Supplementary Information

Conjugated Figure-of-eight Macrocycles Derived from Anthracene Photodimer: Synthetic Execution through Intramolecular Cyclization and Topological Manipulation through Ring Expansion

Lijie Zhan, ${ }^{\text {a,c }}$ Hongyan Xiao, ${ }^{\text {b,d }}$ Jia-Nan Gao ${ }^{\text {a,c }}$ and Huan Conga,c,,

[^0]Table of Contents

Page S2: I. General Information
Page S3: II. Experimental Procedures and Compound Characterization
Page S35: III. X-ray Crystallography
Page S41: IV. Photophysical Properties
Page S44: V. Enantiomer Resolution and Chiroptic Properties
Page S47: VI. Density Functional Theory Calculations
Page S53: VII. References

I. General Information

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker Avance 400 or Ascend 600 spectrometer at $25^{\circ} \mathrm{C}$ and were internally referenced to residual protio solvent signals (for example, CDCl_{3} was referenced at 7.26 and 77.16 ppm, respectively) ${ }^{[\mathrm{S} 1]}$. Data for ${ }^{1} \mathrm{H}$ NMR were reported as follows: chemical shift ($\delta \mathrm{ppm}$), integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, and coupling constant (Hz) when applicable. ${ }^{13} \mathrm{C}$ NMR spectra were recorded with complete proton decoupling. Infrared spectra were recorded on a Varian 3100 FT-IR. High-resolution mass spectra were obtained on a Bruker SolariX XR Fourier transform ion cyclotron mass spectrometer. UV-Vis spectra were recorded in 1 cm quartz cuvette using a Varian Cary 5000 UV-Vis spectrometer. The absolute singlet quantum yield, emission lifetime and fluorescence spectra were measured using an Edinburgh FLS1000 or FLSP920 spectrometer. The electronic circular dichroism spectra were measured using a Jasco J-815 spectrometer. The circularly polarized luminescence spectra were measured using a Jasco CPL-200 spectrometer. The specific rotations were measured using an SGW-2 Polarimeter.

All reactions were carried out using flame-dried glassware under a nitrogen atmosphere unless otherwise noted. The microwave reactions were conducted using a Biotage Initiator microwave reactor. Analytical thin layer chromatography (TLC) was performed using 0.25 mm silica gel 60-F plates. Flash chromatography was performed using 200-400 mesh silica gel. HPLC-grade tetrahydrofuran, dichloromethane, toluene, and hexanes were purified and dried by passing through a PURE SOLV® solvent purification system (Innovative Technology, Inc.). Deionized water was degassed by bubbling with nitrogen balloon for 20 min prior to use as reaction solvent. Chemical reagents were purchased from Strem, Adamas, Acros, Energy Chemicals, J\&K, and Alfa Aesar, and were used as received.

II. Experimental Procedures and Compound Characterization

In a nitrogen-filled glove box, $\mathrm{Pd}(\mathrm{OAc}) 2(1.8 \mathrm{mg}, 0.008 \mathrm{mmol}, 40 \mathrm{~mol} \%), \mathrm{dppf}(4.4 \mathrm{mg}, 0.008$ $\mathrm{mmol}, 40 \mathrm{~mol} \%$), and anhydrous toluene (5 mL) were added to a 40 mL glass vial equipped with a stir bar. The mixture was stirred in the glove box at room temperature for 30 min . Then compound 1 ($17.2 \mathrm{mg}, 0.020 \mathrm{mmol}, 1.0$ equiv, prepared according to literature ${ }^{[52]}$), compound 2 ($95 \mathrm{mg}, 0.20 \mathrm{mmol}$, 10 equiv, prepared according to literature ${ }^{[53]}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (41.4 $\mathrm{mg}, 0.30 \mathrm{mmol}, 15$ equiv) and anhydrous toluene (25 mL) were added to the 40 mL glass vial. The vial was sealed with a Teflon-lined septum cap then transferred out of glove box. Degassed water (3 mL) was subsequently added to the vial via a syringe, and the puncture in the septum cap was covered with vacuum grease. The reaction mixture was stirred at 80 ${ }^{\circ} \mathrm{C}$ for 12 h , and cooled to room temperature. Four reactions were carried out in parallel using identical procedures, and all the reaction mixtures were combined during work-up. The combined reaction mixture was extracted with ethyl acetate ($30 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, and dried over sodium sulfate. The solvents were removed under reduced pressure. Purification using silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petroleum ether = 1:2) afforded compound $3(25.1 \mathrm{mg}, 16 \%$ yield $)$ as a white solid.

Compound 3
$R_{f}=0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petroleum ether $\left.=1: 2\right)$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.78$ (s, 4H), 8.59 (s, 4H), 8.29 (d, J = $8.5 \mathrm{~Hz}, 4 \mathrm{H}$), 8.12 (d, J $=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.53(\mathrm{~s}, 4 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=$ $7.7 \mathrm{~Hz}, 4 \mathrm{H}$), $7.25(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.98(\mathrm{~s}, 4 \mathrm{H}), 4.27-4.19(\mathrm{~m}, 16 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 16 \mathrm{H})$, 1.69-1.57 (m, 16H), 1.09-1.01 (m, 24H);
${ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta 144.3,143.6,143.0,142.9,139.0,138.9,130.2,130.0,129.1$, $128.8,128.1,127.9,126.8,126.5,125.5,125.1,124.3,123.0,120.8,120.2,73.6,73.5,53.9$, $32.72,32.68,19.63,19.61,14.19,14.16 ;$

IR (film): 2957, 2931, 2871, 1591, 1480, 1434, 1318, $820 \mathrm{~cm}^{-1}$;
HRMS (MALDI): [M] ${ }^{+}$calcd. for $\mathrm{C}_{116} \mathrm{H}_{112} \mathrm{Br}_{4} \mathrm{O}_{8}$ 1948.5085, found 1948.4990.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) of compound 3 .

\%
$\underset{\sim}{\infty}$
$\mathscr{6}-\stackrel{0}{\circ} \stackrel{0}{\square}$

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum ($\mathrm{CDCl}_{3}, 151 \mathrm{MHz}$) of compound 3.

In a nitrogen-filled glove box, $\mathrm{Ni}(\operatorname{cod})_{2}(868 \mathrm{mg}, 3.9 \mathrm{mmol}, 16$ equiv), 2,2'-bipyridyl (602 mg , 3.9 mmol , 16 equiv), and anhydrous THF (390 mL) were sequentially added to a 500 mL round-bottom flask equipped with a stir bar. The flask was capped with a rubber septum, transferred out of glove box, and stirred at $65^{\circ} \mathrm{C}$ for 15 min . Meanwhile, compound 3 (471 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.0$ equiv) and anhydrous THF (10 mL) were mixed in a 40 mL glass vial in the glove box. The vial was capped, and transferred out of the glove box. The solution of compound 3 was added to the flask containing nickel complex. The mixture was stirred at $65^{\circ} \mathrm{C}$ for 12 h , and cooled to room temperature, and filtered through a short pad of silica gel with the aid of mixed solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: ethyl acetate $\left.=2: 1\right)$. The solvents were removed under reduced pressure. Purification using silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petroleum ether = 2:3) afforded compound $4(331 \mathrm{mg}, 84 \%$ yield) as a white solid.

Compound 4

$R_{f}=0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petroleum ether $\left.=2: 3\right)$;
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.34(\mathrm{~s}, 4 \mathrm{H}), 8.75(\mathrm{~s}, 4 \mathrm{H}), 8.34(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.27(\mathrm{~d}, \mathrm{~J}$ $=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 8.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~s}, 4 \mathrm{H}), 7.13(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.80(\mathrm{~s}, 4 \mathrm{H}), 4.38-4.24(\mathrm{~m}, 16 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 16 \mathrm{H})$, 1.72-1.60 (m, 16H), 1.11-1.03 (m, 24H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.1,144.0,143.6,142.8,141.0,140.5,137.9,129.2,128.92$, 128.89, 128.61, 128.56, 126.7, 126.1, 125.9, 124.4, 124.1, 123.6, 123.00, 122.95, 73.74, 73.69, 53.9, 32.8, 19.69, 19.67, 14.22, 14.21;

IR (film): 2958, 2931, 2871, 1596, 1440, 1323, $821 \mathrm{~cm}^{-1}$;
HRMS (MALDI): [M] ${ }^{+}$calcd. for $\mathrm{C}_{116} \mathrm{H}_{112} \mathrm{O}_{8} 1632.8352$, found 1632.8314.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$) of compound 4.

\section*{N8 No} | $\bar{\sigma}$ |
| :--- |
| |
| |

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$ of compound 4.

Figure S5. HRMS data for compound 4.

In a nitrogen-filled glove box, compound $4(99.5 \mathrm{mg}, 0.061 \mathrm{mmol}, 1.0$ equiv) and 1,2dichlorobenzene (15 mL) were added to a 20 mL microwave tube equipped with a stir bar. The tube was sealed with a Teflon-lined septum cap and transferred to the microwave reactor (conditions: $230 \mathrm{~W}, 220^{\circ} \mathrm{C}, 12 \mathrm{~h}$). After the reaction, the solvent was removed under reduced pressure. Purification using silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petroleum ether $=2: 3$) afforded compound $5(92.1 \mathrm{mg}, 92 \%$ yield) as a yellow solid.

Compound 5
$\mathrm{R}_{\mathrm{f}}=0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petroleum ether $\left.=2: 3\right)$;
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.04(\mathrm{~s}, 4 \mathrm{H}), 8.99(\mathrm{~s}, 4 \mathrm{H}), 8.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 8.38(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 8.26(\mathrm{~s}, 4 \mathrm{H}), 8.18(\mathrm{~s}, 4 \mathrm{H}), 8.05-7.99(\mathrm{~m}, 8 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.76$ ($\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 4 \mathrm{H}$), 4.38-4.27 (m, 16H), 2.03-1.92 (m, 16H), 1.75-1.63 (m, 16H), 1.12-1.04 (m, 24H);
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl3) $\delta 143.5,143.4,139.6,138.8,138.3,131.9,131.2,129.27$, $129.25,129.21,129.1,127.4,126.7,126.41,126.37,126.2,123.32,123.25,121.8,121.7$, 73.7, 73.6, 32.8, 19.7, 14.2;

IR (film): 2957, 2931, 2871, 1604, 1438, 1314, $823 \mathrm{~cm}^{-1}$;
HRMS (MALDI): [M] ${ }^{+}$calcd. for $\mathrm{C}_{116} \mathrm{H}_{112} \mathrm{O}_{8} 1632.8352$, found 1632.8369.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ of compound 5.

Figure S7. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$ of compound 5 .

Figure S8. HRMS data for compound 5.

Note: Compound 4 can be re-formed via photo-induced [4+4]-cycloaddition from 5. However, the reaction also afforded by-products (probably intermolecular [4+4] cycloadducts) that complicated the purification of 4.

In a nitrogen-filled glove box, compound $5(5.0 \mathrm{mg}, 0.0031 \mathrm{mmol}, 1.0$ equiv) and toluene (40 mL) were added to a 75 mL glass heavy-wall pressure vessel equipped with a stir bar. The vessel was capped, transferred out of the glove box, and stirred under the irradiation of a xenon lamp (Beijing PerfectLight Technology PLS-SXE300, equipped with a Vis-Ref filter) at $25^{\circ} \mathrm{C}$ for 12 h . After the reaction, the solvent was removed under reduced pressure. The crude reaction mixture showed complete conversion of 5 , with 65% NMR yield of 4 as a single diastereomer, employing DMF (0.25 M in $\mathrm{CDCl}_{3}, 20 \mu \mathrm{~L}, 0.0050 \mathrm{mmol}$) as internal standard.

The NMR yield of 4 was calculated according to Figure S9: $1.60 \div 4 \times 0.0050 \div 0.0031=$ 65\%.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ of compound 4 and the crude reaction mixture after irradiation of 5 .

In air, a 100 mL round-bottom flask was charged with compound $\mathbf{S 1}$ ($732 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0$ equiv) and TFA (45 mL), and cooled in an ice bath. Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(20 \mathrm{~mL})$ was added slowly to the mixture at $0^{\circ} \mathrm{C}$. NIS ($360 \mathrm{mg}, 1.6 \mathrm{mmol}, 0.8$ equiv) was added portionwise to the vigorously stirring solution at $0^{\circ} \mathrm{C}$. After stirring for 30 min at $0^{\circ} \mathrm{C}$, the reaction mixture was warmed to $25{ }^{\circ} \mathrm{C}$ and stirred for 12 h . The combined mixtures were poured into ice water (1 L) and the resulting orange precipitate was collected by filtration. The precipitate was added to a mixture of aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(0.2 \mathrm{M}, 100 \mathrm{~mL})$ and $\mathrm{MeOH}(100 \mathrm{~mL})$, and stirred for 20 min . After filtration, the precipitate was washed with $\mathrm{H}_{2} \mathrm{O}$ and MeOH , then dried to afford crude compound $\mathbf{S 2}$ as orange powder, which was used in the next step without further purification.

To a nitrogen-purged flask containing tetrahydrofuran $(20 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$ was added crude S2 (prepared from 732 mg of S1), tetra-n-butylammonium bromide ($179 \mathrm{mg}, 0.56$ mmol, 0.28 equiv), and sodium dithionite ($2.58 \mathrm{~g}, 15 \mathrm{mmol}, 7.5$ equiv), and stirred at $25^{\circ} \mathrm{C}$ for 30 minutes. Then a solution of potassium hydroxide ($1.04 \mathrm{~g}, 19 \mathrm{mmol}, 9.5$ equiv, in 5 mL of water) was added to the reaction mixture, followed by the addition of 1-bromobutane (1.1 $\mathrm{mL}, 9.3 \mathrm{mmol}, 4.6$ equiv). The reaction mixture was stirred at $65^{\circ} \mathrm{C}$ for 12 h . After cooled to room temperature, the volume of the reaction mixture was reduced to about 15 mL . At the same time, the crude product $\mathbf{S 3}$ precipitated as a white solid which was collected by filtration, washed with water, and dried in air. The crude S3 was used in the next step without further purification.

The crude S3 from the previous step was dissolved in THF (120 mL) under nitrogen. To the solution was added dropwise isopropylmagnesium chloride ($1.2 \mathrm{~mL}, 2.4 \mathrm{mmol}, 1.2$ equiv, 2.0 M solution in THF) at $-85^{\circ} \mathrm{C}$, and the reaction mixture was kept at the same temperature for 30 minutes. Then, anhydrous N, N-dimethylformamide (1.8 mL) was added to the reaction mixture, which was subsequently warmed to room temperature and stirred for 12 h . The reaction mixture was quenched with ammonium chloride solution $(10 \mathrm{~mL})$, and the aqueous layer was extracted with ethyl acetate $(30 \mathrm{~mL} \times 3)$. The combined organic layer was washed with brine, dried over anhydrous sodium sulfate, and the solvents were removed under reduced pressure. Purification using silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petroleum ether $=1: 3$) afforded compound $\mathbf{6}(257 \mathrm{mg}, 25 \%$ yield, based on $\mathbf{S} 1$ over three steps) as a yellow solid.

Compound 6
$R_{f}=0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petroleum ether $\left.=1: 3\right)$;
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.52(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.17(\mathrm{~m}, 4 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.53$ (m, 4H), 1.07-1.00 (m, 6H);
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.8,144.0,143.4,132.1,131.9,131.6,130.3,129.34,128.3$, $128.1,126.3,125.8,124.6,122.1,120.9,73.9,73.6,32.6,32.5,19.6,19.5,14.11,14.09 ;$

IR (film): 2956, 2932, 2871, 1689, 1545, 1348, $818 \mathrm{~cm}^{-1}$;
HRMS (MALDI): [M] ${ }^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{O}_{3} 506.0087$, found 506.0104 .

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ of compound 6.
$\stackrel{\infty}{\stackrel{\infty}{+}}$

-ie.e

Figure S11. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$ of compound 6 .

In a nitrogen-filled glove box, $\mathrm{Pd}(\mathrm{OAc}) 2(1.8 \mathrm{mg}, 0.008 \mathrm{mmol}, 40 \mathrm{~mol} \%)$, dppf ($4.4 \mathrm{mg}, 0.008$ $\mathrm{mmol}, 40 \mathrm{~mol} \%$), and anhydrous toluene (5 mL) were added to a 40 mL glass vial equipped with a stir bar. The mixture was stirred in the glove box at room temperature for 30 min . Then 1 ($17.2 \mathrm{mg}, 0.020 \mathrm{mmol}, 1.0$ equiv), 6 ($122 \mathrm{mg}, 0.24 \mathrm{mmol}, 12$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(41.4 \mathrm{mg}, 0.30$ mmol, 15 equiv) and anhydrous toluene (25 mL) were added to the 40 mL glass vial. The vial was sealed with a Teflon-lined septum cap then transferred out of glove box. Degassed water (3 mL) was subsequently added to the vial via a syringe, and the puncture in the septum cap was covered with vacuum grease. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h , and cooled to room temperature. Four reactions were carried out in parallel using identical procedures, and all the reaction mixtures were combined during work-up. The combined reaction mixture was extracted with ethyl acetate ($30 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, and dried over sodium sulfate. The solvents were removed under reduced pressure. Purification using silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded compound 9 ($49.4 \mathrm{mg}, 30 \%$ yield) as a yellow solid.

Note: Based on our experience, regioisomers, if any, of analogous cross-coupling reactions with 1 have almost identical polarities on silica. During the above reaction, the NMR spectra of the isolated fraction from silica gel column chromatography showed a single regioisomer which was characterized as 9 . Other possible regioisomers were not observed. In addition, the reaction generated significant amount of insoluble polymeric by-products, which should account for the observed loss of mass balance.

Compound 9
$\mathrm{R}_{\mathrm{f}}=0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.92$ (s, 4H), 8.92 (s, 4H), 8.77 (s, 4H), 8.47 (s, 4H), 8.12 (d, J $=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.19(\mathrm{~s}, 4 \mathrm{H}), 4.87(\mathrm{~s}, 4 \mathrm{H}), 4.28-$ 4.20 (m, 16H), 1.97-1.91 (m, 8H), 1.91-1.85 (m, 8H), 1.67-1.56 (m, 16H), 1.08-1.00 (m, 24H);
${ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta 192.4,143.8,143.7,143.4,143.2,141.4,136.5,132.9,131.4$, 130.7, 130.00, 129.95, 129.5, 129.3, 127.7, 127.6, 126.5, 124.9, 124.4, 123.5, 120.7, 73.8, 73.6, 53.4, 32.6, 19.58, 19.56, 14.2, 14.1;

IR (film): 2957, 2932, 2871, 1693, 1589, 1347, 822 cm$^{-1}$;
HRMS (MALDI): [M+Na] ${ }^{+}$calcd. for $\mathrm{C}_{120} \mathrm{H}_{112} \mathrm{Br}_{4} \mathrm{NaO}_{12}$ 2083.4780, found 2083.4786.

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ of compound 9 .

Figure S13. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$ of compound 9.

In a nitrogen-filled glove box, $\mathrm{Ni}(\operatorname{cod})_{2}(306 \mathrm{mg}, 1.4 \mathrm{mmol}, 16$ equiv), 2,2'-bipyridyl (212 mg , $1.4 \mathrm{mmol}, 16$ equiv), and anhydrous THF (150 mL) were sequentially added to a 250 mL round-bottom flask equipped with a stir bar. The flask was capped with a rubber septum, transferred out of glove box, and stirred at $65^{\circ} \mathrm{C}$ for 15 min . Meanwhile, compound 9 (176 $\mathrm{mg}, 0.088 \mathrm{mmol}, 1.0$ equiv) and anhydrous THF (10 mL) were mixed in a 40 mL glass vial. The vial was capped, and transferred out of the glove box. The solution of compound 9 was added to the flask containing nickel complex. The mixture was stirred at $65^{\circ} \mathrm{C}$ for 12 h , and cooled to room temperature, and filtered through a short pad of silica gel with the aid of mixed solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: ethyl acetate $\left.=2: 1\right)$. The solvents were removed under reduced pressure. Purification using silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded compound 10 ($69.0 \mathrm{mg}, 45 \%$ yield) as a yellow solid.

Compound 10
$\mathrm{R}_{\mathrm{f}}=0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}:\right.$ ethyl acetate $\left.=100: 1\right)$;
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 10.22(\mathrm{~s}, 4 \mathrm{H}), 9.33(\mathrm{~s}, 4 \mathrm{H}), 8.91(\mathrm{~s}, 4 \mathrm{H}), 8.71(\mathrm{~s}, 4 \mathrm{H})$, 8.38 (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}$), 8.21 (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.25-7.17$ (m, 12H), 4.85 (s, 4H), 4.394.27 (m, 16H), 2.00-1.91 (m, 16H), 1.72-1.60 (m, 16H), 1.10-1.03 (m, 24H);
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 192.5,144.3,144.1,143.6,141.8,137.7,137.0,132.0,131.7$, $130.6,129.6,129.2,128.9,128.2,127.4,126.5,125.7,124.1,123.5,123.4,74.0,73.7,53.6$, 32.7, 32.6, 19.7, 19.6, 14.20, 14.16;

IR (film): 2957, 2930, 2870, 1692, 1591, 1346, $823 \mathrm{~cm}^{-1}$;
HRMS (MALDI): [M+Na] ${ }^{+}$calcd. for $\mathrm{C}_{120} \mathrm{H}_{112} \mathrm{NaO}_{12}$ 1767.8046, found 1767.8047.

Figure S14．${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 10.

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$ of compound 10.

Figure S16. HRMS data for compound 10.

In a nitrogen-filled glove box, compound 10 ($78.5 \mathrm{mg}, 0.045 \mathrm{mmol}, 1.0$ equiv) and 1,2dichlorobenzene (15 mL) were s added to a 20 mL microwave tube equipped with a stir bar. The tube was sealed with a Teflon-lined septum cap and transferred to the microwave reactor (conditions: $230 \mathrm{~W}, 220^{\circ} \mathrm{C}, 12 \mathrm{~h}$). After the reaction, the solvent was removed under reduced pressure. Purification using silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded compound 11 ($40.0 \mathrm{mg}, 51 \%$ yield) as a yellow solid.

Compound 11
$\mathrm{R}_{\mathrm{f}}=0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}:\right.$ ethyl acetate $\left.=100: 1\right)$;
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.24(\mathrm{~s}, 4 \mathrm{H}), 9.06(\mathrm{~s}, 4 \mathrm{H}), 9.02-8.93(\mathrm{~m}, 8 \mathrm{H}), 8.44(\mathrm{~d}, \mathrm{~J}=8.5$ Hz, 4H), 8.28 (s, 4H), 8.05 (d, J = $8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.94-7.83(\mathrm{~m}, 8 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 4 \mathrm{H})$, 4.38-4.27 (m, 16H), 2.02-1.92 (m, 16H), 1.71-1.62 (m, 16H), 1.13-1.01 (m, 24H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.6,144.1,143.7,140.6,139.6,134.8,132.8,131.8,131.3$, 131.2, 130.7 129.4, 129.3, 128.5, 127.5, 126.8, 125.2, 124.3, 123.7, 122.5, 73.9, 73.7, 32.8, 32.7, 19.7, 19.6, 14.21, 14.19;

IR (film): 2957, 2931, 2871, 1691, 1607, 1440, 1346, 1074 cm^{-1};
HRMS (MALDI): [M+Na] ${ }^{+}$calcd. for $\mathrm{C}_{120} \mathrm{H}_{112} \mathrm{NaO}_{12}$ 1767.8046, found 1767.8053.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ of compound 11.

Figure S18. ${ }^{13} \mathrm{C}$ NMR spectrum ($\mathrm{CDCl}_{3}, 151 \mathrm{MHz}$) of compound 11.

Figure S19. HRMS data for compound 11.

In a nitrogen-filled glove box, compound $\mathbf{S} 4(804 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.0$ equiv, prepared according to literature ${ }^{[54]}$), $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{I}$ ($546 \mathrm{mg}, 1.4 \mathrm{mmol}, 0.90$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(310 \mathrm{mg}, 2.2$ $\mathrm{mmol}, 1.5$ equiv) and anhydrous dioxane (25 mL) were sequentially added to a 40 mL glass vial equipped with a stir bar. The vial was sealed with a Teflon-lined septum cap then transferred out of glove box. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h , and cooled to room temperature before quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and diluted with ethyl acetate $(20 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate $(30 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine, and dried over sodium sulfate. The solvents were removed under reduced pressure. Purification using silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petroleum ether $\left.=2: 3\right)$ afforded compound $12(568 \mathrm{mg}, 71 \%$ yield $)$ as a yellow solid.

Compound 12
$R_{f}=0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: petroleum ether $\left.=2: 3\right)$;
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.51(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.69-8.68(\mathrm{~m}, 2 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H})$, 7.22 (dd, $J=17.3,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92$ (d, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.52$ (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-$ 4.19 (m, 4H), 1.91-1.86 (m, 4H), 1.65-1.57 (m, 4H), 1.06-1.00 (m, 6H);
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 191.6,143.7,143.4,131.9,131.4,130.6,129.2,127.8,127.6$, 127.3, 125.7, 122.17, 122.16, 120.4, 118.2, 73.7, 73.5, 32.45, 32.38, 19.5, 19.4, 13.96, 13.95;

IR (film): 2957, 2931, 2871, 1686, 1579, 1461 1351, $895 \mathrm{~cm}^{-1}$;
HRMS (MALDI): [M] ${ }^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{O}_{3} 532.0243$, found 532.0268.

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$) of compound 12.

Figure S21. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$ of compound 12.

In a nitrogen-filled glove box, compound $1(11.2 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.0$ equiv), compound 12 ($114 \mathrm{mg}, 0.21 \mathrm{mmol}, 16$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6.2 \mathrm{mg}, 0.0052 \mathrm{mmol}, 40 \mathrm{~mol} \%$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (27.0 mg, 0.20 mmol , 15 equiv), and anhydrous toluene (20 mL) were added to a 40 mL glass vial equipped with a stir bar. The vial was sealed with a Teflon-lined septum cap then transferred out of glove box. Degassed water (2 mL) was subsequently added to the vial via a syringe, and the puncture in the septum cap was covered with vacuum grease. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h , and cooled to room temperature. Eight reactions were carried out in parallel using identical procedures, and all the reaction mixtures were combined during work-up. The combined reaction mixture was extracted with ethyl acetate $(30 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine, and dried over sodium sulfate. The solvents were removed under reduced pressure. Purification using silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded 13 ($81.0 \mathrm{mg}, 36 \%$ yield) as a yellow solid.

Compound 13
$\mathrm{R}_{\mathrm{f}}=0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.92(\mathrm{~s}, 4 \mathrm{H}), 8.89(\mathrm{~s}, 4 \mathrm{H}), 8.80(\mathrm{~s}, 4 \mathrm{H}), 8.43(\mathrm{~s}, 4 \mathrm{H}), 8.41(\mathrm{~s}$, $4 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 8 \mathrm{H}), 5.92(\mathrm{~d}, \mathrm{~J}=17.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.49(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}$, $4 \mathrm{H}), 4.91(\mathrm{~s}, 4 \mathrm{H}), 4.28-4.23(\mathrm{~m}, 16 \mathrm{H}), 1.98-1.84(\mathrm{~m}, 16 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 16 \mathrm{H}), 1.09-1.01$ (m, 24H);
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 192.4,143.9,143.5,143.4,143.2,141.6,137.3,136.5,136.0$, $132.8,130.7,130.5,130.0,129.3,128.7,128.0,127.7,127.6,124.9,123.5,122.1,120.4$, 117.8, 73.8, 73.6, 53.5, 32.6, 19.63, 19.56, 14.2, 14.1;

IR (film): 2957, 2931, 2870, 1691, 1610, 1584, 1440, $1074 \mathrm{~cm}^{-1}$;
HRMS (MALDI): [M+Na] calcd. For $\mathrm{C}_{128} \mathrm{H}_{120} \mathrm{Br}_{4} \mathrm{NaO}_{12} 2187.5406$, found 2187.5307.

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) of compound 13.

$\stackrel{\infty}{\stackrel{\infty}{i}}$

Figure S23. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$ of compound 13.

In a nitrogen-filled glove box, $\mathrm{Ni}(\operatorname{cod})_{2}(33.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 16$ equiv), 2,2'-bipyridyl (23.0 $\mathrm{mg}, 0.15 \mathrm{mmol}, 16$ equiv), and anhydrous THF (15 mL) were sequentially added to a 40 mL glass vial equipped with a stir bar. The vial was sealed with a Teflon-lined septum cap, transferred out of glove box, and stirred at $65^{\circ} \mathrm{C}$ for 15 min. Meanwhile, compound 13 (20.0 $\mathrm{mg}, 0.0092 \mathrm{mmol}, 1.0$ equiv) and anhydrous THF (5 mL) were mixed in another 40 mL glass vial in the glove box. The vial was capped, and transferred out of the glove box. The solution of compound 13 was added to the first vial containing nickel complex. The mixture was stirred at $65^{\circ} \mathrm{C}$ for 12 h , and cooled to room temperature. Eight reactions were carried out in parallel using identical procedures, and all the reaction mixtures were combined during work-up. The mixtures were filtered through a short pad of silica gel with the aid of mixed solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: ethyl acetate $\left.=2: 1\right)$. The solvents were removed under reduced pressure. Crude 14 was found unstable on silica gel, and was used in the next step without further purification.

In a nitrogen-filled glove box, crude compound 14 (prepared from $8 \times 20.0 \mathrm{mg}$ of 13), Grubbs II catalyst ($16.0 \mathrm{mg}, 0.019 \mathrm{mmol}, 26 \mathrm{~mol} \%$), and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ were sequentially added to a 250 mL round-bottom flask equipped with a stir bar. The flask was capped with a rubber septum and transferred out of glove box. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 12 h , and cooled to room temperature. The solvents were removed under reduced pressure. Purification using silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded compound 15 ($29.7 \mathrm{mg}, 22 \%$ yield, based on 13 over two steps) as a yellow solid.

Compound 15
$\mathrm{R}_{\mathrm{f}}=0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}:\right.$ ethyl acetate $\left.=100: 1\right)$;
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 10.43$ (s, 4H), 10.32 (s, 4H), 8.88 (s, 4H), 8.86 (s, 4H), $8.64(\mathrm{~s}, 4 \mathrm{H}), 8.01(\mathrm{~s}, 4 \mathrm{H}), 7.45(\mathrm{~s}, 4 \mathrm{H}), 7.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H})$, 4.99 (s, 4H), 4.44-4.37 (m, 8H), 4.36-4.32 (m, 8H), 2.04-1.95 (m, 16H), 1.74-1.63 (m, 16H), 1.12-1.05 (m, 24H);
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl3) $\delta 192.3,144.5,144.2,144.0,143.9,142.7,137.6,132.13$, 132.06, 131.6, 130.2, 129.4, 128.9, 128.8, 128.4, 128.2, 128.0, 127.8, 126.2, 123.0, 120.7, 118.7, 73.9, 73.7, 54.0, 32.8, 32.7, 19.7, 19.6, 14.23, 14.18;

IR (film): 2957, 2931, 2870, 1694, 1599, 1548, 1440, $1074 \mathrm{~cm}^{-1}$;
HRMS (MALDI): [M] ${ }^{+}$calcd. For $\mathrm{C}_{124} \mathrm{H}_{112} \mathrm{O}_{12}$ 1792.8148, found 1792.8159.

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) of compound 15.

Figure S25. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$ of compound 15.

Figure S26. HRMS data for compound 15.

In a nitrogen-filled glove box, the crude compound 14 (prepared from $12 \times 20.0 \mathrm{mg}$ of 13) and 1,2-dichlorobenzene (15 mL) were s added to a 20 mL microwave tube equipped with a stir bar. The tube was sealed with a Teflon-lined septum cap and transferred to the microwave reactor (conditions: $230 \mathrm{~W}, 220^{\circ} \mathrm{C}, 12 \mathrm{~h}$). Then, the reaction mixture was diluted with 20 mL of petroleum ether and filtered through a short pad of silica gel with the aid of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvents were removed under reduced pressure, affording crude 17 which was unstable on silica gel and was used in the next step without further purification.

In a nitrogen-filled glove box, the crude compound 17 (prepared from the previous step), Grubbs II catalyst ($18.7 \mathrm{mg}, 0.022 \mathrm{mmol}, 0.20$ equiv), and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL}$) were sequentially added to a 250 mL round-bottom flask equipped with a stir bar. The flask was capped with a rubber septum and transferred out of glove box. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 12 h , and cooled to room temperature. The solvents were removed under reduced pressure. Purification using silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded compound 16 ($32.0 \mathrm{mg}, 16 \%$ yield, based on 13 over three steps) as a yellow solid.

Compound 16
$R_{f}=0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: ethyl acetate $\left.=50: 1\right)$;
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 10.27$ (s, 4H), 10.23 (s, 4H), 9.20 (s, 4H), $9.00(\mathrm{~s}, 4 \mathrm{H})$,
$8.75(\mathrm{~s}, 4 \mathrm{H}), 8.36(\mathrm{~s}, 4 \mathrm{H}), 8.16(\mathrm{~s}, 4 \mathrm{H}), 7.98(\mathrm{~s}, 4 \mathrm{H}), 7.85-7.68(\mathrm{~m}, 8 \mathrm{H}), 4.50-4.31(\mathrm{~m}, 16 \mathrm{H})$,
2.07-1.97 (m, 16H), 1.78-1.62 (m, 16H), 1.17-1.01 (m, 24H);
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.2,143.7,143.2,141.1,135.4,132.7,132.3,132.0,131.5$, $131.4,130.2,129.8,129.5,129.0,128.6,128.4,128.2,127.0,126.8,125.4,124.2,122.0$, 118.2, 73.7, 73.5, 32.7, 32.5, 19.6, 19.5, 14.1, 14.0;

IR (film): 2956, 2930, 2870, 1690, 1605, 1440, 1344, $1074 \mathrm{~cm}^{-1}$;
HRMS (MALDI): [M] ${ }^{+}$calcd. for $\mathrm{C}_{124} \mathrm{H}_{112} \mathrm{O}_{12}$ 1792.8148, found 1792.8147 .

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) of compound 16.

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$ of compound 16.

Figure S29. HRMS data for compound 16.

III. X-ray Crystallography

X-ray diffraction data collection of the compounds were recorded by Bruker D8 VENTURE system with PHOTON II CPAD detector and a Ga-target Liquid METALJET D2 PLUS X-ray Source ($\lambda=1.34139 \AA$). The structure was solved by SHELXT (version 2018/2) ${ }^{[55]}$ and refined by full-matrix least-squares procedures using the SHELXL program (version $2018 / 3)^{[56]}$ through the Olex2 graphical interface. ${ }^{[57]}$ Crystallographic data were deposited at the Cambridge Crystallographic Data Center. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

Compound 5 (CCDC \#2288403)
Single crystals suitable for X-ray crystallography were obtained by slowly evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate solution of 5 at $25^{\circ} \mathrm{C}$.

Table S1. Crystal data and structure refinement for 5.

Identification code	5
Empirical formula	$\mathrm{C}_{120} \mathrm{H}_{120} \mathrm{O}_{10}$
Formula weight	1722.15
Temperature/K	200.00
Crystal system	monoclinic
Space group	P21/n
a/Å	16.664(3)
b/Å	21.413(3)
c / \AA Å	29.794(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	100.271(7)
Y^{\prime}	90
Volume/ \AA^{3}	10461(3)
Z	4
مcalcg/cm ${ }^{3}$	1.093
μ / mm^{-1}	0.339
F(000)	3680.0
Crystal size/mm ${ }^{3}$	$0.2 \times 0.12 \times 0.1$
Radiation	GaKa ($\lambda=1.34139$)
2Θ range for data collection/ ${ }^{\circ} 4.446$ to 116.03	
Index ranges	$-20 \leq h \leq 20,-26 \leq \mathrm{k} \leq 26,-37 \leq \mathrm{l} \leq 37$
Reflections collected	146326
Independent reflections	$21580\left[\mathrm{R}_{\text {int }}=0.0853, \mathrm{R}_{\text {sigma }}=0.0543\right]$
Data/restraints/parameters	21580/3275/1230
Goodness-of-fit on F_{2}	1.141
Final R indexes [l>=2 $\sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.1001, \mathrm{wR}_{2}=0.2640$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1236, w \mathrm{R}_{2}=0.2775$
Largest diff. peak/hole / e \AA^{-3}	0.66/-0.73

Figure S30. ORTEP drawing of $\mathbf{5}$ with the thermal ellipsoids shown at a 50% probability. (Color codes: red, O; black, C. Hydrogen atoms and solvent molecules are omitted for clarity.)

(b)

viewed along the [10 $\overline{1}$] direction
Figure S31. Molecular packing and intermolecular m-m interactions in the crystal structure of 5 . Hydrogen atoms and solvent molecules are omitted for clarity.

Compound 11 (CCDC \#2288404)

Single crystals suitable for X-ray crystallography were obtained by slowly evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate solution of 11 at $25^{\circ} \mathrm{C}$.

Table S2. Crystal data and structure refinement for 11.

Identification code	11
Empirical formula	$\mathrm{C}_{120} \mathrm{H}_{112} \mathrm{O}_{12}$
Formula weight	1746.09
Temperature/K	200.00
Crystal system	triclinic
Space group	P-1
$\mathrm{a} / \AA \AA$	11.8063(18)
b/Å	17.510(3)
c/Å	33.608(5)
$\alpha /{ }^{\circ}$	88.500(4)
$\beta /{ }^{\circ}$	82.347(5)
$\mathrm{Y} /{ }^{\circ}$	73.448(6)
Volume/ \AA^{3}	6599.9(17)
Z	2
pcalcg/cm ${ }^{3}$	0.879
μ / mm^{-1}	0.280
F(000)	1856.0
Crystal size/mm ${ }^{3}$	$0.2 \times 0.15 \times 0.1$
Radiation	GaKa ($\lambda=1.34139)$
2Θ range for data collection/ ${ }^{\circ} 4.58$ to 112.042	
Index ranges	$-14 \leq h \leq 14,-21 \leq k \leq 21,0 \leq 1 \leq 41$
Reflections collected	29188
Independent reflections	$29188\left[R_{\text {int }}=0.1586, R_{\text {sigma }}=0.2496\right]$
Data/restraints/parameters	29188/180/1218
Goodness-of-fit on F^{2}	0.993
Final R indexes [l>=2 $\sigma(1)$]	$\mathrm{R}_{1}=0.1691, \mathrm{wR}_{2}=0.4003$
Final R indexes [all data]	$\mathrm{R}_{1}=0.2036, w \mathrm{R}_{2}=0.4448$
Largest diff. peak/hole / e \AA^{-3}	0.64/-0.60

Figure S32. ORTEP drawing of 11 with the thermal ellipsoids shown at a 50% probability. (Color codes: red, O; black, C. Hydrogen atoms and solvent molecules are omitted for clarity.)

Figure S33. Molecular packing and intermolecular $\pi-\pi$ interactions in the crystal structure of 11. Hydrogen atoms and solvent molecules are omitted for clarity.

IV. Photophysical Properties

Figure S34. UV-Vis and fluorescence spectra of (a) 10 ($\lambda_{\text {ex }}=289 \mathrm{~nm}$) and 11 ($\lambda_{\text {ex }}=301$ $n m)$, (b) $15\left(\lambda_{\text {ex }}=302 \mathrm{~nm}\right)$ and $16\left(\lambda_{\mathrm{ex}}=297 \mathrm{~nm}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.1 \times 10^{-6} \mathrm{~mol} / \mathrm{L}^{-1}\right)$ at $25^{\circ} \mathrm{C}$.

Figure S35. Emission lifetimes of (a) 4, (b) 5, (c) 10, (d) 11, (e) 15 and (f) 16 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$

Figure S36. Quantum yields of (a) 4, (b) 5, (c) 10, (d) 11 , (e) 15 and (f) 16 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.

V. Enantiomer Resolution and Chiroptic Properties

Preparative chromatographic resolution was outsourced under a contract with Daicel Chiral Technologies (China) Co. Ltd.

Conditions for preparative HPLC resolution were optimized as follows:
HPLC column: CHIRALPAK ID (2 cm I.D. $\times 25 \mathrm{~cm} \mathrm{~L}, 10 \mu \mathrm{~m}$);
eluent: heptane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=80 / 20(\mathrm{~V} / \mathrm{V})$;
flow rate: $60.0 \mathrm{~mL} / \mathrm{min}$;
detection wavelength: 254 nm ;
column temperature: $38^{\circ} \mathrm{C}$.

Racemic of 4
Peak Table $>$

Peak\#	Ret. Time	Area	Area $\%$
1	2.012	3565657	50.596
2	2.448	3481617	49.404

Peak 1
Assigned as (P)-6 (99.7\% ee);
retention time: 2.0 min ;
$[\alpha]^{30}{ }_{D}=-4471\left(c=0.31\right.$, in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
<Peak Table>

Peak\#	Ret. Time	Area	Area\%
1	2.005	638037	99.845
2	2.423	990	0.155

Peak 2
Assigned as (M)-6 (98.4\% ee);
retention time: 2.4 min ;
$[\alpha]_{D}^{30}=+4114\left(c=0.28\right.$, in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$<$ Peak Table $>$

Peak\#	Ret. Time	Area	Area $\%$
1	1.991	8903	0.819
2	2.427	1078445	99.181

Figure S37. HPLC separation of enantiomers of 4.

Figure S38. The electronic circular dichroism (ECD) spectra of 4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (a) Experimental ECD spectra of enantiomers of 4. (b) Calculated ECD spectrum of $(M)-4$.

Figure S39. The circularly polarized luminescence (CPL) spectra of 4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

VI. Density Functional Theory Calculations

The structures were optimized at the B3LYP/6-31G* level. The dispersion correction with the Grimme's D3 version was considered. Considering the calculation cost and the reliability of the results, all butoxy groups were replaced by methyl groups. Based on the optimized structures, the time-dependent (TD) B3LYP/6-31G* method was used to calculate fifty singlet excited states in order to fit the electronic circular dichroism (ECD) spectrum. All the calculations were performed with Gaussian 16 software package. ${ }^{[8]]}$ Cartesian coordinates of the optimized structures were listed at the end. Simulated ECD spectrum was performed with the help of programs multiwfn ${ }^{[S 9]}$ and $\mathrm{VMD}^{[S 10]}$.

Figure S40. Internal strain enthalpy of compounds 4 and 5.

Note: The results indicated that $7.7 \mathrm{kcal} / \mathrm{mol}$ of strain is released during the conversion of 4 into 5.

Table S3. Cartesian coordinates (\AA) of the optimized structures

Compound 4

			C	-8.497483	1.223411	-0.68268	
C	-5.598883	4.190103	-3.362446	C	-9.688515	0.528311	-0.494406
C	-4.480723	3.790713	-2.655019	C	-10.80009	0.897864	-1.288619
C	-4.596971	2.888856	-1.570172	C	-10.679483	1.887573	-2.248121
C	-5.859512	2.410746	-1.243812	C	0.030839	-0.812746	1.391724
C	-7.017073	2.773317	-1.960522	C	1.24885	-1.365616	0.668549
C	-6.882546	3.687886	-3.041296	C	1.205785	-1.40354	-0.736853
C	-8.317299	2.182084	-1.689509	C	-0.03084	0.812745	1.391725
C	-9.440538	2.530511	-2.488736	C	-1.24316	-1.37061	-0.667924
C	-9.27901	3.508304	-3.531817	C	-1.199818	-1.408811	0.737481
C	-8.047778	4.05281	-3.805572	C	-2.263294	-1.943557	1.456643

C	-3.411125	-2.422419	0.801514	C	9.686622	0.580872	0.48906
C	-3.448543	-2.366469	-0.599646	C	8.496569	1.279611	0.669742
C	-2.371576	-1.853836	-1.324753	C	8.309754	2.230618	1.682744
C	2.271811	-1.932897	-1.45614	C	9.427225	2.571929	2.493181
C	3.42166	-2.407394	-0.801313	C	7.004215	2.80552	1.961984
C	3.458147	-2.352944	0.599958	C	6.866134	3.726914	3.036527
C	2.379049	-1.844993	1.325196	C	8.031399	4.104339	3.794959
C	0.027411	0.812785	-1.391044	C	9.258096	3.538312	3.545404
C	-1.205785	1.403542	-0.736852	C	5.847913	2.433165	1.248108
C	-1.24885	1.365616	0.668551	C	4.584143	2.911152	1.569418
C	-0.02741	-0.812783	-1.391045	C	4.464535	3.82073	2.647381
C	1.199818	1.408811	0.737482	C	5.580806	4.227363	3.353727
C	1.24316	1.370611	-0.667922	O	-7.855148	-5.011532	4.818458
C	2.371576	1.853837	-1.324751	C	-8.489653	-6.279915	4.605623
C	3.448542	2.366471	-0.599644	O	-10.37311	-3.881301	4.280343
C	3.411124	2.42242	0.801517	C	-10.345728	-3.443911	5.646138
C	2.263294	1.943557	1.456645	O	-10.392018	3.83227	-4.278406
C	-2.379049	1.844993	1.325197	H	C	-10.853512	5.179234
C	-3.458147	2.352943	0.599959	H	-4.10721		
C	-3.421661	2.407394	-0.801312	H	H	-7.879923	4.977132

H	-11.738652	-0.421406	1.176898
H	-7.675877	-1.064234	-0.0002
H	-5.917576	-1.706035	0.447941
H	-3.484233	-4.211458	2.90694
H	-5.488999	-4.927273	4.176989
H	5.511568	-4.896579	-4.180637
H	3.502094	-4.184167	-2.916747
H	5.92694	-1.691107	-0.436741
H	7.671235	-1.000204	-0.02231
H	11.746255	-0.377246	-1.166965
H	11.527531	-2.160215	-2.866748
H	11.51463	2.206062	2.874686
H	11.738652	0.421409	1.176892
H	7.675877	1.064238	-0.000203
H	5.917575	1.706036	0.447941
H	3.484233	4.211455	2.906946
H	5.489	4.92727	4.176993
H	-8.227777	-6.897519	5.467991
H	-9.576969	-6.171264	4.53993
H	-8.111452	-6.751516	3.68959
H	-9.523234	-3.913146	6.195185

H	-10.246807	-2.352098	5.699007
H	-11.302944	-3.744171	6.078879
H	-11.755118	5.269669	-4.71763
H	-11.102908	5.370903	-3.055707
H	-10.101149	5.900298	-4.442355
H	-7.837612	5.278593	-6.821476
H	-7.329802	3.638238	-6.322326
H	-9.063987	4.083567	-6.294751
H	7.837597	-5.27861	-6.821471
H	7.329784	-3.638253	-6.322326
H	9.063971	-4.083576	-6.294761
H	11.755132	-5.26967	-4.717604
H	11.102931	-5.370878	-3.055677
H	10.10117	-5.900309	-4.44231
H	8.227788	6.897517	5.467993
H	9.576964	6.171268	4.539904
H	8.11143	6.75152	3.689593
H	11.302958	3.744156	6.078866
H	9.523253	3.913173	6.195188
H	10.246786	2.352107	5.699008

Compound 5

O	8.255708	5.596493	-4.321826
O	10.550355	4.878443	-2.866352
O	-10.543022	4.842497	2.961914
O	-8.244836	-5.511688	-4.449517
O	10.530152	-4.905188	2.888956
O	8.232462	-5.611576	4.345192
O	-10.542887	-4.824037	-2.987828
O	-8.246043	5.529922	4.428521
C	-8.333367	0.928471	1.172562
H	-7.47823	0.265793	1.107956
C	9.468095	0.588259	-0.425122
C	-8.336288	-0.909211	-1.194771
H	-7.486295	-0.239118	-1.139467
C	7.095081	2.439125	-2.745104
C	-8.272465	-2.044211	-2.027787
C	1.295674	-0.553818	-3.471349
C	-3.578096	1.101358	3.490054
C	-9.466913	-0.588022	-0.449745
C	9.465221	-0.615381	0.439397
C	-8.271815	2.06166	2.008129
C	-7.089185	2.404482	2.78688
C	1.144935	0.882534	-3.457234
C	-1.13551	-0.817025	-3.479755
C	-9.467566	0.600014	0.4361
C	8.336034	0.930684	-1.158536
H	7.480785	0.266855	-1.109372
C	-1.141173	0.823253	3.474704

C	2.314766	1.698024	-3.461653
H	2.187295	2.777277	-3.428262
C	7.107655	3.63786	-3.515574
C	10.588761	2.553548	-1.30763
H	11.454405	3.204065	-1.363068
C	5.922223	1.656164	-2.757652
H	5.880501	0.750706	-2.16338
C	8.266301	-2.101321	1.986133
C	-1.286129	0.618985	-3.444501
C	9.413188	4.099189	-2.848383
C	-2.305487	-1.631985	-3.505635
H	-2.177988	-2.711736	-3.509317
C	9.419936	-2.935329	2.056952
C	1.135451	-0.881543	3.46283
C	-3.706113	0.339896	-3.450497
H	-4.701949	0.772926	-3.468687
C	4.790389	2.013837	-3.484222
C	-7.101611	-3.564903	-3.606726
C	8.28773	4.459006	-3.543432
C	4.778365	-2.021144	3.493882
C	10.608903	1.420741	-0.521342
H	11.496593	1.180152	0.056847
C	-5.91697	1.620504	2.782517
H	-5.876397	0.727822	2.169181
C	5.937836	-4.011566	4.267098
H	5.968528	-4.916465	4.863567
C	2.303424	-1.699633	3.471731
H	2.173271	-2.778763	3.446064
C	-7.100317	3.587041	3.581918
C	-0.145734	1.428844	-3.436247
H	-0.263591	2.510507	-3.416538
C	-10.585663	2.548109	1.358704
H	-11.451035	3.197579	1.428708
C	3.715696	-0.274278	-3.480415
H	4.711463	-0.7062	-3.518335
C	0.150809	1.366956	3.473258
H	0.271129	2.448495	3.481946
C	2.619798	-1.091634	-3.480034
H	2.742118	-2.17201	-3.49958
C	-1.295034	-0.612647	3.451822
C	-9.398917	-4.056467	-2.93282
C	0.155238	-1.36362	-3.484265
H	0.273081	-2.445318	-3.50175
C	-9.406321	4.063171	2.926814
C	10.577806	-2.583593	1.325559
H	11.441142	-3.236993	1.383001
C	-4.821099	-3.121004	-4.317568
H	-3.958656	-3.384555	-4.922917
C	-2.309326	1.640963	3.494836
H	-2.179261	2.720396	3.488576
C	9.395626	-4.122164	2.868302

C	-10.578931	-2.544168	-1.362677
H	-11.446276	-3.190318	-1.438885
C	8.268607	-4.476388	3.563677
C	-8.284727	-4.38021	-3.662648
C	4.810265	-3.218853	4.249055
H	3.945739	-3.495093	4.845698
C	-4.81904	3.145876	4.292112
H	-3.95553	3.413052	4.894326
C	3.708813	0.269482	3.475071
H	4.705495	0.69957	3.509353
C	5.955829	4.003785	-4.24944
H	5.989589	4.910582	-4.842857
C	-8.279725	4.408361	3.627453
C	-0.156476	-1.425109	3.448193
H	-0.27679	-2.506623	3.437397
C	-2.610147	1.15679	-3.427974
H	-2.732399	2.237208	-3.410219
C	4.825916	3.214305	-4.234775
H	3.962389	3.495062	-4.830772
C	-5.951641	-3.908866	-4.353985
H	-5.982247	-4.80504	-4.963524
C	-2.62029	-1.147572	3.442512
H	-2.744972	-2.227825	3.434585
C	2.614784	1.089307	3.469336
H	2.73963	2.169514	3.480828
C	-5.947904	3.936389	4.322926
H	-5.980545	4.830714	4.935039
C	8.297526	6.82524	-3.583211
H	9.23524	6.919661	-3.026422
H	7.450006	6.886547	-2.888546
C	11.232835	4.90739	-4.127605
H	10.604102	5.34978	-4.906821
H	11.531687	3.894815	-4.427502
C	-9.08629	-5.45889	-5.610001
H	-8.80659	-4.612903	-6.250822
H	-10.140829	-5.373359	-5.329079
C	-11.223628	4.847065	4.224486
H	-10.593507	5.27368	5.011336
H	-11.522671	3.828965	4.504874
C	-10.42135	-6.118189	-2.381341
H	-10.149874	-6.023641	-1.322096
H	-9.673584	-6.727713	-2.898576
C	8.270018	-6.842501	3.609977
H	9.207022	-6.9413	3.052751
H	7.421763	-6.903198	2.916151
C	11.212087	-4.932657	4.150512
H	10.581314	-5.369889	4.930993
H	11.514983	-3.920302	4.447098
C	-8.287844	6.773317	3.714845
H	-8.918106	-6.394666	-6.14821
H	-11.405753	-6.584713	-2.464698

H	-12.115041	5.463126	4.08494
H	-7.440372	6.848561	3.021489
H	-9.225612	6.879016	3.160177
H	-8.21073	7.558356	4.47075

H	8.220531	7.625367	-4.323141
H	12.124398	5.52006	-3.974702
H	12.101185	-5.54949	3.999997
H	8.19121	-7.640324	4.352197

Compound 16

0	-8.511194	-5.14011	4.908172
0	-8.511125	5.140035	-4.908277
0	-10.875693	-3.859949	4.080301
0	-10.8756	3.860156	-4.0803
0	10.875669	3.859859	4.08044
0	8.511134	-5.139943	-4.908388
0	10.875614	-3.860185	-4.080307
0	3.817384	-6.208425	-4.158997
0	-3.817408	6.208592	-4.158779
0	-3.817603	-6.208753	4.158702
C	-7.257536	-3.943948	3.233436
0	8.511123	5.139861	4.90838
C	-9.635484	-2.582959	2.45682
C	-8.39342	-2.229524	1.837507
C	-9.657769	-3.570986	3.507856
C	-9.56682	0.547039	-0.484778
C	-8.398994	-1.197063	0.891054
H	-7.460717	-0.90582	0.436579
C	-8.513369	4.21409	-3.891845
C	-3.592914	-3.342011	1.02477
C	8.39343	2.229547	1.83747
C	8.399	1.197102	0.890996
H	7.460721	0.905872	0.436515
C	-8.513462	-4.21408	3.891819
C	-10.816071	0.997596	-1.021866
C	4.913609	-4.523494	-2.866339
C	-7.188039	-2.965071	2.198932
0	3.817512	6.208515	4.158948
C	2.3477	-3.222089	-1.604246
H	2.251383	-3.223008	-2.687289
C	-6.109368	4.681259	-3.559913
H	-6.15988	5.431757	-4.340365
C	-3.694085	-3.281916	-0.406893
H	-4.674963	-3.375868	-0.863689
C	4.913689	4.523534	2.866309
C	-4.825584	-3.551337	1.826765
C	-9.566827	-0.547007	0.484739
C	3.592938	3.34209	1.024768
C	4.825551	-3.551312	-1.826802
C	-3.592888	3.342055	-1.024716
C	-7.257458	3.943962	-3.233451
C	-4.913694	-4.523597	2.866222

C	-10.818234	-1.975657	2.019401
H	-11.757878	-2.296625	2.456636
C	-4.913621	4.523578	-2.866217
C	-5.95834	2.79626	-1.533482
H	-5.875828	2.056107	-0.745451
C	-2.582537	3.160375	1.193716
H	-2.677168	3.141032	2.276669
C	9.56682	-0.547003	-0.484835
C	3.592891	-3.342025	-1.02478
C	3.694065	-3.282061	0.406885
H	4.674937	-3.376089	0.863678
C	-7.187998	2.965108	-2.198921
C	-4.825555	3.551358	-1.82672
C	6.109453	4.681199	3.55998
H	6.159985	5.431681	4.340444
C	5.958342	-2.796232	-1.53354
H	5.875843	-2.056123	-0.745466
C	4.825607	3.551355	1.826777
C	9.566828	0.547048	0.484673
C	-3.827667	5.493739	-3.171431
H	-3.020422	5.567889	-2.418596
C	-5.95836	-2.796221	1.533532
H	-5.87582	-2.056043	0.745529
C	7.257534	3.943907	3.233482
C	-6.109462	-4.681284	3.559876
H	-6.160004	-5.431824	4.340285
C	-2.347698	3.222232	-1.604205
H	-2.251385	3.223261	-2.687249
C	-1.160398	-3.11918	0.819596
C	9.657769	3.570932	3.507877
C	-8.398974	1.197082	-0.891083
H	-7.460699	0.905804	-0.436626
C	8.513362	-4.214014	-3.891938
C	8.398974	-1.197027	-0.891158
H	7.460693	-0.905747	-0.436714
C	7.187995	-2.965054	-2.198997
C	3.827651	-5.493641	-3.171598
H	3.020381	-5.567805	-2.418797
C	7.257445	-3.943877	-3.233555
C	5.958389	2.796277	1.533486
H	5.875866	2.056163	0.745421
C	-3.69405	3.281964	0.406943

H	-4.674926	3.375899	0.863749
C	6.109352	-4.681152	-3.560045
H	6.159861	-5.431621	-4.340527
C	2.347751	3.222205	1.60425
H	2.251445	3.223165	2.687294
C	-8.393384	2.229552	-1.837527
C	-10.816085	-0.997544	1.021831
C	10.816078	-0.997576	-1.021907
C	8.513462	4.214004	3.891893
C	8.393382	-2.229509	-1.837591
C	-9.635438	2.582995	-2.456851
C	-2.347721	-3.222164	1.604247
H	-2.251401	-3.223188	2.68729
C	9.635442	-2.582972	-2.456895
C	7.188059	2.965094	2.198916
C	-9.176939	6.374084	-4.597748
H	-8.706989	6.856111	-3.731391
H	-10.239778	6.207434	-4.395975
C	9.635491	2.582951	2.456799
C	-2.582581	-3.160294	-1.193673
H	-2.677217	-3.140946	-2.276625
C	-1.160368	3.119264	-0.819565
C	9.657706	-3.571028	-3.507902
C	-1.274876	3.105114	0.619988
C	-10.818201	1.975705	-2.019443
H	-11.757838	2.296686	-2.456688
C	1.274901	-3.105111	0.619962
C	-1.274917	-3.105013	-0.619951
C	-9.657701	3.571051	-3.507859
C	0.114329	3.087981	-1.400889
H	0.203874	3.09511	-2.485174
C	-0.11432	-3.087772	-1.400902
H	-0.203874	-3.094817	-2.485186
C	0.114304	-3.087907	1.400913
H	0.203856	-3.09506	2.485197
C	-11.009252	3.441478	-5.447143
H	-10.869207	2.356469	-5.532391
H	-10.288249	3.957167	-6.088901
C	10.816094	0.997575	1.02176
C	1.160382	-3.119137	-0.819589
C	10.818206	-1.975702	-2.019466
H	11.757847	-2.296721	-2.456679
C	-11.009236	-3.441596	5.447253
H	-10.868896	-2.356651	5.532774
H	-10.288381	-3.957614	6.08891
C	3.6941	3.282097	-0.406896

H	4.674974	3.376089	-0.863694
C	-3.827759	-5.493778	3.17144
H	-3.020407	-5.567801	2.418711
C	-9.177442	-6.37396	4.597769
H	-8.70778	-6.856113	3.731329
H	-10.240271	-6.207021	4.39619
C	2.58259	3.160527	-1.193675
H	2.677218	3.141251	-2.276629
C	1.274931	3.105193	-0.619947
C	10.818244	1.975662	2.019363
H	11.757888	2.29662	2.456608
C	-0.114273	3.0879	1.400927
H	-0.203816	3.094966	2.485213
C	1.160424	3.119253	0.819605
C	2.582563	-3.160478	1.193677
H	2.677203	-3.141226	2.27663
C	11.009387	-3.441332	-5.447089
H	10.86963	-2.356273	-5.53217
H	10.288256	-3.956738	-6.08893
C	3.827717	5.49365	3.171608
H	3.02038	5.567726	2.418867
C	9.176718	-6.374092	-4.597746
H	8.70651	-6.856082	-3.731509
H	10.239534	-6.207578	-4.395735
C	9.177544	6.373725	4.598395
H	8.708087	6.856133	3.731986
H	10.240388	6.206737	4.396968
C	11.009196	3.440785	5.447171
H	10.869085	2.355761	5.532106
H	10.28816	3.956318	6.089027
H	-9.056897	7.009837	-5.477426
H	-12.982778	0.830095	-0.910172
H	-12.982784	-0.830151	-0.910153
H	-12.982793	0.830116	0.910003
H	-12.027565	3.702413	-5.743726
H	-9.057418	-3.702321	5.743752
H	9.057404	7.00997469	-0.09692

VII. References

[S1] G. R. Fulmer, A. J. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics, 2010, 29, 2176.
[S2] Z.-A. Huang, C. Chen, X.-D. Yang, X.-B. Fan, W. Zhou, C.-H. Tung, L.-Z. Wu, H. Cong, J. Am. Chem. Soc. 2016, 138, 11144.
[S3] Z. Luo, X. Yang, K. Cai, X. Fu, D. Zhang, Y. Ma, D. Zhao, Angew. Chem. Int. Ed. 2020, 59, 14854.
[S4] H. Gregolińska, M. Majewski, P. J. Chmielewski, J. Gregoliński, A. Chien, J. Zhou, Y. L. Wu, Y. J. Bae, M. R. Wasielewski, P. M. Zimmerman, M. Stępień, J. Am. Chem. Soc. 2018, 140, 14474.
[S5] G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.
[S6] G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
[S7] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2019, 42, 339.
[S8] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Jr. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, revision C.01, Gaussian, Inc.: Wallingford CT, 2019.
[S9] T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
[S10] W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33.

[^0]: ${ }^{\text {a }}$ Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
 ${ }^{\mathrm{b}}$ Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
 ${ }^{\text {c S School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China; }}$
 ${ }^{d}$ Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong, 256606, China.

 E-mail: hcong@mail.ipc.ac.cn

