 127.37, 125.23, 125.07, 73.60, 73.56, 47.85, 42.44, 42.40, 42.36, 42.27, 42.24, 42.21, 42.07, 38.38, 37.36, 37.35, 35.44, 35.39, 35.18, 35.05, 32.01, 31.48, 30.31, 30.26, 30.11, 30.00, 29.46, 27.22.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{18}H_{23}NNaO_3$: 324.1570; found: 324.1575.

Supporting Information

