# **Supporting Information**

# Photoredox dearomative $\beta$ -hydroborylation of indoles for the synthesis of borylated indolines

Yongchan Jian, Fei Wen, Jianping Shang, Xiaolong Li, Zhenyu Liu, Yuanyuan An\* and Yubin Wang\*

School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China Email: wyb5393@njtech.edu.cn; anyuanyuan@njtech.edu.cn

# **Table of Contents**

| 1. General information                                                                          | S2  |
|-------------------------------------------------------------------------------------------------|-----|
| 2. Preparation of Starting Materials                                                            | S3  |
| 3. Optimization of the Reaction Conditions                                                      | S11 |
| 4. General Experimental Procedures                                                              | S15 |
| 5. Mechanistic Studies                                                                          | S17 |
| 6. Analytical Data for Products                                                                 | S21 |
| 7. References                                                                                   | S47 |
| 8. Crystal Data of Products cis-3z, trans-3z, trans-5i, trans-5q                                | S48 |
| 9. <sup>1</sup> H NMR, <sup>13</sup> C NMR, <sup>19</sup> F NMR and <sup>11</sup> B NMR Spectra | S52 |

## **1. General Information**

Unless otherwise noted, all commercially available components, as well as reagents and solvents, were obtained from suppliers and used without further purification. The starting materials were synthesized according to literature procedures. Photoreactions were carried out in  $18 \times 180$  mm glass test tubes. Thin layer chromatography (TLC) was performed on commercial silica gel plates and flash column chromatography was performed with 300-400 mesh silica gel cartridge. Visualization of TLC achieved using ultraviolet light (254 nm) or staining with iodine.

<sup>1</sup>H NMR (400 MHz), <sup>13</sup>C NMR (100 MHz), <sup>19</sup>F NMR (376 MHz) and <sup>11</sup>B NMR (128 MHz) spectra were measured on Bruker AVIII 400M spectrometers with CDCl<sub>3</sub> as solvent and tetramethylsilane (TMS) as internal standard. Chemical shifts were reported in units (ppm) by assigning TMS resonance in the <sup>1</sup>H spectrum as 0.00 ppm and CDCl<sub>3</sub> resonance in the <sup>13</sup>C spectrum as 77.16 ppm. All coupling constants (J values) were reported in Hertz (Hz). Data are reported as follows: chemical shift, multiplicity (s = singlet, brs = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet, coupling constant (J) in Hertz (Hz) and integration. High-resolution mass spectra (HRMS) were obtained on an Agilent mass spectrometer with electro spray ionization (ESI) as the ion source.

# 3. Preparation of Starting Materials

#### (1) Synthesis of indole-2-carboxylates 1.

General procedure for the synthesis of 1a, 1f-1j, 1l-1m, 1o-1r and 1t-1aa.<sup>1-4</sup>

In a 250 mL round-bottom flask, 2-substituted indoles I (50 mmol, 1.0 equiv) and NaH (60% dispersion in paraffin liquid, 1.5 equiv) were dissolved in dry THF (100 mL) and the mixture was cooled to 0 °C. Benzyl chloroformate (1.2 equiv) was then added dropwise. After stirring for 12 h at room temperature, the reaction mixture was quenched by addition of water and extracted with  $CH_2Cl_2$  for three times. The combined organic layer was then dried over Na<sub>2</sub>SO<sub>4</sub>. After filtration, the solvent was removed by evaporation. The crude product was purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate) to obtain desired products 1.

Synthesis of 1k and 1n.<sup>1</sup>



In a 25 mL round-bottom flask, 1g/1l (0.80 mmol) and phenylboronic acid (187.8 mg, 1.50 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (89.0 mg, 10 mol%) and Na<sub>2</sub>CO<sub>3</sub> (0.16 g, 1.50 mmol) were dissolved in toluene (5 mL) and a mixture solvent of MeOH/H<sub>2</sub>O (1:1, 3 mL). The reaction mixture was stirred at 80 °C for 6 h. After the reaction mixture was cooled to room temperature, the mixture was quenched by saturated NaHCO<sub>3</sub> aq. and extracted with EtOAc three times. The combined organic layer was then dried over Na<sub>2</sub>SO<sub>4</sub>. The crude material was purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate, 50:1-32:1) to give the product 1k/1n.

# General procedure for the synthesis of 1b and 1s.<sup>1-4</sup>



In a 25 mL round-bottom flask, 2-subsitiuted indoles (5.7 mmol, 1.0 equiv) and 4dimethylaminopyridine (5 mol%) were dissolved in dry MeCN (10 mL), and the mixture was cooled to 0 °C under nitrogen atmosphere. Ditertbutyl dicarbonate (1.1 equiv) was then added dropwise. After stirred for 12 h at room temperature, the solvent was removed by evaporation. The crude product was purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate) to obtain desired product **1b**/ **1s**. **Experimental procedure for the synthesis of 1c.**<sup>1-4</sup>



In a 25 mL round-bottom flask, methyl indole-2-carboxylate (0.50 g, 2.90 mmol) and NaH (176.0 mg, 60% dispersion in paraffin liquid, 4.40 mmol) were dissolved in dry THF (5 mL) and the mixture was cooled to 0 °C. Isobutyryl chloride (0.5 mL, 4.40 mmol) was then added dropwise. After stirring for 12 h at room temperature, the reaction mixture was quenched by addition of water and extracted with CH<sub>2</sub>Cl<sub>2</sub> three times. The combined organic layer was then dried over Na<sub>2</sub>SO<sub>4</sub>. After filtration, the solvent was removed by evaporation. The crude product was purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate, 60:1-40:1) to obtain **1c** (0.60 g, 2.40 mmol, 81%) as a white solid.

#### Experimental procedure for the synthesis of 1t.<sup>1,4</sup>



In a 50 mL round-bottom flask, indole-2-carboxylic acid (0.50 g, 3.10 mmol) and triphenylphosphine (0.98 g, 3.70 mmol) and <sup>*i*</sup>PrOH (236.8  $\mu$ L, 3.10 mmol) were dissolved in dry THF (10 mL), and the mixture was cooled to 0 °C under nitrogen

atmosphere. Then diisopropyl azodicarboxylate (731.6  $\mu$ L, 3.70 mmol) was added dropwise. After stirred for 48 h at room temperature, the reaction mixture was purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate, 32:1) to obtain **S-1t** (0.56 g, 2.80 mmol, 89%) as a white solid.

In a 50 mL round-bottom flask, **S-1t** (0.50 g, 2.50 mmol) and NaH (0.15 g, 60% dispersion in paraffin liquid, 3.70 mmol) were dissolved in dry THF (10 mL) and the mixture was cooled to 0 °C. Benzyl chloroformate (414.6  $\mu$ L, 3.00 mmol) was then added dropwise. After stirred for 12 h at room temperature, the reaction mixture was quenched by addition of water and extracted with CH<sub>2</sub>Cl<sub>2</sub> three times. The combined organic layer was then dried over Na<sub>2</sub>SO<sub>4</sub>. After filtration, the solvents were removed by evaporation. The crude product was purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate, 32:1) to obtain **1t** (0.56 g, 1.70 mmol, 89%) as a white solid.

Synthesis of substrate 1u.<sup>5,6</sup>



In a 25 mL round bottom flask, indole-2-carboxylic acid (0.50 g, 3.10 mmol), DMAP (63.5 mg, 0.50 mmol) and isoborneol (0.40 g, 2.60 mmol) were dissolved in DCM (5 mL), and the mixture was cooled to 0 °C under nitrogen atmosphere. DCC (0.64 g, 3.10 mmol) was then added, the reaction mixture was stirred for 12 h at room temperature. After completion, the mixture was concentrated in vacuo to afford crude product which was further purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate, 6:1) to obtain S-1u (0.57 g, 1.90 mmol, 73%) as a white solid.

In a 25 mL round bottomed flask, **S-1u** (0.30 g, 1.00 mmol) and NaH (60.0 mg, 60% dispersion in paraffin liquid, 1.50 mmol) were dissolved in dry THF (5 mL) and

the mixture was cooled to 0 °C. Benzyl chloroformate (168.9 µL, 1.20 mmol) was then added dropwise. After stirred for 12 h at room temperature, the reaction mixture was quenched by addition of water and extracted with CH<sub>2</sub>Cl<sub>2</sub> three times. The combined organic layer was then dried over Na<sub>2</sub>SO<sub>4</sub>. After filtration, the solvents were removed by evaporation. The crude product was purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate, 50:1) to obtain **1u** (0.43 g, 1.00 mmol, 99%) as a colorless oil. **<sup>1</sup>H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (d, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.46-7.36 (m, 6H), 7.28-7.26 (m, 1H), 7.08 (s, 1H), 5.44-5.38 (m, 2H), 4.81 (t, *J* = 5.8 Hz, 1H), 1.84-1.83 (m, 2H), 1.78-1.67 (m, 2H), 1.58-1.55 (m, 1H), 1.20-1.05 (m, 2H), 1.01 (s, 3H), 0.88-0.86 (m, 6H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  161.2, 150.9, 137.9, 134.6, 131.3, 128.9, 128.8, 127.8, 127.1, 123.7, 122.3, 115.5, 115.1, 82.4, 69.8, 49.1, 47.1, 45.2, 38.7, 33.8, 27.2, 20.2, 20.1, 11.6 ppm.

Synthesis of substrate 1v.<sup>5,6</sup>



In a 50 mL round bottom flask, indole-2-carboxylic acid (0.50 g, 3.10 mmol) and nerol (0.57 g, 3.70 mmol) were dissolved in DCM (10 mL), and the mixture was cooled to 0 °C under nitrogen atmosphere. EDCI (0.71 g, 3.70 mmol) and DMAP (37.9 mg, 0.30 mmol) were then added. Then, the reaction mixture was stirred for 1.5 h at room temperature, anhydrous Na<sub>2</sub>SO<sub>4</sub> was added. After filtration, the filtrate was concentrated in vacuo to afford crude product which was further purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate, 32:1) to obtain **S-1v** (0.68 g, 2.30 mmol, 73%) as a white solid.

In a 25 mL round bottomed flask, S-1v (0.30 g, 1.00 mmol), NaH (60.0 mg, 60% dispersion in paraffin liquid, 1.50 mmol) was dissolved in dry THF (5 mL) and the

mixture was cooled to 0 °C. Benzyl chloroformate (168.0 µL, 1.20 mmol) was then added dropwise. After stirred for 12 h at room temperature, the reaction mixture was quenched by addition of water and extracted with CH<sub>2</sub>Cl<sub>2</sub> three times. The combined organic layer was then dried over Na<sub>2</sub>SO<sub>4</sub>. After filtration, the solvents were removed by evaporation. The crude product was purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate, 50:1) to obtain **1v** (0.43 g, 1.00 mmol, 98%) as a colorless oil. **<sup>1</sup>H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (d, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.46-7.34 (m, 6H), 7.29-7.23 (m, 1H), 7.13 (s, 1H), 5.41 (s, 2H), 5.37-5.33 (m, 1H), 5.13-5.06 (m, 1H), 4.67 (d, *J* = 7.2 Hz, 2H), 2.15-2.05 (m, 4H), 1.76 (s, 3H), 1.67 (s, 3H), 1.60 (s, 3H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  161.9, 150.9, 143.2, 137.8, 134.7, 132.4, 130.8, 128.9, 128.8, 127.8, 127.1, 123.7, 122.3, 118.9, 115.7, 115.2, 69.7, 62.2, 32.3, 26.8, 25.8, 23.7, 17.8 ppm.

Synthesis of substrate 1w.<sup>5,6</sup>



In a 25 mL round bottom flask, indole-2-carboxylic acid (0.30 g, 1.85 mmol), DMAP (37.9 mg, 0.31 mmol) and diacetone-d-glucose (0.40 g, 1.54 mmol) were dissolved in DCM (5 mL), and the mixture was cooled to 0 °C under nitrogen atmosphere. DCC (0.38 g, 1.85 mmol) was then added, the reaction mixture was stirred for 12 h at room temperature. After completion, the mixture was concentrated in vacuo to afford crude product which was further purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate, 6:1) to obtain **S-1w** (0.50 g, 1.23 mmol, 98%) as a colorless oil.

In a 25 mL round bottomed flask, **S-1w** (0.30 g, 0.74 mmol), NaH (44.4 mg, 60% dispersion in paraffin liquid, 1.11 mmol) was dissolved in dry THF (5 mL) and the mixture was cooled to 0 °C. Benzyl chloroformate (125.0  $\mu$ L, 1.20 mmol) was then added dropwise. After stirred for 12 h at room temperature, the reaction mixture was quenched by addition of water and extracted with CH<sub>2</sub>Cl<sub>2</sub> three times. The combined organic layer was then dried over Na<sub>2</sub>SO<sub>4</sub>. After filtration, the solvents were removed by evaporation. The crude product was purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate, 10:1) to obtain **1w** (0.32 g, 0.59 mmol, 98%) as a colorless oil. **<sup>1</sup>H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, *J* = 8.4 Hz, 1H), 7.62 (d, *J* = 7.8 Hz, 1H), 7.49-7.36 (m, 6H), 7.32-7.26 (m, 1H), 7.19 (s, 1H), 5.84-5.82 (m, 1H), 5.44 (s, 2H), 5.40-5.38 (m, 1H), 4.71-4.70 (m, 1H), 4.56-4.54 (m, 1H), 4.33-4.32 (m, 1H), 4.32-4.25 (m, 2H), 1.55 (s, 3H), 1.42 (s, 3H), 1.33 (s, 3H), 1.31 (s, 3H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  160.3, 150.8, 137.8, 137.8, 134.5, 129.8, 129.0, 128.9, 128.8, 128.7, 127.8, 127.6, 127.1, 124.0, 122.6, 117.0, 115.3, 83.0, 80.0, 77.4, 72.7, 70.0, 67.4, 27.0, 26.9, 26.5, 25.4 ppm.

Synthesis of substrate 1x.<sup>5,6</sup>



In a 25 mL round bottom flask, indole-2-carboxylic acid (186.9 mg, 1.20 mmol), DMAP (23.2 mg, 0.20 mmol) and stigmasterol (0.40 g, 1.00 mmol) were dissolved in DCM (5 mL), and the mixture was cooled to 0 °C under nitrogen atmosphere. DCC (0.24 g, 1.20 mmol) was then added, the reaction mixture was stirred for 12 h at room

temperature. After completion, the mixture was concentrated in vacuo to afford crude product which was further purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate, 32:1) to obtain **S-1x** (0.49 g, 0.90 mmol, 90%) as a white solid.

In a 25 mL round bottomed flask, S-1x (0.30 g, 0.50 mmol) and NaH (32.0 mg, 60% dispersion in paraffin liquid, 0.80 mmol) were dissolved in dry THF (5 mL) and the mixture was cooled to 0 °C. Benzyl chloroformate (90.0 µL, 0.60 mmol) was then added dropwise. After stirred for 12 h at room temperature, the reaction mixture was quenched by addition of water and extracted with CH2Cl2 three times. The combined organic layer was then dried over Na<sub>2</sub>SO<sub>4</sub>. After filtration, the solvents were removed by evaporation. The crude product was purified by column chromatography  $(SiO_2,$ petroleum ether/ethyl acetate, 50:1) to obtain 1x (0.36 g, 0.50 mmol, 98%) as a white solid. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.06 (d, *J* = 8.5 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.48-7.35 (m, 6H), 7.29-7.24 (m, 1H), 7.12 (s, 1H), 5.42-5.37 (m, 3H), 5.22-5.12 (m, 1H), 5.03-5.01 (m, 1H), 4.70-4.72 (m, 1H), 2.37-2.35 (m, 2H), 2.14-1.94 (m, 2H), 1.90-1.80 (m, 1H), 1.58-1.40 (m, 9H), 1.32-1.10 (m, 11H), 1.05-1.02 (m, 3H), 0.89-0.75 (m, 12H), 0.71-0.68 (m, 3H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 161.3, 150.9, 139.6, 138.5, 137.8, 134.7, 129.4, 128.9, 128.8, 128.5, 127.9, 127.1, 123.7, 123.0, 122.3, 115.5, 115.2, 75.5, 69.7, 58.6, 56.9, 56.1, 51.4, 50.2, 42.4, 40.7, 39.8, 38.1, 37.1, 36.8, 32.0, 29.1, 27.8, 25.6, 24.5, 21.4, 21.2, 19.5, 19.1, 18.6, 12.4, 12.2 ppm.

(2) (1) Synthesis of indole-3-carboxylates 4.

General procedure for the synthesis of 4a, 4h-4q.<sup>7,8</sup>



In a 150 mL round bottomed flask, 3-subsitiuted indoles (30 mmol) and DMAP (1.5 equiv) were dissolved in dry THF (50 mL) and the mixture was cooled to 0 °C.  $(Boc)_2O(1.5 \text{ equiv})$  was then added dropwise under N<sub>2</sub> atmosphere. After stirred for 12 h at room temperature, the solvent was removed by evaporation. The crude product was

purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate) to obtain desired products.

Experimental procedure for the synthesis of 4b-4e.<sup>7,8</sup>



In a 25 mL round bottomed flask, methyl indole-3-carboxylate (0.50 g, 2.90 mmol), NaOH (0.20 g, 5.80 mmol) and TBAB (5.40 g, 44.00 mmol) were dissolved in dry DCM (10 mL), and the mixture was cooled to 0 °C. RCl (1.5 equiv) was then added dropwise. After stirred for 12 h at room temperature. The reaction was then diluted by 2 M HCl (5 mL) and extracted with DCM ( $3 \times 10$  mL). The combined organic phase was dried over Na<sub>2</sub>SO<sub>4</sub>. The crude product was purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate) to obtain desired products.

# **3.** Optimization of Reaction Conditions

#### (1) Optimization of dearomative $\beta$ -hydroborylation of 2-substituted indoles.

Table S1 Screening of different photocatalysts.<sup>a</sup>

| N<br>L<br>1a | $ \begin{array}{c} OMe \\ O \\ O \\ Z \end{array} + \overbrace{N}^{+} - \overline{B}H_{3} \\ Na_{2}CO_{3}, MeCN, Blue LEDs \end{array} $ | BH <sub>2</sub><br>H OMe<br>3a Cbz |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Entry        | Photocatalyst                                                                                                                            | Yield $(\%)^b$                     |
| 1            | <i>fac</i> -Ir(ppy) <sub>3</sub>                                                                                                         | trace                              |
| 2            | Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>                                                                                             | 86                                 |
| 3            | $[Ir(cod)Cl]_2$                                                                                                                          | trace                              |
| 4            | Ru(bpy) <sub>3</sub> Cl <sub>2</sub> ·6H <sub>2</sub> O                                                                                  | 20                                 |

<sup>*a*</sup>Reaction conditions: **1a** (1.2 equiv), **2a** (0.2 mmol), photocatalyst (2 mol%), BnSH (20 mol%), Na<sub>2</sub>CO<sub>3</sub> (2.0 equiv), anhydrous MeCN (2 mL), 30 W blue LEDs ( $\lambda$  = 440-450 nm), rt, 12 h, N<sub>2</sub> atmosphere. <sup>*b*</sup>Yield were determined by <sup>1</sup>H NMR with triphenyl methane as internal standard.

Table S2 Control experiments.<sup>a</sup>

| N<br>L<br>1a   | $\bigvee_{O}^{OMe} + \bigvee_{N}^{N^{+}} \bar{B}H_{3} - 2a$ | BnSH (20 mol%)<br>Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub> (2 n<br>Na <sub>2</sub> CO <sub>3</sub> (2.0 equiv), Mo<br>Blue LEDs | nol%)<br>eCN<br>3a              | BH <sub>2</sub><br>H OMe<br>N O<br>Cbz |
|----------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------|
| Entry          | Photocatalyst                                               | Additive                                                                                                                            | Base                            | Yield $(\%)^b$                         |
| 1              | Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>                |                                                                                                                                     | Na <sub>2</sub> CO <sub>3</sub> | 76                                     |
| 2              | Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>                | BnSH                                                                                                                                | —                               | 80                                     |
| 3 <sup>c</sup> | Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>                | BnSH                                                                                                                                | Na <sub>2</sub> CO <sub>3</sub> | 59                                     |
| 4              | _                                                           | BnSH                                                                                                                                | Na <sub>2</sub> CO <sub>3</sub> | nr                                     |
| $5^d$          | Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>                | BnSH                                                                                                                                | Na <sub>2</sub> CO <sub>3</sub> | nr                                     |

<sup>*a*</sup>Reaction conditions: **1a** (1.2 equiv), **2a** (0.2 mmol), Ir(ppy)<sub>2</sub>(dtbbpy)PF<sub>6</sub> (2 mol%), BnSH (20 mol%), Na<sub>2</sub>CO<sub>3</sub> (2.0 equiv), anhydrous MeCN (2 mL), 30 W blue LEDs ( $\lambda = 440-450$  nm), rt, 12 h, N<sub>2</sub> atmosphere. <sup>*b*</sup>Yields were determined by <sup>1</sup>H NMR with triphenyl methane as internal standard, nr means no reaction. <sup>*c*</sup>Reaction was set up in the air. <sup>*d*</sup>In dark.

| OMe<br>NO<br>Cbz | + BnSH (2<br>+ BH <sub>3</sub> Ir(ppy) <sub>2</sub> (dtbbpy<br>base (2.0 ec<br>Blue b | 0 mol%)<br>)PF <sub>6</sub> (2 mol%)<br>quiv), MeCN<br>LEDs<br>3a Cbz |
|------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Entry            | Base                                                                                  | Yield $(\%)^b$                                                        |
| 1                | NaOH                                                                                  | 41                                                                    |
| $2^c$            | <sup>t</sup> BuOK                                                                     | 15                                                                    |
| 3                | NaOMe                                                                                 | 55                                                                    |
| 4                | DMAP                                                                                  | 24                                                                    |
| 5                | Ру                                                                                    | 70                                                                    |
| 6                | DIPEA                                                                                 | 41                                                                    |
| $7^c$            | NaH                                                                                   | 32                                                                    |
| 8                | DBU                                                                                   | 79                                                                    |
| 9                | DABCO                                                                                 | 57                                                                    |
| 10               | NaOAc                                                                                 | 88                                                                    |

<sup>*a*</sup>Reaction conditions: **1a** (1.2 equiv), **2a** (0.2 mmol), Ir(ppy)<sub>2</sub>(dtbbpy)PF<sub>6</sub> (2 mol%), BnSH (20 mol%), base (2.0 equiv), anhydrous MeCN (2 mL), 30 W blue LEDs ( $\lambda$  = 440-450 nm), rt, 12 h, N<sub>2</sub> atmosphere. <sup>*b*</sup>Yields were determined by <sup>1</sup>H NMR with triphenyl methane as internal standard. <sup>*c*</sup>Reaction for 18 h.

### Table S4 Screening of equivalents of 1a/2a.<sup>a</sup>



<sup>*a*</sup>Reaction conditions: **1a**, **2a**, Ir(ppy)<sub>2</sub>(dtbbpy)PF<sub>6</sub> (2 mol%), BnSH (20 mol%), NaOAc (2.0 equiv), anhydrous MeCN (2 mL), 30 W blue LEDs ( $\lambda$  = 440-450 nm), rt, 12 h, N<sub>2</sub> atmosphere. <sup>*b*</sup>Yields were determined by <sup>1</sup>H NMR with triphenyl methane as internal standard. <sup>c</sup>Isolated yield.

# (2) Optimization of dearomative $\beta$ -hydroborylation of 3-substituted indoles.

| 4a Boc | Me<br>+ −BH <sub>3</sub> −Photocatalyst (2 mol%)<br>BnSH (20 mol%), NaOAc (2.0 equiv)<br>MeCN, Blue LEDs<br>2a  |                              | e<br>N + |
|--------|-----------------------------------------------------------------------------------------------------------------|------------------------------|----------|
| Entry  | Variation                                                                                                       | $\operatorname{Yield}(\%)^b$ | dr       |
| 1      | none                                                                                                            | 95                           | 2.5:1    |
| 2      | Ru(bpy) <sub>3</sub> Cl <sub>2</sub> ·6H <sub>2</sub> O instead of Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub> | 26                           | >99:1    |
| 3      | Ru(bpy) <sub>3</sub> (PF <sub>6</sub> ) <sub>2</sub> instead of Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>    | 38                           | >99:1    |
| 4      | Ru(dtbpy) <sub>3</sub> (PF <sub>6</sub> ) <sub>2</sub> instead of Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>  | 29                           | >99:1    |
| 5      | Ru(bpz) <sub>3</sub> (PF <sub>6</sub> ) <sub>2</sub> instead of Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>    | trace                        |          |
| 6      | Ru(bpm) <sub>3</sub> (PF <sub>6</sub> ) <sub>2</sub> instead of Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>    | trace                        |          |
| 7      | 4-CzIPN instead of Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>                                                 | 94                           | 2.5:1    |
| 8      | fac-Ir(ppy) <sub>3</sub> instead of Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>                                | nr                           | —        |

Table S5 Screening of different photocatalysts.<sup>a</sup>

<sup>*a*</sup>Reaction conditions: **4a** (0.2 mmol), **2a** (1.5 equiv), photocatalyst (2 mol%), BnSH (20 mol%), NaOAc (2.0 equiv), anhydrous MeCN (2 mL), 30 W blue LEDs ( $\lambda$  = 440-450 nm), rt, 12 h, N<sub>2</sub> atmosphere. <sup>*b*</sup>Isolated yields. nr = no reaction.

#### Table S6 Control experiments.<sup>a</sup>

| 4a Boc | Me / Ir<br>+ N+ BH <sub>3</sub> BnS<br>N<br>2a | r(ppy) <sub>2</sub> (dtbbpy)PF<br><u>H (20 mol%), NaC</u><br>MeCN, Blue Ll | <sub>6</sub> (2 mol%)<br>DAc (2.0 equiv) <sub>➤</sub><br>EDs | N<br>Sa                      | DMe<br>BH <sub>2</sub><br>N+<br>N |
|--------|------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------|-----------------------------------|
| Entry  | Photocatalyst                                  | Additive                                                                   | Base                                                         | $\operatorname{Yield}(\%)^b$ | dr                                |
| 1      |                                                | BnSH                                                                       | NaOAc                                                        | nr                           |                                   |
| $2^c$  | Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>   | BnSH                                                                       | NaOAc                                                        | nr                           |                                   |
| 3      | Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>   | —                                                                          | NaOAc                                                        | 43                           | 15.7:1                            |
| 4      | Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>   | BnSH                                                                       | —                                                            | 96                           | 32.3:1                            |
| $5^d$  | Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>   | BnSH                                                                       | NaOAc                                                        | 53                           | 40:1                              |

<sup>&</sup>lt;sup>*a*</sup>Reaction conditions: **4a** (1.0 equiv), **2a** (1.5 mmol),  $Ir(ppy)_2(dtbbpy)PF_6$  (2 mol%), BnSH (20 mol%), NaOAc (2.0 equiv), anhydrous MeCN (2 mL), 30 W blue LEDs ( $\lambda = 440-450$  nm), rt, 12 h, N<sub>2</sub> atmosphere. <sup>*b*</sup>Isolated yields. <sup>*c*</sup>In dark. <sup>*d*</sup>Reaction was set up in the air. nr = no reaction.

| O<br>O<br>Me<br>+<br>4a Boc | N+<br>N<br>N<br>2a | Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub> (2 mol%)<br>BnSH (20 mol%), MeCN<br>Blue LEDs | O<br>O<br>Me<br>BH <sub>2</sub><br>N+<br>Sa |
|-----------------------------|--------------------|--------------------------------------------------------------------------------------------|---------------------------------------------|
| Entry                       | 4a/2a              | Yield $(\%)^b$                                                                             | dr                                          |
| 1                           | 1.0/1.0            | 95                                                                                         | 3.2:1                                       |
| 2                           | 1.5/1.0            | 45                                                                                         | >99:1                                       |
| 3                           | 1.0/2.0            | 99                                                                                         | >99:1                                       |

# Table S7 Screening of equivalents of 4a/2a.<sup>a</sup>

<sup>*a*</sup>Reaction conditions: **4a**, **2a**, Ir(ppy)<sub>2</sub>(dtbbpy)PF<sub>6</sub> (2 mol%), BnSH (20 mol%), NaOAc (2.0 equiv), anhydrous MeCN (2 mL), 30 W blue LEDs ( $\lambda$  = 440-450 nm), rt, 12 h, N<sub>2</sub> atmosphere. <sup>*b*</sup>Isolated yields.

## 4. General Experimental Procedures

#### General procedure for the dearomative $\beta$ -hydroborylation of 2-substituted indoles.



A dry glass tube (35 mL, 18 x 180 mm) charged with **1** (0.20 mmol, 1.0 equiv), **2** (0.24 mmol, 1.2 equiv), [Ir(ppy)<sub>2</sub>(dtbbpy)]PF<sub>6</sub> (3.7 mg, 2 mol%), NaOAc (32.8 mg, 0.40 mmol), BnSH (4.7  $\mu$ L, 20 mol%) and MeCN (2 mL) was evacuated and backfilled with N<sub>2</sub> for three times, then was tied up nitrogen balloon and placed approximately 5 cm from a 30 W blue LEDs ( $\lambda$  = 440-450 nm) light. The mixture was stirred at room temperature for 12 h. As the reaction completed, the reaction solvent was removed by vacuum and the crude product was purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate) to provide the desired product **3**.

#### General procedure for the dearomative $\beta$ -hydroborylation of 3-substituted indoles.



A dry glass tube (35 mL, 18 x 180 mm) charged with 4 (0.20 mmol, 1.0 equiv), 2a (44.0 mg, 2.0 equiv), [Ir(ppy)<sub>2</sub>(dtbbpy)]PF<sub>6</sub> (3.7 mg, 2 mol%), BnSH (4.7  $\mu$ L, 20 mol%) and MeCN (2 mL) was evacuated and backfilled with N<sub>2</sub> for three times, then was tied up nitrogen balloon and placed approximately 5 cm from a 30 W blue LEDs ( $\lambda$  = 440-450 nm) light. The mixture was stirred at room temperature for 12 h. As the reaction completed, the solvent was removed by vacuum and the crude product was purified by

column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate) to provide the desired product **5**.

#### Gram scale reaction of 1a.





In a 100 mL round-bottom flask charged with **1a** (1.00 g, 3.23 mmol), **2a** (0.42 g, 3.84 mmol), [Ir(ppy)<sub>2</sub>(dtbbpy)]PF<sub>6</sub> (58.5 mg, 0.064 mmol), NaOAc (0.50 g, 6.40 mmol), BnSH (75.1  $\mu$ L, 0.64 mmol) and 30 mL MeCN was evacuated and backfilled with N<sub>2</sub> for three times, and finally tie up nitrogen balloon and placed approximately 3 cm from a 30 W blue LEDs ( $\lambda$  = 440-450 nm) light. The mixture was stirred at room temperature for 18 hours. Then filtration, the solvent was removed by evaporation. The crude product was purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate, 2:1) to obtain **3a** in 95% yield.

## Gram scale reaction of 4a.



In a 100 mL round bottom flask charged with **4a** (1.00 g, 3.60 mmol), **2a** (0.80 g, 7.2 mmol), [Ir(ppy)<sub>2</sub>(dtbbpy)]PF<sub>6</sub> (65.8 mg, 0.072 mmol), BnSH (84.5 μL, 0.72 mmol)

and 40 mL MeCN was evacuated and backfilled with N<sub>2</sub> for three times, and finally tie up nitrogen balloon and placed approximately 3 cm from a 30 W blue LEDs ( $\lambda$  = 440-450 nm) light. The mixture was stirred at room temperature for 18 hours. Then filtration, the solvent was removed by evaporation. The crude product was purified by column chromatography (SiO<sub>2</sub>, petroleum ether/ethyl acetate, 2:1) to obtain **5a** in 82% yield.

## 5. Mechanism Studies

(1) Radical trapping experiments.



Two dry glass tubes (35 mL,  $18 \times 180$  mm) equipped with rubber plugs and magneticstir bar was charged with **1a** (0.20 mmol), **2a** (0.24 mmol), Ir(ppy)<sub>2</sub>(dtbbpy)PF<sub>6</sub> (3.7 mg, 2 mol%), NaOAc (32.8 mg, 2.0 equiv), BnSH (4.7 µL, 20 mol%), anhydrous MeCN (2 mL), respectively. Under the standard conditions, (a) adding 4.0 equiv. of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) into the reaction system; (b) adding 4.0 equiv. of radical scavenger 1,1-diphenylene into the reaction system. After stirred at room temperature for 12 hours, it was found that both reaction (a) and (b) were hindered. The desired product **3a** could not be observed in reaction (a), and only trace amount of **3a** could be detected by HRMS (b). Additionally, intermediates **6** and **7** were detected in reaction (a) and (b) by HRMS, respectively.



Fig. S1 HRMS spectrum of compound 6.



Fig. S2 HRMS spectrum of compound 7.

# (2) Isotopic labelling experiments.



**Reaction a):** A dry glass tube (35 mL, 18 × 180 mm) charged with **1a** (0.20 mmol), **2a** (0.24 mmol), Ir(ppy)<sub>2</sub>(dtbbpy)PF<sub>6</sub> (2 mol%), BnSH (20 mol%), NaOAc (2.0 equiv) and anhydrous CD<sub>3</sub>CN (2 mL) was evacuated and backfilled with N<sub>2</sub> three times, and finally tie up nitrogen balloon. The reaction mixture was stirred at 30 W blue LEDs ( $\lambda = 440-450$  nm) light at room temperature for 12 h. The yield was determined by <sup>1</sup>H NMR.

**Reaction b):** A dry glass tube (35 mL, 18 × 180 mm) charged with **1a** (0.20 mmol), **2a** (0.24 mmol), Ir(ppy)<sub>2</sub>(dtbbpy)PF<sub>6</sub> (2 mol%), BnSH (20 mol%), NaOAc (2.0 equiv), D<sub>2</sub>O (10.0 equiv) and anhydrous CH<sub>3</sub>CN (2 mL) was evacuated and backfilled with N<sub>2</sub> three times, and finally tie up nitrogen balloon. The reaction mixture was stirred at 30 W blue LEDs ( $\lambda$  = 440-450 nm) light at room temperature for 12 h. The yield and H/D ratio were determined by <sup>1</sup>H NMR.

**Reaction c):** A dry glass tube (35 mL, 18 × 180 mm) charged with **1a** (0.20 mmol), **2a**- $d_3$  (0.24 mmol), Ir(ppy)<sub>2</sub>(dtbbpy)PF<sub>6</sub> (2 mol%), BnSH (20 mol%), NaOAc (2.0 equiv) and anhydrous CD<sub>3</sub>CN (2 mL) was evacuated and backfilled with N<sub>2</sub> three times, and finally tie up nitrogen balloon. The reaction mixture was stirred at 30 W blue LEDs ( $\lambda = 440-450$  nm) light at room temperature for 12 h. The yield and H/D ratio were determined by <sup>1</sup>H NMR.

**Reaction d):** A dry glass tube (35 mL, 18 × 180 mm) charged with **1a** (0.20 mmol), **2a** (0.24 mmol), Ir(ppy)<sub>2</sub>(dtbbpy)PF<sub>6</sub> (2 mol%), BnDH (20 mol%), NaOAc (2.0 equiv) and anhydrous CD<sub>3</sub>CN (2 mL) was evacuated and backfilled with N<sub>2</sub> three times, and finally tie up nitrogen balloon. The reaction mixture was stirred at 30 W blue LEDs ( $\lambda = 440-450$  nm) light at room temperature for 12 h. The yield was determined by <sup>1</sup>H NMR.

#### (3) Light/dark experiments.

Six dry glass tubes (35 mL, 18 × 180 mm) charged with **1a** (0.20 mmol), **2a** (0.24 mmol), [Ir(ppy)<sub>2</sub>(dtbbpy)]PF<sub>6</sub> (2 mol%), NaOAc (32.8 mg, 2.0 equiv), BnSH (4.7  $\mu$ L, 20 mol%) and MeCN (2 mL) were evacuated and backfilled with N<sub>2</sub> for three times. The reaction was alternatively irradiated with a 30 W blue LEDs ( $\lambda$  = 440-450 nm) and

kept in the dark in 2 h intervals. After each interval, one vial was taken out, the solvent was removed under reduced pressure, and the yield was determined by <sup>1</sup>H NMR based on a triphenyl methane as an internal standard.

| Vial | Time (h)/Condition |          |        |          | $\operatorname{Yield}(\%)^b$ |            |    |
|------|--------------------|----------|--------|----------|------------------------------|------------|----|
| 1    | 0-2/hv             |          |        |          |                              |            | 19 |
| 2    | 0-2/hv             | 2-4/dark |        |          |                              |            |    |
| 3    | 0-2/hv             | 2-4/dark | 4-6/hv |          |                              |            | 63 |
| 4    | 0-2/hv             | 2-4/dark | 4-6/hv | 6-8/dark |                              |            | 63 |
| 5    | 0-2/hv             | 2-4/dark | 4-6/hv | 6-8/dark | 8-10/hv                      |            | 83 |
| 6    | 0-2/hv             | 2-4/dark | 4-6/hv | 6-8/dark | 8-10/hv                      | 10-12/dark | 83 |

Table S8 Yields of light/dark experiment.<sup>a</sup>

<sup>*a*</sup>Reaction conditions: **1a** (0.20 mmol), **2a** (1.2 equiv),  $Ir(ppy)_2(dtbbpy)PF_6$  (2 mol%), NaOAc (2.0 equiv), BnSH (20 mol%), MeCN (2 mL), 30 W blue LEDs ( $\lambda = 440-450$  nm), rt, 12 h, N<sub>2</sub> atmosphere. <sup>*b*</sup>Yields were determined by <sup>1</sup>H NMR with triphenyl methane as internal standard.

### 6. Analytical Data for Products

NMR spectra for most of all hydroborylative products contain conformational isomers, which is caused by the restricted C-N bond rotation around the carbamate group.

(1-((Benzyloxy)carbonyl)-2-(methoxycarbonyl)indolin-3-yl)(1,3-dimethyl-1*H*-imi dazol-2-yl)dihydroborate (3a)



Colorless oil (95%, 79.6 mg, 2.9:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, *J* = 8.0 Hz, 1H), 7.44-7.20 (m, 5H), 7.01-6.97 (m, 1H), 6.76 (s, 2H), 6.73-6.69 (m, 1H), 6.14 (d, *J* = 7.4 Hz, 1H), 5.39-5.05 (m, 2H), 4.64-4.62 (m, 1H), 3.70-3.37 (m, 9H), 2.65 (brs, 1H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.2 (*C*OOMe), 153.1 (*C*=O), 141.1, 141.0, 136.7, 128.5, 128.2, 128.0 and 127.9 (a pair of s, CH), 124.9, 122.3, 121.7, 120.6, 114.2, 68.6 and 68.4 (a pair of s, CH<sub>2</sub>), 66.7, 51.9, 35.9 (NCH<sub>3</sub>) ppm. <sup>11</sup>**B NMR** (128 MHz, CDCl<sub>3</sub>)  $\delta$  -25.5 ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>20</sub>H<sub>28</sub>BN<sub>3</sub>O<sub>4</sub>, 442.1909; found, 442.1919.

(1-(*tert*-Butoxycarbonyl)-2-(methoxycarbonyl)indolin-3-yl)(1,3-dimethyl-1*H*-imid azol-2-yldihydroborate (3b)



Colorless oil (97%, 74.6 mg, 3.0:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (d, J = 7.9 Hz, 1H), 6.98-6.94 (m, 1H), 6.83 (s, 2H), 6.68-6.64 (m, 1H), 6.06 (d, J = 7.3 Hz, 1H), 4.55-4.53 (m, 1H), 3.72-3.48 (m, 9H), 2.60 (brs, 1H), 1.58 and 1.48 (a pair of s, 9H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.5 (COOMe), 152.6 (*C*=O), 141.5, 140.8, 124.8, 121.7, 121.5, 120.7 and 120.6 (a pair of s, CH), 113.9, 80.3, 68.9, 51.7, 36.2 and

35.9 (a pair of s, NCH<sub>3</sub>), 28.4 ppm. **HRMS-ESI** (m/z):  $[M+Na]^+$  calcd for  $C_{20}H_{28}BN_3O_4$ , 408.2065; found, 408.2071.

(1,3-Dimethyl-1*H*-imidazol-2-yl)(1-isobutyryl-2-(methoxycarbonyl)indolin-3-yl)dihydroborate (3c)



Colorless oil (67%, 47.7 mg, single diastereomer). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (d, J = 8.0 Hz, 1H), 7.02-6.95 (m, 1H), 6.82 (s, 2H), 6.70-6.66 (m, 1H), 5.87 (d, J = 7.3 Hz, 1H), 4.74-4.73 (m, 1H), 3.68-3.42 (m, 9H), 2.71 (brs, 1H), 2.62-2.54 (m, 1H), 1.26 (d, J = 6.7 Hz, 3H), 1.18 (d, J = 6.4 Hz, 3H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  176.7 (COOMe), 174.3 (C=O), 141.7, 124.7, 122.9, 120.9, 120.5, 117.2, 69.0, 52.3, 35.8 (NCH<sub>3</sub>), 33.5, 20.1, 19.0 ppm. HRMS-ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>19</sub>H<sub>26</sub>BN<sub>3</sub>O<sub>3</sub>, 378.1959; found, 378.1964.

(1,3-Dimethyl-1*H*-imidazol-2-yl)(2-(methoxycarbonyl)-1-methylindolin-3-yl)dihy droborate (3d)



Colorless oil (77%, 46.9 mg, single diastereomer). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.94-6.91 (m, 1H), 6.84 (s, 2H), 6.58-6.44 (m, 2H), 6.37 (d, *J* = 7.7 Hz, 1H), 3.77-3.76 (m, 1H), 3.69 (s, 6H), 3.60 (s, 3H), 2.77 (s, 3H), 2.66 (brs, 1H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.7 (COOMe), 151.8 (*C*=O), 139.3, 125.3, 122.1, 120.4, 117.7, 106.2, 51.8, 36.2 (NCH<sub>3</sub>), 35.2 ppm. **HRMS-ESI** (m/z): [M+H]<sup>+</sup> calcd for C<sub>16</sub>H<sub>22</sub>BN<sub>3</sub>O<sub>2</sub>, 300.1878; found, 300.1881.

Methyl 3-((1,3-dimethyl-1*H*-imidazol-2-yl)boraneyl)indoline-2-carboxylate (3e)



Colorless oil (46%, 26.3 mg, 1.4:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.85-6.83 (m, 1H), 6.82 (s, 2H), 6.63 (d, J = 7.6 Hz, 1H), 6.50-6.48 (m, 1H), 6.13 (d, J = 7.2 Hz, 1H), 4.09-4.07 (m, 1H), 3.65 (s, 3H), 3.56 (s, 6H), 2.84 (brs, 1H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.0 (COOMe), 123.3, 121.8, 120.6, 119.1, 115.0, 110.2, 51.3, 35.7 (NCH<sub>3</sub>) ppm. HRMS-ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>15</sub>H<sub>20</sub>BN<sub>3</sub>O<sub>2</sub>, 308.1541; found, 308.1547. (1-((Benzyloxy)carbonyl)-4-fluoro-2-(methoxycarbonyl)indolin-3-yl)(1,3-dimethy l-1*H*-imidazol-3-ium-2-yl)dihydroborate (3f)



Colorless oil (83%, 72.4 mg, 3.5:1 dr). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (d, J = 7.9 Hz, 1H), 7.41-7.19 (m, 5H), 6.98-6.92 (m, 1H), 6.76 (s, 2H), 6.41-6.37 (m, 1H), 5.34-5.14 (m, 2H), 4.77-4.75 (m, 1H), 3.69-3.46 (m, 9H), 2.79 (brs, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.8 (COOMe), 157.5 (d, J = 237.7 Hz), 153.2 (*C*=O), 143.8, 143.7, 136.4, 128.6 and 128.5 (a pair of s, *CH*), 128.3 and 128.0 (a pair of s, *CH*), 127.8 and 127.7 (a pair of s, *CH*), 126.4 (d, J = 7.0 Hz), 120.5, 110.3 (d, J = 2.8 Hz), 109.0 (d, J = 21.1 Hz), 69.3 and 69.1 (a pair of s, *CH*<sub>2</sub>), 66.9, 52.1 and 52.0 (a pair of s, OCH<sub>3</sub>), 35.7 (NCH<sub>3</sub>) ppm. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -125.6 and -126.8 (a pair of s, F). HRMS-ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>25</sub>BFN<sub>3</sub>O<sub>4</sub>, 460.1814; found, 460.1820. (1-((Benzyloxy)carbonyl)-5-bromo-2-(methoxycarbonyl)indolin-3-yl)(1,3-dimeth yl-1*H*-imidazol-3-ium-2-yl)dihydroborate (3g)



Colorless oil (82%, 82.3 mg, 3.4:1 dr). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, *J* = 8.4 Hz, 1H), 7.43-7.19 (m, 5H), 7.12-7.09 (m, 1H), 6.83 and 6.82 (a pair of s, 2H), 6.16 (s, 1H), 5.32-5.11 (m, 2H), 4.64-4.62 (m, 1H), 3.68-3.45 (m, 9H), 2.60 (brs, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.8 (COOMe), 153.0 (*C*=O), 143.8, 140.3, 136.4, 128.5, 128.1, 127.9, 127.4, 124.8, 120.7, 115.5, 114.8, 68.5, 67.0, 52.0, 35.9 (NCH<sub>3</sub>) ppm. <sup>11</sup>B NMR (128 MHz, CDCl<sub>3</sub>)  $\delta$  -25.5 ppm. HRMS-ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>23H25</sub>BBrN<sub>3</sub>O<sub>4</sub>, 520.1014; found, 520.1022.

(1-((Benzyloxy)carbonyl)-5-fluoro-2-(methoxycarbonyl)indolin-3-yl)(1,3-dimethy l-1*H*-imidazol-3-ium-2-yl)dihydroborate (3h)



Colorless oil (95%, 83.5 mg, 3.0:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76-7.72 (m, 1H), 7.42-7.28 (m, 5H), 6.80 (s, 2H), 6.70-6.66 (m, 1H), 5.92 (d, *J* = 8.8 Hz, 1H), 5.30-5.13 (m, 2H), 4.64-4.61 (m, 1H), 3.69-3.51 (m, 9H), 2.62 (brs, 1H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.0 (COOMe), 159.2 (d, *J* = 237.3 Hz), 153.1 (*C*=O), 143.4, 137.1, 136.6, 128.5, 128.3, 128.1 and 127.9 (a pair of s, CH), 120.7, 114.5 (d, *J* = 8.5 Hz), 110.6 (d, *J* = 22.8 Hz), 109.1 (d, *J* = 24.1 Hz), 68.7, 66.9, 52.0, 36.0 (NCH<sub>3</sub>) ppm. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>)  $\delta$  -122.58 and 122.61 (a pair of s, F). **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>25</sub>BFN<sub>3</sub>O<sub>4</sub>, 460.1814; found, 460.1820.

(1-((Benzyloxy)carbonyl)-5-cyano-2-(methoxycarbonyl)indolin-3-yl)(1,3-dimethyl -1*H*-imidazol-3-ium-2-yl)dihydroborate (3i)



Colorless oil (44%, 38.6 mg, 2.6:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.91 (d, *J* = 8.4 Hz, 1H), 7.41-7.27 (m, 6H), 6.87 (s, 2H), 6.35 (s, 1H), 5.34-5.14 (m, 2H), 4.65-4.64 (m, 1H), 3.75-3.42 (m, 9H), 2.62 (brs, 1H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)

δ 173.4 (COOMe), 152.9 (C=O), 145.4, 136.0, 130.4, 128.6, 128.3, 128.0, 124.8, 120.9, 120.1, 114.4, 104.8, 68.8, 67.4, 52.1, 36.0 (NCH<sub>3</sub>) ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>25</sub>BN<sub>4</sub>O<sub>4</sub>, 467.1861; found, 467.1862.

(1-((Benzyloxy)carbonyl)-5-methoxy-2-(methoxycarbonyl)indolin-3-yl)(1,3-dim ethyl-1*H*-imidazol-3-ium-2-yl)dihydroborate (3j)



Green oil (90%, 81.3 mg, 2.7:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 (d, J = 8.6 Hz, 1H), 7.41-7.27 (m, 5H), 6.78 and 6.77 (a pair of s, 2H), 6.55-6.52 (m, 1H), 5.81 (s, 1H), 5.31-5.11 (m, 2H), 4.62-4.58 (m, 1H), 3.67-3.47 (m, 12H), 2.62 (brs, 1H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.2 (COOMe), 155.7 (*C*=O), 153.0, 142.7, 136.8, 134.9, 128.6 and 128.5 (a pair of s, CH), 128.2, 127.9, 120.6, 114.7 and 114.4 (a pair of s, CH), 109.3 and 109.1 (a pair of s, CH), 108.8, 68.8 and 68.6 (a pair of s, CH<sub>2</sub>), 66.6, 55.6, 51.9, 36.0 and 35.9 (a pair of s, NCH<sub>3</sub>) ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>28</sub>BN<sub>3</sub>O<sub>5</sub>, 472.2014; found, 472.2022.

(1-((Benzyloxy)carbonyl)-2-(methoxycarbonyl)-5-phenylindolin-3-yl)(1,3-dimeth yl-1*H*-imidazol-3-ium-2-yl)dihydroborate (3k)



Colorless oil (85%, 84.2 mg, single diastereomer). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 (d, J = 8.3 Hz, 1H), 7.39-7.13 (m, 11H), 6.69 and 6.64 (a pair of s, 2H), 6.33-6.32 (m, 1H), 5.26-5.08 (m, 2H), 4.61-4.58 (m, 1H), 3.56-3.39 (m, 9H), 2.62 (brs, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.1 (COOMe), 153.1 (*C*=O), 141.7, 141.6, 140.7, 136.6, 135.3, 128.6, 128.3, 128.5, 128.0, 127.9, 126.6, 126.5, 124.0, 120.6 and 120.4 (a pair of s, CH), 114.3, 68.7, 66.9, 51.9, 35.9 (NCH<sub>3</sub>) ppm. HRMS-ESI (m/z): [M+H]<sup>+</sup> calcd for C<sub>29</sub>H<sub>30</sub>BN<sub>3</sub>O<sub>4</sub>, 496.2402; found, 496.2399.

(1-((Benzyloxy)carbonyl)-6-bromo-2-(methoxycarbonyl)indolin-3-yl)(1,3-dimeth yl-1*H*-imidazol-3-ium-2-yl)dihydroborate (3l)



Colorless oil (72%, 72.0 mg, 3.6:1 dr). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.00 (d, J = 1.9 Hz, 1H), 7.46-7.28 (m, 5H), 6.84-6.82 (m, 1H), 6.79 (s, 2H), 6.00 (d, J = 7.8 Hz, 1H), 5.38-5.10 (m, 2H), 4.62-4.58 (m, 1H), 3.64-3.44 (m, 9H), 2.57 (brs, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.8 (COOMe), 153.0 (*C*=O), 142.5, 140.4, 136.4, 128.5, 128.1, 127.9, 125.0, 122.8, 120.7, 117.9, 117.3, 68.8, 67.0, 52.0, 36.0 (NCH<sub>3</sub>) ppm. HRMS-ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>25</sub>BBrN<sub>3</sub>O<sub>4</sub>, 520.1014; found, 520.1019. Benzyl 2-methyl 3-((1,3-dimethyl-1*H*-imidazol-2-yl)boraneyl)-6-methoxyindoline

1,2-dicarboxylate (3m)



Colorless oil (30%, 26.8 mg, 1.8:1 dr). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.56-7.55 (m, 1H), 7.48-7.30 (m, 5H), 6.81 and 6.78 (a pair of s, 2H), 6.32-6.29 (m, 1H), 6.01 (d, J = 8.1 Hz, 1H), 5.33-5.15 (m, 2H), 4.65-4.60 (m, 1H), 3.77-3.25 (m, 12H), 2.57 (brs, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.2 (COOMe), 158.8 and 157.8 (a pair of s, *C*), 153.0 (*C*=O), 142.1, 136.6, 134.3, 128.7, 128.5, 128.0 and 127.8 (a pair of s, *C*H), 123.9 and 121.8 (a pair of s, *C*H), 120.5 and 120.4 (a pair of s, *C*H), 111.9 and 108.5 (a pair of s, *C*H), 100.6 and 98.9 (a pair of s, *C*H), 69.2 and 68.8 (a pair of s, *C*H<sub>2</sub>), 66.7, 55.6 and 55.5 (a pair of s, COCH<sub>3</sub>), 51.8 and 51.6 (a pair of s, OCH<sub>3</sub>), 36.1 and 35.9 (a pair of s, NCH<sub>3</sub>) ppm. HRMS-ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>28</sub>BN<sub>3</sub>O<sub>5</sub>, 472.2014; found, 472.2017.

(1-((Benzyloxy)carbonyl)-2-(methoxycarbonyl)-6-phenylindolin-3-yl)(1,3-dimeth yl-1*H*-imidazol-3-ium-2-yl)dihydroborate (3n)



Colorless oil (74%, 73.3 mg, 2.4:1 dr). <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 (s, 1H), 7.52 (d, *J* = 7.6 Hz, 2H), 7.35-7.17 (m, 8H), 6.96-6.90 (m, 1H), 6.68 (s, 2H), 6.14 (d, *J* = 7.7 Hz, 1H), 5.23-5.07 (m, 2H), 4.61-4.57 (m, 1H), 3.56-3.40 (m, 9H), 2.60 (brs, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.2 (COOMe), 153.1 (*C*=O), 141.9, 141.8, 140.5, 138.2, 136.7, 128.6, 128.5, 128.0, 127.9, 127.1, 126.7, 121.9, 121.3, 120.6, 113.0, 68.8, 66.8, 51.9, 36.0 (NCH<sub>3</sub>) ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>29</sub>H<sub>30</sub>BN<sub>3</sub>O<sub>4</sub>, 518.2222; found, 518.2229.

1-Benzyl 2-ethyl 3-((1,3-dimethyl-1*H*-imidazol-2-yl)boraneyl)indoline-1,2-dicarbo xylate (30)



Colorless oil (94%, 81.7 mg, 2.8:1 dr). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, J = 7.9 Hz, 1H), 7.43-7.26 (m, 5H), 7.00-6.81 (m, 1H), 6.77 (s, 2H), 6.73-6.70 (m, 1H), 6.18 (d, J = 7.3 Hz, 1H), 5.31-5.16 (m, 2H), 4.61-4.58 (m, 1H), 4.01 (q, J = 7.1, 2H), 3.53 and 3.45 (a pair of s, 6H), 2.64 (brs, 1H), 1.08 (t, J = 7.1 Hz, 3H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.7 (COOMe), 153.1 (C=O), 141.2, 141.0, 136.6, 128.6 and 128.5 (a pair of s, CH), 128.2, 127.9 and 127.8 (a pair of s, CH), 124.8, 122.3, 121.8, 120.5, 114.1, 68.7 and 68.5 (a pair of s, CH<sub>2</sub>), 66.7, 60.5, 36.0 and 35.9 (a pair of s, NCH<sub>3</sub>), 14.2 ppm. HRMS-ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>28</sub>BN<sub>3</sub>O<sub>4</sub>, 456.2065; found, 456.2074.

(1-((Benzyloxy)carbonyl)-2-(ethoxycarbonyl)-5-(trifluoromethyl)indolin-3-yl)(1,3 -dimethyl-1*H*-imidazol-3-ium-2-yl)dihydroborate (3p)



Colorless oil (84%, 84.2 mg, 3.8:1 dr). <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (d, *J* = 8.3 Hz, 1H), 7.44-7.26 (m, 6H), 6.82 (s, 2H), 6.16 (s, 1H), 5.34-5.17 (m, 2H), 4.69-4.67 (m, 1H), 4.03 (q, *J* = 7.1 Hz, 2H), 3.57-3.40 (m, 6H), 2.62 (brs, 1H), 1.09 (t, *J* = 7.1 Hz, 3H) ppm. <sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.3 (COOMe), 153.2 (*C*=O), 144.4, 142.1, 136.3, 128.6, 128.4 (q, *J* = 238 Hz), 128.1, 127.9, 123.7 (q, *J* = 31 Hz), 122.5 (q, *J* = 4 Hz), 120.7, 118.3, 113.6, 68.9, 67.2, 60.8, 35.9 (NCH<sub>3</sub>), 14.2 ppm. <sup>19</sup>**F** NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -61.3 and -61.4 (a pair of s, 3F). **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>25</sub>H<sub>27</sub>BF<sub>3</sub>N<sub>3</sub>O<sub>4</sub>, 524.1939; found, 524.1946.

(1-((Benzyloxy)carbonyl)-5-(*tert*-butyl)-2-(ethoxycarbonyl)indolin-3-yl)(1,3-dimet hyl-1*H*-imidazol-3-ium-2-yl)dihydroborate (3q)



Colorless oil (88%, 86.2 mg, 2.6:1 dr). <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, J = 8.4 Hz, 1H), 7.43-7.26 (m, 5H), 7.01 (d, J = 8.3 Hz, 1H), 6.78 (s, 2H), 6.15 and 6.14 (a pair of s, 1H), 5.30-5.16 (m, 2H), 4.63-4.60 (m, 1H), 4.03 (q, J = 7.1 Hz, 2H), 3.70-3.45 (m, 6H), 2.62 (brs, 1H), 1.20 and 1.19 (a pair of s, 9H), 1.17-1.08 (m, 3H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.8 (COOMe), 153.1 (*C*=O), 144.8, 140.5, 138.8, 136.8, 128.4, 128.2 and 128.1 (a pair of s, CH), 127.9 and 127.8 (a pair of s, CH), 121.6, 120.5, 118.8, 113.4, 68.7, 66.7, 60.5, 35.9 (NCH<sub>3</sub>), 34.2, 31.8, 14.3 ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>28</sub>H<sub>36</sub>BN<sub>3</sub>O<sub>4</sub>, 512.2691; found, 512.2698.

(1-((Benzyloxy)carbonyl)-2-(ethoxycarbonyl)-6-fluoroindolin-3-yl)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihydroborate (3r)



Colorless oil (81%, 72.7 mg, 3.4:1 dr). <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 (d, J = 10.5 Hz, 1H), 7.43-7.26 (m, 5H), 6.80 (s, 2H), 6.47-6.40 (m, 1H), 6.11-6.08 (m, 1H), 5.32-5.15 (m, 2H), 4.60-4.57 (m, 1H), 4.01 (q, J = 7.1 Hz, 2H), 3.61 and 3.52 (a pair of s, 6H), 2.58 (brs, 1H), 1.08 (t, J = 7.1 Hz, 3H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.5 (COOMe), 161.2 (d, J = 237.6 Hz), 153.0 (*C*=O), 142.4, 142.3, 136.4 and 136.3 (a pair of s, *C*), 128.7 and 128.5 (a pair of s, *C*H), 128.3, 128.1 and 127.9 (a pair of s, *C*H), 121.7 (d, J = 9.3 Hz), 120.6, 108.2 (d, J = 22.2 Hz), 102.6 (d, J = 28.6 Hz), 69.3, 67.0, 60.7, 36.0 (NCH<sub>3</sub>), 14.22 ppm. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -118.6 and -118.7 (a pair of s, F). HRMS-ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>27</sub>BFN<sub>3</sub>O<sub>4</sub>, 474.1971; found, 474.1979.

(1-(*tert*-Butoxycarbonyl)-5,7-dichloro-2-(methoxycarbonyl)indolin-3-yl)(1,3-dime thyl-1*H*-imidazol-3-ium-2-yl)dihydroborate (3s)



Colorless oil (74%, 67.2 mg, 3.8:1 dr). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.98 (s, 1H), 6.87 (s, 2H), 6.19 (s, 1H), 4.66-4.64 (m, 1H), 4.07 (q, J = 7.1 Hz, 2H), 3.61 (s, 6H), 2.59 (brs, 1H), 1.52 (s, 9H), 1.17 (t, J = 7.1 Hz, 3H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.5 (COOMe), 154.1 (*C*=O), 148.9, 138.0, 129.0, 125.4, 124.0, 120.8, 120.2, 81.3, 71.4, 60.7, 36.0 (NCH<sub>3</sub>), 28.3, 14.2 ppm. HRMS-ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>20</sub>H<sub>26</sub>BCl<sub>2</sub>N<sub>3</sub>O<sub>4</sub>, 476.1286; found, 476.1289.

(1-((Benzyloxy)carbonyl)-2-(isopropoxycarbonyl)indolin-3-yl)(1,3-dimethyl-1*H*-i midazol-3-ium-2-yl)dihydroborate (3t)



Colorless oil (95%, 84.9 mg, 3.5:1 dr). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, *J* = 8.0 Hz, 1H), 7.43-7.26 (m, 5H), 7.01-6.97 (m, 1H), 6.77 (s, 2H), 6.74-6.70 (m, 1H), 6.22 (d, *J* = 7.3 Hz, 1H), 5.20 (s, 2H), 4.96-4.87 (m, 1H), 4.57-4.53 (m, 1H), 3.70-3.48 (m, 6H), 2.61 (brs, 1H), 1.17-1.05 (m, 6H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.1 (COOMe), 153.1 (*C*=O), 141.3, 141.1, 136.6, 128.4, 128.2, 127.9 and 127.8 (a pair of s, *C*H), 124.8, 122.3, 121.9, 120.6, 114.1, 68.6, 67.7, 66.8, 35.9 (NCH<sub>3</sub>), 21.7 ppm. HRMS-ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>25</sub>H<sub>30</sub>BN<sub>3</sub>O<sub>4</sub>, 470.2222; found, 470.2225. (1-((Benzyloxy)carbonyl)-2-((((1*S*,2*S*,4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl) oxy)carbonyl)indolin-3-yl)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihydroborate (3u)



Colorless oil (73%, 79.2 mg, 3.7:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79-7.77 (m, 1H), 7.45-7.27 (m, 5H), 6.99-6.94 (m, 1H), 6.78 (s, 2H), 6.76-6.66 (m, 1H), 6.09-6.03 (m, 1H), 5.29-5.15 (m, 2H), 4.61-4.46 (m, 2H), 3.51-3.41 (m, 6H), 2.62 (brs, 1H), 1.71-1.57 (m, 3H), 1.56-1.42 (m, 2H), 1.06-0.93 (m, 2H), 0.76-0.67 (m, 6H), 0.58-0.47 (m, 3H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.1 (COOMe), 153.1(*C*=O), 141.3, 136.6, 128.5, 128.1, 128.0, 124.7, 122.2, 121.5 and 121.4 (a pair of s, CH), 120.5, 114.2, 81.1 and 80.9 (a pair of s, OCH), 68.7 and 68.5 (a pair of s, CH<sub>2</sub>), 66.8, 48.6-48.4 (a pair of s, *C*), 46.8, 45.0, 38.9 and 38.6 (a pair of s, *C*H<sub>2</sub>), 35.8 (NCH<sub>3</sub>), 33.6, 27.0, 20.1, 19.6 and 19.4 (a pair of s, *C*H<sub>3</sub>), 11.3 and 11.9 (a pair of s, *C*H<sub>3</sub>) ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>32</sub>H<sub>40</sub>BN<sub>3</sub>O<sub>4</sub>, 564.3004; found, 564.3010.

(*E*)-(1-((Benzyloxy)carbonyl)-2-(((3,7-dimethylocta-2,6-dien-1-yl)oxy)carbonyl)in dolin-3-yl)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihydroborate (3v)



Green oil (74%, 80.6 mg, 3.0:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.81 (d, *J* = 8.0 Hz, 1H), 7.43 -7.26 (m, 5H), 7.00-6.96 (m, 1H), 6.75 (s, 2H), 6.71-6.69 (m, 1H), 6.19 (d, *J* = 7.3 Hz, 1H), 5.30-5.17 (m, 3H), 5.06-5.02 (m, 1H), 4.62-4.43 (m, 3H), 3.55 and 3.45 (a pair of s, 6H), 2.66 (brs, 1H), 2.04-1.99 (m, 4H), 1.72-1.66 (m, 6H), 1.57 (s, 3H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.6 (COOMe), 153.1(*C*=O), 141.7, 141.2, 141.1, 136.7, 132.1, 128.5, 127.9, 127.7, 124.8, 123.7, 122.3, 121.8, 120.5, 119.5, 114.2, 68.5, 66.7, 61.3, 35.9 (NCH<sub>3</sub>), 32.3, 26.7, 25.8, 23.6, 17.7 ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>32</sub>H<sub>40</sub>BN<sub>3</sub>O<sub>4</sub>, 564.3004; found, 564.3010.

(1-((Benzyloxy)carbonyl)-2-((((3a*R*,5*R*,6*S*,6a*R*)-5-((*R*)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-*d*][1,3]dioxol-6-yl)oxy)carbonyl)indolin-3-yl) (1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihydroborate (3w)



Colorless oil (79%, 102.1 mg, 2.4:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.83 (d, *J* = 7.9 Hz, 1H), 7.46-7.30 (m, 5H), 7.01-6.97 (m, 1H), 6.81 and 6.79 (a pair of s, 2H), 6.72-6.65 (m, 1H), 6.15-5.84 (m, 1H), 5.52-5.09 (m, 4H), 4.68-4.66 (m, 1H), 4.59-4.00 (m, 4H), 3.82-3.63 (m, 1H), 3.59-3.42 (m, 6H), 2.67 (brs, 1H), 1.50-1.44 (m, 3H), 1.38-1.25 (m, 6H), 1.20-1.09 (m, 3H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 172.2 (COOMe), 152.9 and 152.8 (a pair of s, *C*=O), 141.1 and 140.9 (a pair of s, *C*), 140.6, 136.4 and 136.3 (a pair of s, *C*), 128.6, 128.3 and 128.1 (a pair of s, *C*H), 128.0, 125.0, 122.4 and 122.2 (a pair of s, *C*H), 121.3 and 120.6 (a pair of s, *C*H), 120.6, 114.1, 112.2, 109.2 and 108.9 (a pair of s, *C*H), 105, 83.2 and 83.0 (a apir of s, OCH), 79.7 and 79.6 (a pair

of s, CH), 76.1 and 75.9 (a pair of s, CH), 72.6 and 72.2 (a pair of s, CH), 68.5 and 68.2 (a pair of s, CH), 67.2 and 67.1 (a pair of s, CH<sub>2</sub>), 66.8 and 66.7 (a pair of s, CH), 36.0 and 35.8 (a pair of s, NCH<sub>3</sub>), 27.0-26.8 (a pair of s, CH<sub>3</sub>), 26.3, 25.6, 25.1 ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>34</sub>H<sub>42</sub>BN<sub>3</sub>O<sub>9</sub>, 670.2906; found, 670.2916.

(1-((Benzyloxy)carbonyl)-2-(((((3*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-17-((2*R*,5*S*,*E*)-5-ethyl-6-methylhet-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradec ahydro-1*H*-cyclopenta[a]phenanthren-3-yl)oxy)carbonyl)indolin-3-yl)(1,3-dimeth yl-1*H*-imidazol-3-ium-2-yl)dihydroborate (3x)



Colorless oil (34%, 54.8 mg, 3.0:1 dr). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, J = 7.9 Hz, 1H), 7.44-7.29 (m, 5H), 7.24-7.00 (m, 1H), 6.79 (s, 2H), 6.75-6.71 (m, 1H), 6.23 (t, J = 7.0, 1H), 5.31-5.12 (m, 4H), 5.04-4.98 (m, 1H), 4.57-4.49 (m, 2H), 3.61-3.49 (m, 6H), 2.63 (brs, 1H), 2.15-2.10 (m, 1H), 2.00-1.93 (m, 2H), 1.79-1.62 (m, 2H), 1.55-1.38 (m, 9H), 1.26-1.01 (m, 11H), 0.98-0.96 (m, 3H), 0.85-0.78 (m, 12H), 0.69-0.66 (m, 3H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.1 (COOMe), 153.2 (*C*=O), 141.3, 141.0, 139.8, 138.5, 136.6, 129.4, 128.5, 128.3, 128.0, 124.9, 122.6, 122.3, 121.9, 120.6, 114.2, 74.0, 68.6, 66.8, 56.9, 56.0, 51.3, 50.1, 42.3, 40.7, 39.7, 38.0, 37.0, 36.8, 36.0 (NCH<sub>3</sub>), 32.0, 31.9, 29.1, 27.6, 25.5, 24.5, 21.3, 21.2, 21.1, 19.5. 19.1, 12.4, 12.2 ppm. HRMS-ESI (m/z): [M+H]<sup>+</sup> calcd for C<sub>51</sub>H<sub>70</sub>BN<sub>3</sub>O<sub>4</sub>, 800.5532; found, 800.5523.

(1-((Benzyloxy)carbonyl)-2-(trifluoromethyl)indolin-3-yl)(1,3-dimethyl-1*H*-imida zol-3-ium-2-yl)dihydroborate (3y)



Colorless oil (51%, 43.6 mg, single diastereomer). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (s, 1H), 7.37-7.29 (m, 5H), 7.14-7.11 (m, 2H), 6.97-6.93 (m, 1H), 6.57 (s, 2H), 5.12-4.80 (m, 2H), 3.46 (s, 6H), 3.45-3.44 (m, 1H), 3.18-3.14 (m, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.7 (*C*=O), 143.1, 136.2, 131.1, 129.0, 128.4, 127.0, 126.9 (q, *J* = 269.2 Hz), 124.3, 122.7, 120.5, 116.0, 67.3, 41.2 (q, *J* = 24.3 Hz), 36.1 (NCH<sub>3</sub>) ppm. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -67.4 (s, 3F). HRMS-ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>22</sub>H<sub>23</sub>BF<sub>3</sub>N<sub>3</sub>O<sub>2</sub>, 452.1728; found, 452.1731.

(1-((Benzyloxy)carbonyl)-2-cyanoindolin-3-yl)(1,3-dimethyl-1*H*-imidazol-3-ium-2 -yl)dihydroborate (3z)



Colorless oil (75%, 57.9 mg, 1.5:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.75 (d, *J* = 8.0 Hz, 1H), 7.47 (d, *J* = 7.5 Hz, 2H), 6.78 (s, 2H), 6.76-6.72 (m, 1H), 7.00 (d, *J* = 7.6 Hz), 6.78-6.72 (m, 3H). 6.00 (d, *J* = 7.4 Hz, 1H), 5.32 (s, 2H), 4.88-4.86 (m, 1H), 3.74-3.39 (m, 6H), 2.84 (brs, 1H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 152.5 (*C*=O), 136.1, 129.0, 128.7, 128.3, 128.1, 127.5, 125.3, 123.0, 121.6, 120.7, 114.9, 67.7, 56.3, 36.2 and 35.9 (a pair of s, NCH<sub>3</sub>) ppm. **HRMS-ESI** (m/z): [M+H]<sup>+</sup> calcd for C<sub>24</sub>H<sub>31</sub>BN<sub>4</sub>O<sub>2</sub>, 419.2613; found, 419.2604.

(1-((Benzyloxy)carbonyl)-2-(methoxycarbonyl)-2,3-dihydro-1*H*-pyrrolo[2,3-*b*]py ridin-3-yl)(1,3-dimethyl-1*H*-imidazol-2-yl)dihydroborate (3aa)



Colorless oil (96%, 80.8 mg, single diastereomer). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.07 (d, *J* = 5.9 Hz, 1H), 7.41 (d, *J* = 7.4 Hz, 2H), 7.36-7.26 (m, 3H), 6.82 (s, 2H), 6.68-6.63 (m, 1H), 6.63-6.51 (m, 1H), 5.38-5.15 (m, 2H), 4.58-4.57 (m, 1H), 3.53 (s, 6H), 3.51 (s, 3H), 2.55 (brs, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 173.7 (*C*OOMe), 155.1

(*C*=O), 144.2, 136.5, 135.0, 129.4, 128.4, 128.1, 127.9, 120.8, 117.6, 67.1, 67.0, 51.9, 36.0 (N*C*H<sub>3</sub>) ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>22</sub>H<sub>25</sub>BN<sub>4</sub>O<sub>4</sub>, 443.1861; found, 443.1867.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(2-(methoxycarbonyl)-2,3-dihydrobenzo[*b*] dihydrobenzo[b]thiophen-3-yl)dihydroborate (3ab)



Colorless oil (93%, 56.3 mg, single diastereomer). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.09 (d, J = 7.7 Hz, 1H), 6.92-6.88 (m, 1H), 6.80 (s, 2H), 6.75-6.71 (m, 1H), 6.14 (d, J = 7.4 Hz, 1H), 4.90-4.88 (m, 1H), 3.74 (s, 3H), 3.49 (s, 6H), 3.07 (brs, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.4 (COOMe), 150.0, 139.4, 124.8, 123.6, 121.7, 121.6, 120.4, 59.6, 52.0 (OCH<sub>3</sub>), 35.8 (NCH<sub>3</sub>) ppm. HRMS-ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>15</sub>H<sub>19</sub>BN<sub>2</sub>O<sub>2</sub>S, 325.1153; found, 325.1161.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(2-(methoxycarbonyl)-2,3-dihydrobenzofu ran-3-yl)dihydroborate (3ac)



Colorless oil (47%, 26.9 mg, single diastereomer). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.93-6.89 (m, 1H), 6.85 (s, 2H), 6.79 (d, J = 7.8 Hz, 1H), 6.60-6.56 (m, 1H), 5.95 (d, J = 7.2 Hz, 1H), 5.36-5.34 (m, 1H), 3.81 (s, 3H), 3.51 (s, 6H), 3.00 (brs, 1H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.3 (COOMe), 158.2, 137.9, 125.3, 121.6, 120.5, 120.2, 109.2, 86.6, 51.5, 36.0 (NCH<sub>3</sub>) ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>15</sub>H<sub>19</sub>BN<sub>2</sub>O<sub>3</sub>, 309.1381; found, 309.1389.

(1-((Benzyloxy)carbonyl)-2-(methoxycarbonyl)indolin-3-yl)(1-isopropyl-3-methyl 1*H*-imidazol-3-ium-2-yl)dihydroborate (3ad)



Colorless oil (99%, 93.9 mg, 3.4:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, J = 8.0 Hz, 1H), 7.42-7.28 (m, 5H), 7.00-6.96 (m, 1H), 6.91 and 6.80 (a pair of s,2H), 6.72-6.68 (m, 1H), 6.13 (d, J = 7.3 Hz, 1H), 5.32-5.27 (m, 2H), 4.99-4.89 (m, 1H), 4.64-4.61 (m, 1H), 3.62-3.36 (m, 6H), 2.62 (brs, 1H), 1.33 (d, J = 6.7 Hz, 3H), 1.25 (d, J = 6.7 Hz, 3H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.2 (COOMe), 153.1 (*C*=O), 141.1, 141.0, 136.6, 128.5, 127.9 and 127.8 (a pair of s, *C*H), 124.9, 122.3, 121.7, 121.2, 115.2, 114.2, 68.5, 66.7, 51.8, 49.8, 35.6 (NCH<sub>3</sub>), 23.4, 22.7 ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>25</sub>H<sub>30</sub>BN<sub>3</sub>O<sub>4</sub>, 470.2222; found, 470.2230.

1-Benzyl-3-methyl-1*H*-imidazol-3-ium-2-yl)(1-((benzyloxy)carbonyl)-2-(methoxy carbonyl)dihydroborate (3ae)



Colorless oil (83%, 82.7 mg, 2.3:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, *J* = 8.0 Hz, 1H), 7.43-7.27 (m, 9H), 7.18-7.15 (m, 2H), 7.04-7.00 (m, 1H), 6.76-6.65 (m, 2H), 6.20 (d, *J* = 7.4 Hz, 1H), 5.35-4.94 (m, 4H), 4.67-4.65 (m, 1H), 3.64-3.45 (m, 6H), 2.64 (brs, 1H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.2 (COOMe), 153.1 (*C*=O), 141.2, 141.0, 136.7, 135.5, 129.0, 128.6 and 128.5 (a pair of s, CH), 128.3 and 128.4 (a pair of s, CH), 128.0, 127.9, 125.0, 122.4, 121.9, 121.0, 119.2, 114.3, 68.5, 66.8, 52.1, 51.9, 36.0 (NCH<sub>3</sub>) ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>29</sub>H<sub>30</sub>BN<sub>3</sub>O<sub>4</sub>, 518.2222; found, 518.2227.

(1-((Benzyloxy)carbonyl)-2-(methoxycarbonyl)indolin-3-yl)(1-butyl-3-methyl-1*H* -imidazol-3-ium-2-yl)dihydroborate (3af)


Colorless oil (99%, 92.1 mg, 3.4:1 dr). <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, J = 8.0 Hz, 1H), 7.36-7.18 (m, 5H), 6.91-6.89 (m, 1H), 6.81-6.70 (m, 1H), 6.64 and 6.60 (a pair of s, 2H), 6.06 (d, J = 7.3 Hz, 1H), 5.24-5.19 (m, 2H), 4.57-4.54 (m, 1H), 3.97-3.73 (m, 2H), 3.54-3.31 (m, 6H), 2.56 (brs, 1H), 1.58-1.49 (m, 2H), 1.24-1.14 (m, 2H), 0.80 (t, J = 7.2 Hz, 3H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.2 (COOMe), 153.1 (*C*=O), 141.1, 141.0, 136.6, 128.4, 128.1, 127.9 and 127.8 (a pair of s, CH), 124.8, 122.3 and 121.7 (a pair of s, CH), 120.7, 119.0, 114.1, 68.5, 66.8, 52.1, 51.9, 36.0 (NCH<sub>3</sub>) ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>26</sub>H<sub>32</sub>BN<sub>3</sub>O<sub>4</sub>, 484.2378; found, 484.2384.

(1-((Benzyloxy)carbonyl)-2-(methoxycarbonyl)indolin-3-yl)(1,3-bis(2,6-diisoprop ylphenyl)-1*H*-imidazol-3-ium-2-yl)dihydroborate (3ag)



White solid (29%, 14.9 mg, 2.7:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (d, *J* = 8.0 Hz, 1H), 7.49-7.22 (m, 10H), 7.09 (s, 2H), 6.85 (t, *J* = 7.7 Hz, 1H), 6.75-6.71 (m, 1H), 6.05 (d, *J* = 7.4 Hz, 1H), 5.29-5.18 (m, 1H), 4.87-4.84 (m, 1H), 4.36-4.28 (m, 1H), 3.29 (s, 3H), 2.79-2.61 (m, 4H), 2.08 (brs, 1H), 1.28-1.11 (m, 24H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.7 (*C*OOMe), 152.8, 145.9, 145.6, 142.1, 140.7, 136.7, 134.2, 130.4, 128.4, 128.3, 127.9, 124.3, 124.2, 124.1, 123.2, 122.9, 122.5, 113.6, 69.7, 66.6, 51.3, 28.9 and 28.8 (a pair of s, *C*H), 26.3 and 26.0 (a pair of s, *C*H<sub>3</sub>), 22.6 and 22.5 (a pair of s, *C*H<sub>3</sub>) ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>45</sub>H<sub>54</sub>BN<sub>3</sub>O<sub>4</sub>, 734.4100; found, 734.4105.

(1-((Benzyloxy)carbonyl)-2-(methoxycarbonyl)indolin-3-yl)(1,3-dimethyl-1*H*-ben zo[*d*]imidazol-3-ium-2-yl)dihydroborate (3ah)



Colorless oil (86%, 80.4 mg, 2.3:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.85 (d, *J* = 7.9 Hz, 1H), 7.46-7.25 (m, 9H), 7.00 (t, *J* = 7.8 Hz, 1H), 6.64-6.60 (m, 1H), 6.08 (d, *J* = 7.4 Hz, 1H), 5.38-5.09 (m, 2H), 4.72-4.68 (m, 1H), 3.89-3.71 (m, 6H), 3.46 (s, 3H), 2.77 (brs, 1H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.1 (COOMe), 153.1 (*C*=O), 141.2, 140.6, 136.6, 133.0, 128.5, 128.1 and 128.0 (a pair of s, CH), 127.8, 125.1, 124.6, 122.3, 121.6, 114.3, 110.1, 68.6, 66.8, 51.9, 32.2 (NCH<sub>3</sub>) ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>27</sub>H<sub>28</sub>BN<sub>3</sub>O<sub>4</sub>, 492.2065; found, 492.2069.

(1-((Benzyloxy)carbonyl)-2-(methoxycarbonyl)indolin-3-yl)(1,4-dimethyl-4*H*-1,2, 4-triazol-1-ium-5-yl)dihydroborate (3ai)



Colorless oil (76%, 63.8 mg, 2.4:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83-7.70 (m, 2H), 7.38-7.26 (m, 5H), 7.02 (t, J = 7.8 Hz, 1H), 6.80-6.72 (m, 1H), 6.28 (d, J = 7.3 Hz, 1H), 5.31-5.13 (m, 2H), 4.60-4.58 (m, 1H), 3.77 and 3.73 (a pair of s, 3H), 3.62-3.39 (m, 6H), 2.68 (brs, 1H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.9 (COOMe), 153.0 (*C*=O), 141.7, 141.1, 140.3, 136.5, 128.5, 128.3 and 128.1 (a pair of s, CH), 127.9, 125.3, 122.6, 121.8, 114.3, 68.3, 66.9, 52.0, 38.2, 33.6 ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>22</sub>H<sub>25</sub>BN<sub>4</sub>O<sub>4</sub>, 443.1861; found, 443.1867.

(1-(*tert*-Butoxycarbonyl)-3-(methoxycarbonyl)indolin-2-yl)(1,3-dimethyl-1*H*-imid azol-3-ium-2-yl)dihydroborate (5a)



White solid (99%, 76.1 mg, single diastereomer). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70-7.44 (m, 1H), 7.34-7.32 (m, 1H), 7.19-7.15 (m, 1H), 6.95-6.92 (m, 1H), 6.80 (s, 2H), 4.37 (brs, 1H), 3.79-3.77 (m, 1H), 3.70 (s, 6H), 3.64 (s, 3H), 1.34 (s, 9H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.6 (COOMe), 152.1 (*C*=O), 142.4, 131.9, 127.9, 125.9, 121.8, 120.2, 116.0, 79.0, 52.7, 51.9, 35.9 (NCH<sub>3</sub>), 28.4 ppm. <sup>11</sup>**B NMR** (128 MHz, CDCl<sub>3</sub>)  $\delta$  -25.5. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>20</sub>H<sub>28</sub>BN<sub>3</sub>O<sub>4</sub>, 408.2065; found, 408.2068.

(1-((Benzyloxy)carbonyl)-3-(methoxycarbonyl)indolin-2-yl)(1,3-dimethyl-1*H*-imi dazol-3-ium-2-yl)dihydroborate (5b)



Colorless oil (99%, 83.0 mg, 3.8:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.16-7.83 (m, 1H), 7.36-7.22 (m, 7H), 6.99-6.95 (m, 1H), 6.53 (s, 2H), 5.09 (s, 1H), 4.47-4.45 (m, 2H), 3.84-3.82 (m, 1H), 3.66 (s, 3H), 3.44 (s, 6H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.5 (COOMe), 152.8 (*C*=O), 145.6, 136.5, 131.5, 128.4, 128.2, 128.1, 126.0, 122.4, 120.1, 115.9, 66.9, 53.0, 52.1, 35.7 (NCH<sub>3</sub>) ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>26</sub>BN<sub>3</sub>O<sub>4</sub>, 442.1909; found, 442.1911.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(3-(methoxycarbonyl)-1-pivaloylindolin-2-yl)dihydroborate (5c)



White solid (50%, 40.0 mg, single diastereomer). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (d, J = 7.8 Hz, 1H), 7.54 (d, J = 7.3 Hz, 1H), 7.04-6.95 (m, 2H), 6.61 (s, 2H), 4.80 (brs,

1H), 4.38-4.36 (m, 1H), 3.81 (s, 3H), 3.57 (s, 6H), 1.26 (s, 9H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.9 (COOMe), 172.3 (C=O), 145.3, 132.3, 126.7, 125.2, 123.4, 120.6, 118.5, 51.9, 51.5, 40.3, 36.3 (NCH<sub>3</sub>), 28.0 ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>20</sub>H<sub>28</sub>BN<sub>3</sub>O<sub>3</sub>, 392.2116; found, 392.2111.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(3-(methoxycarbonyl)-1-(2-phenylacetyl)i ndolin-2-yl)dihydroborate (5d)



Colorless oil (98%, 78.7 mg, 2.6:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (d, J = 8.1 Hz, 1H), 7.32-7.19 (m, 6H), 7.12-7.08 (m, 1H), 6.92-6.88 (m, 1H), 6.70 (s, 2H), 4.52 (brs, 1H), 3.82-3.78 (m, 1H), 3.71-3.69 (m, 1H), 3.68 (s, 6H), 3.49 (s, 3H), 3.38-3.34 (m, 1H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.9 (COOMe), 168.6 (*C*=O), 142.6, 135.8, 131.4, 129.6, 128.4, 128.2, 126.6, 125.0, 123.5, 121.0, 117.8, 53.0, 52.1, 41.6, 36.2 (NCH<sub>3</sub>) ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>26</sub>BN<sub>3</sub>O<sub>3</sub>, 426.1959; found, 426.1956.

1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(3-(methoxycarbonyl)-1-tosylindolin-2-yl)dihydroborate (5e)



Colorless oil (99%, 86.8 mg, 2.2:1 dr). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (d, *J* = 7.9 Hz, 1H), 7.38 (d, *J* = 7.9 Hz, 2H), 7.29-7.21 (m, 2H), 7.14-7.09 (m, 3H), 6.90 (s, 2H), 4.22 (brs, 1H), 3.81 (s, 6H), 3.74 (s, 4H), 3.72-3.70 (m, 1H), 2.34 (s, 3H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.5 (COOMe), 143.3, 142.4, 135.9, 134.6, 129.4, 127.7, 126.8, 126.7, 126.1, 120.6, 118.8, 51.5, 50.8, 36.2 (NCH<sub>3</sub>), 21.6 ppm. HRMS-ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>22</sub>H<sub>26</sub>BSN<sub>3</sub>O<sub>4</sub>, 462.1629; found, 462.1632.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(3-(methoxycarbonyl)-1-methylindolin-2-yl)dihydroborate (5f)



White solid (84%, 50.4 mg, single diastereomer). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.07-7.03 (m, 1H), 6.96 (d, *J* = 7.3 Hz, 1H), 6.81 (s, 2H), 6.59-6.55 (m, 1H), 6.48 (d, *J* = 7.8 Hz, 1H), 3.81 (s, 6H), 3.60 (s, 3H), 3.58-3.57 (m, 1H), 3.09-3.03 (m, 1H), 2.80 (s, 3H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.6 (COOMe), 155.7, 129.6, 127.9, 122.9, 120.7, 116.9, 108.0, 54.4, 51.7, 36.3 (NCH<sub>3</sub>), 35.3 ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>16</sub>H<sub>22</sub>BN<sub>3</sub>O<sub>2</sub>, 322.1697; found, 322.1705.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(3-(methoxycarbonyl)indolin-2-yl)dihydro borate (5g)



Colorless oil (58%, 30.1 mg, 1.3:1 dr). <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.63 (brs, 1H), 8.11 (d, *J* = 6.9 Hz, 1H), 7.31-7.26 (m, 1H), 7.18-7.06 (m, 2H), 6.80 and 6.78 (a pair of s, 2H), 3.88-3.86 (m, 2H), 3.66-3.53 (m, 9H) ppm. <sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 167.7 (COOMe), 141.6, 128.5, 121.4 and 121.2 (a pair of s, CH), 120.9 and 120.8 (a pair of s, CH), 120.3, 113.0, 110.1, 50.7, 50.3, 36.4 and 36.0 (a pair of s, NCH<sub>3</sub>) ppm. HRMS-ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>16</sub>H<sub>20</sub>BN<sub>3</sub>O<sub>2</sub>, 308.1541; found, 308.1540. (1-(*tert*-Butoxycarbonyl)-3-(methoxycarbonyl)-4-methylindolin-2-yl)(1,3-dimethy

l-1*H*-imidazol-3-ium-2-yl)dihydroborate (5h)



White solid (98%, 78.3 mg, 5.5:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59-7.51 (m, 1H), 7.03-6.99 (m, 1H), 6.70 (s, 2H), 6.69-6.68 (m, 1H), 4.17 (brs, 1H), 3.67-3.66 (m, 1H), 3.61 (s, 6H), 3.55 (s, 3H), 2.20 (s, 3H), 1.29 (s, 9H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.8 (COOMe), 135.4, 130.8, 128.0, 123.5, 120.2, 113.6, 51.8, 36.0 (NCH<sub>3</sub>), 28.5, 18.8 ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>21</sub>H<sub>30</sub>BN<sub>3</sub>O<sub>4</sub>, 422.2222; found, 422.2220.

(1-(*tert*-Butoxycarbonyl)-3-(methoxycarbonyl)-5-methylindolin-2-yl)(1,3-dimethy l-1*H*-imidazol-3-ium-2-yl)dihydroborate (5i)



White solid (99%, 79.3 mg, single diastereomer). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 (s, 1H), 7.13 (s, 1H), 6.97 (d, *J* = 8.1 Hz, 1H), 6.78 (s, 2H), 4.33 (brs, 1H), 3.72-3.69 (m, 1H), 3.68 (s, 6H), 3.63 (s, 3H), 2.29 (s, 3H), 1.32 (s, 9H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.8 (COOMe), 131.9, 131.3, 128.5, 126.6, 120.2, 115.7, 52.7, 51.9, 35.9 (NCH<sub>3</sub>), 28.4, 21.0 ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>21</sub>H<sub>30</sub>BN<sub>3</sub>O<sub>4</sub>, 422.2222; found, 422.2218.

(1-(*tert*-Butoxycarbonyl)-3-(methoxycarbonyl)-6-methylindolin-2-yl)(1,3-dimethy l-1*H*-imidazol-3-ium-2-yl)dihydroborate (5j)



White solid (97%, 77.1 mg, 49:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 (s, 1H), 7.13 (d, *J* = 7.6 Hz, 1H), 6.73 (s, 2H), 6.70-6.67 (m, 1H), 4.26 (brs, 1H), 3.65-3.63 (m, 1H), 3.63 (s, 6H), 3.55 (s, 3H), 2.24 (s, 3H), 1.24 (s, 9H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.8 (COOMe), 137.8, 129.0, 125.5, 122.8, 120.3, 120.0, 116.9, 52.5, 51.9, 36.0 (NCH<sub>3</sub>), 28.4, 21.9 ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>21</sub>H<sub>30</sub>BN<sub>3</sub>O<sub>4</sub>, 422.2222; found, 422.2219.

(1-(*tert*-Butoxycarbonyl)-6-methoxy-3-(methoxycarbonyl)indolin-2-yl)(1,3-dimet hyl-1*H*-imidazol-3-ium-2-yl)dihydroborate (5k)



White solid (98%, 81.4 mg, 9:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.28 (m, 1H), 7.19 (d, J = 8.2 Hz, 1H), 6.80 (s, 2H), 6.50-6.47 (m, 1H), 4.36 (brs, 1H), 3.78 (s, 3H), 3.70 (s, 6H), 3.69-3.67 (m, 1H), 3.63 (s, 3H), 1.34 (s, 9H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.0 (COOMe), 160.0 (*C*=O), 143.1, 128.3, 126.2, 124.1, 120.2, 102.5, 59.3, 55.4, 51.9, 36.0 (NCH<sub>3</sub>), 28.4 ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>21</sub>H<sub>30</sub>BN<sub>3</sub>O<sub>5</sub>, 438.2171; found, 438.2172.

(1-(*tert*-Butoxycarbonyl)-4-chloro-3-(methoxycarbonyl)indolin-2-yl)(1,3-dimethyl -1*H*-imidazol-3-ium-2-yl)dihydroborate (5l)



Colorless oil (99%, 84.0 mg, 4.5:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59-7.32 (m, 1H), 7.13-7.09 (m, 1H), 6.91-6.89 (m, 1H), 6.79 (s, 2H), 4.18 (brs, 1H), 3.86-3.84 (m, 1H), 3.70 (s, 6H), 3.66 (s, 3H), 1.35 (s, 9H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.1 (COOMe), 152.0 (*C*=O), 144.8, 132.0, 130.4, 129.0, 123.0, 120.4, 114.5, 51.6, 51.5, 36.1 (NCH<sub>3</sub>), 28.4 ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>20</sub>H<sub>27</sub>BClN<sub>3</sub>O<sub>4</sub>, 442.1675; found, 442.1682.

(1-(*tert*-Butoxycarbonyl)-5-fluoro-3-(methoxycarbonyl)indolin-2-yl)(1,3-dimethyl -1*H*-imidazol-3-ium-2-yl)dihydroborate (5m)



White solid (93%, 75.0 mg, single diastereomer). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (s, 1H), 7.04 (d, J = 8.2 Hz, 1H), 6.88-6.85 (m, 1H), 6.81 (s, 2H), 4.38 (brs, 1H), 3.72-3.70 (m, 1H), 3.69 (s, 6H), 3.66 (s, 3H), 1.32 (s, 9H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.1 (COOMe), 158.4 (d, J = 239.0 Hz), 133.6 (d, J = 8.3 Hz), 120.3, 116.4 (d, J = 4.4 Hz), 114.2 (d, J = 22.6 Hz), 113.4 (d, J = 24.2 Hz), 52.7, 52.1, 36.0 (NCH<sub>3</sub>), 28.4 ppm. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -122.0 and -122.8 (a pair of s, F). HRMS-ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>20</sub>H<sub>27</sub>BFN<sub>3</sub>O<sub>4</sub>, 426.1971; found, 426.1967.

(1-(tert-butoxycarbonyl)-6-cyano-3-(methoxycarbonyl)indolin-2-yl)(1,3-dimethyl -1H-imidazol-3-ium-2-yl)dihydroborate (5n)



White solid (90%, 73.5 mg, 49:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03-7.82 (m, 1H), 7.41-7.39 (m, 1H), 7.28-7.22 (m, 1H), 6.85 (s, 2H), 4.40 (brs, 1H), 3.82-3.80 (m, 1H), 3.70 (s, 6H), 3.66 (s, 3H), 1.34 (s, 9H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.5 (COOMe), 137.4, 128.3, 126.9, 126.1, 120.4, 119.7, 118.9, 111.6, 52.9, 52.3, 36.0 (NCH<sub>3</sub>), 28.3 ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>21</sub>H<sub>27</sub>BN<sub>4</sub>O<sub>4</sub>, 433.2018; found, 433.2021.

(1-(*tert*-Butoxycarbonyl)-3-(ethoxycarbonyl)indolin-2-yl)(1,3-dimethyl-1*H*-imida zol-3-ium-2-yl)dihydroborate (50)



White solid (99%, 79.1 mg, single diastereomer). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.76-7.55 (m, 1H), 7.33 (d, *J* = 7.4 Hz, 1H), 7.18-7.14 (m, 1H), 6.94-6.90 (m, 1H), 6.79 (s, 2H), 4.37 (brs, 1H), 4.15-4.04 (m, 2H), 3.75-3.72 (m, 1H), 3.69 (s, 6H), 1.33 (s, 9H), 1.21 (t, *J* = 7.1 Hz, 3H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>) δ 174.1 (COOMe), 132.1, 127.9, 125.9, 121.9, 120.3, 120.0, 116.0, 60.5, 52.9, 36.0 (NCH<sub>3</sub>), 28.4, 14.3 ppm. **HR MS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>21</sub>H<sub>30</sub>BN<sub>3</sub>O<sub>4</sub>, 422.2222; found, 422.222.

(5-Bromo-1,3-bis(tert-butoxycarbonyl)indolin-2-yl)(1,3-dimethyl-1*H*-imidazol-3ium-2-yl)dihydroborate (5p)



Colorless oil (99%, 100.2 mg, single diastereomer). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (s, 1H), 7.42-7.41 (m, 1H), 7.28-7.22 (m, 1H), 6.81 (s, 2H), 4.35-4.30 (m, 2H), 3.69 and 3.66 (a pair of s, 6H), 1.56 (s, 9H), 1.40 (s, 9H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  170.4 (COOMe), 134.8, 130.5, 129.7, 128.7, 120.3, 117.2, 113.8, 80.4 and 80.3 (a pair of s, *C*), 60.4, 35.8 (NCH<sub>3</sub>), 28.4, 28.0 ppm. HRMS-ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>33</sub>BBrN<sub>3</sub>O<sub>4</sub>, 528.1640; found, 528.1647.

(1-(*tert*-Butoxycarbonyl)-3-cyanoindolin-2-yl)(1,3-dimethyl-1*H*-imidazol-3-ium-2 -yl)dihydroborate (5q)



White solid (89%, 62.5 mg, 3.5:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.51-7.41 (m, 1H), 7.25-7.13 (m, 2H), 6.92 (d, *J* = 7.8 Hz, 1H), 6.75 (s, 2H), 4.21 (brs, 1H), 3.80-3.78 (m, 1H), 3.60 (s, 6H), 1.26 (s, 9H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 152.0 (*C*=O), 129.1, 128.4, 125.7, 122.6, 122.1, 120.5, 116.3, 79.8, 36.4, 36.0 (N*C*H<sub>3</sub>), 28.4 ppm. **HRMS**-**ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>19</sub>H<sub>25</sub>BN<sub>4</sub>O<sub>2</sub>, 375.1963; found, 375.1959.

(1-(*tert*-Butoxycarbonyl)-3-(methoxycarbonyl)-2,3-dihydro-1*H*-pyrrolo[2,3-*b*]pyr idin-2-yl)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihydroborate (5r)



Colorless oil (61%, 47.4 mg, single diastereomer). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (d, *J* = 6.9 Hz, 1H), 7.51 (d, *J* = 7.3 Hz, 1H), 6.85-6.82 (m, 1H), 6.77 (s, 2H), 4.28 (brs, 1H), 3.74-3.72 (m, 1H), 3.64 (s, 6H), 3.56 (s, 3H), 1.22 (s, 9H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.7 (*C*OOMe), 156.5 (*C*=O), 151.5, 147.7, 134.0, 126.0, 120.4, 117.4, 79.3, 52.1, 50.8, 36.2 (NCH<sub>3</sub>), 28.2 ppm. HRMS-ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>19</sub>H<sub>27</sub>BN<sub>4</sub>O<sub>4</sub>, 409.2018; found, 409.2015.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(3-(methoxycarbonyl)-2,3-dihydrobenzofu ran-2-yl)dihydroborate (5s)



White solid (62%, 35.7 mg, 1.6:1 dr). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.11 (d, *J* = 7.4 Hz, 1H), 7.04-7.00 (m, 1H), 6.77 (s, 2H), 6.73-6.70 (m, 1H), 6.60 (d, *J* = 8.0 Hz, 1H), 4.59 (brs, 1H), 4.15-4.14 (m, 1H), 3.73 (s, 6H), 3.60 (s, 3H) ppm. <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.1 (COOMe), 162.5, 128.7, 128.5, 125.4, 120.7, 119.4, 109.4, 53.3, 51.3, 36.5 (NCH<sub>3</sub>) ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>15</sub>H<sub>19</sub>BN<sub>2</sub>O<sub>3</sub>, 309.1381; found, 309.1388.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)(3-(methoxycarbonyl)-2,3-dihydrobenzo[*b*] thiophen-2-yl)dihydroborate (5t)



Colorless oil (85%, 51.1 mg, 2.1:1 dr). <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 (d, *J* = 7.8 Hz, 1H), 7.06-7.00 (m, 2H), 6.96-6.92 (m, 1H), 6.80 (s, 2H), 3.91 (brs, 1H), 3.79-3.77 (m, 1H), 3.74 (s, 6H), 3.67 (s, 3H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.8 (COOMe), 139.5, 138.5, 131.1, 130.0, 127.0, 122.7, 121.6, 51.8, 48.9, 36.8 (NCH<sub>3</sub>) ppm. **HRMS-ESI** (m/z): [M+Na]<sup>+</sup> calcd for C<sub>15</sub>H<sub>19</sub>BN<sub>2</sub>O<sub>2</sub>S, 325.1153; found, 325.1157.

#### 7. References

[1] K. Kubota, K. Hayama, H. Iwamoto and H. Ito, Enantioselective borylative dearomatization of indoles through copper(I) catalysis, *Angew. Chem., Int. Ed.*, 2015, **54**, 8809–8813.

[2] U. Jacquemard, V. Bénéteau, M. Lefoix, S. Routier, J.-Y. Mérour and G. Coudert, Mild and selective deprotection of carbamates with Bu<sub>4</sub>NF, *Tetrahedron*, 2004, **60**, 10039–10047.

[3] R. Kuwano, K. Sato, T. Kurokawa, D. Karube and Y. Ito, Catalytic Asymmetric Hydrogenation of Heteroaromatic Compounds, Indoles, *J. Am. Chem. Soc.*, 2000, **122**, 7614–7615.

[4] Y. Kim, Y. Par and S. Chang, Delineating physical organic parameters in site-selective C–H functionalization of indoles, *ACS Cent. Sci.*, 2018, 4, 768–775.

[5] Y.-S. Huang, J. Wang, W.-X. Zheng, F.-L. Zhang, Y.-J. Yu, M. Zheng, X. Zhou and Y.-F. Wang, Regioselective radical hydroboration of electron-deficient alkenes: synthesis of  $\alpha$ -boryl functionalized molecules, *Chem. Commun.*, 2019, **55**, 11904–11907.

[6] K.-W. Chen, Z.-H. Chen, S. Yang, S.-F. Wu, Y.-C. Zhang and F. Shi, Organocatalytic atroposelective synthesis of N–N axially chiral indoles and pyrroles by De Novo ring formation, *Angew. Chem., Int. Ed.*, 2022, **61**, e202116829.

[7] L. Chen, J.-J. Shen, Q. Gao and S. Xu, Synthesis of cyclic chiral α-amino boronates by copper-catalyzed asymmetric dearomative borylation of indoles, *Chem. Sci.*, 2018, 9, 5855–5859.

[8] C. Fang, M. Li, X. Hu, W. Mo, B. Hu, N. Sun, L. Jin and Z. Shen, A mild TEMPO-catalyzed aerobic oxidative conversion of aldehydes into nitriles, *Adv. Syn. Catal.*, 2016, 358, 1157–1163.

#### 8. Crystal Data of Products *cis*-3z and *trans*-3z

| Empirical formula                                      | $C_{22}H_{23}BN_4O_2$                           |
|--------------------------------------------------------|-------------------------------------------------|
| Formula weight                                         | 386.25                                          |
| Temperature                                            | 193.00 K                                        |
| Crystal system                                         | triclinic                                       |
| Space group                                            | P-1                                             |
| a/Å                                                    | 9.5689(4)                                       |
| <i>b</i> /Å                                            | 9.6362(4)                                       |
| $c/{ m \AA}$                                           | 10.9620(5)                                      |
| a/°                                                    | 97                                              |
| $eta / ^{\circ}$                                       | 90                                              |
| γ/°                                                    | 93                                              |
| Volume/Å <sup>3</sup>                                  | 1001.5(7)                                       |
| Z                                                      | 2                                               |
| $ ho_{ m calc} { m g/cm}^3$                            | 1.281                                           |
| $\mu/\text{mm}^{-1}$                                   | 0.083                                           |
| <i>F</i> (000)                                         | 408.0                                           |
| Crystal size/mm <sup>3</sup>                           | 0.12 	imes 0.11 	imes 0.10                      |
| Radiation                                              | MoKa ( $\lambda = 0.71073$ )                    |
| $2\theta$ range for data collection/°                  | 3.74 to 55.16                                   |
| Index ranges                                           | -12 <= h <= 12, -12 <= k <= 12, -14 <= 1 <= 10  |
| Reflections collected                                  | 9586                                            |
| Independent reflections                                | 4593 [ $R_{int} = 0.0297, R_{sigma} = 0.0469$ ] |
| Data / restraints / parameters                         | 4593/0/272                                      |
| Goodness-of-fit on F <sup>2</sup>                      | 1.022                                           |
| Final <i>R</i> indices [I >= 2sigma (I)]               | $R_1 = 0.0472, wR_2 = 0.1110$                   |
| Final R indices [all data]                             | $R_1 = 0.0685, wR_2 = 0.1221$                   |
| Largest diff. peak and hole/ e ${\rm \AA}^{\text{-}3}$ | 0.24 and -0.19                                  |
| CCDC                                                   | 2290532                                         |

 Table S9 Crystal data and structure refinement for *cis*-3z.

| Empirical formula                        | $C_{22}H_{21}BN_4O_2$                         |
|------------------------------------------|-----------------------------------------------|
| Formula weight                           | 384.24                                        |
| Temperature                              | 249.00 K                                      |
| Crystal system                           | triclinic                                     |
| Space group                              | P-1                                           |
| a/Å                                      | 7.2850(10)                                    |
| b/Å                                      | 10.3394(14)                                   |
| c/Å                                      | 15.038(2)                                     |
| $\alpha/^{\circ}$                        | 71.988(4)                                     |
| $eta /^{\circ}$                          | 76.430(4)                                     |
| $\gamma/^{\circ}$                        | 75.074(4)                                     |
| Volume/Å <sup>3</sup>                    | 1026.0(2)                                     |
| Z                                        | 2                                             |
| $ ho_{ m calc} g/ m cm^3$                | 1.244                                         |
| $\mu/\text{mm}^{-1}$                     | 0.081                                         |
| <i>F</i> (000)                           | 404.0                                         |
| Crystal size/mm <sup>3</sup>             | 0.4 	imes 0.3 	imes 0.26                      |
| Radiation                                | MoKa ( $\lambda = 0.71073$ )                  |
| $2\theta$ range for data collection/°    | 4.228 to 50.836                               |
| Index ranges                             | -8 <= h <= 8, -12 <= k <= 12, -18 <= 1 <= 18  |
| Reflections collected                    | 27513                                         |
| Independent reflections                  | $3746 [R_{int} = 0.0272, R_{sigma} = 0.0158]$ |
| Data / restraints / parameters           | 3746/0/264                                    |
| Goodness-of-fit on F <sup>2</sup>        | 1.060                                         |
| Final R indices [I >= 2sigma (I)]        | $R_1 = 0.0512, wR_2 = 0.1554$                 |
| Final R indices [all data]               | $R_1 = 0.0561, wR_2 = 0.1617$                 |
| Largest diff. peak and hole/ e Å $^{-3}$ | 0.64 and -0.24                                |
| CCDC                                     | 2290538                                       |

Table S10 Crystal data and structure refinement for *trans*-3z.

| Empirical formula                               | $C_{21}H_{30}BN_3O_4$                           |
|-------------------------------------------------|-------------------------------------------------|
| Formula weight                                  | 399.29                                          |
| Temperature                                     | 193.00 K                                        |
| Crystal system                                  | orthorhombic                                    |
| Space group                                     | Pbca                                            |
| a/Å                                             | 15.5158(5)                                      |
| <i>b</i> /Å                                     | 14.5905(4)                                      |
| $c/{ m \AA}$                                    | 18.9569(5)                                      |
| $\alpha/^{\circ}$                               | 90                                              |
| $eta / ^{\circ}$                                | 90                                              |
| $\gamma/^{\circ}$                               | 90                                              |
| Volume/Å <sup>3</sup>                           | 4291.5(2)                                       |
| Z                                               | 8                                               |
| $ ho_{ m calc} g/ m cm^3$                       | 1.236                                           |
| $\mu/\text{mm}^{-1}$                            | 0.687                                           |
| <i>F</i> (000)                                  | 1712.0                                          |
| Crystal size/mm <sup>3</sup>                    | 0.14 	imes 0.12 	imes 0.11                      |
| Radiation                                       | $CuK\alpha (\lambda = 1.54178)$                 |
| $2\theta$ range for data collection/°           | 9.33 to 137.118                                 |
| Index ranges                                    | -18 <= h <= 18, -17 <= k <= 17, -22 <= l <= 22  |
| Reflections collected                           | 93384                                           |
| Independent reflections                         | 3945 [ $R_{int} = 0.0460, R_{sigma} = 0.0176$ ] |
| Data / restraints / parameters                  | 3945/0/277                                      |
| Goodness-of-fit on F <sup>2</sup>               | 1.041                                           |
| Final <i>R</i> indices [I >= 2sigma (I)]        | $R_1 = 0.0375, wR_2 = 0.1033$                   |
| Final R indices [all data]                      | $R_1 = 0.0400,  wR_2 = 0.1054$                  |
| Largest diff. peak and hole/ e Å $^{\text{-3}}$ | 0.25 and -0.21                                  |
| CCDC                                            | 2304719                                         |

Table S11 Crystal data and structure refinement for *trans*-5i.

| Empirical formula                              | $C_{19}H_{25}BN_4O_2$                                  |
|------------------------------------------------|--------------------------------------------------------|
| Formula weight                                 | 352.24                                                 |
| Temperature                                    | 193.00 K                                               |
| Crystal system                                 | monolinic                                              |
| Space group                                    | P2 <sub>1</sub> /c                                     |
| a/Å                                            | 9.5060(3)                                              |
| <i>b</i> /Å                                    | 10.6586(4)                                             |
| c/Å                                            | 18.9403(7)                                             |
| $\alpha/^{\circ}$                              | 90                                                     |
| $eta /^{\circ}$                                | 94.531(2)                                              |
| $\gamma/^{\circ}$                              | 90                                                     |
| Volume/Å <sup>3</sup>                          | 1913.05(12)                                            |
| Z                                              | 4                                                      |
| $ ho_{ m calc} g/ m cm^3$                      | 1.223                                                  |
| $\mu/\text{mm}^{-1}$                           | 0.641                                                  |
| <i>F</i> (000)                                 | 752.0                                                  |
| Crystal size/mm <sup>3</sup>                   | $0.15 \times 0.13 \times 0.12$                         |
| Radiation                                      | $CuK\alpha (\lambda = 1.54178)$                        |
| $2\theta$ range for data collection/°          | 9.332 to 136.684                                       |
| Index ranges                                   | $-11 \le h \le 11, -12 \le k \le 12, -22 \le l \le 22$ |
| Reflections collected                          | 34581                                                  |
| Independent reflections                        | 3508 [ $R_{int} = 0.0313$ , $R_{sigma} = 0.0222$ ]     |
| Data / restraints / parameters                 | 3508/0/248                                             |
| Goodness-of-fit on F <sup>2</sup>              | 1.046                                                  |
| Final <i>R</i> indices $[I \ge 2$ sigma $(I)]$ | $R_1 = 0.0344,  wR_2 = 0.0936$                         |
| Final R indices [all data]                     | $R_1 = 0.0361, wR_2 = 0.0952$                          |
| Largest diff. peak and hole/ e Å $^{-3}$       | 0.18 and -0.16                                         |
| CCDC                                           | 2304720                                                |

Table S12 Crystal data and structure refinement for *trans*-5q.

#### 9. <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>19</sup>F NMR Spectra

## -0.00 -0.00



Fig. S3  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3a.



S52



Fig. S5<sup>11</sup>B NMR (128 MHz, CDCl<sub>3</sub>) spectrum for 3a.





Fig. S6 <sup>1</sup>H NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3b.



Fig. S7  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for **3b**.

# 8.19 8.17 8.19 6.991 6.992 6.993 6.993 6.993 6.993 6.993 6.993 6.993 6.993 6.993 6.993 6.993 6.993 6.993 6.993 6.993 6.993 6.993 6.993 6.993 6.993 6.993 6.994 6.995 6.995 6.996 6.996 6.996 6.996 6.996 6.996 6.996 6.996 6.996 6.996 6.996 6.996 6.996 6.996 6.996 6.996 6.996 6.996 6.996 6.996







Fig. S9 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3c.







Fig. S10 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3d.



Fig. S11 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3d.

#### 



Fig. S12 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3e.



Fig. S13  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3e.



Fig. S14 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3f.



00.08







Fig. S17 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3g.



Fig. S18<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3g.

#### 0.000 0.000



Fig. S19  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3h.



Fig. S20<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3h.



0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

Fig. S21  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>) spectrum for **3h**.

### 

0.00



Fig. S22 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3i.



Fig. S23 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3i

0.08



Fig. S24 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3j.





Fig. S25<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3j.

# $\begin{array}{c} & -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\ -2.82\\$

00.0---





Fig. S26 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3k.



Fig. S27 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3k.



Fig. S28 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3l.



190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Fig. S29 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3l.



**Fig. S30** <sup>11</sup>B NMR (128 MHz, CDCl<sub>3</sub>) spectrum for **31**.

#### 7.51 7.55 7.55 7.55 7.56 7.57 7.57 7.57 7.55 7.55 7.55 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57



Fig. S31 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3m.



Fig. S32 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3m.



-0.00

Fig. S33 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3n.



Fig. S34 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3n.

#### 



Fig. S35 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 30.



**Fig. S36** <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for **30**.

## $\begin{array}{c} 7.91\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.235\\ 7.2$



Fig. S37 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3p.



**Fig. S38** <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for **3p**.


0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

Fig. S39  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>) spectrum for 3p.



Fig. S40 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3q.



Fig. S41 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3q.

 7.61

 7.61

 7.62

 7.63

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.73

 7.74

 7.75

 7.75

 7.75

 7.75

 7.75

 7.75





Fig. S43 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3r.



0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

Fig. S44  $^{19}\mathrm{F}$  NMR (376 MHz, CDCl<sub>3</sub>) spectrum for 3r.







Fig. S45 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3s.



Fig. S46<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3s.



Fig. S47 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3t.



**Fig. S48** <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for **3t**.

# $\begin{array}{c} -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.000 \\ -0.00$



Fig. S49 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for **3u**.



Fig. S50 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3u.

# -0.0000



Fig. S51 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3v.



Fig. S52 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3v.

## $\begin{array}{c} 7.7.7.7.3.3\\ 2.7.7.7.3.3.3\\ 2.7.7.3.3.3\\ 2.7.7.3.3.3\\ 2.7.7.3.3.3\\ 2.7.7.3.3.3\\ 2.7.7.3.3.3\\ 2.7.7.3.3.3\\ 2.7.7.3.3.3\\ 2.7.7.3.3.3\\ 2.7.7.3.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.7.3\\ 2.7.$



Fig. S53 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3w.

### 172.17 172.17 152.84 140.66 140.60 135.43 128.55 128.55 128.55 128.55 128.55 128.55 128.55 172.46 172.46 172.46 172.46 172.59 172.46 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 17



190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Fig. S54 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3w.

### 7.7.3.81 7.7.3.81 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.35 7.7.3.



Fig. S55 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3x.





Fig. S56<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3x.





Fig. S58 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3y.



0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

Fig. S59  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>) spectrum for 3y.

### 7.76 7.74 7.41 7.41 7.41 7.41 7.41 7.33 7.33 7.33 6.99 6.99 6.73 6.99 6.72 6.99 6.72 6.99 6.72 6.99 6.72 6.99 7.33 7.25 6.99 7.7.33 7.7.25 6.99 6.77 6.73 7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 6.99 6.77 6.77 8 7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 6.99 6.77 6.77 8 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 6.599 6.776 6.778 6.778 6.778 7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.23 7.7.33 7.7.23 7.7.33 7.7.23 7.7.33 7.7.23 7.7.23 7.7.33 7.7.23 7.7.23 7.7.33 7.7.23 7.7.33 7.7.33 7.7.23 7.7.23 7.7.23 7.7.23 7.7.23 7.7.23 7.7.23 7.7.23 7.7.333 7.7.23 7.7.23 7.7.33 7.7.23 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.333 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.33 7.7.337 7.7.337 7.7.337 7.7.337 7.7.337 7.7.337 7.7.34 7.7.337 7.7.7





Fig. S60 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3z.



Fig. S61 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3z.

### -2.56 -2.56 -2.56 -2.56 -2.56 -0.00





Fig. S62 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3aa.



190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Fig. S63 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3aa.



Fig. S64 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for **3ab**.



Fig. S65 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3ab.

# -3.51 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.6



Fig. S66 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for **3ac**.



Fig. S67 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3ac.





Fig. S68 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3ad.



Fig. S69 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3ad.



Fig. S70 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3ae.



Fig. S71  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for **3ae**.



Fig. S73 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3af.



Fig. S74 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for **3ag**.



Fig. S75<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3ag.



Fig. S76 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for **3ah**.



Fig. S77 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3ah.



Fig. S78 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 3ai.



Fig. S79 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 3ai.





Fig. S80 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 5a.



Fig. S81 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5a.



Fig. S82 <sup>11</sup>B NMR (128 MHz, CDCl<sub>3</sub>) spectrum for 5a.





**Fig. S83** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for **5b**.



Fig. S84 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5b.







Fig. S85 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 5c.



Fig. S86 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5c.





Fig. S87 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 5d.



Fig. S88 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5d.







Fig. S89 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 5e.



Fig. S90 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5e.

# 0.001 0.001 0.001 0.001





Fig. S91 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 5f.



190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Fig. S92  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5f.

### 8.63 8.63 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64 8.64

00.0-



Fig. S93 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 5g.



Fig. S94  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5g.





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Fig. S96  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5h.







Fig. S98 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5i.



-4.26

-7.51 -7.20 -7.13 -7.13 -6.73 -6.73 -6.73 -6.69

3.64 3.55 3.55

Fig. S100 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5j.



Fig. S102 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5k.



**Fig. S104** <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for **5**l.



190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Fig. S106 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5m.


0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

Fig. S107  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>) spectrum for 5m.



Fig. S109 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5n.

## 7.755 7.755 7.755 7.77 7.755 7.755 7.718 7.718 7.718 7.718 7.718 6.79 6.79 6.79 6.79 6.79 6.79 6.79 6.79 6.79 6.79 7.118 7.112 3.69 3.711 3.69 9.000 0.001





**Fig. S110** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for **50**.



Fig. S111  $^{13}\mathrm{C}$  NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 50.







Fig. S112 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 5p.



Fig. S113 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5p.







Fig. S114 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 5q.





Fig. S115  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5q.







Fig. S116 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 5r.



Fig. S117 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5r.

## 7.19 7.12 7.12 7.12 7.12 7.12 6.73 6.73 6.61 6.61 6.63 3.60

-0.00





Fig. S118 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum for 5s.



Fig. S119  $^{13}\mathrm{C}$  NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5s.





Fig. S121  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>) spectrum for 5t.