Supporting Information

Palladium-Catalyzed C(sp³)-Si Cross-Coupling Silylation of Benzyl Halides with Hydrosilanes

Xiao-Hua Zhou^{a†}, Jun-Hui Zhu^{a†}, Guang-Ao Song^a, Xin-Li Jiang^a, Xiao-Jun Fang^a, Zheng Xu^a, Li-Wen Xu^{*a,b}

^a Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China

^b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute (SRI), Lanzhou Institute of Chemical Physics (LICP), University of the Chinese Academy of Sciences (UCAS), Lanzhou 730000, P. R. China

Email: liwenxu@hznu.edu.cn

† These authors contributed equally.

Table of Contents

1. General Information2
2.Evaluation of Reaction Parameters
Table S1
Table S25
Table S36
Table S47
Table S5
Table S6 9
Table S710
Table S8
3. Experimental Section
4. Procedure for the Synthesis of Benzylsilanes
5. Spectral Data of Products14
6. Gram-Scale Synthesis and Synthetic Applications
6.1 Gram-scale Synthesis
6.2 Synthetic Applications
7. Mechanistic Studies
8. References
9. Copies of ¹ H and ¹³ C NMR spectra

1. General Information

Unless specifically stated, all reagents were commercially obtained and where appropriate, purified prior to use. Dichloromethane (DCM), toluene, were freshly distilled from CaH₂, Ether (Et₂O), tetrahydrofuran (THF), 1,4-dioxane and cyclohexane were dried and distilled from metal sodium and benzophenone. Alcohol solvents were dried and distilled from metal magnesium. Other commercially available reagents and solvents were used directly without purification. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica (200 - 300 mesh). NMR spectra were recorded on a Bruker 400-, 500- (400 MHz for ¹ H; 101 MHz for ¹³C, 500 MHz for ¹⁹F). The chemical shifts (δ , ppm) were quoted in parts per million (ppm) referenced to TMS (0.00 ppm for ¹H NMR) and CDCl₃ (77.16 ppm for ¹³C NMR) The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, dd = doublets of doublet, t = triplet, q = quartet, m = multiplets. Coupling constants, J, were reported in Hertz unit (Hz). High resolution mass spectra (HRMS) of the products were obtained on a Bruker Daltonics micro TOF-spectrometer.

2. Evaluation of Reaction Parameters

^{*a*}Unless otherwise noted, reactions were conducted under N₂ on 0.2 mmol scale: **1a** (0.2 mmol), **2a** (0.3 mmol), PdBr₂ (5 mol%), Ligand (10 mol%), DIPEA (0.6 mmol), THF (2 mL). ^{*b*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

Table S2. Screening of the Additives ^a

^{*a*}Unless otherwise noted, reactions were conducted under N₂ on 0.2 mmol scale: **1a** (0.2 mmol), **2a** (1 mmol), PdBr₂ (5 mol%), Ligand (10 mol%), DIPEA (0.6 mmol), THF (2 mL). ^{*b*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard. ^{*c*} with 1.5 equiv **2a**.

Table S3. Screening of the Triaryl Phosphines ^a

^{*a*}Unless otherwise noted, reactions were conducted under N₂ on 0.2 mmol scale: **1a** (0.2 mmol), **2a** (1 mmol), PdBr₂ (5 mol%), Ligand (10 mol%), DIPEA (0.6 mmol), B(C₆F₅)₃ (20 mol%), THF (2 mL). ^{*b*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

Table S4. Screening of the Pd Catalysts ^a

Entry	Pd Cat.	Yield of (3a) (%) ^b
1	PdBr ₂	52
2	Pd(CH ₃ CN) ₄ (BF ₄) ₂	55
3	PdCl ₂	43
4	PdI ₂	34
5	$Pd(OAc)_2$	Trace
6	Pd(TFA) ₂	52
7	Pd ₂ (dba) ₃	46
8	Pd(PPh ₃) ₄	55

^{*a*}Unless otherwise noted, reactions were conducted under N₂ on 0.2 mmol scale: **1a** (0.2 mmol), **2a** (1 mmol), Pd Catalyst (5 mol%), Ligand (10 mol%), DIPEA (0.6 mmol), $B(C_6F_5)_3$ (20 mol%), THF (2 mL). ^{*b*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

Entry	Solvent	Yield of $(3a) (\%)^{b}$
1	THF	55
2	Toluene	45
3	DCM	55
4	CH ₃ CN	54
5	1,4-Dioxane	53
6	NMP	22
7	Cyhexane	38

^{*a*}Unless otherwise noted, reactions were conducted under N₂ on 0.2 mmol scale: **1a** (0.2 mmol), **2a** (1 mmol), Pd(CH₃CN)₄(BF₄)₂ (5 mol%), Ligand (10 mol%), DIPEA (0.6 mmol), B(C₆F₅)₃ (20 mol%), Solvent (2 mL). ^{*b*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

 Table S6 . The Effect of the Temperature on the Pd-catalyzed C(sp³)-Si Cross-Coupling

 Silylation ^a

Br	OMe H	Pd(CH ₃ CN) ₄ (BF ₄) ₂ (5 mol%) (4-OMeC ₆ H ₄) ₃ P (10 mol%) DIPEA (3.0 equiv) B(C ₆ F ₅) ₃ (20 mol%)	MeO
T T	OMe	THF, Temp, 12 h	Ph H OMe
1a	2a		3a
Entry		Temp (°C)	Yield of (3a) (%) ^b
1		r.t.	27
2		40	37
3		60	55
4		80	43
5		100	40

^{*a*}Unless otherwise noted, reactions were conducted under N₂ on 0.2 mmol scale: **1a** (0.2 mmol), **2a** (1 mmol), Pd(CH₃CN)₄(BF₄)₂ (5 mol%), Ligand (10 mol%), DIPEA (0.6 mmol), B(C₆F₅)₃ (20 mol%), THF (2 mL). ^{*b*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

 Table S7. The Effect of the Bases on the Pd-catalyzed C(sp³)-Si Cross-Coupling

 Silylation ^a

Br + 1a	OMe H Si Ph OMe 2a	Pd(CH ₃ CN) ₄ (BF ₄) ₂ (5 mol%) (4-OMeC ₆ H ₄) ₃ P (10 mol%) Base (3.0 equiv) B(C ₆ F ₅) ₃ (20 mol%) THF, 60 °C, 12 h	MeO Si Ph H OMe 3a
Entry		Base	Yield of $3a (\%)^b$
1	N-	Methyl-N-phenylaniline	N.D.
2		N, N-Dimethylaniline	33
3	2	6-di-tert-butylpyridine	N.D.
4		2,6-Lutidine	N.D.
5	Hexa	methylphosphorictriamide	N.D.
6		Trioctylamine	N.D.
7		DBU	N.D.
8		DABCO	N.D.
9		Cs ₂ CO ₃	<5
10		LiOt-Bu	<5
11		K ₃ PO ₄	<5

^{*a*}Unless otherwise noted, reactions were conducted under N₂ on 0.2 mmol scale: **1a** (0.2 mmol), **2a** (1 mmol), Pd(CH₃CN)₄(BF₄)₂ (5 mol%), Ligand (10 mol%), DIPEA (0.6 mmol), B(C₆F₅)₃ (20 mol%), THF (2 mL). ^{*b*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

Table	S8 .	The	Effect	of	the	Amount	of	2a	on	the	Pd-catalyzed	$C(sp^3)$ -Si
Cross-	Cou	pling	Silylati	on ^a	!							

Br + OMe H Si Ph 1a 2a (X.eq.)	Pd(CH ₃ CN) ₄ (BF ₄) ₂ (5 mol%) (4-OMeC ₆ H ₄) ₃ P (10 mol%) DIPEA (3.0 equiv) B(C ₆ F ₅) ₃ (20 mol%) THF, 60 °C, 12 h	MeO Si Ph H OMe 3a
Entry	X eq.	Yield of (3a) (%) ^b
1	2	57
2	3	52
3	4	54
4	5	55

"Unless otherwise noted, reactions were conducted under N₂ on 0.2 mmol scale: **1a** (0.2 mmol), **2a** (X equiv), Pd(CH₃CN)₄(BF₄)₂ (5 mol%), Ligand (10 mol%), DIPEA (0.6 mmol), B(C₆F₅)₃ (20 mol%), THF (2 mL). ^{*b*}Determined by ¹H NMR using 1,3,5-trimethylbenzene as an internal standard.

3. Experimental Section

3.1 Procedure for the Synthesis of Dihydrosilanes

1a-1v were purchased from commercial suppliers and used without further purification. Following a literature procedure^[1], a flame dried 200 mL, round bottom flask equipped with a water-cooled condenser was charged with magnesium turnings (1.1 equiv), three pieces of iodine partials, THF under nitrogen atmosphere. 2-bromo-1,3-dimethoxybenzene (1.0 equiv) was then slowly added over 15 minutes to the refluxing mixture of THF and magnesium turnings. The mixture was refluxed for an additional 2 hours. The resulting Grignard reagent was cooled to 25 °C for the subsequent steps.

A suspension of LiCl (2.0 equiv, 0.5 M in THF) was prepared, and the Grignard reagent (0.97 M in THF) was added to it, followed by the addition of phenylsilane (1 equiv), all at room temperature under an argon atmosphere. The reaction mixture was stirred in an oil bath maintained at -20 °C for 6 hours. The reaction was quenched by the addition of an aqueous solution of NH₄Cl (10 mL) at room temperature. The resulting mixture was filtered through Celite and washed with ethyl acetate (20 mL×3). The organic phase was dried over Na₂SO₄ and concentrated under vacuum to yield the crude product, which was purified by chromatography on silica gel eluting with PE, affording the title compound (1.5 g, 60% yield) as colorless oil. Other hydrosilanes using the same method or purchased from commercial suppliers.

3.2 Procedure for the Synthesis of 3-(Dimethylsilyl)-N, N-dimethylaniline

Following a literature procedure^[2], 3-bromo-*N*, *N*-dimethylaniline (20.0 mmol, 3.98 g) was dissolved in THF (20 mL), and *n*-BuLi (2.5 M, 9.6 mL, 24 mmol) was added dropwise at -78 °C under a nitrogen atmosphere. The reaction mixture was stirred at this temperature for 1 hour, and then Me₂SiHCl (25 mmol, 2.35 g) was added dropwise via a syringe. After the addition, the reaction mixture was stirred at room temperature for 2 hours. The reaction mixture was quenched with aqueous saturated NH₄Cl and extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄ and filtered, and the filtrate was evaporated under vacuum. The residue was purified by column chromatography (hexane) on silica gel to yield 3-(dimethylsilyl)-*N*, *N*-dimethylaniline (2.15 g, 60% yield) as a colorless oil.

4. Procedure for the Synthesis of Benzylsilanes

A dry 25-mL Schlenk tube containing a magnetic stirring bar was charged with compound **1** (0.2 mmol, if compound **1** was solid), $Pd(CH_3CN)_4(BF_4)_2$ (5 mol%, 4.44mg 0.01 mmol), (4-OMeC₆H₄)₃P (10 mol%, 7.04 mg 0.02 mmol), $B(C_6F_5)_3$ (20 mol%, 20.48 mg, 0.04 mmol). The tube was evacuated and backfilled with N₂. Then, the solvent THF (2 mL) was added to this mixture under N₂. After that, compound **1** (0.2 mmol, if compound **1** was liquid), hydrosilane (0.4 mmol, 2 equiv), DIPEA (77.54 mg, 3 equiv) were added under N₂. The reaction was stirred at 60 °C for 12 hours. After completion of the reaction, the mixture was cooled to room temperature. It was then diluted with 10 mL of CH₂Cl₂. The combined organic phases were concentrated, and the resulting residue was purified by column chromatography on silica gel (PE or PE/EA) to provide the desired product.

5. Spectral Data of Products

Benzyl(2,6-dimethoxyphenyl)(phenyl)silane (3a)

Colorless oil (34 mg, 50% yield), purified by column chromatography (SiO₂, PE/EA= 50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.37 (m, 2 H), 7.29-7.15 (m, 4 H), 7.06 (t, *J* = 8 Hz, 2 H), 7.02-6.91 (m, 3 H), 6.42 (d, *J* = 8 Hz, 2 H), 4.94 (t, *J* = 4 Hz, 1 H), 3.63 (s, 6 H), 2.66 (t, *J* = 4 Hz, 2 H). ¹³C NMR (101 MHz, CDCl₃) δ 164.35, 139.47, 134.43, 134.03, 131.46, 127.90, 127.58, 126.99, 126.40, 123.06, 108.27, 102.62, 54.47, 21.89. HRMS (ESI+) m/z: [M+Na]⁺ calculated for C₂₁H₂₂O₂NaSi: 357.1281, found: 357.1259.

Benzyl(2-methoxyphenyl)(phenyl)silane (3b)

Colorless oil (29 mg, 48% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.42 (m, 2 H), 7.31-7.19 (m, 5 H), 7.04 (t, *J* = 8 Hz, 2 H), 6.97-6.89 (m, 3 H), 6.81 (t, *J* = 7.2 Hz, 1 H), 6.74 (d, *J* = 8.4 Hz, 1 H), 4.79 (t, *J* = 1.8 Hz, 1 H), 3.67 (s, 3 H), 2.72-2.55 (m, 2 H). ¹³C NMR (101 MHz, CDCl₃) δ 164.33, 139.78, 137.34, 135.37, 134.47, 131.93, 129.48, 128.69, 128.27, 127.83, 124.42, 122.32, 120.84, 109.75, 55.24, 22.29. HRMS (ESI+) m/z: [M+Na]⁺ calculated for C₂₀H₂₀ONaSi: 327.1176, found: 327.1180.

3-(benzyldimethylsilyl)-N, N-dimethylaniline (3c)

Colorless oil (38 mg, 70% yield for BnBr; 30 mg, 55% yield for BnCl), purified by column

chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.16 (t, J = 8 Hz, 1 H), 7.09 (t, J = 8 Hz, 2 H), 7.00-6.94 (m, 1H), 6.91-6.86 (m, 2 H), 6.76 (d, J = 4 Hz, 1 H), 6.73-6.65 (m, 2 H), 2.82 (s, 6 H), 2.22 (s, 2 H), 0.15 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 149.96, 140.04, 139.07, 128.60, 128.47, 128.18, 124.10, 122.16, 117.90, 113.73, 40.76, 26.34, -3.22. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₁₇H₂₄NSi: 290.1673, found: 290.1677.

3-(dimethyl(4-methylbenzyl)silyl)-*N*, *N*-dimethylaniline (3d)

Colorless oil (32 mg, 57% yield), purified by chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.16 (t, *J* = 8 Hz, 1 H), 6.92 (d, *J* = 8 Hz, 2 H), 6.82-6.75 (m, 3 H), 6.73-6.63 (m, 2 H), 2.84 (s, 6 H), 2.20 (s, 3 H), 2.18 (s, 2 H), 0.15 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 148.82, 138.14, 135.58, 132.19, 127.75, 127.43, 127.22, 121.06, 116.80, 112.56, 39.62, 24.52, 19.86, -4.34. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₁₈H₂₆NSi: 284.1829, found: 284.1828.

3-((4-(tert-butyl)benzyl)dimethylsilyl)-N, N-dimethylaniline (3e)

Colorless oil (40 mg, 62% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.09 (m, 3 H), 6.87-6.81 (m, 2 H), 6.79 (d, *J* = 8 Hz, 1 H), 6.71-6.65 (m, 2 H), 2.82 (s, 6 H), 2.19 (s, 2 H), 1.21 (s, 9 H), 0.16 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 148.78, 145.61, 138.16, 135.58, 127.41, 127.02, 123.91, 121.02, 116.92, 112.55, 39.63, 33.15, 30.42, 24.44, -4.23. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₂₁H₃₂NSi: 326.2299, found: 326.2300.

3-((4-fluorobenzyl)dimethylsilyl)-N, N-dimethylaniline (3f)

Black oil (37 mg, 64% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.10 (m, 1 H), 6.83-6.72 (m, 5 H), 6.71-6.65 (m, 2 H), 2.84 (s, 6 H), 2.18 (s, 2 H), 0.15 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 159.28 (d, *J*_{CF} = 242.4 Hz), 148.82, 137.58, 134.37 (d, *J*_{CF} = 3.03 Hz), 128.34 (d, *J*_{CF} = 8.08 Hz), 127.49, 120.98, 116.67, 113.72 (d, *J*_{CF} = 21.21 Hz), 112.61, 39.59, 24.26, -4.47. ¹⁹F NMR (471 MHz, CDCl₃) δ -120.18. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₁₇H₂₃FNSi: 288.1578, found: 288.1578.

3-((4-chlorobenzyl)dimethylsilyl)-*N*, *N*-dimethylaniline (3g)

Colorless oil (37 mg, 61% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.15 (t, J = 8 Hz, 1 H), 7.05 (d, J = 8 Hz, 2 H), 6.78 (d, J = 8 Hz, 2 H), 6.73 (d, J = 8 Hz, 1 H), 6.71-6.64 (m, 2 H), 2.83 (s, 6 H), 2.18 (s, 2 H), 0.15 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 149.97, 138.62, 138.51, 129.74, 129.67, 128.66, 128.21, 122.07, 117.77, 113.79, 40.72, 25.91, -3.31. HRMS (ESI+) m/z: [M+Na]⁺ calculated for C₁₇H₂₂ClNNaSi: 326.1102, found: 326.1106.

3-((4-bromobenzyl)dimethylsilyl)-*N*, *N*-dimethylaniline (3h)

Yellow oil (45 mg, 65% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.12 (m, 3 H), 6.76-6.63 (m, 5 H), 2.84 (s, 6 H), 2.16 (s, 2 H),

0.15 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 148.80, 138.02, 137.33, 129.99, 128.98, 127.52, 120.97, 116.66, 116.52, 112.68, 39.59, 24.86, -4.47. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₁₇H₂₃BrNSi: 348.0778, found: 348.0777.

 CF_3

3-(dimethyl(4-(trifluoromethyl)benzyl)silyl)-N, N-dimethylaniline (3i)

Black oil (31 mg, 46% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 8.0 Hz, 2 H), 7.24-7.09 (m, 1 H), 6.94 (d, *J* = 8.0 Hz, 2 H), 6.74-6.69 (m, 2 H), 6.62 (d, *J* = 4 Hz, 1 H), 2.82 (s, 6 H), 2.28 (s, 2 H), 0.17 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 148.83, 143.57, 136.99, 127.57, 127.35, 125.26 (d, *J*_{CF} = 32.32 Hz), 123.91 (q, *J*_{CF} = 4.04 Hz), 123.57 (d, *J*_{CF} = 271.69 Hz), 120.85, 116.59, 112.72, 39.51, 25.79, -4.50. ¹⁹F NMR (471 MHz, Chloroform-d) δ -62.02. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₁₈H₂₅F₃NSi: 333.1546, found: 333.1550.

Methyl 4-(((3-(dimethylamino)phenyl)dimethylsilyl)methyl)benzoate (3j) Colorless oil (33 mg, 50% yield), purified by column chromatography (SiO₂, PE/EA= 50:1).¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8 Hz, 2 H), 7.34-7.20 (m, 1 H), 7.04 (d, J = 8 Hz, 2 H), 6.90-6.71 (m, 3 H), 3.91 (s, 3 H), 2.95 (s, 6 H), 2.41 (s, 2 H), 0.27 (s, 6 H).¹³C NMR (101 MHz, CDCl₃) δ 167.50, 150.00, 146.45, 138.33, 129.61, 128.70, 128.32, 126.09, 122.05, 117.71, 113.86, 52.01, 40.75, 27.36, -3.30. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₁₉H₂₇NO₂Si: 338.1727, found: 338.1726.

4-(((3-(dimethylamino)phenyl)dimethylsilyl)methyl)benzonitrile (3k)

Yellow oil (28 mg, 47% yield), purified by column chromatography (SiO₂, PE/EA= 50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.32 (m, 2 H), 7.19-7.14 (m, 1 H), 6.96-6.87 (m, 2 H), 6.74-6.66 (m, 2 H), 6.65-6.59 (m, 1 H), 2.85 (s, 6 H), 2.30 (s, 2 H), 0.17 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 149.91, 146.62, 137.60, 131.89, 128.87, 128.69, 121.87, 119.52, 117.51, 113.87, 107.61, 40.61, 27.77, -3.40. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₁₈H₂₄N₂Si: 295.1625, found: 295.1628.

3-(dimethyl(4-nitrobenzyl)silyl)-*N*,*N*-dimethylaniline (31)

Yellow oil (19 mg, 30% yield), purified by column chromatography (SiO₂, PE/EA= 50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.92 (m, 2 H), 7.18 (m, 1 H), 6.98-6.94 (m, 2 H), 6.74-6.69 (m, 2 H), 6.64 (d, *J* = 4 Hz, 1 H), 2.85 (s, 6 H), 2.36 (s, 2 H), 0.20 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 150.03, 149.32, 145.10, 137.53, 128.84, 128.76, 123.61, 121.95, 117.55, 114.02, 40.71, 27.92, -3.40. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₁₇H₂₄N₂O₂Si: 315.1523, found: 315.1525.

3-(([1,1'-biphenyl]-4-ylmethyl)dimethylsilyl)-N, N-dimethylaniline (3m)

Yellow oil (38.5 mg, 56% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, $J_1 = 8$, $J_2 = 4$ Hz, 2 H), 7.40-7.29 (m, 4 H), 7.26-7.14 (m, 2 H), 6.97 (d, J = 8 Hz, 2 H), 6.80 (d, J = 8 Hz, 1 H), 6.73-6.67 (m, 2 H), 2.84 (s, 6 H), 2.27 (s, 2 H),

0.20 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 148.80, 140.16, 138.18, 137.81, 135.81, 127.73, 127.63, 127.47, 125.72, 121.00, 116.77, 112.59, 39.59, 24.93, -4.31. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₂₃H₂₈NSi: 346.1986, found: 346.1987.

3-(dimethyl(3-methylbenzyl)silyl)-N, N-dimethylaniline (3n)

Yellow oil (35.5 mg, 63% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.16 (t, J = 8 Hz, 1 H), 6.99 (t, J = 8 Hz, 1 H), 6.82-6.75 (m, 2 H), 6.74-6.65 (m, 4 H), 2.83 (s, 6 H), 2.18 (s, 5 H), 0.15 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 148.82, 138.76, 138.08, 136.42, 128.20, 127.42, 126.91, 124.37, 123.72, 121.01, 116.76, 112.55, 39.61, 25.02, 20.39, -4.35. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₁₈H₂₆NSi: 284.1829, found: 284.1832.

OMe

3-((3-methoxybenzyl)dimethylsilyl)-N, N-dimethylaniline (30)

Colorless oil (33.5 mg, 56% yield), purified by column chromatography (SiO₂, PE/EA= 100:1).¹H NMR (400 MHz, CDCl₃) δ 7.19-7.14 (m, 1 H), 7.02 (t, *J* = 8 Hz, 1 H), 6.78 (d, *J* = 8 Hz, 1 H), 6.73-6.65 (m, 2 H), 6.57-6.47 (m, 2 H), 6.43-6.39 (m, 1 H), 3.62 (s, 3 H), 2.84 (s, 6 H), 2.21 (s, 2 H), 0.17 (s, 6 H).¹³C NMR (101 MHz, CDCl₃) δ 159.51, 150.01, 141.71, 139.09, 129.07, 128.61, 122.20, 121.08, 117.96, 114.00, 113.78, 109.77, 55.10, 40.79, 26.56, -3.17. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₁₈H₂₆NOSi: 300.1778, found: 300.1179.

CI

3-((3-chlorobenzyl)dimethylsilyl)-*N*, *N*-dimethylaniline (3p)

Colorless oil (35 mg, 58% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.13 (m, 1 H), 6.96-6.83 (m, 4 H), 6.81-6.67 (m, 3 H), 2.84 (s, 6 H), 2.23 (s, 2 H), 0.17 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 150.02, 142.37, 138.47, 133.90, 129.36, 128.70, 128.36, 126.63, 124.30, 122.07, 117.79, 113.90, 40.77, 26.39, -3.28. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₁₇H₂₃CINSi: 304.1283, found: 304.1284.

3-((3-bromobenzyl)dimethylsilyl)-N, N-dimethylaniline (3q)

Colorless oil (42 mg, 61% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.17 (t, *J* = 8 Hz, 1 H), 7.11 (d, *J* = 8.0 Hz, 1 H), 7.02 (s, 1 H), 6.95 (t, *J* = 8 Hz, 1 H), 6.76 (dd, *J*₁ = 20, *J*₂ = 8 Hz, 2 H), 6.69 (m, 2 H), 2.84 (s, 6 H), 2.18 (s, 2 H), 0.17 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 148.83, 141.53, 137.26, 130.09, 128.51, 127.54, 126.04, 125.90, 121.12, 120.93, 116.63, 112.76, 39.63, 25.20, -4.47. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₂₃H₂₈NSi: 348.0778, found: 348.0779.

3-(dimethyl(2-methylbenzyl)silyl)-*N*, *N*-dimethylaniline (3r)

Colorless oil (35.5 mg, 63% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.14 (m, 1 H), 7.00-6.95 (m, 2 H), 6.93-6.86 (m, 2 H), 6.77 (d, J = 8 Hz, 1 H), 6.71-6.68 (m, 2 H), 2.83 (s, 6 H), 2.23 (s, 2 H), 2.02 (s, 3 H), 0.18 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 148.84, 138.22, 137.37, 133.93, 129.02, 127.88, 124.51, 123.13, 120.96, 121.01, 116.69, 112.65, 39.64, 22.04, 19.23, -4.01. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₁₈H₂₆NSi: 284.1829, found: 284.1837.

3-((2-fluorobenzyl)dimethylsilyl)-N, N-dimethylaniline (3s)

Colorless oil (34.5 mg, 60% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.11 (m, 1 H), 6.98-6.92 (m, 1 H), 6.89-6.83 (m, 3 H), 6.78 (d, J = 4 Hz, 1 H), 6.74 (d, J = 8 Hz, 1 H), 6.71-6.65 (m, 1 H), 2.84 (s, 6 H), 2.23 (s, 2 H), 0.17 (s, 6 H).¹³C NMR (101 MHz, CDCl₃) δ 159.29 (d, J = 243.41 Hz), 148.84 , 137.73 , 129.56 (d, $J_{CF} =$ 5.05 Hz), 127.49 , 126.09 (d, $J_{CF} = 17.17$ Hz), 124.52 (d, $J_{CF} = 7.07$ Hz), 122.59 (d, $J_{CF} = 4.04$ Hz), 120.92 , 116.59 , 113.93 (d, $J_{CF} = 22.22$ Hz), 112.64 , 39.61 , 17.66 (d, $J_{CF} = 3.03$ Hz), -4.40. ¹⁹F NMR (471 MHz, CDCl₃) δ -116.98. HRMS (ESI+) m/z: [M+Na]⁺ calculated for C₁₇H₂₂FNNaSi: 310.1398, found: 310.1397.

3-((3,5-dimethylbenzyl)dimethylsilyl)-N, N-dimethylaniline (3t)

Colorless oil (31.5 mg, 53% yield), purified by column chromatography (SiO₂, PE/EA= 100:1).¹H NMR (400 MHz, CDCl₃) δ 7.17 (t, J = 8 Hz, 1 H), 6.78 (d, J = 8 Hz, 1 H), 6.74 (d, J = 2 Hz, 1 H), 6.69 (m, 1 H), 6.63 (s, 1 H), 6.53 (s, 2 H), 2.85 (s, 6 H), 2.15 (m, 8 H), 0.15 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 150.00, 139.83, 139.43, 137.49, 128.57, 126.44, 125.82, 122.23, 117.98, 113.74, 40.81, 26.01, 21.42, -3.16. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₁₉H₂₈NSi: 298.1986, found: 298.1988.

3-((3,5-dimethoxybenzyl)dimethylsilyl)-*N*, *N*-dimethylaniline (3u)

Colorless oil (36 mg, 55% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.17-7.09 (t, *J* = 8 Hz, 1 H), 6.75 (d, *J* = 8 Hz, 1 H), 6.71-6.63 (m, 2 H), 6.09 (t, *J* = 2 Hz, 1 H), 6.01 (d, *J* = 4 Hz, 2 H), 3.58 (s, 6 H), 2.80 (s, 6 H), 2.14 (s, 2 H), 0.15 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 160.54, 150.00, 142.45, 139.04, 128.59, 122.19, 117.96, 113.76, 106.52, 96.53, 55.20, 40.77, 26.95, -3.17. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₁₉H₂₈NO₂Si :330.1884 , found: 330.1882.

3-((3,5-di-tert-butylbenzyl)dimethylsilyl)-N, N-dimethylaniline (3v)

Colorless oil (41 mg, 54% yield), purified by column chromatography (SiO₂, PE/EA= 100:1).¹H NMR (400 MHz, CDCl₃) δ 7.13 (m, 1 H), 7.02 (t, J = 4 Hz, 1 H), 6.75 (d, J = 8 Hz, 1 H), 6.70-6.63 (m, 4 H), 2.81 (s, 6 H), 2.20 (s, 2 H), 1.17 (s, 18 H), 0.16 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 149.04, 148.75, 138.02, 137.44, 127.35, 121.70, 121.10, 116.72, 112.47, 39.61, 33.54, 30.42, 25.58, -4.45. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₂₅H₄₀NSi: 382.2925, found: 382.2925.

3-(dimethyl(naphthalen-2-ylmethyl)silyl)-N, N-dimethylaniline (3w)

Colorless oil (35.5 mg, 56% yield), purified by column chromatography (SiO₂, PE/EA= 100:1).¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8 Hz, 1 H), 7.61-7.55 (m, 2 H), 7.34-7.23 (m, 3 H), 7.19-7.13 (m, 1 H), 7.06-6.99 (m, 1 H), 6.80-6.76 (m, 1 H), 6.73-6.64 (m, 2 H), 2.78 (s, 6 H), 2.38 (s, 2 H), 0.17 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 148.84, 137.86, 136.68, 132.72, 130.00, 127.48, 127.05, 126.49, 126.39, 125.97, 124.64, 124.54, 123.31, 120.98, 116.71, 112.60, 39.55, 25.52, -4.29. HRMS (ESI+) m/z: [M+H]⁺ calculated for C₂₁H₂₆NSi: 320.1829, found: 320.1826.

([1,1'-biphenyl]-4-ylmethyl)dimethyl(phenyl)silane (3x)

Colorless oil (46 mg, 76% yield), purified by column chromatography (SiO₂, PE/EA= 100:1).¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8 Hz, 2 H), 7.42-7.37 (m, 2 H), 7.36-7.20 (m, 8 H), 6.91 (d, J = 8 Hz, 2 H), 2.26 (s, 2 H), 0.19 (s, 6 H).¹³C NMR (101 MHz, CDCl₃) δ 148.80, 140.15, 138.18, 137.82, 135.79, 127.72, 127.62, 127.46, 125.73, 125.72, 125.70, 120.99, 116.77, 112.59, 39.62, 24.93, -4.31. HRMS (ESI+) m/z: [M+Na]+ calculated for C₂₁H₂₂NaSi: 325.1383, found: 325.1396.

([1,1'-biphenyl]-4-ylmethyl)(methyl)diphenylsilane (3y)

Colorless oil (32 mg, 44% yield), purified by column chromatography (SiO₂, PE/EA= 100:1).¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8 Hz, 2 H), 7.40 (d, J = 8 Hz, 4 H), 7.33-7.18 (m, 11 H), 6.85 (d, J = 8 Hz, 2 H), 2.57 (s, 2 H), 0.42 (s, 3 H). ¹³C NMR (101 MHz, CDCl₃) δ 140.00, 137.04, 136.02, 135.23, 133.65, 128.31, 128.01, 127.62, 126.76, 125.75, 125.71, 125.66, 23.12, -5.81. HRMS (ESI+) m/z: [M+Na]⁺ calculated for C₂₆H₂₄NaSi: 385.1539, found: 385.1542.

([1,1'-biphenyl]-4-ylmethyl)(2-methoxyphenyl)(phenyl)silane (3z)

Colorless oil (51.5 mg, 68% yield), purified by column chromatography (SiO₂, PE/EA= 100:1).¹H NMR (400 MHz, CDCl₃) δ 7.51-7.39 (m, 4 H), 7.32-7.14 (m, 11 H), 6.99 (d, *J* = 8 Hz, 2 H), 6.81 (t, *J* = 8 Hz, 1 H), 6.73 (d, *J* = 8 Hz, 1 H), 4.82 (s, 1 H), 3.65 (s, 3 H), 2.67 (qd, *J*₁ = 16, *J*₂ = 4 Hz, 2 H).¹³C NMR (101 MHz, CDCl₃) δ 163.14, 140.09, 137.87, 136.19, 136.05, 134.22, 133.18, 130.81, 128.37, 127.90, 127.59, 126.69, 125.78, 125.72, 121.01, 119.67, 108.54, 54.05, 20.80. HRMS (ESI+) m/z: [M+K]⁺ calculated for C₂₇H₂₆OKSi : 433.1385, found: 433.1387.

([1,1'-biphenyl]-4-ylmethyl)(tert-butyl)(phenyl)silane (3aa)

Colorless oil (42mg, 63% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.37 (m, 4 H), 7.35-7.21 (m, 7 H), 7.17 (t, *J* = 8 Hz, 1 H), 7.01 (d, *J* = 8 Hz, 2 H), 4.10 (t, *J* = 4 Hz, 1 H), 2.42 (d, *J* = 4 Hz, 2 H), 0.89 (s, 9 H). ¹³C NMR (101 MHz, CDCl₃) δ 141.18, 138.99, 137.27, 135.58, 133.74, 129.57, 129.11, 128.77, 127.82, 127.06, 126.91, 27.36, 19.06, 17.68. HRMS (ESI+) m/z: [M+Na]⁺ calculated for C₂₃H₂₆NaSi : 353.1701, found: 353.1710.

([1,1'-biphenyl]-4-ylmethyl)diphenylsilane (3ab)

Colorless oil (37 mg, 53% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.36 (m, 6 H), 7.34-7.16 (m, 10 H), 7.13-7.04 (m, 1 H), 6.98 (d, *J* = 8 Hz, 2 H), 4.89 (t, *J* = 4 Hz, 1 H), 2.63 (d, *J* = 4 Hz, 2 H). ¹³C NMR (101 MHz, CDCl₃) δ 139.98, 136.75, 136.37, 134.24, 133.31, 132.44, 128.96, 128.74, 128.05, 127.63, 126.94, 126.72, 126.55, 125.91, 125.81, 125.76, 20.96. HRMS (ESI+) m/z: [M+Na]⁺ calculated for C₂₅H₂₂NaSi : 373.1378, found: 373.1368.

([1,1'-biphenyl]-4-ylmethyl)(4-methoxyphenyl)(phenyl)silane (3ac)

Colorless oil (42 mg, 55% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.43 (m, 2 H), 7.43-7.37 (m, 2 H), 7.35-7.19 (m, 10 H), 6.97 (d, *J* = 8 Hz, 2 H), 6.80 (d, *J* = 8 Hz, 2 H), 4.86 (t, *J* = 4 Hz, 1 H), 3.70 (s, 3 H), 2.60 (s, 2 H),. ¹³C NMR (101 MHz, CDCl₃) δ 159.94, 140.00, 136.93, 136.29, 135.77, 134.18, 132.93, 128.64, 128.05, 127.63, 126.90, 125.88, 125.80, 125.75, 123.00, 112.75, 53.96, 21.23. HRMS (ESI+) m/z: [M+Na]⁺ calculated for C₂₆H₂₄NaOSi : 403.1494, found: 403.1489.

([1,1'-biphenyl]-4-ylmethyl)(2,4-dimethylphenyl)(phenyl)silane (3ad)

Colorless oil (51 mg, 67% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.41 (m, 2 H), 7.39-7.13 (m, 11 H), 7.04-6.96 (m, 2 H), 6.95 - 6.84 (m, 2 H), 4.95 (t, *J* = 4 Hz, 1 H), 2.63 (s, 2 H), 2.22 (s, 3 H), 2.17 (s, 3 H). ¹³C NMR (101 MHz, CDCl₃) δ 143.34, 140.01, 139.05, 137.23, 136.30, 135.02, 134.10, 133.02, 129.70, 128.49, 128.01, 127.68, 127.61, 126.86, 125.90, 125.75, 124.89, 21.52, 20.77, 20.35. HRMS (ESI+) m/z: [M+Na]⁺ calculated for C₂₇H₂₆NaSi : 401.1701, found: 401.1712.

([1,1'-biphenyl]-4-ylmethyl)(3,5-dimethylphenyl)(phenyl)silane (3ae)

Colorless oil (52 mg, 69% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.39 (m, 4 H), 7.32-7.26 (m, 5 H), 7.25-7.15 (m, 3 H), 7.05-7.01 (m, 2 H), 6.99-6.92 (m, 3 H), 4.84 (t, *J* = 4 Hz, 1 H), 2.60 (d, *J* = 4 Hz, 2 H), 2.18 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 141.22, 138.15, 137.50, 137.41, 135.41, 133.90, 133.23, 133.07, 131.70, 129.80, 129.25, 128.80, 128.06, 127.05, 126.96, 126.93, 22.22, 21.47. HRMS (ESI+) m/z: [M+Na]⁺ calculated for C₂₇H₂₆NaSi : 401.1701, found: 401.1705.

([1,1'-biphenyl]-4-ylmethyl)(cyclopropyl)(phenyl)silane (3af)

Colorless oil (32.5 mg, 52% yield), purified by column chromatography (SiO₂, PE/EA= 100:1). ¹H NMR (400 MHz, CDCl₃) δ 8.25-8.17 (m, 4 H), 8.12-7.92 (m, 8 H), 7.80 (d, *J* = 8.0 Hz, 2 H), 4.84 (q, *J* = 4 Hz, 1 H), 3.14 (d, *J* = 4 Hz, 2 H), 1.42-1.29 (m, 2 H), 1.06 - 0.81 (m, 2 H), 0.48 (tt, *J*₁ = 8, *J*₂ = 4.0 Hz, 1 H). ¹³C NMR (101 MHz, CDCl₃) δ 141.20, 138.59, 137.33, 135.00, 134.42, 129.68, 129.08, 128.80, 127.94, 127.03, 126.94, 126.92, 21.93, 2.30, 2.21, -8.31. HRMS (ESI+) m/z: [M+Na]⁺ calculated for C₂₂H₂₂NaSi : 337.1388, found: 337.1392.

6. Gram-Scale Synthesis and Synthetic Applications

6.1 Gram-scale Synthesis

In a 100-mL Schlenk tube with a magnetic stir bar, $Pd(CH_3CN)_4(BF_4)_2$ (5 mol%, 4.44mg 0.01 mmol), (4-OMeC₆H₄)₃P (10 mol%, 7.04 mg 0.02 mmol), $B(C_6F_5)_3$ (20 mol%, 20.48 mg, 0.04 mmol) were added. The tube was evacuated and backfilled with N₂. Then, the solvent THF (2 mL) was added to this mixture under N₂. After that, compound **1a** (0.2 mmol, 34 mg), 3-(dimethylsilyl)-*N*, *N*-dimethylaniline **2c** (0.4 mmol, 2 equiv) was added under N₂, along with DIPEA (0.6 mmol, 77.54 mg). The reaction was stirred at room temperature for 12 h. After completion of the reaction, the mixture was cooled to room temperature. It was then diluted with 10 mL of CH₂Cl₂. The combined organic phases were concentrated, and the resulting residue was purified by column chromatography on silica gel (PE/EA = 50:1, to provide the desired product **3c** in good yield.

6.2 Synthetic Applications

Following a literature procedure^[3], The reaction of **3c** (0.3 mmol) and TBAF (5 mol%) in THF (3 mL) and found that **3c** is converted into **4** as colorless oil (32 mg, 55% yield) within 30 min at 0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.15 (t, J = 8 Hz, 1 H), 6.87-6.79 (m, 2 H), 6.67 (dd, $J_1 = 8, J_2 = 4$ Hz, 1 H), 2.82 (s, 6 H), 2.39 (bs, 1 H), 0.25 (s, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ 150.07,

139.76, 128.69, 121.51, 117.15, 114.28, 40.74, 0.00. HRMS (ESI+) m/z: [M+Na]⁺ calculated for C₁₀H₁₇NNaOSi : 218.0977, found: 218.0979.

7. Mechanistic Studies

Following a literature procedure^[4], a Schlenk tube containing vacuum dried Pd₂dba₃•CHCl₃ (100 mg, 0.097 mmol) in dry CH₂Cl₂ (3 mL) under N₂ was used. To this, a solution of PPh₃ (101.4 mg, 0.387 mmol) in dry CH₂Cl₂ (2.5 mL) was added. The mixture was stirred for 0.2 h at room temperature until an orange color persisted. Then, a solution of benzyl bromide (0.5 mmol) in CH₂Cl₂ (2 mL) was added in one portion. The mixture turned to a yellow color after a few minutes, while stirring was continued for 0.5 h. The solution was concentrated in vacuo to one-third of its original volume and petroleum ether added to precipitate the titled complex. The yellow solid was collected by filtration and washed with diethyl ether (**5** ([**Pd/L]-S**), 90 mg, 58% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.45 (m, 10 H), 7.35-7.22 (m, 20 H), 6.99 (t, *J* = 8.0 Hz, 1 H), 6.84 (t, *J* = 8 Hz, 2 H), 6.39 (d, *J* = 8 Hz, 2 H), 2.72 (bs, 2 H). ³¹P NMR (162 MHz, CDCl₃) δ 25.54 (bs), 23.17(s).

A dry 25-mL Schlenk tube containing a magnetic stirring bar was loaded with compound 5 ([Pd/L]-S) (0.2 mmol, 160 mg) and then evacuated and backfilled with N₂. Next, the solvent THF (2 mL) was added into this mixture under N₂. Afterward, hydrosilane (0.4 mmol, 2 equiv) and DIPEA (77.54 mg, 3 equiv) were added under N₂. The reaction was stirred at 60 °C for 12 hours.

Upon completion of the reaction, the mixture was cooled to room temperature. Subsequently, it was diluted with 10 mL of CH₂Cl₂. The combined organic phases were concentrated, and the resulting residue was purified by column chromatography on silica gel (PE/EA = 50:1) to provide the desired product **3c** (21 mg, 38% yield).

8. References

[1] Hirone, N.; Sanjiki, H.; Tanaka, R.; Hata, T.; Urabe, H., Acceleration of the substitution of silanes with Grignard reagents by using either LiCl or YCl₃/MeLi. *Angew. Chem. Int. Ed.*, **2010**, *49*, 7762-7764.

[2] Ma, Y.; Zhang, L.; Luo, Y.; Nishiura, M.; Hou, Z., B(C₆F₅)₃-Catalyzed C-Si/Si-H Cross-Metathesis of Hydrosilanes. *J. Am. Chem. Soc.*, **2017**, *139*, 12434-12437.

[3] Han, J.; Qin, Y.; Zhao, D., C(sp3)-H Bond Arylation and Amidation of Sibound Methyl Group via Directing Group Strategy. *ACS Catal.*, **2019**, *9*, 6020-6026.

[4] Yu, W.; Tsoi Y.; Zhou, Z.; Chan A., Palladium-catalyzed cross coupling reaction of benzyl bromides with diazoesters for stereoselective synthesis of (E)- α , β -diarylacrylates. *Org. Lett.*, **2008**, *11*, 469-472.

9. Copies of ¹H and ¹³C NMR spectra

¹H NMR of 3a

7.146 7.146 7.146 7.146 7.146 7.125

¹H NMR of 3b

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

¹H NMR of 3c

f1 (ppm) -10

¹⁹F NMR of 3f

 $= \int_{t}^{t} \int_{t} \int_{t$

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹H NMR of 3g

¹H NMR of 3h

 $\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{3}}}$

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 f1 (ppm)

¹H NMR of 3j

¹H NMR of 3k

¹H NMR of 3l

¹H NMR of 3m

¹H NMR of 3p

80 70 f1 (ppm) -10

— 0.18 — 0.00

¹H NMR of 3s

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2; f1 (ppm)

¹H NMR of 3t

90 80 f1 (ppm)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR of 3v

¹H NMR of 3w

¹H NMR of 3x

¹H NMR of 3y

f1 (ppm) -10

¹H NMR of 3z

¹H NMR of 3aa

¹H NMR of 3ab

 $<_{2.63}^{2.64}$

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

00.0 —

¹H NMR of 3ac

¹H NMR of 3ad

¹H NMR of 3af

8.24 8.22 8.20 8.21 8.21 8.13 8.14 8.14 8.14 8.14 8.14 8.14 8.13 8.14 8.13 8.14 8.13 8.14 8.13 8.14 8.13 8.13 8.14 8.13 8.13 8.13 8.13 8.14 8.13 8.13 8.13 8.13 8.13 8.13 8.14 8.13 8.14 8.13 8.14 8.13 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14	4.85 4.84 4.83 4.83	3.14 3.13 3.13 3.13 7.1.35 1.1	0.52 0.51 0.50 0.49 0.48 0.48 0.48 0.47 0.45

