Supporting Information

Chromium-Catalyzed Allylic Defluorinative Acylation of Trifluoromethyl-Substituted Alkenes with Acyl Oxime Esters

Hongzhang Shi, Haiyan Dong, and Chuan Wang*

Department of Chemistry, University of Science and Technology of China, Hefei,

Anhui 230026, P. R. China

E-mail: <u>chuanw@ustc.edu.cn</u>

Table of Contents

General Information	S2
Preparation of Substrates	S3
General Procedure for Chromium-Catalyzed Allylic Defluorinative Acylation of	
Trifluoromethyl-Substituted Alkenes with Acyl Oxime Esters	S4
Characterization Data of gem-Difluoroalkenes 3	S5
Control Experiments.	S27
Kinetic Studies	S33
References	S38
¹ H-, ¹³ C-, and ¹⁹ F-NMR Spectra	

General Information

Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification. ¹H-NMR and ¹³C NMR spectra were recorded on a Bruker Advance 400M or 500M NMR spectrometers at ambient temperature in CDCl3 at 400 and 101 MHz or at 500 and 126 MHz.¹⁹F NMR were reported as ¹⁹F exp. comp. pulse decoupling (F19CPD) unless otherwise noted. The chemical shifts are given in ppm relative to tetramethylsilane [¹H: δ (SiMe₄) = 0.00 ppm] as an internal standard or relative to the resonance of the solvent [¹H: δ (CDCl₃) = 7.26, ¹³C: δ (CDCl₃) = 77.16 ppm]. Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); quin (quintet); dd (doublet of doublets); dt (doublet of triplets); m (multiplets), etc. Coupling constants are reported as *J* values in Hz. High resolution mass spectral analysis (HRMS) was performed on Waters XEVO G2 Q-TOF. Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system.

Unless otherwise noted, all reagents and starting materials were purchased from commercial vendors and used without further purification.

Preparation of Substrates

The trifluoromethyl-substituted alkenes $1\mathbf{a}-\mathbf{e}$, $\mathbf{1}\mathbf{1}\mathbf{f}-\mathbf{j}$, $\mathbf{1}\mathbf{k}-\mathbf{u}$, $\mathbf{1}$ and $1\mathbf{v}^2$ are known compounds in the literature.

Synthesis of Oxime Esters

The Oxime Esters 1a-j,³ and $1k-n^4$ are known compounds in the literature.

General Procedure for Chromium-Catalyzed Allylic Defluorinative Acylation of Trifluoromethyl-Substituted Alkenes with Acyl Oxime Esters

CrCl₃ (3.2 mg, 0.02 mmol, 10 mol%), 2,2':6',2"-terpyridine (**L1**) (7.0 mg, 0.03 mmol, 15 mol%), Zn (26.0 mg, 0.4 mmol, 2.0 equiv), K₃PO₄ (127.0 mg, 0.6 mmol, 3.0 qeuiv), and the oxime esters **2** (0.4 mmol, 2.0 equiv) were placed in a Schlenk tube equipped with a stir bar. Next, the Schlenk tube was evacuated and filled with nitrogen (three cycles). To this mixture, CH₃CN/DMA (3:1) (1.0 mL) was added under nitrogen atmosphere. After stirring at 40 °C for 15 minutes, the trifluoromethyl-substituted alkenes **1** (0.2 mmol, 1.0 equiv) were added under a positive flow of nitrogen. The reaction mixture was stirred at 40 °C for 12 hours before it was quenched by addition of water. The aqueous phase was extracted with ethyl acetate (3×20 mL). The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude materials were purified through column chromatography on silica gel (petroleum ether/ethyl acetate) to give the *gem*-difluoroalkenes **3** as the products.

Characterization Data of gem-Difluoroalkenes 3

4,4-Difluoro-3-(4-methoxyphenyl)-1-(*p*-tolyl)but-3-en-1-one (3aa)

The title compound **3aa** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (48.3 mg, 80%).

¹**H NMR (400 MHz, Chloroform-***d*) δ = 7.87 (d, *J* = 8.1 Hz, 2H), 7.29–7.22 (m, 4H), 6.85 (d, *J* = 8.8 Hz, 2H), 4.01 (s, 2H), 3.78 (s, 3H), 2.42 (s, 3H) ppm.

¹³**C NMR (126 MHz, Chloroform-***d***)** δ = 195.3 (t, *J* = 2.9 Hz), 158.9, 154.6 (dd, *J* = 291.1, 287.5 Hz), 144.4, 134.0, 129.5(2C), 129.3 (t, *J* = 3.5 Hz, 2C), 128.4 (2C), 125.8 (t, *J* = 3.9 Hz), 114.0 (2C), 86.9 (dd, *J* = 21.9, 17.6 Hz), 55.3, 38.4 (d, *J* = 2.3 Hz), 21.8 ppm.

¹⁹**F NMR (376 MHz, Chloroform-***d***)** $\delta = -89.39$ (d, J = 40.1 Hz, 1F), -90.20 (d, J = 40.0 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for C₁₈H₁₆F₂O₂Na [M+Na]⁺: 325.1011, found: 325.1011.

4,4-Difluoro-3-(4-methoxyphenyl)-1-phenylbut-3-en-1-one (3ab)

The title compound **3ab** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (32.8mg, 57%).

¹H NMR (400 MHz, Chloroform-*d*) δ = 7.97 (d, J = 7.1 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.24 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 4.03 (s, 2H), 3.78 (s, 3H) ppm.

¹³C NMR (126 MHz, Chloroform-d) δ = 195.7 (t, J = 3.0 Hz), 158.9, 154.7 (dd, J =

291.0, 287.4 Hz), 136.4, 133.6, 129.3 (t, J = 3.5 Hz, 2C), 128.8 (2C), 128.3 (2C), 125.7 (t, J = 3.9 Hz), 114.1 (2C), 86.8 (dd, J = 21.9, 17.8 Hz), 55.4, 38.6 (d, J = 2.4 Hz) ppm. ¹⁹F NMR (376 MHz, Chloroform-*d*) $\delta = -89.29$ (d, J = 39.6 Hz, 1F), -90.11 (d, J = 39.6 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for $C_{17}H_{15}F_2O_2$ [M+H]⁺: 289.1035, found: 289.1039.

4,4-Difluoro-3-(4-methoxyphenyl)-1-(*m*-tolyl)but-3-en-1-one (3ac)

The title compound **3ac** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (45.3 mg, 75%).

¹**H NMR (400 MHz, Chloroform-***d*) δ = 7.79–7.74 (m, 2H), 7.42–7.33 (m, 2H), 7.24 (d, *J* = 8.6 Hz, 2H), 6.85 (d, *J* = 8.8 Hz, 2H), 4.02 (s, 2H), 3.78 (s, 3H), 2.40 (s, 3H) ppm.

¹³**C NMR (126 MHz, Chloroform-***d***)** δ = 195.8 (t, *J* =2.8 Hz), 158.8, 154.6 (dd, *J* = 291.2, 287.4 Hz), 138.6, 136.4, 134.2, 129.2 (t, *J* = 3.5 Hz, 2C), 128.7, 128.6, 125.7 (t, *J* = 3.9 Hz), 125.4, 113.9 (2C), 86.8 (dd, *J* = 22.0, 17.6 Hz), 55.2, 38.5 (d, *J* = 2.5 Hz), 21.4 ppm.

¹⁹**F NMR (376 MHz, Chloroform-***d***)** $\delta = -89.34$ (d, J = 39.7 Hz, 1F), -90.12 (d, J = 39.6 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for C₁₈H₁₆F₂O₂Na [M+Na]⁺: 325.1011, found: 325.1017.

1-(4-(Benzyloxy)phenyl)-4,4-difluoro-3-(4-methoxyphenyl)but-3-en-1-one (3ad)

The title compound 3ad was isolated through column chromatography (silica gel,

petroleum ether/ethyl acetate 10:1) as a colorless oil (64.6 mg, 82%).

¹**H NMR (500 MHz, Chloroform-***d*) δ = 7.96 (d, *J* = 8.8 Hz, 2H), 7.47–7.32 (m, 5H), 7.25 (d, *J* = 8.5 Hz, 2H), 7.02 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 5.14 (s, 2H), 3.98 (s, 2H), 3.78 (s, 3H) ppm.

¹³**C NMR (126 MHz, Chloroform-***d***)** δ = 194.2 (t, *J* = 2.8 Hz), 162.9, 158.8, 154.6 (dd, *J* = 291.0, 287.3 Hz), 136.2, 130.6 (2C), 129.7, 129.3 (t, *J* = 3.5 Hz, 2C), 128.8 (2C), 128.4, 127.6 (2C), 125.8 (t, *J* = 3.9 Hz), 114.8 (2C), 114.0 (2C), 87.0 (dd, *J* = 21.9, 17.5 Hz), 70.3, 55.3, 38.2 (d, *J* = 2.3 Hz) ppm.

¹⁹**F NMR (471 MHz, Chloroform-***d***)** $\delta = -89.42$ (d, J = 40.0 Hz, 1F), -90.22 (d, J = 39.9 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for C₂₄H₂₁F₂O₃ [M+H]⁺: 395.1453, found: 395.1465.

4,4-Difluoro-1,3-bis(4-methoxyphenyl)but-3-en-1-one (3ae)

The title compound **3ae** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (60.4 mg, 95%).

¹H NMR (400 MHz, Chloroform-*d*) δ = 7.95 (d, J = 8.9 Hz, 2H), 7.24 (d, J = 7.7 Hz, 2H), 6.94 (d, J = 8.9 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 3.98 (s, 2H), 3.87 (s, 3H), 3.78 (s, 3H) ppm.

¹³**C NMR (101 MHz, Chloroform-***d***)** δ = 194.2 (t, *J* = 2.8 Hz), 163.8, 158.8, 154.6 (dd, *J* = 290.9, 287.3 Hz), 130.6 (2C), 129.5, 129.3 (t, *J* = 3.5 Hz, 2C), 125.8 (t, *J* = 3.9 Hz), 114.03 (2C), 113.96 (2C), 87.1 (dd, *J*= 21.9, 17.5 Hz), 55.6, 55.3, 38.2 (d, *J* = 2.4 Hz) ppm.

¹⁹**F NMR (376 MHz, Chloroform-***d***)** $\delta = -89.48$ (d, J = 40.0 Hz, 1F), -90.28 (d, J = 40.1 Hz, 1F) ppm.

HRMS (**ESI**) m/z calculated for C₁₈H₁₆F₂O₃Na [M+Na]⁺: 341.0960, found: 341.0968.

4,4-Difluoro-1-(2-methoxyphenyl)-3-(4-methoxyphenyl)but-3-en-1-one (3af)

The title compound **3af** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (41.4 mg, 65%).

¹**H NMR (400 MHz, Chloroform-***d*) δ = 7.64 (d, *J* = 7.6 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 1H), 7.22 (d, *J* = 8.7 Hz, 2H), 7.01–6.95 (m, 2H), 6.84 (d, *J* = 8.8 Hz, 2H), 4.05 (s, 2H), 3.90 (s, 3H), 3.78 (s, 3H) ppm.

¹³**C NMR** (**101 MHz, Chloroform-***d***)** δ = 198.0 (t, *J* = 2.9 Hz), 158.7 (2C), 154.7 (dd, *J* = 290.9, 287.2 Hz), 133.9, 130.7, 129.2 (t, *J* = 3.5 Hz, 2C), 127.7, 126.1 (t, *J* = 4.0 Hz), 120.9, 113.9 (2C), 111.5, 87.3 (dd, *J* = 22.2, 16.7 Hz), 55.6, 55.3, 43.4 (d, *J* = 2.4 Hz) ppm.

¹⁹**F NMR (376 MHz, Chloroform-***d***)** $\delta = -89.65$ (d, J = 39.9 Hz, 1F), -90.72 (d, J = 40.2 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for C₁₈H₁₆F₂O₃Na [M+Na]⁺: 341.0960, found: 341.0962.

4,4-Difluoro-1-(3-methoxyphenyl)-3-(4-methoxyphenyl)but-3-en-1-one (3ag)

The title compound **3ag** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (38.8 mg, 61%).

¹**H NMR (400 MHz, Chloroform-***d***)** δ = 7.33 (d, *J* = 7.7 Hz, 1H), 7.26 (s, 1H), 7.16 (t, *J* = 7.9 Hz, 1H), 7.02 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 6.7 Hz, 1H), 6.64 (d, *J* = 8.2 Hz, 2H), 3.80 (s, 2H), 3.62 (s, 3H), 3.56 (s, 3H) ppm.

¹³C NMR (126 MHz, Chloroform-*d*) $\delta = 195.5$ (t, J = 2.9 Hz), 160.0, 158.9, 154.7 (dd,

J = 291.1, 287.5 Hz), 137.8, 129.8, 129.3 (t, *J* = 3.5 Hz, 2C), 125.7 (t, *J* = 3.9 Hz), 120.8, 120.1, 114.1 (2C), 112.5, 86.9 (dd, *J* = 21.7, 17.9 Hz), 55.6, 55.4, 38.7 (d, *J* = 2.5 Hz) ppm.

¹⁹**F NMR (376 MHz, Chloroform-***d***)** $\delta = -89.30$ (d, J = 39.9 Hz, 1F), -90.13 (d, J = 40.0 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for C₁₈H₁₇F₂O₃ [M+H]⁺: 319.1140, found: 319.1167.

1-(4-Chlorophenyl)-4,4-difluoro-3-(4-methoxyphenyl)but-3-en-1-one (3ah)

The title compound **3ah** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (34.8 mg, 54%).

¹**H NMR (400 MHz, Chloroform-***d***)** δ = 7.89 (d, *J* = 11.0 Hz, 2H), 7.44 (d, *J* = 10.8 Hz, 2H), 7.21 (d, *J* = 9.7 Hz, 2H), 6.85 (d, *J* = 11.0 Hz, 2H), 3.99 (s, 2H), 3.78 (s, 3H) ppm.

¹³C NMR (126 MHz, Chloroform-*d*) $\delta = 194.6$ (t, J = 2.8 Hz), 159.0, 154.6 (dd, J = 291.1, 288.7 Hz), 140.1, 134.7, 129.7 (2C), 129.3 (t, J = 3.4 Hz, 2C), 129.2 (2C), 125.4 (t, J = 3.8 Hz), 114.1 (2C), 86.7 (dd, J = 21.8, 18.1 Hz), 55.4, 38.6 (d, J = 2.3 Hz) ppm. ¹⁹F NMR (376 MHz, Chloroform-*d*) $\delta = -89.09$ (d, J = 39.5 Hz, 1F), -89.89 (d, J = 39.7 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for $C_{17}H_{14}^{35}ClF_2O_2$ [M+H]⁺: 323.0645, found: 323.0617.

4,4-Difluoro-1-(4-fluorophenyl)-3-(4-methoxyphenyl)but-3-en-1-one (3ai)

The title compound 3ai was isolated through column chromatography (silica gel,

petroleum ether/ethyl acetate 10:1) as a colorless oil (23.3 mg, 38%).

¹**H** NMR (400 MHz, Chloroform-*d*) $\delta = 7.99$ (dd, J = 8.8, 5.4 Hz, 2H), 7.23 (d, J = 8.2 Hz, 2H), 7.14 (t, J = 8.6 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 4.00 (s, 2H), 3.78 (s, 3H) ppm.

¹³**C NMR (126 MHz, Chloroform-***d*) δ = 194.2 (t, *J* = 2.8 Hz), 166.0 (d, *J* = 255.3 Hz), 159.0, 154.6 (dd, *J* = 291.7, 287.6 Hz), 132.8 (d, *J* = 3.1 Hz), 131.0 (d, *J* = 9.3 Hz, 2C), 129.3 (t, *J* = 3.5 Hz, 2C), 125.5 (t, *J* = 3.8 Hz), 116.0 (d, *J* = 22.0 Hz, 2C), 114.1 (2C), 86.8 (dd, *J* = 21.7, 17.9 Hz), 55.4, 38.6 (d, *J* = 2.4 Hz) ppm.

¹⁹**F NMR (376 MHz, Chloroform-***d***)** $\delta = -89.20$ (d, J = 39.4 Hz, 1F), -90.00 (d, J = 39.4 Hz, 1F), -104.52(s, 1F) ppm.

HRMS (**ESI**) m/z calculated for C₁₇H₁₅F₃O₂ [M+H]⁺: 307.0940, found: 307.0951.

4,4-Difluoro-3-(4-methoxyphenyl)-1-(4-(trifluoromethyl)phenyl)but-3-en-1-one (3aj)

The title compound **3aj** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (20.0 mg, 28%).

¹**H** NMR (400 MHz, Chloroform-*d*) $\delta = 8.05$ (d, J = 8.2 Hz, 2H), 7.74 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 4.05 (s, 2H), 3.79 (s, 3H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) $\delta = 194.9$ (t, J = 2.9 Hz), 159.1, 154.7 (dd, J = 291.7, 287.8 Hz), 139.0, 134.8 (q, J = 32.8 Hz), 129.3 (t, J = 3.4 Hz, 2C), 128.6 (2C), 125.9 (q, J = 3.7 Hz, 2C), 125.3 (t, J = 3.9 Hz), 123.6 (q, J = 272.6 Hz), 114.2 (2C), 86.6 (dd, J = 21.8, 18.2 Hz), 55.4, 39.0 (d, J = 2.4 Hz) ppm.

¹⁹**F NMR (376 MHz, Chloroform-***d***)** $\delta = -63.15$ (s, 3F), -88.87 (d, J = 38.5 Hz, 1F), -89.68 (d, J = 38.5 Hz, 1F) ppm.

HRMS (**ESI**) m/z calculated for C₁₈H₁₃F₅O₂Na [M+Na]⁺: 379.0728, found: 379.0757.

4,4-Difluoro-3-(4-methoxyphenyl)-1-(5-methylfuran-2-yl)but-3-en-1-one (3ak)

The title compound **3ak** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (44.4 mg, 76%).

¹**H NMR (400 MHz, Chloroform-***d*) δ = 7.25 (d, *J* = 8.5 Hz, 2H), 7.13 (d, *J* = 3.5 Hz, 1H), 6.85 (d, *J* = 8.8 Hz, 2H), 6.16 (d, *J* = 3.4 Hz, 1H) 3.83 (s, 2H), 3.78 (s, 3H), 2.39 (s, 3H) ppm.

¹³C NMR (101 MHz, Chloroform-*d*) δ = 184.2 (t, J = 3.0 Hz), 158.9, 158.1, 154.8 (dd, J = 291.2, 288.0 Hz), 151.1, 129.4 (t, J = 3.4 Hz, 2C), 125.6 (t, J = 3.8 Hz), 119.6, 114.0 (2C), 109.3, 86.7 (dd, J = 21.7, 18.0 Hz), 55.4, 38.0 (d, J = 2.3 Hz), 14.2 ppm.

¹⁹**F NMR (376 MHz, Chloroform-***d***)** $\delta = -89.31$ (d, J = 39.0 Hz, 1F), -89.86 (d, J = 39.0 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for $C_{16}H_{14}F_2O_3Na [M+Na]^+$: 315.0803, found: 315.0809.

4,4-Difluoro-3-(4-methoxyphenyl)-1-(thiophen-2-yl)but-3-en-1-one (3al)

The title compound **3al** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (38.8 mg, 44%).

¹H NMR (400 MHz, Chloroform-*d*) δ = 7.76 (d, J = 3.6 Hz, 1H), 7.66 (d, J = 4.9 Hz, 1H), 7.26 (d, J = 8.3 Hz, 2H), 7.14 (t, J = 4.4 Hz, 1H), 6.86 (d, J = 8.8 Hz, 2H), 3.96 (s, 2H), 3.78 (s, 3H) ppm.

¹³C NMR (126 MHz, Chloroform-*d*) δ = 188.6 (t, *J* = 3.0 Hz), 159.0, 154.8 (dd, *J* = 291.4, 287.9 Hz), 143.4, 134.2, 132.3, 129.4 (t, *J* = 3.5 Hz, 2C), 128.3, 125.5 (t, *J* = 3.8

Hz), 114.1 (2C), 86.8 (dd, J = 21.6, 18.2 Hz), 55.4, 39.2 (d, J = 2.3 Hz) ppm. ¹⁹F NMR (376 MHz, Chloroform-*d*) $\delta = -88.97$ (d, J = 38.7 Hz, 1F), -89.79 (d, J = 38.4 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for $C_{15}H_{12}F_2O_2SNa [M+Na]^+$: 317.0418, found: 317.0421.

6,6-Difluoro-5-(4-methoxyphenyl)-2-methylhex-5-en-3-one (3am)

The title compound **3am** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (31.0 mg, 61%).

¹**H** NMR (400 MHz, Chloroform-*d*) $\delta = 7.20$ (d, J = 7.7 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H), 3.48 (s, 2H), 2.73 – 2.62 (m, 1H), 1.08 (d, J = 6.9 Hz, 6H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) $\delta = 210.5$ (t, J = 2.8 Hz), 158.9, 154.7 (dd, J = 291.5, 287.3 Hz), 129.2 (t, J = 3.5 Hz, 2C), 125.7 (t, J = 3.9 Hz), 114.1 (2C), 86.8 (dd, J = 22.1, 17.1 Hz), 55.4, 40.3, 40.2 (d, J = 2.2 Hz), 18.3 (2C) ppm. ¹⁹F NMR (376 MHz, Chloroform-*d*) $\delta = -89.64$ (d, J = 39.9 Hz, 1F), -90.53 (d, J = 2.2 Hz)

40.0 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for C₁₄H₁₆F₂O₂Na [M+Na]⁺: 277.1011, found: 277.1009.

1,1-Difluoro-2-(4-methoxyphenyl)non-1-en-4-one (3an)

The title compound **3an** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (52.5 mg, 93%).

¹**H NMR (500 MHz, Chloroform-***d*) δ = 7.22 (d, *J* = 8.1 Hz, 2H), 6.87 (d, *J* = 8.8 Hz,

2H), 3.80 (s, 3H), 3.41 (s, 2H), 2.42 (t, *J* = 7.4 Hz, 2H), 1.59–1.49 (m, 2H), 1.32–1.17 (m, 4H), 0.86 (t, *J* = 7.1 Hz, 3H) ppm.

¹³**C NMR (126 MHz, Chloroform-***d*) $\delta = 207.3$ (t, J = 2.8 Hz), 158.9, 154.6 (dd, J = 291.9, 287.4 Hz), 129.1 (t, J = 3.5 Hz, 2C), 125.4 (t, J = 3.9 Hz), 114.1 (2C), 86.9 (dd, J = 22.1, 16.7 Hz), 55.4, 42.4 (d, J = 1.9 Hz), 42.1, 31.4, 23.4, 22.5, 14.0 ppm.

¹⁹**F NMR (471 MHz, Chloroform-***d***)** $\delta = -89.25$ (d, J = 39.4 Hz, 1F), -90.26 (d, J = 39.4 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for $C_{16}H_{20}F_2O_2Na$ [M+Na]⁺: 305.1324, found: 305.1318.

4,4-Difluoro-1-(4-methoxyphenyl)-3-phenylbut-3-en-1-one (3be)

The title compound **3be** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (48.4 mg, 84%).

¹**H NMR** (**500 MHz**, **Chloroform**-*d*) $\delta = 7.96$ (d, J = 8.9 Hz, 2H), 7.35–7.30 (m, 4H), 7.28–7.22 (m, 1H), 6.95 (d, J = 8.8 Hz, 2H), 4.02 (s, 2H), 3.87 (s, 3H) ppm. ¹³**C NMR** (**126 MHz**, **Chloroform**-*d*) $\delta = 194.0$ (t, J = 2.8 Hz), 163.8, 154.8 (dd, J = 292.3, 288.0 Hz), 133.7 (t, J = 4.0 Hz), 130.6 (2C), 129.4, 128.6 (2C), 128.1 (t, J = 3.4 Hz, 2C), 127.5, 114.0 (2C), 87.5 (dd, J = 21.8, 17.1 Hz), 55.6, 38.1 (d, J = 2.4 Hz) ppm. ¹⁹**F NMR** (**471 MHz**, **Chloroform**-*d*) $\delta = -88.27$ (d, J = 37.5 Hz, 1F), -89.28 (d, J = 37.3 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for C₁₇H₁₄F₂O₂Na [M+Na]⁺: 311.0854, found: 311.0854.

3-([1,1'-Biphenyl]-4-yl)-4,4-difluoro-1-(4-methoxyphenyl)but-3-en-1-one (3ce)

The title compound **3ce** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (59.7 mg, 82%).

1H NMR (500 MHz, Chloroform-d) δ = 7.99 (d, *J* = 8.9 Hz, 2H), 7.62–7.53 (m, 4H), 7.47–7.39 (m, 4H), 7.37–7.33 (m, 1H), 6.96 (d, *J* = 8.9 Hz, 2H), 4.07 (s, 2H), 3.88 (s, 3H) ppm.

¹³C NMR (126 MHz, Chloroform-*d*) $\delta = 194.0$ (t, J = 2.7 Hz), 163.9, 154.9 (dd, J = 292.8, 288.1 Hz), 140.6, 140.2, 132.6 (t, J = 4.1 Hz), 130.6 (2C), 129.4, 128.9 (2C), 128.4 (t, J = 3.6 Hz, 2C), 127.5, 127.3 (2C), 127.1 (2C), 114.0 (2C), 87.3 (dd, J = 22.0, 16.9 Hz), 55.6, 37.9 (d, J = 2.4 Hz) ppm.

¹⁹**F NMR (471 MHz, Chloroform-***d***)** $\delta = -87.68$ (d, J = 36.7 Hz, 1F), -88.64 (d, J = 36.6 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for C₂₃H₁₈F₂O₂Na [M+Na]⁺: 387.1167, found: 387.1165.

3-([1,1'-Biphenyl]-2-yl)-4,4-difluoro-1-(4-methoxyphenyl)but-3-en-1-one (3de)

The title compound **3de** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (59.9 mg, 82%).

¹**H NMR (500 MHz, Chloroform-***d*) δ = 7.68 (d, *J* = 8.9 Hz, 2H), 7.53–7.29 (m, 9H), 6.85 (d, *J* = 8.8 Hz, 2H), 3.83 (s, 3H), 3.39 (s, 2H) ppm.

¹³C NMR (126 MHz, Chloroform-*d*) δ = 193.9 (t, J = 2.8 Hz), 163.5, 154.7 (dd, J = 289.4, 287.2 Hz), 141.2 (d, J = 3.1 Hz), 141.1, 131.7 (dd, J = 4.5, 2.2 Hz), 131.6 (t, J = 2.3 Hz, 2C), 130.4 (2C), 130.2, 129.4, 128.9, 128.4 (2C), 128.3, 127.5, 127.4, 113.7 (2C), 87.6 (dd, J = 22.3, 21.1 Hz), 55.5, 37.8 (d, J = 2.1 Hz) ppm.

¹⁹**F NMR (471 MHz, Chloroform-***d***)** $\delta = -89.02$ (d, J = 38.6 Hz, 1F), -90.78 (d, J = 38.9 Hz, 1F) ppm.

HRMS (**ESI**) m/z calculated for C₂₃H₁₈F₂O₂Na [M+Na]⁺: 387.1167, found: 387.1172.

4,4-Difluoro-3-(4-methoxy-2-methylphenyl)-1-(4-methoxyphenyl)but-3-en-1-one (3ee)

The title compound **3ee** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (57.1 mg, 86%).

¹**H NMR (400 MHz, Chloroform-***d*) δ = 7.89 (d, *J* = 8.9 Hz, 2H), 7.12 (d, *J* = 8.4 Hz, 1H), 6.91 (d, *J* = 8.9 Hz, 2H), 6.73 (d, *J* = 2.7 Hz, 1H), 6.71–6.67 (m, 1H), 3.89 (s, 2H), 3.86 (s, 3H), 3.76 (s, 3H), 2.30 (s, 3H) ppm.

¹³**C NMR (126 MHz, Chloroform-***d*) δ = 194.2 (t, *J* = 2.8 Hz), 163.7, 159.2, 153.9 (dd, *J* = 289.8, 286.6 Hz), 138.6, 130.9, 130.6 (2C), 129.5, 125.1 (dd, *J* = 4.7, 2.1 Hz), 115.7, 113.9 (2C), 111.4, 85.7 (dd, *J* = 22.1, 21.6 Hz), 55.6, 55.2, 39.2, 19.9 (d, *J* = 2.2 Hz) ppm.

¹⁹**F NMR (376 MHz, Chloroform-***d***)** $\delta = -88.14$ (d, J = 39.1 Hz, 1F), -91.26 (d, J = 39.1 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for $C_{19}H_{19}F_2O_3$ [M+H]⁺: 333.1297, found: 333.1302.

3-(3,4-Dimethoxyphenyl)-4,4-difluoro-1-(4-methoxyphenyl)but-3-en-1-one (3fe)

The title compound **3fe** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (66.1 mg, 95%).

¹**H NMR (400 MHz, Chloroform-***d*) δ = 7.95 (d, *J* = 8.9 Hz, 2H), 6.94 (d, *J* = 8.9 Hz, 2H), 6.87 (s, 1H), 6.84–6.78 (m, 2H), 3.98 (s, 2H), 3.87 (s, 3H), 3.84 (s, 3H), 3.83 (s, 3H) ppm.

¹³C NMR (101 MHz, Chloroform-*d*) δ = 194.3 (t, *J* = 2.6 Hz), 163.8, 154.7 (dd, *J* = 290.9, 287.6 Hz), 148.8, 148.4, 130.6 (2C), 129.5, 126.1 (t, *J* = 3.8 Hz), 120.5 (t, *J* = 3.3 Hz), 114.0 (2C), 111.5 (t, *J* = 3.4 Hz), 111.1, 87.4 (dd, *J* = 21.9, 17.4 Hz), 55.95, 55.92, 55.6, 38.2 (d, *J* = 2.2 Hz).

¹⁹**F NMR (376 MHz, Chloroform-***d***)** $\delta = -89.20$ (d, J = 39.5 Hz, 1F), -89.68 (d, J = 39.7 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for C₁₉H₁₈F₂O₄Na [M+Na]⁺: 371.1065, found: 371.1064

3-(3-Chloro-4-methoxyphenyl)-4,4-difluoro-1-(4-methoxyphenyl)but-3-en-1-one (3ge)

The title compound **3ge** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (65.5 mg, 93%).

¹**H NMR (500 MHz, Chloroform-***d***)** δ = 7.95 (d, *J* = 8.7 Hz, 2H), 7.33 (s, 1H), 7.19 (d, *J* = 8.5 Hz, 1H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 1H), 3.97 (s, 2H), 3.87 (s, 3H), 3.86 (s, 3H) ppm.

¹³C NMR (126 MHz, Chloroform-*d*) δ = 193.9 (t, J = 2.8 Hz), 163.9, 154.7 (dd, J = 291.8, 288.1 Hz), 154.2, 130.6 (2C), 129.8 (t, J = 3.7 Hz), 129.3, 127.7 (t, J = 3.5 Hz), 126.8 (t, J = 4.0 Hz), 122.4, 114.0 (2C), 111.9, 86.4 (dd, J = 22.7, 17.2 Hz), 56.2, 55.6, 37.9 (d, J = 2.3 Hz) ppm.

¹⁹**F NMR (471 MHz, Chloroform-***d***)** $\delta = -88.40$ (d, J = 37.8 Hz, 1F), -89.12 (d, J = 37.8 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for $C_{18}H_{16}^{35}ClF_2O_3$ [M+H]⁺: 353.0751, found: 353.0751.

4,4-Difluoro-3-(2-methoxyphenyl)-1-(4-methoxyphenyl)but-3-en-1-one (3he)

The title compound **3he** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (48.4 mg, 76%).

¹**H NMR (400 MHz, Chloroform-***d*) δ = 7.92 (d, *J* = 8.9 Hz, 2H), 7.32–7.23 (m, 2H), 6.97–6.89 (m, 3H), 6.85 (d, *J* = 8.2 Hz, 1H), 3.96 (s, 2H), 3.86 (s, 3H), 3.74 (s, 3H) ppm.

¹³C NMR (126 MHz, Chloroform-*d*) δ = 194.5 (t, J = 2.8 Hz), 163.6, 157.2 (d, J = 2.9 Hz), 154.5 (t, J = 288.3 Hz), 131.7, 130.5 (2C), 129.8, 129.4, 122.1 (dd, J = 4.8, 2.3 Hz), 120.7, 113.8 (2C), 110.9, 85.1 (dd, J = 23.5, 20.2 Hz), 55.6, 55.4, 37.6 (d, J = 2.0 Hz) ppm.

¹⁹**F NMR (376 MHz, Chloroform-***d***)** $\delta = -89.27$ (d, J = 38.1 Hz, 1F), -90.86 (d, J = 38.3 Hz, 1F) ppm.

HRMS (**ESI**) m/z calculated for C₁₈H₁₆F₂O₃Na [M+Na]⁺: 341.0960, found: 341.0963.

3-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-4,4-difluoro-1-(4-methoxyphenyl)but-3en-1-one (3ie)

The title compound **3ie** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (64.4 mg, 93%).

¹H NMR (500 MHz, Chloroform-*d*) δ = 7.95 (d, J = 8.5 Hz, 2H), 6.94 (d, J = 8.4 Hz, 2H), 6.84 (s, 1H), 6.80 (s, 2H), 4.22 (s, 4H), 3.96 (s, 2H), 3.87 (s, 3H) ppm.
¹³C NMR (126 MHz, Chloroform-*d*) δ = 193.0 (t, J = 2.5 Hz), 162.8, 153.7 (dd, J = 193.0 (t, J = 2.5 Hz), 162.8, 153.7 (dd, J = 193.0 (t, J = 2.5 Hz), 162.8, 153.7 (dd, J = 193.0 (t, J = 2.5 Hz), 162.8, 153.7 (dd, J = 193.0 (t, J = 2.5 Hz), 162.8, 153.7 (dd, J = 193.0 (t, J = 2.5 Hz), 162.8, 153.7 (dd, J = 193.0 (t, J = 2.5 Hz), 162.8, 153.7 (t, J = 2.5 Hz), 163.8 (t, J = 2.5 Hz), 16

291.7, 287.4 Hz), 142.4, 141.9, 129.6 (2C), 128.4, 125.7 (t, *J* = 3.9 Hz), 120.2 (t, *J* = 3.6 Hz), 116.3, 116.0 (t, *J* = 3.6 Hz), 112.9 (2C), 85.9 (dd, *J* = 22.1, 17.0 Hz), 63.45, 63.36, 54.6, 37.0 (d, *J* = 2.3 Hz) ppm.

¹⁹**F NMR (471 MHz, Chloroform-***d***)** $\delta = -88.93$ (d, J = 39.1 Hz, 1F), -89.52 (d, J = 39.3 Hz, 1F) ppm.

HRMS (**ESI**) m/z calculated for C₁₉H₁₆F₂O₄Na [M+Na]⁺: 369.0909, found: 369.0915.

4,4-Difluoro-1-(4-methoxyphenyl)-3-(4-(trifluoromethoxy)phenyl)but-3-en-1-one (3je)

The title compound **3he** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (50.6 mg, 68%).

¹**H** NMR (400 MHz, Chloroform-*d*) $\delta = 7.96$ (d, J = 8.9 Hz, 2H), 7.34 (d, J = 1.1 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 6.95 (d, J = 8.9 Hz, 2H), 4.01 (s, 2H), 3.88 (s, 3H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) $\delta = 193.7$ (t, J = 2.8 Hz), 164.0, 154.9 (dd, J = 292.5, 288.5 Hz), 148.4, 132.4 (t, J = 4.1 Hz), 130.6 (2C), 129.6 (t, J = 3.6 Hz, 2C), 129.3, 121.1 (2C), 120.5 (q, J = 257.4 Hz), 114.0 (2C), 86.7 (dd, J = 22.9, 17.0 Hz), 55.6, 37.9 (d, J = 2.3 Hz) ppm.

¹⁹**F NMR (376 MHz, Chloroform-***d***)** $\delta = -57.84$ (s, 3F), -87.53 (d, J = 35.6 Hz), -88.51 (d, J = 35.8 Hz) ppm.

HRMS (ESI) m/z calculated for C₁₈H₁₄F₅O₃ [M+H]⁺: 373.0858, found: 373.0873.

4,4-Difluoro-1-(4-methoxyphenyl)-3-(3-(methylthio)phenyl)but-3-en-1-one (3ke)

The title compound **3ke** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (33.4 mg, 50%).

¹**H NMR (400 MHz, Chloroform-***d*) δ = 7.98 (d, *J* = 8.9 Hz, 2H), 7.29 (s, 1H), 7.25–7.23(m, 1H), 7.16 (d, *J* = 7.9 Hz, 1H), 7.11 (d, *J* = 7.7 Hz, 1H), 6.97 (d, *J* = 8.8 Hz, 2H), 4.02 (s, 2H), 3.90 (s, 3H), 2.46 (s, 3H) ppm.

¹³C NMR (101 MHz, Chloroform-*d*) δ = 193.7 (t, J = 2.5 Hz), 163.8, 154.8 (dd, J = 292.6, 288.3 Hz), 138.8, 134.3 (t, J = 4.1 Hz), 130.5 (2C), 129.3, 128.9, 126.1 (t, J = 3.6 Hz), 125.6, 124.8 (t, J = 3.4 Hz), 113.9 (2C), 87.2 (dd, J = 22.1, 17.2 Hz), 55.5, 37.9 (d, J = 2.3 Hz), 15.8 ppm.

¹⁹**F NMR (376 MHz, Chloroform-***d***)** $\delta = -87.77$ (d, J = 36.0 Hz, 1F), -88.48 (d, J = 36.2 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for $C_{18}H_{16}F_2O_2{}^{32}SNa$ [M+Na]⁺: 357.0731, found: 357.0730.

3-(4-Bromophenyl)-4,4-difluoro-1-(4-methoxyphenyl)but-3-en-1-one (3le)

The title compound **3le** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (70.3 mg, 96%).

¹**H** NMR (500 MHz, Chloroform-*d*) $\delta = 7.95$ (d, J = 8.9 Hz, 2H), 7.44 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 7.8 Hz, 2H), 6.95 (d, J = 8.9 Hz, 2H), 3.99 (s, 2H), 3.87 (s, 3H) ppm. ¹³C NMR (126 MHz, Chloroform-*d*) $\delta = 193.7$ (t, J = 2.8 Hz), 163.9, 154.6 (dd, J = 292.8, 288.6 Hz), 132.6 (t, J = 4.1 Hz), 131.7 (2C), 130.5 (2C), 129.7 (t, J = 3.5 Hz, 2C), 129.2, 121.4, 113.9 (2C), 86.8 (dd, J = 22.5, 17.0 Hz), 55.6, 37.7 (d, J = 2.3 Hz) ppm.

¹⁹**F NMR (471 MHz, Chloroform-***d***)** $\delta = -87.44$ (d, J = 35.5 Hz, 1F), -88.33 (d, J = 35.4 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for $C_{17}H_{13}^{79}BrF_2O_2Na$ [M+Na]⁺: 388.9969, found: 388.9962.

3-(4-Chlorophenyl)-4,4-difluoro-1-(4-methoxyphenyl)but-3-en-1-one (3me)

The title compound **3me** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (61.8 mg, 96%).

¹**H NMR (400 MHz, Chloroform-***d*) δ = 7.93 (d, *J* = 8.9 Hz, 2H), 7.31–7.20 (m, 4H), 6.93 (d, *J* = 8.9 Hz, 2H), 3.98 (s, 2H), 3.86 (s, 3H) ppm.

¹³**C NMR (126 MHz, Chloroform-***d***)** δ = 193.8 (t, *J* = 2.8 Hz), 164.0, 154.8 (dd, *J* = 292.7, 288.5 Hz), 133.3, 132.2 (t, *J* = 4.1 Hz), 130.6 (2C), 129.5 (t, *J* = 3.6 Hz, 2C), 129.3, 128.8 (2C), 114.0 (2C), 86.9 (dd, *J* = 22.6, 17.0 Hz), 55.6, 37.9 (d, *J* = 2.3 Hz) ppm.

¹⁹**F NMR (376 MHz, Chloroform-***d***)** $\delta = -87.59$ (d, J = 36.1 Hz, 1F), -88.48 (d, J = 35.5 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for $C_{17}H_{13}ClF_2O_2Na$ [M+Na]⁺: 345.0464, found: 345.0461.

4,4-Difluoro-3-(4-fluorophenyl)-1-(4-methoxyphenyl)but-3-en-1-one (3ne)

The title compound **3ne** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (56.9 mg, 93%).

¹H NMR (500 MHz, Chloroform-*d*) $\delta = 7.95$ (d, J = 9.0 Hz, 2H), 7.29 (dd, J = 8.0,

5.5 Hz, 2H), 7.01 (t, *J* = 8.7 Hz, 2H), 6.95 (d, *J* = 8.9 Hz, 2H), 3.99 (s, 2H), 3.87 (s, 3H) ppm.

¹³C NMR (126 MHz, Chloroform-*d*) $\delta = 193.9$ (t, J = 2.8 Hz), 163.9, 162.0 (d, J = 247.1 Hz), 154.8 (dd, J = 292.6, 289.5 Hz), 130.6 (2C), 129.9 (dt, J = 7.4, 3.5 Hz, 2C), 129.6 (q, J = 3.6 Hz), 129.3, 115.6 (d, J = 21.6 Hz, 2C), 114.0 (2C), 86.8 (dd, J = 22.5, 17.5 Hz), 55.6, 38.1 (d, J = 2.3 Hz) ppm.

¹⁹**F NMR (471 MHz, Chloroform-***d***)** $\delta = -88.58$ (d, J = 38.0 Hz, 1F), -89.46 (d, J = 38.0 Hz, 1F), -114.41 (s, 1F) ppm.

HRMS (ESI) m/z calculated for C₁₇H₁₃F₃O₂Na [M+Na]⁺: 329.0760, found: 329.0771.

3-(3-Chlorophenyl)-4,4-difluoro-1-(4-methoxyphenyl)but-3-en-1-one (3oe)

The title compound **3oe** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (52.7 mg, 81%).

¹**H NMR (500 MHz, Chloroform-***d***)** δ = 7.90 (d, *J* = 8.7 Hz, 2H), 7.23–7.12 (m, 4H), 6.89 (d, *J* = 8.8 Hz, 2H), 3.94 (s, 2H), 3.82 (s, 3H) ppm.

¹³C NMR (126 MHz, Chloroform-*d*) δ = 193.5 (t, J = 2.7 Hz), 163.9, 154.9 (dd, J = 293.3, 288.8 Hz), 135.5 (t, J = 4.2 Hz), 134.3, 130.5 (2C), 129.7, 129.1, 128.1 (t, J = 3.7 Hz), 127.6, 126.2 (t, J = 3.6 Hz), 113.9 (2C), 86.7 (dd, J = 22.8, 16.8 Hz), 55.6, 37.7 (d, J = 2.3 Hz) ppm.

¹⁹**F NMR (471 MHz, Chloroform-***d***)** $\delta = -87.00$ (d, J = 34.5 Hz, 1F), -87.86 (d, J = 34.7 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for $C_{17}H_{13}^{35}ClF_2O_2Na$ [M+Na]⁺: 345.0464, found: 345.0486.

Methyl 4-(1,1-difluoro-4-(4-methoxyphenyl)-4-oxobut-1-en-2-yl)benzoate (3pe)

The title compound **3pe** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (51.0 mg, 74%).

¹**H NMR (500 MHz, Chloroform-***d***)** $\delta = 8.01-7.93$ (m, 4H), 7.39 (d, J = 7.6 Hz, 2H), 6.95 (d, J = 8.9 Hz, 2H), 4.04 (s, 2H), 3.89 (s, 3H), 3.87 (s, 3H) ppm.

¹³**C NMR (126 MHz, Chloroform-***d***)** δ = 193.6 (t, *J* = 2.7 Hz), 166.8, 164.0, 155.1 (dd, *J* = 294.6, 289.4 Hz), 138.5 (t, *J* = 4.4 Hz), 130.6 (2C), 129.8 (2C), 129.2, 129.0, 128.0 (t, *J* = 3.7 Hz, 2C), 114.0 (2C), 87.3 (dd, *J* = 22.5, 16.4 Hz), 55.7, 52.3, 37.6 (d, *J* = 2.3 Hz) ppm.

¹⁹**F NMR (471 MHz, Chloroform-***d***)** $\delta = -85.91$ (d, J = 32.1 Hz, 1F), -86.96 (d, J = 32.1 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for $C_{19}H_{17}F_2O_4$ [M+H]⁺: 347.1089, found: 347.1080.

3-(3-Acetylphenyl)-4,4-difluoro-1-(4-methoxyphenyl)but-3-en-1-one (3qe)

The title compound **3qe** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (37.7 mg, 57%).

¹**H NMR (500 MHz, Chloroform-***d*) δ = 7.96 (d, *J* = 9.0 Hz, 2H), 7.91 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 7.2 Hz, 2H), 6.95 (d, *J* = 8.9 Hz, 2H), 4.06 (s, 3H), 3.88 (s, 2H), 2.57 (s, 3H) ppm.

¹³C NMR (126 MHz, Chloroform-*d*) δ = 197.6, 193.6 (t, *J* = 2.8 Hz), 164.0, 155.1 (dd, *J* = 294.7, 289.4 Hz), 138.7 (t, *J* = 4.4 Hz), 135.9, 130.6 (2C), 129.2, 128.6 (2C), 128.2 (t, *J* = 3.5 Hz, 2C), 114.1 (2C), 87.3 (dd, *J* = 22.5, 16.1 Hz), 55.7, 37.6 (d, *J* = 2.3 Hz), 26.7 ppm.

¹⁹**F NMR (471 MHz, Chloroform-***d***)** $\delta = -85.73$ (d, J = 31.8 Hz, 1F), -86.77 (d, J = 32.0 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for $C_{19}H_{17}F_2O_3$ [M+H]⁺: 331.1140, found: 331.1150.

4,4-Difluoro-1-(4-methoxyphenyl)-3-(naphthalen-2-yl)but-3-en-1-one (3re)

The title compound **3re** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (54.8 mg, 84%).

¹**H NMR (500 MHz, Chloroform-***d***)** δ = 7.98 (d, *J* = 8.8 Hz, 2H), 7.85–7.69 (m, 4H), 7.55–7.37 (m, 3H), 6.95 (d, *J* = 8.8 Hz, 2H), 4.12 (s, 2H), 3.87 (s, 3H) ppm.

¹³**C NMR (126 MHz, Chloroform-***d***)** δ = 193.9 (t, *J* = 2.7 Hz), 163.8, 154.9 (dd, *J* = 292.6, 288.3 Hz), 133.2, 132.5, 131.1 (t, *J* = 4.0 Hz), 130.5 (2C), 129.4, 128.2, 128.0, 127.6, 127.1 (t, *J* = 3.6 Hz), 126.3, 126.2, 125.9 (t, *J* = 3.5 Hz), 113.9 (2C), 87.6 (dd, *J* = 22.1, 17.0 Hz), 55.5, 38.1 (d, *J* = 2.4 Hz) ppm.

¹⁹**F NMR (471 MHz, Chloroform-***d***)** $\delta = -87.73$ (d, J = 36.5 Hz, 1F), -88.93 (d, J = 36.6 Hz, 1F) ppm.

HRMS (**ESI**) m/z calculated for C₂₁H₁₇F₂O₂ [M+H]⁺: 339.1191, found: 339.1200.

3-(Benzo[b]thiophen-2-yl)-4,4-difluoro-1-(4-methoxyphenyl)but-3-en-1-one (3se)

The title compound **3se** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (53.7 mg, 78%).

¹H NMR (400 MHz, Chloroform-*d*) δ = 7.91 (d, J = 8.9 Hz, 2H), 7.85 (d, J = 7.7 Hz, 1H), 7.77 (d, J = 7.9 Hz, 1H), 7.45–7.34 (m, 3H), 6.91 (d, J = 8.9 Hz, 2H), 4.02 (s, 2H), 3.85 (s, 3H) ppm.

¹³C NMR (101 MHz, Chloroform-*d*) $\delta = 192.8$ (t, J = 2.9 Hz), 162.8, 153.9 (t, J = 290.5 Hz), 138.9, 136.7, 129.5 (2C), 128.4, 127.9 (dd, J = 4.8, 2.1 Hz), 125.3 (dd, J = 4.2, 1.6 Hz), 123.6, 123.5, 121.9, 121.6 (d, J = 2.1 Hz), 112.9 (2C), 80.8 (dd, J = 24.6, 21.0 Hz), 54.6, 37.7 (d, J = 2.4 Hz) ppm.

¹⁹**F NMR (376 MHz, Chloroform-***d***)** $\delta = -84.99$ (d, J = 33.4 Hz, 1F), -88.39 (d, J = 33.8 Hz, 1F).

HRMS (ESI) m/z calculated for C₁₉H₁₅F₂O₂S [M+H]⁺: 345.0755, found: 345.0765.

4,4-Difluoro-1-(4-methoxyphenyl)-3-(6-methoxypyridin-3-yl)but-3-en-1-one (3te)

The title compound **3se** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (60.4 mg, 95%).

¹**H NMR (400 MHz, Chloroform-***d***)** δ = 8.09 (s, 1H), 7.93 (d, *J* = 8.9 Hz, 2H), 7.56 (dd, *J* = 8.7, 1.6 Hz, 1H), 6.93 (d, *J* = 8.9 Hz, 2H), 6.71 (d, *J* = 8.7 Hz, 1H), 3.97 (s, 3H), 3.89 (s, 3H), 3.86 (s, 3H) ppm.

13C NMR (126 MHz, Chloroform-d) δ = 193.8 (t, *J* = 2.8 Hz), 164.0, 163.3, 154.8 (dd, *J* = 291.5, 288.4 Hz), 146.1, 138.6 (t, *J* = 3.5 Hz), 130.6 (2C), 129.3, 122.7, 114.0 (2C), 110.8, 84.7 (dd, *J* = 23.4, 17.9 Hz), 55.6, 53.6, 37.7 (d, *J* = 2.3 Hz) ppm.

¹⁹**F NMR (376 MHz, Chloroform-***d***)** $\delta = -88.18$ (d, J = 37.6 Hz, 1F), -88.96 (d, J = 37.6 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for C₁₇H₁₆F₂NO₃ [M+H]⁺: 320.1093, found: 320.1097.

4,4-Difluoro-1-(4-methoxyphenyl)-3-(quinolin-3-yl)but-3-en-1-one (3ue)

The title compound **3ue** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 10:1) as a colorless oil (60.4 mg, 89%).

¹**H NMR (500 MHz, Chloroform-***d***)** δ = 8.90 (s, 1H), 8.09–8.04 (m, 2H), 7.96 (d, *J* = 8.8 Hz, 2H), 7.76 (d, *J* = 8.2 Hz, 1H), 7.68 (m, 1H), 7.51 (t, *J* = 7.5 Hz, 1H), 6.94 (d, *J* = 8.8 Hz, 2H), 4.13 (s, 2H), 3.86 (s, 3H) ppm.

¹³**C NMR (126 MHz, Chloroform-***d***)** δ = 193.5 (t, *J* = 2.7 Hz), 164.0, 155.2 (dd, *J* = 293.3, 290.0 Hz), 150.0 (dd, *J* = 5.0, 2.7 Hz), 147.1, 134.9 (t, *J* = 3.5 Hz), 130.5 (2C), 129.7, 129.2, 129.1, 127.9, 127.6, 127.0, 126.9 (d, *J* = 4.3 Hz), 114.0 (2C), 85.2 (dd, *J* = 23.4, 17.5 Hz), 55.6, 37.7 (d, *J* = 2.3 Hz) ppm.

¹⁹**F NMR (471 MHz, Chloroform-***d***)** $\delta = -86.25$ (d, J = 33.5 Hz, 1F), -87.51 (d, J = 33.8 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for $C_{20}H_{16}F_2NO_2$ [M+H]⁺: 340.1144 found: 340.1148.

(8*R*,9*S*,13*S*,14*S*)-3-(1,1-Difluoro-4-(4-methoxyphenyl)-4-oxobut-1-en-2-yl)-13methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17one (3ve)

The title compound **3ve** was isolated through column chromatography (silica gel, petroleum ether/ethyl acetate 5:1) as a colorless oil (85.4 mg, 92%).

¹**H NMR (500 MHz, Chloroform-***d*) δ = 7.96 (d, *J* = 8.9 Hz, 2H), 7.24 (d, *J* = 8.2 Hz,

1H), 7.10 (d, J = 8.3 Hz, 1H), 7.07 (s, 1H), 6.95 (d, J = 8.9 Hz, 2H), 4.00 (s, 2H), 3.87 (s, 3H), 2.88 (dd, J = 9.1, 4.2 Hz, 2H), 2.50 (dd, J = 19.0, 8.7 Hz, 1H), 2.41–2.24 (m, 2H), 2.18–2.09 (m, 1H), 2.06–1.92 (m, 2H), 1.70–1.37 (m, 7H), 0.89 (s, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) $\delta = 221.0$, 194.0 (t, J = 2.8 Hz), 163.8, 154.7 (dd, J = 291.9, 287.7 Hz), 139.1, 136.7, 131.1 (t, J = 3.9 Hz), 130.5 (2C), 129.4, 128.6 (t, J = 3.4 Hz), 125.6, 125.4 (t, J = 3.4 Hz), 113.9 (2C), 87.2 (dd, J = 21.6, 17.2 Hz), 55.6, 50.5, 48.0, 44.4, 38.1, 37.9 (d, J = 2.4 Hz), 35.9, 31.6, 29.5, 26.5, 25.6, 21.6, 13.9 ppm. ¹⁹F NMR (471 MHz, Chloroform-*d*) $\delta = -88.56$ (d, J = 38.1 Hz, 1F), -89.43 (d, J = 38.2 Hz, 1F) ppm.

HRMS (ESI) m/z calculated for $C_{29}H_{31}F_2O_3$ [M+H]⁺: 465.2236, found: 465.2239.

Synthesis of the gem-Difluoroalkene 3ae on 2 mmol Scale of 1a

CrCl₃ (32 mg, 0.2 mmol, 10 mol%), 2,2':6',2"-terpyridine (**L1**) (70 mg, 0.3 mmol, 15 mol%), Zn (260 mg, 4 mmol, 2.0 equiv), K₃PO₄ (1.27 g, 6 mmol, 3.0 qeuiv), and the oxime ester **2e** (940 mg, 4 mmol, 2.0 equiv) were placed in a Schlenk tube equipped with a stir bar. Next, the Schlenk tube was evacuated and filled with nitrogen (three cycles). To this mixture, CH₃CN/DMA (3:1) (10 mL) was added under nitrogen atmosphere. After stirring at 40 °C for 15 minutes, the trifluoromethyl-substituted alkene **1a** (404 mg, 2 mmol, 1.0 equiv) was added under a positive flow of nitrogen. The reaction mixture was stirred at 40 °C for 12 hours before it was quenched by addition of water. The aqueous phase was extracted with ethyl acetate (3×50 mL). The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude materials were purified through column chromatography on silica gel (petroleum ether/ethyl acetate 10:1) to give *4,4-difluoro-1,3-bis*(*4-methoxyphenyl*)*but-3-en-1-one* **3ae** (553 mg, 87%) as the product.

Control Experiments.

CrCl₃ (3.2 mg, 0.02 mmol, 10 mol%), 2,2':6',2"-terpyridine (**L1**) (7.0 mg, 0.03 mmol, 15 mol %), Zn (26.0 mg, 0.4 mmol, 2.0 equiv), and the oxime ester **2e** (94.0 mg, 0.4 mmol, 2.0 equiv) were placed in a Schlenk tube equipped with a stir bar. Next, the Schlenk tube was evacuated and filled with nitrogen (three cycles). To this mixture, CH₃CN/DMA (3:1) (1.0 mL) was added under nitrogen atmosphere. After stirring at 40 °C for 15 minutes, the trifluoromethyl-substituted alkene **1q** (42.8 mg, 0.2 mmol, 1.0 equiv) was added under a positive flow of nitrogen. The reaction mixture was stirred at 40 °C for 12 hours before it was quenched by addition of water. The aqueous phase was extracted with ethyl acetate (3×20 mL). The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude materials were purified through column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the mixture of **3qe** and **3qe'** (25.1 mg, combined yield 43%, **3qe:3qe'** = 7.5:1) as the products.

Zn (26.0 mg, 0.4 mmol, 2.0 equiv) and the oxime ester **2e** (94.0 mg, 0.4 mmol, 2.0 equiv) were placed in a Schlenk tube equipped with a stir bar. Next, the Schlenk tube was evacuated and filled with nitrogen (three cycles). To this mixture, CH₃CN/DMA (3:1) (1.0 mL) was added under nitrogen atmosphere. After stirring at 40 °C for 15 minutes, the trifluoromethyl-substituted alkenes **1a** (40.4 mg, 0.2 mmol, 1.0 equiv) was added under a positive flow of nitrogen. The reaction mixture was stirred at 40 °C for 12 hours before it was quenched by addition of water. The aqueous phase was extracted with ethyl acetate (3×20 mL). The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude materials were purified through column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the mixture of **3ae** and **3ae'** (6.4 mg, combined yield: 10%, **3ae** : **3ae'** = 9:1) as the products.

C1)

Zn (26.0 mg, 0.4 mmol, 2.0 equiv) and the oxime ester **2e** (94.0 mg, 0.4 mmol, 2.0 equiv) were placed in a Schlenk tube equipped with a stir bar. Next, the Schlenk tube was evacuated and filled with nitrogen (three cycles). To this mixture, CH₃CN/DMA (3:1) (1.0 mL) was added under nitrogen atmosphere. After stirring at 40 °C for 15 minutes, the trifluoromethyl-substituted alkene **1q** (42.8 mg, 0.2 mmol, 1.0 equiv) was added under a positive flow of nitrogen. The reaction mixture was stirred at 40 °C for 12 hours before it was quenched by addition of water. The aqueous phase was extracted with ethyl acetate (3×20 mL). The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude materials were purified through column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give *3-(4-acetylphenyl)-1-argio-4,4,4-trifluorobutan-1-one* (**3qe**') (8.4 mg, 12%) as a colorless oil.

¹H NMR (500 MHz, Chloroform-*d*) δ = 7.95–7.88 (m, 4H), 7.50 (d, J = 8.1 Hz, 2H),
6.92 (d, J = 8.9 Hz, 2H), 4.62–4.07 (m, 1H), 3.86 (s, 3H), 3.73–3.53 (m, 2H), 2.57 (s, 3H) ppm.

¹³C NMR (126 MHz, Chloroform-*d*) δ = 197.7, 193.5, 164.1, 140.0, 137.0, 130.5 (2C),
129.5 (2C), 129.2, 128.8 (2C), 126.8 (q, J = 279.4 Hz), 114.1 (2C), 55.7, 45.0 (q, J = 27.6 Hz), 37.7, 26.7 ppm.

¹⁹**F NMR (471 MHz, Chloroform-***d*) δ = -69.3 (s, 3F) ppm.

HRMS (ESI) m/z calculated for C₁₉H₁₈F₃O₃ [M+H]⁺: 351.1203, found: 351.1208.

Zn (26.0 mg, 0.4 mmol, 2.0 equiv) and the oxime ester **2e** (94.0 mg, 0.4 mmol, 2.0 equiv) were placed in a Schlenk tube equipped with a stir bar. Next, the Schlenk tube was evacuated and filled with nitrogen (three cycles). To this mixture, CH₃CN/DMA (3:1) (1.0 mL) was added under nitrogen atmosphere. After stirring at 40 °C for 15 minutes, the trifluoromethyl-substituted alkene **1q** (42.8 mg, 0.2 mmol, 1.0 equiv) was added under a positive flow of nitrogen. The reaction mixture was stirred at 40 °C for 12 hours before it was quenched by addition of water. The aqueous phase was extracted with ethyl acetate (3×20 mL). The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude materials were purified through column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the mixture of **3qe** and **3qe'**(18.5 mg, combined yield : 28%, **3qe** : **3qe'** = 1.2:1) as the products.

CrCl₂ (24.6 mg, 0.2 mmol, 1.0 equiv), 2,2':6',2"-terpyridine (L1) (46.6 mg, 0.2 mmol, 1.0 equiv), and the oxime ester **2e** (94.0 mg, 0.4 mmol, 2.0 equiv) were placed in a Schlenk tube equipped with a stir bar. Next, the Schlenk tube was evacuated and filled with nitrogen (three cycles). To this mixture, CH₃CN/DMA (3:1) (1.0 mL) was added under nitrogen atmosphere. After stirring at 40 °C for 15 minutes, the trifluoromethyl-substituted alkene **1a** (40.4 mg, 0.2 mmol, 1.0 equiv) was added under a positive flow of nitrogen. The reaction mixture was stirred at 40 °C for 12 hours before it was quenched by addition of water. The aqueous phase was extracted with ethyl acetate (3×20 mL). The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. According to the analyses based on TCL and ¹H-NMR spectroscopy, the product **3ae** was not observed, and neither **1a** nor **2e** was converted.

 $CrCl_3$ (3.2 mg, 0.02 mmol, 5 mol%), 2,2':6',2"-terpyridine (L1) (7.0 mg, 0.03 mmol, 7.5 mol%), Zn (26.0 mg, 0.4 mmol, 1.0 equiv), K₃PO₄ (127.0 mg, 0.6 mmol, 1.5 qeuiv), and the oxime ester **2e** (94.0 mg, 0.4 mmol, 1.0 equiv) were placed in a Schlenk tube equipped with a stir bar. Next, the Schlenk tube was evacuated and filled with nitrogen (three cycles). To this mixture, CH₃CN/DMA (3:1) (1.0 mL) was added under nitrogen atmosphere. The reaction mixture was stirred at 40 °C for 12 hours before it was

D)

quenched by addition of water. The aqueous phase was extracted with ethyl acetate $(3\times20 \text{ mL})$. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified through column chromatography (petroleum ether/ethyl acetate = 3:1) on silica gel, to give *4-methoxy-N-(1-(4-methoxyphenyl)-1-oxopropan-2-yl)benzamide* (**4**) (34.4 mg, 55%) as a yellow oil.

¹**H NMR** (**500 MHz**, **Chloroform**-*d*) $\delta = 8.04$ (d, J = 8.8 Hz, 2H), 7.83 (d, J = 8.4 Hz, 2H), 6.99 (d, J = 8.6 Hz, 2H), 6.94 (d, J = 8.5 Hz, 2H), 5.71 (quint, J = 7.1 Hz, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 1.53 (d, J = 7.0 Hz, 3H) ppm. ¹³**C NMR** (**126 MHz**, **Chloroform**-*d*) $\delta = 197.9$, 166.3, 164.4, 162.4, 131.4 (2C), 129.0 (2C), 126.8, 126.6, 114.3 (2C), 113.9 (2C), 55.7, 55.6, 50.2, 20.5 ppm.

HRMS (ESI) m/z calculated for $C_{18}H_{20}NO_4$ [M+H]⁺: 314.1387, found: 314.1392.

F)
$$CrCl_3 (10 \text{ mol}\%)$$

L1 (15 mol%)
Zn (2.0 equiv)
MeO
1a $K_3PO_4 (3.0 \text{ equiv})$
MECN/DMA = 3:1
40°C, 12h

CrCl₃ (3.2 mg, 0.02 mmol, 10 mol%), 2,2':6',2"-terpyridine (**L1**) (7.0 mg, 0.03 mmol, 15 mol %), Zn (26.0 mg, 0.4 mmol, 2.0 equiv), and K₃PO₄ (127.0 mg, 0.6 mmol, 3.0 qeuiv) were placed in a Schlenk tube equipped with a stir bar. Next, the Schlenk tube was evacuated and filled with nitrogen (three cycles). To this mixture, CH₃CN/DMA (3:1) (1.0 mL) was added under nitrogen atmosphere. After stirring at 40 °C for 15 minutes, the trifluoromethyl-substituted alkene **1a** (40.4 mg, 0.2 mmol, 1.0 equiv) was added under a positive flow of nitrogen. The reaction mixture was stirred at 40 °C for 12 hours before it was quenched by addition of water. The aqueous phase was extracted with ethyl acetate (3×20 mL). The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. According to the analyses based on TCL and ¹H-NMR spectroscopy, conversion of **1a** was not observed.

Kinetic Studies

A) Kinetic Progress Analysis for the Reaction between 1q and 2e

A Schlenk tube was charged with the acyl oxime esters **2e** (94 mg, 0.4 mmol, 2 equiv), the trifluoromethyl styrene **1q** (42.8 mg, 0.2 mmol, 1 equiv), CrCl₃ (3.2 mg, 0.02 mol, 10 mol%), the ligand 2,2':6',2"-terpyridine (**L1**)(7.0 mg, 0.03 mol, 15 mol%), and Zn (26 mg, 0.4 mmol, 2 equiv) in MeCN/DMA (3:1). After stirring for 1h, 2h, 3h, 6h, 12h at 40 °C, the reaction was quenched by addition of water. The aqueous phase was extracted with ethyl acetate (3×20 mL). The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo.The crude materials were purified through column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to provide the recovered acyl oxime ester **2e** and the *gem*-difluoroalkenes **3qe** as the products.

A Schlenk tube was charged with the acyl oxime esters 2e (94 mg, 0.4 mmol, 2 equiv), the trifluoromethyl styrene 1q (42.8 mg, 0.2 mmol, 1 equiv), and Zn (26 mg, 0.4 mmol, 2 equiv) in MeCN/DMA (3:1). After stirring for 1h, 3h, 6h, 12h at 40 °C, the reaction was quenched by addition of water. The aqueous phase was extracted with ethyl acetate (3×20 mL). The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude materials were purified through column

chromatography on silica gel (petroleum ether/ethyl acetate) to provide the recovered acyl oxime ester **2e** and the *gem*-difluoroalkenes **3qe** as the products.

T (h)	Conv. of 2e	Conv. of 2e	Yield of 2e	3qe/(3qe+3qe')
	(w/ CrCl ₃)	(w/o CrCl ₃)	(w/ CrCl ₃)	(w/CrCl ₃)
1	48%	8%	8%	91%
2	n.d.	n.d.	15%	91%
3	67%	18%	22%	90%
6	73%	29%	36%	90%
12	87%	48%	49%	88%

Determination of the Reaction Order of the Reactants and Catalyst

A Schlenk tube was charged with the indicated concentration of the acyl oxime ester **2e**, the trifluoromethyl styrene **1q**, $CrCl_3$, the ligand 2,2':6',2"-terpyridine (**L1**), and Zn in MeCN/DMA (3:1). After stirring for 2h at 40 °C, the reaction was quenched by

addition of water. The aqueous phase was extracted with ethyl acetate (3×20 mL). The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude materials were purified through column chromatography on silica gel (petroleum ether/ethyl acetate) to give the *gem*-difluoroalkenes **3qe** as the product. The initial rates were calculated and plotted against the reactant or catalyst concentration to determine the reaction orders.

B) Determination of the Reaction Order in the α-Trifluoromethyl Styrene 1q

The reaction was performed with acyl oxime esters 2e (94.0 mg, 0.4 mmol, 1.0 equiv, 0.4 M), CrCl₃ (3.2 mg, 0.02 mmol, 5 mol %), the ligand 2,2':6',2"-terpyridine (L1) (7.0 mg, 0.03 mmol, 7.5 mol %), and Zn (26.0 mg, 0.4 mmol, 1.0 equiv) in MeCN/DMA (3:1) (1.0 mL) in the presence of 0.2 M, 0.3 M, 0.4M and 0.5 M the α -trifluoromethyl styrene 1q with the reaction time of 2 h. The initial rates at various 1q were similar, showing the reaction exhibits zero-order rate dependence on the concentration of 1q.

C) Determination of the Reaction Order in the Acyl Oxime Esters 2e

The reaction was performed with the α -trifluoromethyl styrene **1q** (42.8 mg, 0.2 mmol, 1.0 equiv, 0.2 M), CrCl₃ (3.2 mg, 0.02 mmol, 10 mol%), the ligand 2,2':6',2"-terpyridine (**L1**) (7.0 mg, 0.03 mmol, 15 mol%), and Zn (26.0 mg, 0.4 mmol, 2.0 equiv) in MeCN/DMA (3:1) (1.0 mL) in the presence of 0.2 M, 0.4 M, 0.6 M, and 0.8 M the acyl oxime ester **2e** with the reaction time of 2 h. The initial rates at various **2e** were similar, showing the reaction exhibits zero-order rate dependence on the concentration of **2e**.

D) Determination of the Reaction Order in the Cr Catalyst

The reaction was performed with α -trifluoromethyl styrene **1q** (42.8 mg, 0.2 mmol, 2.0 equiv, 0.2 M), the oxime ester **2e** (94.0 mg, 0.4 mmol, 2.0 equiv, 0.4 M), and Zn (26.0 mg, 0.4 mmol, 2.0 equiv) in MeCN/DMA (3:1) (1.0 mL) in the presence of 0.01 M, 0.015 M, 0.02 M, and 0.025 M CrCl₃ with 0.015 M, 0.0225 M, 0.30 M, and 0.375 M **L1**, respectively, with the reaction time of 2 h. The relationship between the initial rates
and $[CrCl_3]$ was linear, showing the reaction exhibits a first-order rate dependence on the concentration of $CrCl_3$.

A Schlenk tube was charged with the acyl oxime ester 2e (188 mg, 0.8 mmol, 2 equiv), the indicated trifluoromethyl styrene **1a**, **1b**, or **1q** (0.4 mmol, 1 equiv), CrCl₃ (6.4 mg, 0.04 mol, 10mol%), the ligand 2,2':6',2"-terpyridine (L1)(14.0 mg, 0.06 mol, 15mol%), and Zn (52 mg, 0.8 mmol, 2 equiv) in MeCN/DMA (3:1) (2.0 mL). After stirring for 1 h at 40 °C, the reaction was quenched by addition of water. The aqueous phase was extracted with ethyl acetate (3×20 mL). The combined organic phases were washed

with brine, dried over Na_2SO_4 , filtered, and concentrated in vacuo. The crude materials were purified through column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the *gem*-difluoroalkenes **3ae**, **1be**, or **3qe** as the products.

R	Yield (%)	$[3] (10^{-2}M)$	Initial Rate (10 ⁻⁶ M/s)
OMe	14	2.80	7.80
Н	11	2.20	6.11
Ac	8	1.60	4.44

References

- Liu, Y.; Zhou, Y.; Zhao, Y.; Qu, J. Synthesis of *gem*-Difluoroallylboronates via FeCl₂-Catalyzed Boration/β-Fluorine Elimination of Trifluoromethyl Alkenes. *Org. Lett.* 2017, *19*, 946–949.
- 2. Lan, Y.; Yang, F.; Wang, C. Synthesis of *gem*-Difluoroalkenes via Nickel-Catalyzed Allylic Defluorinative Reductive Cross-Coupling. *ACS Catal.* **2018**, *8*, 9245–9251.
- Cheng, Y.-Y.; Lei, T.; Su, L.; Fan, X.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Visible Light Irradiation of Acyl Oxime Esters and Styrenes Efficiently Constructs β-Carbonyl Imides by a Scission and Four-Component Reassembly Process. *Org. Lett.* 2019, *21*, 8789–8794
- Fan, X.; Lei, T.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Photocatalytic C–C Bond Activation of Oxime Ester for Acyl Radical Generation and Application. *Org. Lett.* 2019, *21*, 4153–4158.

¹H-, ¹³C-, and ¹⁹F-NMR Spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S74

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

f1 (ppm)

fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -4 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

