Supplementary Information

Iodine(III)-Catalyzed Dehydrogenative Cycloisomerization-Arylation Sequence of 2-Propargyl 1,3-Dicarbonyl Compounds

Yuki Umakoshi,^a Kazushige Wakisaka,^a Akira Tsubouchi,^a Akira Yoshimura^b and Akio Saito*,^a

- ^a Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
- ^b Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan.
- * Correspondence: akio-sai@cc.tuat.ac.jp; Tel.: +81-42-388-7667

Table of contents

- 1. Optimization of Reaction Conditions (Table S1 and S2)......S1
- 2. Analysis of Real Oxidant and Catalyst (Figure S1-S3 and Scheme S1-S2)......S3
- 3. General Information......S6
- 4. Preparation and Characterization of Substrate 1h......S6
- 5. Preparation and Characterization of Coupling Products 3......S6
- 6. Control Experiments......S10
- 7. ¹H and ¹³C NMR Spectra of Substrate 1h and Products 3aa-3ia, 3ab-3ai, 4a......S11

1. Optimization of Reaction Conditions

Table S1. Evaluation of I(III) catalysts, additives, oxidants and solvents.

	Ph	cat.Y _n C ₆ H _(5-n) I O additive, oxidant Ph		O Ph			1 _⊕ N∽⊂CI			
	Ph	solvent	Ph	+ Ph		F	\vec{F} 2 \vec{X}			
	O \\\\ 1a (0.2 mmol) 2a (3 eq.)		3aa	4a		(-	IEDA-X			
							Va	lues ^a (ues^a (%)	
entry	Y_n of $Y_nC_6H_{(5-n)}I$ (mol%)	additive (eq.)	dditive (eq.) oxidant (eq.) solvent (°C		(°C)	(h)	3aa	4 a	1a	
1	2,4-(OMe) ₂ -6-(CO ₂ Me) (20)	$Me_2SO(3)$	F-TEDA-PF ₆ (1.2)	MeNO ₂	100	18	64	19	0	
2	11	//	11	MeCN	85	18	45	25	0	
3	11	//	11	DCE	85	18	5	6	76	
4	4-OMe (20)	//	11	MeNO ₂	100	18	10	22	31	
5	2-CONHMe (20)	//	11]]	100	18	9	16	43	
6	11	none	11	11	100	18	26	32	24	
7	2,4-(OMe) ₂ -6-(CO ₂ Me) (20)	$Me_2SO(3)$	11	11	80	18	46	16	0	
8	11	//	11	11	60	18	49	22	0	
9	11	//	11	11	40	24	9	2	50	
10	11	//	11]]	rt	24	0	0	Q	
11	11	//	F-TEDA-BF ₄ (1.2)	11	100	18	59	10	0	
12	11	//	F -TEDA-NT $f_2(1.2)$	11	100	18	50	15	0	
13	11	//	F-TEDA-OTf (1.2)	11	100	18	22	19	0	
14	11	none	<i>m</i> CPBA (1.5)	11	100	18	13	23	0	
15	11	none	F-TEDA-PF ₆ (1.2)	11	100	18	38	29	0	
16	11	$Me_2SO(3)$	11	11	100	1	60	7	0	
17	11	//	11	11	100	2	59	6	0	
18	11	$Ph_2SO(3)$	11	11	100	1	63	6	0	
19	11	PhS(O)Bn (3)	11	11	100	1	71	7	0	
20	11	$Bn_2SO(3)$	11	11	100	1	71	11	0	
21	11	PhS(O)Me (3)	11	11	100	1	64	4	0	
22	11	PhS(O)Et (3)	11	11	100	1	60	13	0	
23	11	$PhS(O)^{i}Pr(3)$	11	11	100	1	52	22	0	
24	11	PhS(O)'Bu (3)	11	11	100	1	17	11	50	
25	2,4-(OMe) ₂ -6-CONHMe (20)	PhS(O)Bn (3)	11	11	100	1	69	9	0	
26	2,4-(OMe) ₂ -6-CONH ⁱ Pr (20)	//	11	11	100	1	65	8	0	
27	2,4-(OMe) ₂ -6-COOH (20)]]	11	11	100	1	49	9	14	
28	2,4,6-(OMe) ₃ (20)]]	11	11	100	1	41	4	0	
29	none]]	//	11	100	18	5	39	46	

^a Yields or recovery were determined by ¹H NMR analysis using CH₂Br₂ as an internal standard. Q = quantitative recovery.

Table S2. Evaluation of the added amount of each reagent

Ph- Ph- O	+ [F-TEC Mel	Arl (Y mol%) Bn ₂ SO (A eq.))A-PF ₆ (B eq.) NO ₂ (C mL) 100 °C	→ Ph Ph		+ Ph	Arl =	MeO	CO ₂ Me	
1a (0.2 m	mol) 2a	(X eq.)			3aa	4a		Olvi	8	
entry	X (eq.)	Y (mol%)	A (eq.)	B (eq.)	C (mL)	(h)	3aa ^a (%)	4a ^a (%)	1 ^a (%)	
1^b	3	20	3	1.2	2	1	71 (54)	7	0	
2^c	Л	IJ	IJ	1.2	11	11	71 (58)	11	0	
3]]]]]]	2.0	11]]	60	19	0	
4]]]]]]	1.5	11]]	74 (59)	13	0	
5]]]]]]	1.0	11]]	68	7	2	
6]]]]	5	2.0	11]]	60	6	0	
7	11]]	11	1.2	//]]	72	6	0	
8	11]]	2.0	11	//	2	61	17	0	
9	11]]	1.5	11	//	20	58	13	0	
10]]]]	None]]	11	8	27	13	21	
11]]	30	3]]	11	1	66	8	0	
12	11	10	11	11	//	3	73	10	0	
13 ^d	11	10	11	11	4	3	73 (58)	14	0	
14	11	5	11	11	2	4	60	19	7	
15	11	10	11	1.5	//	3	66	16	0	
16	11	20	11	1.2	4	4	63	12	0	
17	11	//	11	//	1	1	59	11	0	
18	5	//	11	//	2]]	71	8	0	
19	2]]]]	11	11	2	72	10	0	

^{*a*} Yields or recovery were determined by ¹H NMR analysis using CH₂Br₂ as an internal standard. Values in parentheses were isolated yields. ^{*b*} Result of entry 19 in Table S1: PhS(O)Bn instead of Bn₂SO. ^{*c*} Result of entry 20 in Table S1. ^{*d*} 1a: 0.4 mmol.

2. Analysis of Real Oxidant and Catalyst

Initially, we attempted to check an active species generated from sulfoxide and F-TEDA-PF₆. When Bn₂SO was treated with F-TEDA-PF₆ in CD₃NO₂ at rt for 2 h, the singlet peak of cationic fluorine of F-TEDA-PF₆ (51.4 ppm, Figure S1b) almost disappeared and a triplet peak (-17.8 ppm, $J_{F-H} = 14.3$ Hz) appeared in ¹⁹F NMR spectrum (Figure S1a). We speculate that the new peak is a sulfinyl fluoride decomposed from the λ^6 -sulfanes, which was formed from sulfoxide and F-TEDA-PF₆ (Scheme S1).

Figure S1. ¹⁹F NMR spectra (470 MHz, CD₃NO₂) of (a) Bn₂SO treated with F-TEDA-PF₆ at rt for 2 h and (b) F-TEDA-PF₆.

Scheme S1. Proposed formation mechanism of BnSOF.

In fact, the ¹H NMR spectrum of Bn₂SO treated with F-TEDA-PF₆ (Figure S2a) shows the peaks [4.30 ppm (d, $J_{H-F} = 14.3$ Hz), 7.36-7.50 (m)] corresponding to sulfinyl fluoride along with peaks like Bn-TEDA-PF₆ (these were not consistent with BnOH.). Note that attempts to synthesize Bn-TEDA-PF₆ were unsuccessful. However, sulfinyl fluoride has also been observed in the previous NMR experiments using DMSO and F-TEDA-PF₆ (see, ref. 9a in text).

Figure S2. ¹H NMR spectra (500 MHz, CD₃NO₂) of (a) Bn₂SO treated with F-TEDA-PF₆ at rt for 2 h, (b) F-TEDA-PF₆.

Next, the time-course ¹H NMR analysis was conducted using a mixture of 2,4-(MeO)₂-6-(MeOCO)C₆H₂I and *in situ* generated sulfinyl fluoride in CD₃NO₂ at room temperature (Figure S3). In 24 h after the sample preparation, new two doublet peaks of aromatic protons of iodine(III) species like **A** (X = F) clearly appeared at 6.93 and 7.00 ppm (Figure S3d). Although these

coupling constants (J=2.9 Hz) are similar to those of 2,4-(MeO)₂-6-(MeOCO)C₆H₂I (J=2.9 Hz at 6.68 and 6.80 ppm, enlarged view of Figure S3e), the fluorine peak corresponding to that of **A** was not observed. Thus, the new aromatic protons may be those of hydroxy- λ^3 -iodane **B** (X = OH) produced by hydrolysis of **A** (X = F). In addition, the same ¹H NMR spectrum showed other aromatic protons, which were well accorded with those of 3,5-dimethoxybenzoate **D** (6.71 and 7.15 ppm, Figure S3f) and 1,5-I₂-2,4-(MeO)₂-6-(MeOCO)C₆H (6.69 ppm, Figure S3g).

Figure S3. ¹H NMR spectra (500 MHz, CD₃NO₂) of (a) 2,4-(MeO)₂-6-(MeOCO)C₆H₂I, (b) Bn₂SO treated with F-TEDA-PF₆ at rt for 2 h, (c) 2,4-(MeO)₂-6-(MeOCO)C₆H₂I treated with (b) at rt for 20 min, (d) 2,4-(MeO)₂-6-(MeOCO)C₆H₂I treated with (b) at rt for 24 h, (e) 2,4-(MeO)₂-6-(MeOCO)C₆H₂I treated with (b) at rt for 48 h, (f) methyl 3,5-dimethoxybenzoate (**D**) and (g) diiodoarene **F**.

In 48 h, the doublet peak (4.30 ppm) of sulfinyl fluoride disappeared completely (Figure S3b vs S3e), the peak intensity of 3,5-dimethoxybenzoate **D** increased (Figs. S7d-S7f) and that of 2,4-(MeO)₂-6-(MeOCO)C₆H₂I decreased (Figures S3a and S3c-S3e). Considering that 3,5-dimethoxybenzoate **D** is a decomposed product of iodane **A** and/or **B** (Scheme S2), these results suggest that sulfinyl fluoride acts as an oxidant for iodoarenes. Hence, the intensity of iodane **B** was almost unchanged even in 48 h (Figures S3d and S3e).

Scheme S2. Proposed decomposition mechanism of A.

3. General Information

All reactions were carried out under an argon atmosphere. According to procedures reported in the literatures, substrates 1a, ^{1a} 1b, ^{1b} 1c, ^{1c} 1d, ^{1d} 1e-f, ^{1e} 1g, ^{1f} 1i, ^{1d} 2, 4-(OMe)₂-6-(CO₂Me)C₆H₂I, ² F-TEDA-PF₆, ^{3a} F-TEDA-NTf₂^{3b} and F-TEDA-OTf^{3c} were prepared. Arenes 2a-i, F-TEDA-BF₄ (Selectfluor[®]) and Py·9HF (Py = pyridine) are commercially available. All solvents were purchased as the "anhydrous" and used without further purification. For the thin-layer chromatography (TLC) analysis, Merck precoated TLC plates (silica gel 60 F₂₅₄) were used. Column chromatography was performed on silica gel 60N (63-200 µm, neutral, Kanto Kagaku Co., Ltd.). Preparative thin layer chromatography (PTLC) was performed on Wakogel[®] B-5F (FUJIFILM Wako Pure Chemical Corp.).

¹H and ¹³C NMR spectra were measured at 500 and 125 MHz in CDCl₃ or CH₃NO₂, and the chemical shifts are given in ppm using CHCl₃ (7.26 ppm) in CDCl₃ or CH₃NO₂ (4.33 ppm) in CD₃NO₂ for ¹H NMR and CDCl₃ (77.0 ppm) or CD₃NO₂ (62.9 ppm) for ¹³C NMR as an internal standard, respectively. ¹⁹F NMR spectra were measured at 470 MHz in CDCl₃, and the chemical shifts are given in ppm using C₆F₆ (-162.90 ppm) as an internal standard. Splitting patterns of an apparent multiplet associated with an averaged coupling constant were designed as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broadened). Mass spectra and HRMS were recorded on double-focusing magnetic sector by ESI methods.

4. Preparation and Characterization of Substrate 1h

To a suspension of K_2CO_3 (829 mg, 6.0 mmol) and KI (99.6 mg, 0.6 mmol) in acetone (9 mL) was added ethyl (*m*-toluoyl)acetate (619 mg, 3.0 mmol) and propargyl bromide (226 μ L, 3.0 mmol). After being stirred at room temperature for 24 h, the rection mixture was filtered through celite pad. The filtrate was concentrated in vacuo to dryness and then the residue was purified by silica gel column chromatography (DCM:Hexane = 1:1) to give **1h** (522 mg, 71%).

Ethyl 2-(3-methylbenzoyl)pent-4-ynoate (1h): $R_f = 0.51$ (Hex:AcOEt = 3:1). Colorless oil. IR (neat) $v \text{ cm}^{-1}$; 1739, 1686, 1176. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.82 (s, 1H), 7.81 (d, J = 8.6 Hz, 1H), 7.39 (d, J = 7.5 Hz, 1H), 7.34 (dd, J = 8.6, 7.5 Hz, 1H), 4.54 (dd, J = 7.5, 7.5 Hz, 1H), 4.20-4.07 (m, 2H), 2.90 (ddd, J = 17.2, 7.5, 2.9 Hz, 1H), 2.82 (ddd, J = 17.2, 7.5, 2.9 Hz, 1H), 2.39 (s, 3H), 1.97 (t, J = 2.9 Hz, 1H), 1.15 (t, J = 7.2 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 193.3, 168.2, 138.5, 135.8, 134.5, 129.2, 128.5, 126.0, 80.5, 70.3, 61.6, 53.0, 21.2, 18.2, 13.8. HRMS (FAB): m/z calcd. for C₁₅H₁₇O₃⁺ [M + H]⁺ 245.1172; found 245.1166.

5. Preparation and Characterization of Coupling Products 3

After Bn₂SO (276 mg, 1.2 mmol) was treated with F-TEDA-PF₆ (226 mg, 0.48 mmol) in MeNO₂ (4.0 mL) at 100 °C for 1 h, methyl 2-iodo-3,5-dimethoxybenzoate (12.9 mg, 0.04 mmol), **1a-i** (0.40 mmol) and **2** (**2a-c**, 1.2 mmol; **2d**, 0.8 mmol; **2e**, 4.0 mmol; **2f-h**, 8.0 mmol; **2i**, 4.0 mL) were added in turn at the ambient temperature. After being stirred at 100 °C for 3 h (18 h in the case of **3ae**), the reaction mixture was diluted with ether and filtered through a pad of silica gel. The filtrate was concentrated in vacuo to dryness and then the residue was purified by MPLC on silica gel (Hexane:AcOEt = 99:1) and by MPLC on silica gel modified with octadecylsilyl (ODS) groups (MeCN only) to give **3aa-3ia** and **3ab-3ai**.

 ¹ (a) Y.-F. Chen, H.-F. Wang, Y. Wang, Y.-C. Luo, H.-L. Zhu and P.-F. Xua, Adv. Synth. Catal., 2010, 352, 1163–1168; (b) N.-C. Hsueh, Y.-T. Hsiao and M.-Y. Chang, Tetrahedron, 2017, 73, 4398–4406; (c) R. Sanz, D. Miguel, A. Martínez, J. M. Älvarez-Gutiérrez and F. Rodríguez, Org. Lett., 2007, 9, 727–730; (d) S. Ruengsangtongkul, N. Chaisan, C. Thongsornkleeb, J. Tummatorn and S. Ruchirawat, Org. Lett., 2019, 21, 2514–2517; (e) H. Tsuji, K. Yamagata, Y. Ueda and E. Nakamura, Synlett, 2011, 1015–1017; (f) A. N. Golonka and C. S. Schindler, Tetrahedron, 2017, 73, 4109–4114.
² M. Ehrlich and T. Carell, Eur. J. Org. Chem., 2013, 77–83.

³ (a) T. Furuya, A. E. Strom and T. Ritter, J. Am. Chem. Soc., 2009, **131**, 1662–1663; (b) Y. Umakoshi, Y. Takemoto, A. Tsubouchi, V. V. Zhdankin, A. Yoshimura and A. Saito, Adv. Synth. Catal., 2022, **364**, 2053–2059; (c) R. E. Banks, M. K. Besheesh, S. N. Mohialdin-Khaffaf and I. Sharif, J. Chem. Soc., Perkin Trans., 1996, **1**, 2069–2076.

Phenyl[2-phenyl-5-(2,4,6-trimethylbenzyl)furan-3-yl]methanone (**3aa**): $R_f = 0.61$ (hexane:AcOEt = 3:1), 88.0 mg (58%). Pale yellow oil. IR (neat) $v \text{ cm}^{-1}$; 1657, 1119. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.78 (dd, J = 8.0, 1.2 Hz, 2H), 7.66-7.59 (m, 2H), 7.47 (tt, J = 7.5, 1.2 Hz, 1H), 7.34 (dd, J = 8.0, 7.5 Hz, 2H), 7.30-7.22 (m, 3H), 6.89 (s, 2H), 6.08 (t, J = 1.2 Hz, 1H), 4.04 (s, 2H), 2.37 (s, 6H), 2.27 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 192.0, 154.7, 153.2, 138.1, 136.8, 136.3, 132.6, 130.5, 129.9, 129.7, 129.0, 128.6, 128.2, 127.2, 121.5, 109.5, 28.0, 20.9, 20.0 (note that two carbon peaks overlap with each other). HRMS (ESI): m/z calcd. for $C_{27}H_{25}O_2^+$ [M + H]⁺ 381.1849; found 381.1848.

(5-Methyl-2-phenylfuran-3-yl)(phenyl)methanone (4a): $R_f = 0.55$ (hexane:AcOEt = 3:1), 15.8 mg (15%) as a byproduct of **3aa**. Yellow oil. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.83 (dd, J = 8.3, 1.3 Hz, 2H), 7.68-7.64 (m, 2H), 7.49 (tt, J = 7.5, 1.3 Hz, 1H), 7.36 (dd, J = 8.3, 7.5 Hz, 2H), 7.30-7.22 (m, 3H), 6.29 (q, J = 1.0 Hz, 1H), 2.40 (d, J = 1.0 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 192.0, 154.5, 151.2, 138.2, 132.6, 130.0, 129.7, 128.6, 128.2, 127.3, 121.7, 109.7, 13.4. The ¹H and ¹³C NMR spectra of **4a** were identical to data reported in the literature.⁴

2-Phenyl-3-tosyl-5-(2,4,6-trimethylbenzyl)furan (3ba): $R_f = 0.43$ (hexane:AcOEt = 3:1), 68.3 mg (40%). White solid, mp 116-118 °C. IR (KBr) v cm⁻¹; 1314, 1157. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.86-7.80 (m, 2H), 7.62 (d, J = 8.6 Hz, 2H), 7.43-7.37 (m, 3H), 7.17 (d, J = 8.6 Hz, 2H), 6.89 (s, 2H), 6.28 (s, 1H), 3.96 (s, 2H), 2.34 (s, 3H), 2.31 (s, 6H), 2.28 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 153.6, 143.9, 139.1, 136.7, 136.5, 129.9, 129.6, 129.5, 129.1, 128.5, 128.4, 128.2, 126.9, 124.3, 108.4, 27.9, 21.5, 20.9, 20.0 (note that two carbon peaks overlap with each other). HRMS (ESI): *m/z* calcd. for C₂₇H₂₇O₃S⁺ [M + H]⁺ 431.1675; found 431.1666.

[2,4-Diphenyl-5-(2,4,6-trimethylbenzyl)furan-3-yl](phenyl)methanone (3ca): $R_{\rm f} = 0.54$ (hexane:AcOEt = 3:1), 93.1 mg (51%). White solid, mp 103-105 °C. IR (KBr) v cm⁻¹; 1656, 1227. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.80 (dd, J = 8.6, 1.2 Hz, 2H), 7.46-7.42 (m, 2H), 7.39 (tt, J = 7.5, 1.2 Hz, 1H), 7.28-7.15 (m, 10H), 6.84 (s, 2H), 4.11 (s, 2H), 2.25 (s, 3H), 2.22 (s, 6H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 193.7, 151.0, 149.7, 137.4, 136.9, 136.0, 133.2, 132.1, 131.4, 129.8, 129.7, 129.4, 128.9, 128.4, 128.3, 128.2, 128.1, 127.1, 126.1, 123.7, 121.6, 26.4, 20.8, 20.2. HRMS (ESI): m/z calcd. for C₃₃H₂₉O₂⁺ [M + H]⁺ 457.2162; found 457.2167.

Ethyl 2-phenyl-5-(2,4,6-trimethylbenzyl)furan-3-carboxylate (**3da**): $R_f = 0.64$ (hexane: AcOEt = 3:1), 98.4 mg (71%). Pale yellow oil. IR (neat) $v \text{ cm}^{-1}$; 1719, 1227, 1090. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 8.00-7.94 (m, 2H), 7.47-7.36 (m, 3H), 6.92 (s, 2H), 6.20, (t, J = 1.1 Hz, 1H), 4.26 (q, J = 7.2 Hz, 2H), 4.00 (s, 2H), 2.36 (s, 6H), 2.31 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 163.7, 156.1, 153.1, 136.8, 136.2, 130.5, 130.0, 129.0, 128.9, 128.1, 128.0, 114.4, 108.6, 60.3, 28.0, 20.9, 19.9, 14.2. HRMS (ESI): m/z calcd. for C₂₃H₂₅O₃⁺ [M + H]⁺ 349.1798; found 349.1804.

Ethyl 2-(4-(trifluoromethyl)phenyl)-5-(2,4,6-trimethylbenzyl)furan-3-carboxylate (**3ea**): $R_f = 0.66$ (hexane:AcOEt = 3:1), 94.7 mg (57%). Pale yellow oil. IR (neat) *v* cm⁻¹; 1718, 1302, 1228, 1109. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 8.15 (d, *J*=8.3 Hz, 2H), 7.70 (d, *J* = 8.3 Hz, 2H), 6.95 (s, 2H), 6.28 (s, 1H), 4.30 (q, *J* = 7.2 Hz, 2H), 4.04 (s, 2H), 2.38 (s, 6H), 2.33 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 163.4, 154.2, 154.1, 136.8, 136.4, 133.2, 130.3 (q, *J* = 32.4 Hz), 130.2, 129.1, 128.2, 129.4 (q, *J* = 3.6 Hz), 124.0 (q, *J* = 272.3 Hz), 116.0, 109.0, 60.6, 28.0, 20.8, 19.9, 14.2. ¹⁹F-NMR (470 MHz, CDCl₃) δ ppm; -64.0. HRMS (ESI): *m/z* calcd. for C₂₄H₂₄F₃O₃⁺ [M + H]⁺ 417.1672; found 417.1686.

Ethyl 2-(4-methoxyphenyl)-5-(2,4,6-trimethylbenzyl)furan-3-carboxylate (**3fa**): $R_{\rm f} = 0.56$ (hexane:AcOEt = 3:1), 85.8 mg (57%). White solid, mp 70-72 °C. IR (KBr) v cm⁻¹; 1714, 1180, 1092. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.97 (d, J = 9.2 Hz, 2H), 6.97 (d, J = 9.2 Hz, 2H), 6.83 (s, 2H), 6.20 (s, 1H), 4.27 (q, J = 7.2 Hz, 2H), 4.00 (s, 2H), 3.87 (s, 3H), 2.37 (s, 6H), 2.32 (s, 3H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 163.8, 160.1, 156.4, 152.3, 136.8, 136.1, 130.6, 129.6, 129.0, 122.7, 113.4, 113.1, 108.3, 60.2, 55.2, 27.9, 20.8, 19.9, 14.2. HRMS (ESI): m/z calcd. for C₂₄H₂₇O₄⁺ [M + H]⁺ 379.1904; found 379.1895.

⁴ Y. Lv, W. Pu, J. Niu, Q. Wang and Q. Chen, *Org. Lett.*, 2012, **14**, 4478–4481.

Ethyl 2-(*p***-tolyl)-5-(2,4,6-trimethylbenzyl)furan-3-carboxylate** (**3ga**): $R_f = 0.65$ (hexane:AcOEt = 3:1), 79.8 mg (55%). White solid, mp 90 °C. IR (KBr) *v* cm⁻¹; 1718, 1211, 1087. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.85 (d, J = 7.5 Hz, 2H), 7.23 (d, J = 7.5 Hz, 2H), 6.90 (s, 2H), 6.16 (t, J = 1.2 Hz, 1H), 4.24 (q, J = 7.2 Hz, 2H), 3.98 (s, 2H), 2.39 (s, 3H), 2.35 (s, 6H), 2.29 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 163.8, 156.5, 152.7, 139.0, 136.8, 136.2, 130.6, 129.0, 128.7, 128.1, 127.2, 113.8, 108.4, 60.3, 28.0, 21.4, 20.9, 20.0, 14.3. HRMS (ESI): *m/z* calcd. for C₂₄H₂₇O₃⁺ [M + H]⁺ 363.1955; found 363.1953.

Ethyl 2-(*m***-tolyl)-5-(2,4,6-trimethylbenzyl)furan-3-carboxylate** (**3ha**): $R_f = 0.67$ (hexane:AcOEt = 3:1), 85.9 mg (59%). Pale yellow oil. IR (neat) $v \text{ cm}^{-1}$; 1718, 1208, 1066. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.75 (s, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.31 (dd, J = 8.0, 7.5 Hz, 1H), 7.19 (d, J = 7.5 Hz, 1H), 6.90 (s, 2H), 6.15 (t, J = 1.1 Hz, 1H), 4.24 (q, J = 7.2 Hz, 2H), 3.98 (s, 2H), 2.41 (s, 3H), 2.34 (s, 6H), 2.29 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 163.8, 156.3, 153.0, 137.5, 136.8, 136.2, 130.6, 129.9, 129.8, 129.0, 128.7, 127.9, 125.4, 114.3, 108.5, 60.3, 28.0, 21.5, 20.9, 20.0, 14.2. HRMS (ESI): m/z calcd. for C₂₄H₂₇O₃⁺ [M + H]⁺ 363.1955; found 363.1953.

Ethyl 2-(*o***-tolyl)-5-(2,4,6-trimethylbenzyl)furan-3-carboxylate** (**3ia**): $R_f = 0.62$ (hexane:AcOEt = 3:1), 91.2 mg (63%). White solid, mp 70-71 °C. IR (KBr) v cm⁻¹; 1708, 1236, 1091. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.41 (d, J = 7.5 Hz, 1H), 7.32 (dd, J = 7.5, 7.5 Hz, 1H), 7.25 (d, J = 7.5 Hz, 1H), 7.22 (dd, J = 7.5, 7.5 Hz, 1H), 6.89 (s, 2H), 6.18 (s, 1H), 4.13 (q, J = 7.2 Hz, 2H), 3.97 (s, 2H), 2.32 (s, 6H), 2.29 (s, 3H), 2.24 (s, 3H), 1.15 (t, J = 7.2 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 163.5, 157.1, 153.5, 137.8, 136.8, 136.2, 130.9, 130.7, 130.1, 130.0, 129.3, 129.0, 125.0, 115.7, 107.0, 60.1, 28.0, 20.9, 20.0, 19.9, 14.0. HRMS (ESI): m/z calcd. for C₂₄H₂₇O₃⁺ [M + H]⁺ 363.1955; found 363.1965.

[5-(2,3,4,5,6-Pentamethylbenzyl)-2-phenylfuran-3-yl](phenyl)methanone (**3ab**): $R_{\rm f} = 0.59$ (hexane:AcOEt = 3:1), 109.4 mg (67 %). Yellow solid, mp 78-80 °C. IR (KBr) ν cm⁻¹; 1650, 1130. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.78 (dd, J = 8.0, 1.2 Hz, 2H), 7.68-7.62 (m, 2H), 7.47 (tt, J = 7.5, 1.2 Hz, 1H), 7.34 (dd, J = 8.0, 7.5 Hz, 2H), 7.31-7.23 (m, 3H), 6.08 (s, 1H), 4.14 (s, 2H), 2.33 (s, 6H), 2.25 (s, 9H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 192.0, 154.6, 153.9, 138.1, 133.7, 132.7, 132.6, 132.5, 130.7, 130.0, 129.7, 128.6, 128.2, 127.3, 121.6, 109.8, 29.5, 17.0, 16.9, 16.8 (note that two carbon peaks overlap with each other). HRMS (ESI): m/z calcd. for $C_{29}H_{29}O_2^+$ [M + H]⁺ 409.2162; found 409.2168.

Phenyl[2-phenyl-5-(2,3,5,6-tetramethylbenzyl)furan-3-yl]methanone (**3ac**): $R_f = 0.59$ (hexane:AcOEt = 3:1), 56.2 mg (36 %). Pale yellow oil. IR (neat) v cm⁻¹; 1656, 1119. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.78 (dd, J = 7.5, 1.2 Hz, 2H), 7.67-7.60 (m, 2H), 7.47 (tt, J = 7.5, 1.2 Hz, 1H), 7.34 (dd, J = 7.5, 7.5 Hz, 2H), 7.31-7.23 (m, 3H), 6.93 (s, 1H), 6.07 (t, J = 1.2 Hz, 1H), 4.13 (s, 2H), 2.29 (s, 6H), 2.27 (s, 6H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 192.0, 154.6, 153.6, 138.1, 133.8, 133.4, 132.9, 132.6, 130.5, 129.9, 129.7, 128.6, 128.2, 127.3, 121.6, 109.7, 29.0, 20.6, 15.8 (note that two carbon peaks overlap with each other). HRMS (ESI): m/z calcd. for C₂₈H₂₇O₂⁺ [M + H]⁺ 395.2006; found 395.2011.

[5-(4-Methoxybenzyl)-2-phenylfuran-3-yl](phenyl)methanone (3ad): $R_{\rm f} = 0.47$ (hexane:AcOEt = 3:1), 47.2 mg (32 %). Yellow oil. IR (neat) v cm⁻¹; 1656, 1249, 1119. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.82 (dd, J = 8.0, 1.2 Hz, 2H), 7.67-7.60 (m, 2H), 7.48 (tt, J = 7.5, 1.2 Hz, 1H), 7.36 (dd, J = 8.0, 7.5 Hz, 2 H), 7.29-7.25 (m, 3H), 7.24 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 6.28 (s, 1H), 4.00 (s, 2H), 3.80 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 191.9, 158.4, 154.9, 154.2, 138.0, 132.6, 129.84, 129.78, 129.6, 129.1, 128.7, 128.20, 128.16, 127.3, 121.6, 114.0, 110.0, 55.2, 33.5. HRMS (ESI): m/z calcd. for C₂₅H₂₁O₃⁺ [M + H]⁺ 369.1845; found 369.1850.

[5-(3-Bromo-2,4,6-trimethylbenzyl)-2-phenylfuran-3-yl](phenyl)methanone (3ae): $R_{\rm f}$ = 0.58 (hexane:AcOEt = 3:1), 36.8 mg (20 %). Colorless oil. IR (neat) $v \, {\rm cm}^{-1}$; 1657, 1120, 895. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.78 (dd, J = 8.2, 1.3 Hz, 2H), 7.66-7.59 (m, 2H), 7.48 (tt, J = 7.5, 1.3 Hz, 1H), 7.34 (dd, J = 8.2, 7.5 Hz, 2H), 7.31-7.23 (m, 3H), 6.98 (s, 1H), 6.10 (t, J = 1.0 Hz, 1H), 4.12 (s, 2H), 2.53 (s, 3H), 2.39 (s, 3H), 2.35 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 191.9, 154.8, 152.6, 138.0, 136.8, 136.7, 135.6, 132.7, 132.5, 130.3, 129.8, 129.6, 128.7, 128.2, 127.3, 126.1, 121.5, 109.8, 29.5, 24.0, 20.5, 20.0 (note that two carbon peaks overlap with each other). HRMS (ESI): m/z calcd. for C₂₇H₂₄BrO₂⁺ [M + H]⁺ 459.0954; found 459.0960.

[5-(2,5-Dimethylbenzyl)-2-phenylfuran-3-yl](phenyl)methanone (**3af**): $R_f = 0.59$ (hexane:AcOEt = 3:1), 53.9 mg (37 %). Colorless oil. IR (neat) $v \text{ cm}^{-1}$; 1657, 1119. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.81 (d, J = 8.0 Hz, 2H), 7.68-7.61 (m, 2H), 7.48 (t, J = 7.5 Hz, 1H), 7.35 (dd, J = 8.0, 7.5 Hz, 2H), 7.31-7.23 (m, 3H), 7.09 (d, J = 7.7 Hz, 1H), 7.05 (s, 1H), 7.00 (d, J = 7.7 Hz, 1H), 6.20 (s, 1H), 4.01 (s, 2H), 2.34 (s, 3H), 2.31 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 192.0, 154.8, 153.5, 138.1, 135.7, 135.1, 133.2, 132.7, 130.4, 130.3, 129.9, 129.7, 128.6, 128.2, 127.7, 127.3, 121.6, 110.1, 32.1, 20.9, 19.0 (note that two carbon peaks overlap with each other). HRMS (ESI): *m/z* calcd. for C₂₆H₂₃O₂⁺ [M + H]⁺ 367.1693; found 367.1697.

[5-(2,4-Dimethylbenzyl)-2-phenylfuran-3-yl](phenyl)methanone [5-(2,6and dimethylbenzyl)-2-phenylfuran-3-yl](phenyl)methanone (3ag): $R_{\rm f}$ = 0.59 (hexane:AcOEt = 3:1), 82.4 mg (56 %, 2,4-Me₂:2,6-Me₂ = 89:11). Colorless oil. IR (neat) $v \text{ cm}^{-1}$; 1656, 1132. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.85-7.77 (m, 2H), 7.70-7.61 (m, 2H), 7.52-7.46 (m, 1H), 7.39-7.32 (m, 2H), 7.32-7.23 (m, 3H), 7.14 (d, *J* = 7.7 Hz, 0.9H), 7.12-7.05 (m, 0.3H), 7.03 (s, 0.9H), 7.00 (d, J = 7.7 Hz, 0.9H), 6.21 (s, 0.9H), 6.11 (s, 0.1H), 4.10 (s, 0.2H), 4.02 (s, 1.8H), 2.43 (s, 0.6H), 2.36 (s, 2.7H), 2.32 (s, 2.7H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 191.9, 154.8 (major), 154.7 (minor), 153.6 (major), 152.9 (minor), 138.1 (major), 138.0 (minor), 136.9 (minor), 136.6 (major), 136.2 (major), 133.6 (minor), 132.6, 132.2, 131.2 (major), 129.9, 129.7, 129.6, 128.6, 128.3 (minor), 128.20, 128.17 (major), 127.3 (major), 127.2 (minor), 126.8, 121.6 (major), 121.5 (minor), 110.1 (major), 110.0 (minor), 31.7 (major), 28.4 (minor), 20.9 (major), 20.1 (minor), 19.4 (major). HRMS (ESI): m/z calcd. for $C_{26}H_{23}O_2^+$ [M + H]⁺ 367.1693; found 367.1697.

[5-(3,4-Dimethylbenzyl)-2-phenylfuran-3-yl](phenyl)methanone and [5-(2,3dimethylbenzyl)-2-phenylfuran-3-yl](phenyl)methanone (**3ah**): $R_{\rm f}$ 0.58 (hexane:AcOEt = 3:1), 62.8 mg (43 %, 3,4-Me₂:2,3-Me₂ = 74:26). Colorless oil. IR (neat) $v \text{ cm}^{-1}$; 1655, 1227. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.85-7.78 (m, 2H), 7.68-7.61 (m, 2H), 7.52-7.46 (m, 1H), 7.3-7.32 (m, 2H), 7.31-7.22 (m, 3H), 7.13-7.03 (m, 3H), 6.30 (s, 0.75H), 6.18 (s, 0.25H), 4.07 (s, 0.5H), 3.99 (s, 1.5H), 2.31 (s, 0.75H), 2.27 (s, 0.75H), 2.25 (s, 2.25H), 2.24 (s, 2.25H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 191.9, 154.9 (major), 154.8 (minor), 154.1 (major), 153.7 (minor), 138.09 (major), 138.06 (minor), 137.2 (minor), 136.8 (major), 135.2 (minor), 135.04 (minor), 134.99 (major), 134.5 (major), 132.6, 130.1, 129.9, 129.8, 129.7, 128.8 (minor), 128.6 (major), 128.20, 128.16, 127.6, 127.4 (major), 127.3 (minor), 126.1 (major), 125.6 (minor), 121.6, 110.2 (minor), 110.1 (major), 33.9 (major), 32.8 (minor), 20.7 (minor), 19.8 (major), 19.4 (major), 15.4 (minor). HRMS (ESI): m/z calcd. for $C_{26}H_{23}O_2^+$ [M + H]⁺ 367.1693; found 367.1698.

[5-(4-Methylbenzyl)-2-phenylfuran-3-yl](phenyl)methanone and [5-(2-methylbenzyl)-2-phenylfuran-3-yl](phenyl)methanone (3ai): $R_f = 0.61$ (hexane:AcOEt = 3:1), 29.7 mg (21 %, 4-Me:2-Me = 56:44). Colorless oil. IR (neat) v cm⁻¹; 1657, 1119. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.85-7.79 (m, 2H), 7.67-7.62 (m, 2H), 7.51-7.46 (m, 1H), 7.38-7.33 (m, 2H), 7.32-7.12 (m, 7H), 6.30 (s, 0.6H), 6.22 (s, 0.4H), 4.05 (s, 0.8H), 4.03 (s, 1.2H), 2.39 (s, 1.2H), 2.35 (s, 1.8H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 191.9, 155.0 (major), 154.9 (minor), 154.0 (major), 153.3 (minor), 138.1 (major), 138.0 (minor), 136.4 (minor), 136.3 (major), 135.3 (minor), 134.0 (major), 132.68 (minor), 132.65 (major), 130.4, 129.9 (minor), 129.7, 129.6 (major), 127.2 (minor), 127.1 (minor), 126.2 (minor), 121.6, 110.2 (minor), 110.1 (major), 33.9 (major), 32.1 (minor), 21.0 (major), 19.5 (minor). HRMS (ESI): m/z calcd. for $C_{25}H_{21}O_2^+$ [M + H]⁺ 353.1536; found 353.1538.

6. Control Experiments

(Scheme 5a)

To a mixture of benzylsulfinic chloride (41.9 mg, 0.24 mmol), dibenzylsulfoxide (82.9 mg, 0.36 mmol) and TEDA-PF₆ (73.6 mg, 0.24 mmol) in MeNO₂ (2.0 mL), potassium fluoride (13.9 mg, 0.24 mmol), methyl 2-iodo-3,5-dimethoxybenzoate (6.5 mg, 0.02 mmol), **1a** (52.5 mg, 0.2 mmol) and **2a** (83.5 μ L, 0.6 mmol) were added in turn at the ambient temperature. After being stirred at 100 °C for 18 h, the reaction mixture was diluted with ether and filtered through a pad of silica gel. The filtrate was concentrated in vacuo to dryness and then the yields of **3aa** and **4a** were determined by ¹H NMR analysis of the residue.

(Scheme 5b)

To a mixture of trifluoromethanesulfonic acid (17.6 μ L, 0.2 mmol) and TEDA-PF₆ (61.3 mg, 0.2 mmol) in MeNO₂ (2.0 mL), dibenzylsulfoxide (138.2 mg, 0.6 mmol) and **1a** (52.5 mg, 0.2 mmol) were added in turn at the ambient temperature. After being stirred at 100 °C for 18 h, the reaction mixture was quenched with water and extracted with CH₂Cl₂. The filtrate was concentrated in vacuo to dryness and then the yield of **4a** and the recovery of **1a** were determined by ¹H NMR analysis of the residue.

(Scheme 5c)

After Bn₂SO (138 mg, 0.6 mmol) was treated with F-TEDA-PF₆ (113 mg, 0.24 mmol) in MeNO₂ (2.0 mL) at 100 °C for 1 h, methyl 2-iodo-3,5-dimethoxybenzoate (6.5 mg, 0.02 mmol), $7a^5$ (52.5 mg, 0.2 mmol) and 2a (83.5 µL, 0.6 mmol) were added in turn at the ambient temperature. After being stirred at 100 °C for 3 h, the reaction mixture was diluted with ether and filtered through a pad of silica gel. The filtrate was concentrated in vacuo to dryness and then the yields of **3aa** and **4a** were determined by ¹H NMR analysis of the residue.

⁵ Y.-F. Chen, H.-F. Wang, Y. Wang, Y.-C. Luo, H.-L. Zhu and P.-F. Xu, *Adv. Synth. Catal.*, 2010, **352**, 1163–1168.

1 H NMR (500 MHz, CDCl₃) of **1h**

¹³C NMR (125 MHz, CDCl₃) of 1h

¹H NMR (500 MHz, CDCl₃) of 3aa

¹³C NMR (125 MHz, CDCl₃) of 3aa

¹H NMR (500 MHz, CDCl₃) of 4a

¹³C NMR (125 MHz, CDCl₃) of 4a

¹H NMR (500 MHz, CDCl₃) of **3ba**

¹³C NMR (125 MHz, CDCl₃) of **3ba**

¹H NMR (500 MHz, CDCl₃) of 3ca

¹³C NMR (125 MHz, CDCl₃) of 3ca

¹H NMR (500 MHz, CDCl₃) of 3da

¹³C NMR (125 MHz, CDCl₃) of 3da

¹H NMR (500 MHz, CDCl₃) of 3ea


```
<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) of 3ea
```


¹H NMR (500 MHz, CDCl₃) of 3fa

¹³C NMR (125 MHz, CDCl₃) of 3fa

¹H NMR (500 MHz, CDCl₃) of 3ga

¹³C NMR (125 MHz, CDCl₃) of 3ga

¹H NMR (500 MHz, CDCl₃) of **3ha**

¹³C NMR (125 MHz, CDCl₃) of **3ha**

¹H NMR (500 MHz, CDCl₃) of 3ia

¹³C NMR (125 MHz, CDCl₃) of **3ia**

¹H NMR (500 MHz, CDCl₃) of **3ab**

¹³C NMR (125 MHz, CDCl₃) of **3ab**

¹H NMR (500 MHz, CDCl₃) of 3ac

¹³C NMR (125 MHz, CDCl₃) of 3ac

¹H NMR (500 MHz, CDCl₃) of 3ad

¹³C NMR (125 MHz, CDCl₃) of 3ad

¹H NMR (500 MHz, CDCl₃) of 3ae

¹³C NMR (125 MHz, CDCl₃) of 3ae

¹H NMR (500 MHz, CDCl₃) of **3af**

¹³C NMR (125 MHz, CDCl₃) of 3af

¹H NMR (500 MHz, CDCl₃) of **3ag**

¹³C NMR (125 MHz, CDCl₃) of 3ag

$^1\mathrm{H}$ NMR (500 MHz, CDCl₃) of **3ah**

¹³C NMR (125 MHz, CDCl₃) of **3ah**

¹H NMR (500 MHz, CDCl₃) of 3ai

¹³C NMR (125 MHz, CDCl₃) of 3ai

