Supporting Information

Photoinduced C–H Heteroarylation of Enamines via Quadruple Cleavage of CF₂Br₂

Wanqing Zuo,^{a,b} Lingling Zuo,^a Xiao Geng,^{*a} Zhifang Li,^b and Lei Wang^{*a,b,c}

^aAdvanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China

*Corresponding authors; E-mail: xiaogeng_@tzc.edu.cn; leiwang88@hotmail.com

^bKey Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China ^cState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry,

Shanghai 200032, P. R. China

Table of Contents

1.	General considerations	S2
2.	General procedures for the synthesis of substrates	S3
3.	Optimization reaction conditions	S5
4.	Characterization data of products	S7
5.	Unsuccessful substrates	S30
6.	Crystallographic data and molecular structure of 4a	S31
7.	Control experiment	S33
8.	¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra of the products	S34

1. General considerations

All ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a 400 MHz Bruker FT-NMR spectrometer (400/100/376 MHz). All chemical shifts are given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, *J*, are reported in Hertz (Hz). High resolution mass spectroscopy data of the product were collected on an Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS (ESI). Crystallographic data of product **4a** was collected on Bruker SMART APEX II (Mo target, voltage 50 KV, current 30 mA). The chemicals and solvents were purchased from commercial suppliers either Aldrich (USA), or Shanghai Chemical Company (P. R. China). Products were purified by flash chromatography on 200–300 mesh silica gels, SiO₂.

2. General procedures for the synthesis of products

2.1 General procedure for the synthesis 4/5 (4a as example)

Under nitrogen atmosphere, a 10 mL Schlenk tube equipped with a magnetic stir bar was charged with enaminone (**1a**, 28.6 mg, 0.20 mmol), benzoyl hydrazine (**2a**, 27.2 mg, 0.20 mmol), [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (4.48 mg, 0.004 mmol, 2.0 mol%), difluoro-dibromomethane (**3**, 0.60 mmol, prepare 1.0 mg/mL DMA solution of difluoro-dibromomethane and measure 140 μ L with a microsyringe), and DMA (2.0 mL). The reaction mixture was stirred under 2×3 W blue LEDs (450–455 nm) at room temperature with stirring for 2 h. After completion of the reaction, the reaction mixture was diluted with ethyl acetate and H₂O. The resulting mixture was extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified with silica gel chromatography (petroleum ether/ethyl acetate = 3:1, V/V) to give the product **4a** (42.5 mg, 74% yield).

Manufacturer: GeAo Chemical Company
Model: 2×3 W, blue LEDs
Broadband source: λ = 450–455 nm
Material of the irradiation vessel: Borosilicate
reaction tube
Distance from the light source to the irradiation
vessel: 3.0 cm
No any filters

Figure S1. Photoreactor used in this research (2×3 W blue LEDs)

2.2 General procedure for the synthesis 6 (6a as example)

Under nitrogen atmosphere, a 10 mL Schlenk tube equipped with a magnetic stir bar was charged with enaminone (**1a**, 28.6 mg, 0.20 mmol), 2-aminophenol (**2a'**, 21.8 mg, 0.20 mmol), [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (4.48 mg, 0.004 mmol, 2.0 mol%), difluoro-dibromomethane (**3**, 0.60 mmol, prepare 1.0 mg/mL DMF solution of difluoro-dibromomethane and measure 140 μ L with a microsyringe), and DMF (2.0 mL). The reaction mixture was stirred under 2×3 W blue LEDs (450–455 nm) at room temperature with stirring for 2 h. After completion of the reaction, the reaction mixture was diluted with ethyl acetate and H₂O. The resulting mixture was extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified with silica gel chromatography (petroleum ether/ethyl acetate = 3:1, V/V) to give the product **6a** (29.1 mg, 56% yield).

2.3 General procedure for the synthesis 4a in 4.0 mmol scale

Under nitrogen atmosphere, a 200 mL Schlenk bottle equipped with a magnetic stir bar was charged with enaminone (**1a**, 572.8 mg, 4.0 mmol), benzoyl hydrazine (**2a**, 544.6 mg, 4.0 mmol), $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (22.4 mg, 0.02 mmol, 0.5 mol%), difluorodibromomethane (**3**, 12.0 mmol, prepare 1.0 mg/mL DMA solution of difluoro-dibromomethane and measure 2.8 mL with a microsyringe), and DMA (40.0 mL). The reaction mixture was stirred under blue LEDs at room temperature with stirring for 2 h. After completion of the reaction, the reaction mixture was diluted with ethyl acetate and H₂O. The resulting mixture was extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered and

concentrated. The residue was purified with silica gel chromatography (petroleum ether/ethyl acetate = 3:1, V/V) to give the product **4a** (735.0 mg, 64% yield).

[lr(dF(CF₃)ppy)₂(dtbbpy)]PF₆ ÇO₂Et (2 mol%) EtO₂C N^{NH}2 Ph DMA (0.1 M), rt, N₂, 2 h ŇMe₂ Blue LEDs 3 1a 2a 4a "standard conditions" the ratio of yield of 4a photocatalyst solvent additive substrates entry $(\%)^{b}$ 1a:2a:3 1 PC1 1:1:3 DMA 70 2 **PC2** DMA 1:1:3 74 3 PC3 DMA 1:1:3 69 _ 4 PC4 DMA 1:1:3 21 _ 5 PC5 1:1:3 55 DMA PC6 DMA 6 1:1:3 61 **PC**7 7 DMA 1:1:3 27 8 PC8 DMA 1:1:3 20 _ 9 PC2 DMSO 1:1:3 23 _ 10 47 PC2 DMF 1:1:3 11 PC2 CH₃CN 1:1:3 27 12 PC2 acetone 1:1:3 51 13 PC2 1,4-dioxane 1:1:3 38 14 PC2 TFEA 1:1:3 20 _ 15 71 PC2 DMA 1:0.8:3 _ 16 PC2 DMA 1:1.5:3 66 _ 17 PC2 DMA 1:2:3 68 _ PC2 18 DMA 1:3:3 _ 63 19 PC2 50 DMA 1:1:1 _ 20 PC2 DMA 1:1:2 61 _ 21 PC2 DMA 1:1:4 69 _ 22 PC2 DMA Na₂CO₃ 1:1:3 52 23 PC2 NaHCO₃ DMA 1:1:3 55 PC2 24 DMA K_3PO_4 1:1:3 52

3. Optimization reaction conditions

S5

^aReaction conditions: **1a** (0.2 mmol), **2a** (amount indicated in this Table), **3** (amount indicated in this Table), photocatalyst (2 mol%), additive (1.0 equiv.) in solvent (2.0 mL), N₂ atmosphere, room temperature, under 2×3 W blue LEDs (450–455 nm) irradiation for 2h. ^{*b*}Isolated yield. ^{*c*}In the absence of light. ^{*d*}Under air atmosphere. ^{*e*}CFBr₃ instead of CF₂Br₂. ^{*f*}CBr₄ instead of CF₂Br₂. ^{*b*}CF₃I instead of CF₂Br₂.

4. Characterization data of products

Ethyl (*E*)-3-(dimethylamino)-2-(5-phenyl-1,3,4-oxadiazol-2-yl)acrylate: 42.5 mg, 74% yield. White solid, melting point: 98.3–99.5 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.0 Hz, 2H), 7.80 (s, 1H), 7.49 (d, *J* = 6.4 Hz, 3H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.18 (s, 3H), 2.64 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 164.9, 162.0, 154.1, 131.4, 128.9, 126.7, 124.3, 81.6, 60.1, 47.0, 39.7, 14.4. HRMS (ESI) *m/z*: Calcd for C₁₅H₁₈N₃O₃⁺ [M + H]⁺: 288.1343; found: 288.1341.

Methyl (*E*)-3-(dimethylamino)-2-(5-phenyl-1,3,4-oxadiazol-2-yl)acrylate: 37.1 mg, 68% yield. Yellow solid, melting point: 97.8–99.5 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 4.4 Hz, 2H), 7.79 (s, 1H), 7.60–7.30 (m, 3H), 3.66 (s, 3H), 3.16 (s, 3H), 2.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 164.9, 161.8, 154.2, 131.4, 128.9, 126.7, 124.2, 81.1, 51.4, 47.2, 39.3. HRMS (ESI) *m/z*: Calcd for C₁₄H₁₅N₃NaO₃⁺ [M + Na]⁺: 296.1006; found: 296.1004.

tert-Butyl (*E*)-3-(dimethylamino)-2-(5-phenyl-1,3,4-oxadiazol-2-yl)acrylate: 23.6 mg, 41% yield. Yellow solid, melting point: 100.9–102.6 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.08–8.00 (m, 2H), 7.70 (s, 1H), 7.51–7.45 (m, 3H), 3.12 (s, 3H), 2.64 (s, 3H), 1.40 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 164.7, 162.3, 153.7, 131.3, 128.9, 126.5, 124.3, 82.9, 79.8, 46.9, 39.6, 28.3. HRMS (ESI) *m/z*: Calcd for C₁₇H₂₁N₃NaO₃⁺ [M + Na]⁺: 338.1475; found: 338.1472.

2-cyanoethyl (*E*)-**3-(dimethylamino)-2-(5-phenyl-1,3,4-oxadiazol-2-yl)acrylate**: 44.3 mg, 71% yield. Yellow solid, melting point: 95.5–97.7 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.2 Hz, 2H), 7.81 (s, 1H), 7.47 (d, J = 5.6 Hz, 3H), 4.35–4.22 (m, 2H), 3.19 (s, 3H), 2.82–2.53 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 165.1, 161.3, 154.7, 131.5, 128.9, 126.7, 123.9, 117.0, 80.3, 58.3, 47.4, 39.5, 18.1. HRMS (ESI) *m/z*: Calcd for C₁₆H₁₆N₄NaO₃⁺ [M + Na]⁺: 335.1115; found: 335.1110.

Cyclopropylmethyl (*E*)-3-(dimethylamino)-2-(5-phenyl-1,3,4-oxadiazol-2-yl) acrylate: 40.1 mg, 64% yield. Yellow solid, melting point: 116.7–118.7 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.6 Hz, 2H), 7.77 (s, 1H), 7.46 (d, *J* = 6.0 Hz, 3H), 3.92 (d, *J* = 6.8 Hz, 2H), 3.15 (s, 3H), 2.61 (s, 3H), 1.10–0.97 (m, 1H), 0.46–0.38 (m, 2H), 0.22–0.14 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 164.8, 161.9, 154.0, 131.3, 128.8, 126.5, 124.2, 81.4, 68.4, 47.1, 39.4, 9.8, 2.9. **HRMS (ESI)** *m/z*: Calcd for C₁₇H₁₉N₃NaO₃⁺ [M + Na]⁺: 336.1319; found: 336.1316.

Cyclohexylmethyl (E)-3-(dimethylamino)-2-(5-phenyl-1,3,4-oxadiazol-2-yl)

acrylate: 34.1 mg, 48% yield. Yellow solid, melting point: 100.3–102.4 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.10–7.97 (m, 2H), 7.77 (s, 1H), 7.46 (d, J = 6.4 Hz, 3H), 3.89 (d, J = 6.4 Hz, 2H), 3.16 (s, 3H), 2.62 (s, 3H), 1.67–1.47 (m, 6H), 1.17–0.96 (m, 3H), 0.93–0.81 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 164.7, 161.9, 154.0, 131.3, 128.8, 126.5, 124.1, 81.4, 69.1, 47.1, 39.5, 37.1, 29.4, 26.1, 25.5. HRMS (ESI) *m/z*: Calcd for C₂₀H₂₆N₃O₃⁺ [M + H]⁺: 356.1969; found: 356.1967.

Adamantan-1-ylmethyl (*E*)-3-(dimethylamino)-2-(5-phenyl-1,3,4-oxadiazol-2-yl) acrylate: 52.9 mg, 65% yield. Yellow solid, melting point: 162.4–166.7 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.12–8.00 (m, 2H), 7.77 (s, 1H), 7.51–7.42 (m, 3H), 3.66 (s, 2H), 3.17 (s, 3H), 2.64 (s, 3H), 1.78 (s, 3H), 1.59–1.51 (m, 3H), 1.47–1.35 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 164.8, 162.1, 153.9, 131.4, 128.8, 126.6, 124.1, 81.3, 73.6, 47.1, 39.6, 39.1, 36.7, 33.2, 27.8. HRMS (ESI) *m/z*: Calcd for C₂₄H₂₉N₃NaO₃⁺ [M + Na]⁺: 430.2101; found: 430.2108.

Phenyl (E)-3-(dimethylamino)-2-(5-phenyl-1,3,4-oxadiazol-2-yl)acrylate: 33.5 mg, 50% yield. Yellow solid, melting point: 101.8–103.5 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.13–8.04 (m, 2H), 7.94 (s, 1H), 7.54–7.45 (m, 3H), 7.32 (t, J = 8.0 Hz, 2H), 7.16 (t, J = 7.2 Hz, 1H), 7.09 (d, J = 8.0 Hz, 2H), 3.22 (s, 3H), 2.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 165.2, 161.7, 155.2, 151.1, 131.6, 129.2, 129.1, 126.8, 125.3, 124.2, 121.9, 80.8, 47.6, 39.8. HRMS (ESI) *m/z*: Calcd for C₁₉H₁₇N₃NaO₃⁺ [M + Na]⁺: 358.1162; found: 358.1156.

4-Methylbenzyl (*E*)-3-(dimethylamino)-2-(5-phenyl-1,3,4-oxadiazol-2-yl)acrylate: 33.4 mg, 46% yield. Yellow solid, melting point: 80.7–82.3 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.07–7.96 (m, 2H), 7.83 (s, 1H), 7.54–7.45 (m, 3H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 5.15 (s, 2H), 3.18 (s, 3H), 2.65 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 164.8, 161.8, 154.4, 137.4, 133.7, 131.4, 128.95, 128.86, 127.6, 126.7, 124.2, 81.4, 65.6, 47.3, 39.6, 21.1. HRMS (ESI) *m/z*: Calcd for C₂₁H₂₂N₃O₃⁺ [M + H]⁺: 364.1656; found: 364.1655.

4-(*tert*-**Butyl)benzyl** (*E*)-**3-**(**dimethylamino**)-**2-**(**5-**phenyl-1,3,4-oxadiazol-2-yl) acrylate: 43.7 mg, 54% yield. Yellow oil (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.09–7.97 (m, 2H), 7.83 (s, 1H), 7.53–7.43 (m, 3H), 7.32–7.19 (m, 4H), 5.16 (s, 2H), 3.17 (s, 3H), 2.64 (s, 3H), 1.27 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 164.8, 161.8, 154.3, 150.5, 133.6, 131.3, 128.8, 127.3, 126.6, 125.1, 124.1, 81.2, 65.4, 47.2, 39.6, 34.3, 31.2. HRMS (ESI) *m/z*: Calcd for C₂₄H₂₈N₃O₃⁺ [M + H]⁺: 406.2125; found: 406.2122.

4-Fluorobenzyl (*E*)-3-(dimethylamino)-2-(5-phenyl-1,3,4-oxadiazol-2-yl)acrylate: 39.6 mg, 54% yield. Yellow oil (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 6.4 Hz, 2H), 7.82 (s, 1H), 7.53–7.44 (m, 3H), 7.29–7.23 (m, 2H), 6.98–6.88 (m, 2H), 5.13 (s, 2H), 3.18 (s, 3H), 2.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 164.8, 163.5, 162.2 (d, *J* = 246.0 Hz), 154.5, 132.5 (d, *J* = 3.2 Hz), 131.5, 129.4 (d, *J* = 8.3 Hz), 128.9, 126.6, 124.1, 115.1 (d, *J* = 21.4 Hz), 81.1, 64.9, 47.4, 39.6. ¹⁹F NMR (376 MHz, CDCl₃) δ –114.54 (s, 1F). HRMS (ESI) *m/z*: Calcd for C₂₀H₁₉FN₃O₃⁺ [M + H]⁺: 368.1405; found: 368.1403.

(1S,2R,5R)-5-(iso-Propyl)-2-methylcyclohexyl (E)-3-(dimethylamino)-2-(5-

phenyl-1,3,4-oxadiazol-2-yl)acrylate: 46.8 mg, 59% yield. Yellow solid, melting point: 124.2–125.3 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.07–7.93 (m, 2H), 7.74 (s, 1H), 7.50–7.40 (m, 3H), 4.78–4.59 (m, 1H), 3.13 (s, 3H), 2.60 (s, 3H), 2.01–1.88 (m, 2H), 1.60–1.50 (m, 2H), 1.41 (s, 1H), 1.22–1.12 (m, 1H), 1.02–0.92 (m, 1H), 0.92–0.82 (m, 2H), 0.80 (d, *J* = 6.4 Hz, 3H), 0.73 (t, *J* = 7.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 164.6, 161.9, 153.9, 131.3, 128.8, 126.5, 124.1, 81.6, 73.7, 47.1, 46.9, 40.9, 39.5, 34.0, 31.2, 25.9, 23.1, 21.8, 20.6, 16.1. HRMS (ESI) *m/z*: Calcd for C₂₃H₃₂N₃O₃⁺ [M + H]⁺: 398.2438; found: 398.2437.

4m

(*IR*,2*R*,4*S*)-1,3,3-Trimethylbicyclo[2.2.1]heptan-2-yl (*E*)-3-(dimethylamino)-2-(5phenyl-1,3,4-oxadiazol-2-yl)acrylate: 39.5 mg, 50% yield. White solid, melting point: 127.0–129.1 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.11–8.02 (m, 2H), 7.80 (s, 1H), 7.49 (d, *J* = 6.8 Hz, 3H), 4.41 (s, 1H), 3.18 (s, 3H), 2.66 (s, 3H), 1.63 (s, 1H), 1.56– 1.45 (m, 2H), 1.34–1.22 (m, 3H), 1.08 (s, 3H), 0.99 (s, 3H), 0.85–0.80 (m, 1H), 0.80– 0.76 (m, 1H), 0.75 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 164.8, 162.2, 154.0, 131.4, 128.9, 126.6, 124.2, 85.8, 81.4, 48.3, 48.2, 47.2, 41.2, 39.7, 39.6, 29.6, 26.4, 25.7, 20.2, 19.4. HRMS (ESI) *m*/*z*: Calcd for C₂₃H₃₀N₃O₃⁺ [M + H]⁺: 396.2282; found: 396.2281.

4n

(*8S*,*9R*,*13R*,*14R*)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cycl openta[a]phenanthren-2-yl (*E*)-3-(dimethylamino)-2-(5-phenyl-1,3,4-

oxadiazol-2-yl)acrylate: 59.3 mg, 58% yield. Yellow solid, melting point: 195.5–196.8 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 5/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 2H), 7.94 (s, 1H), 7.51 (s, 3H), 7.26 (s, 1H), 6.96–6.76 (m, 2H), 3.26 (s, 3H), 2.88 (s, 3H), 2.71 (s, 3H), 2.38 (s, 2H), 2.05–1.95 (m, 1H), 1.62–1.40 (m, 6H), 1.26 (s, 3H), 0.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 220.9, 166.4, 155.1, 148.9, 137.7, 136.7, 131.5, 129.0, 126.8, 126.1, 124.2, 121.8, 119.0, 80.8, 67.0, 53.4, 50.4, 47.9, 47.5, 44.1, 39.7, 38.0, 35.8, 31.5, 29.6, 29.3, 26.3, 25.7, 21.5, 13.8. HRMS (ESI) *m/z*: Calcd for C₃₁H₃₄N₃O₄⁺ [M + H]⁺: 512.2544; found: 512.2542.

Ethyl (*E*)-3-(diethylamino)-2-(5-phenyl-1,3,4-oxadiazol-2-yl)acrylate: 37.2 mg, 59% yield. White solid, melting point: 73.5–74.8 °C (Flash column chromatography eluent,

petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.11–7.99 (m, 2H), 7.79 (s, 1H), 7.48 (d, J = 6.4 Hz, 3H), 4.13 (q, J = 7.2 Hz, 2H), 3.45–3.23 (m, 2H), 3.21–2.98 (m, 2H), 1.35–1.20 (m, 3H), 1.15 (t, J = 7.2 Hz, 3H), 1.01–0.76 (m, 3H).¹³C NMR (100 MHz, CDCl₃) δ 167.9, 164.8, 162.2, 151.8, 131.4, 128.9, 126.6, 124.2, 80.6, 60.0, 52.6, 43.3, 14.7, 14.4, 11.7. HRMS (ESI) *m/z*: Calcd for C₁₇H₂₂N₃O₃⁺ [M + H]⁺: 316.1656; found: 316.1654.

Ethyl (*E*)-3-di(*iso*-propyl)amino-2-(5-phenyl-1,3,4-oxadiazol-2-yl)acrylate: 46.0 mg, 67% yield. White solid, melting point: 114.5–116.0 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.10–7.99 (m, 2H), 7.90 (s, 1H), 7.52–7.43 (m, 3H), 4.11 (q, *J* = 7.2 Hz, 2H), 3.73– 3.28 (m, 2H), 1.39–1.19 (m, 6H), 1.18–1.12 (m, 4H), 1.11–0.92 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 164.8, 163.0, 148.7, 131.3, 128.9, 126.6, 124.2, 80.2, 59.9, 50.5, 47.1, 23.8, 19.7, 14.3. HRMS (ESI) *m/z*: Calcd for C₁₉H₂₆N₃O₃⁺ [M + H]⁺: 344.1969; found: 344.1966.

Ethyl (*E*)-3-(dipropylamino)-2-(5-phenyl-1,3,4-oxadiazol-2-yl)acrylate: 40.5 mg, 59% yield. Yellow oil (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.14–7.98 (m, 2H), 7.79 (s, 1H), 7.50 (d, J = 6.8 Hz, 3H), 4.14 (q, J = 7.2 Hz, 2H), 3.36–3.16 (m, 2H), 3.01–2.87 (m, 2H), 1.75–1.54 (m, 2H), 1.42–1.26 (m, 2H), 1.17 (t, J = 7.2 Hz, 3H), 1.02–0.85 (m,

3H), 0.67–0.45 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 164.9, 162.3, 152.4, 131.4, 128.9, 126.7, 124.3, 80.6, 60.4, 60.1, 50.8, 22.5, 19.8, 14.4, 10.8. HRMS (ESI) *m/z*: Calcd for C₁₉H₂₆N₃O₃⁺ [M + H]⁺: 344.1969; found: 344.1965.

Ethyl (*E*)-2-(5-phenyl-1,3,4-oxadiazol-2-yl)-3-(pyrrolidin-1-yl)acrylate: 40.1 mg, 64% yield. Yellow solid, melting point: 87.0–88.4 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.09–8.02 (m, 2H), 7.98 (s, 1H), 7.50–7.45 (m, 3H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.71–3.52 (m, 2H), 2.98–2.81 (m, 2H), 1.93–1.76 (m, 4H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 164.7, 162.1, 150.3, 131.3, 128.9, 126.6, 124.3, 81.7, 59.9, 54.8, 48.5, 25.8, 24.4, 14.4. HRMS (ESI) *m/z*: Calcd for C₁₇H₂₀N₃O₃⁺ [M + H]⁺: 314.1499; found: 314.1496.

Ethyl (*E***)-2-(5-phenyl-1,3,4-oxadiazol-2-yl)-3-(piperidin-1-yl)acrylate**: 32.1 mg, 49% yield. Yellow solid, melting point: 81.2–82.5 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹**H** NMR (400 MHz, CDCl₃) δ 8.15–7.96 (m, 2H), 7.75 (s, 1H), 7.47 (d, J = 6.4 Hz, 3H), 4.13 (q, J = 7.2 Hz, 2H), 3.66–2.65 (m, 4H), 1.81–1.44 (m, 6H), 1.16 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 164.8, 162.4, 152.9, 131.3, 128.9, 126.6, 124.2, 80.2, 60.0, 56.4, 47.7, 25.8, 25.4, 23.3, 14.3. **HRMS (ESI)** *m*/*z*: Calcd for C₁₈H₂₂N₃O₃⁺ [M + H]⁺: 328.1656; found: 328.1653.

Ethyl (*E*)-3-morpholino-2-(5-phenyl-1,3,4-oxadiazol-2-yl)acrylate: 44.7 mg, 68% yield. White solid, melting point: 82.6–84.1 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 7.2 Hz, 2H), 7.74 (s, 1H), 7.48 (d, J = 7.2 Hz, 3H), 4.14 (q, J = 7.2 Hz, 2H), 3.73–3.54 (m, 4H), 3.43–3.00 (m, 4H), 1.17 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 164.9, 161.9, 152.8, 131.5, 128.9, 126.6, 123.9, 82.0, 66.0, 60.3, 50.8, 14.3. HRMS (ESI) *m/z*: Calcd for C₁₇H₂₀N₃O₄⁺ [M + H]⁺: 330.1448; found: 330.1446.

Ethyl (*E*)-3-(benzyl(*tert*-butyl)amino)-2-(5-phenyl-1,3,4-oxadiazol-2-yl)acrylate: 17.8 mg, 22% yield. Yellow oil (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.70–7.61 (m, 2H), 7.41 (dt, J = 23.6, 7.2 Hz, 3H), 6.93 (t, J = 7.6 Hz, 2H), 6.83 (t, J = 7.2 Hz, 1H), 6.72 (d, J = 7.6 Hz, 2H), 4.75 (s, 2H), 4.06 (q, J = 7.2 Hz, 2H), 1.48 (s, 9H), 1.08 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 164.5, 161.7, 147.5, 133.5, 130.9, 128.4, 128.1, 126.7, 126.4, 125.5, 124.2, 82.9, 61.3, 60.0, 48.7, 29.0, 14.3. HRMS (ESI) *m/z*: Calcd for C₂₄H₂₈N₃O₄⁺ [M + H]⁺: 406.2125; found: 406.2126.

Dimethyl 2-(5-phenyl-1,3,4-oxadiazol-2-yl)-3-(pyrrolidin-1-yl)maleate: 32.1 mg, 45% yield. White solid, melting point: 103.8–105.1 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 6.4 Hz, 2H), 7.52–7.41 (m, 3H), 3.91 (s, 3H), 3.57 (s, 3H), 3.46–2.67 (m, 4H), 1.86–1.70 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 165.0, 164.6, 161.4, 153.9, 131.5, 128.9, 126.6, 123.9, 81.3, 53.0, 51.5, 50.4, 24.9. HRMS (ESI) m/z: Calcd for C₁₈H₂₀N₃O₅⁺ [M + H]⁺: 358.1397; found: 358.1395.

Ethyl (*E*)-3-(dimethylamino)-2-(5-(*p*-tolyl)-1,3,4-oxadiazol-2-yl)acrylate: 36.1 mg, 60% yield. White solid, melting point: 110.5–113.0 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.6 Hz, 2H), 7.75 (s, 1H), 7.25 (d, J = 7.6 Hz, 2H), 4.11 (q, J = 6.8 Hz, 2H), 3.13 (s, 3H), 2.58 (s, 3H), 2.36 (s, 3H), 1.15 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 164.9, 161.5, 153.9, 141.8, 129.5, 126.5, 121.4, 81.4, 59.9, 47.1, 39.3, 21.4, 14.3. HRMS (ESI) *m*/*z*: Calcd for C₁₆H₂₀N₃O₃⁺ [M + H]⁺: 302.1499; found: 302.1497.

Ethyl (*E*)-3-(dimethylamino)-2-(5-(*o*-tolyl)-1,3,4-oxadiazol-2-yl)acrylate: 37.3 mg, 62% yield. White solid, melting point: 81.1–82.5 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.0 Hz, 1H), 7.80 (s, 1H), 7.40–7.35 (m, 1H), 7.34–7.27 (m, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.16 (s, 3H), 2.84–2.50 (m, 6H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 165.3, 161.5, 154.1, 138.1, 131.6, 130.9, 128.9, 126.0, 123.4, 81.5, 60.1, 47.2, 39.7, 22.0, 14.4. HRMS (ESI) *m*/*z*: Calcd for C₁₆H₂₀N₃O₃⁺ [M + H]⁺: 302.1499; found: 302.1501.

Ethyl (*E*)-3-(dimethylamino)-2-(5-(*m*-tolyl)-1,3,4-oxadiazol-2-yl)acrylate: 40.9 mg, 68% yield. White solid, melting point: 101.7–103.3 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.82 (m, 2H), 7.78 (s, 1H), 7.40–7.28 (m, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.17 (s, 3H), 2.60 (s, 3H), 2.40 (s, 3H), 1.18 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 165.0, 161.8, 154.1, 138.8, 132.2, 128.8, 127.2, 124.1, 123.8, 81.4, 60.1, 47.2, 39.4, 21.2, 14.4. HRMS (ESI) *m/z*: Calcd for C₁₆H₂₀N₃O₃⁺ [M + H]⁺: 302.1499; found: 302.1498.

Ethyl (*E*)-3-(dimethylamino)-2-(5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl) acrylate: 37.4 mg, 59% yield. Yellow solid, melting point: 120.2–121.8 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.8 Hz, 2H), 7.78 (s, 1H), 6.99 (d, *J* = 8.8 Hz, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.86 (s, 3H), 3.13 (s, 3H), 2.63 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 164.9, 162.1, 161.5, 154.1, 128.5, 116.9, 114.4, 81.8, 60.1, 55.5, 47.1, 39.6, 14.5. HRMS (ESI) *m/z*: Calcd for C₁₆H₂₀N₃O₄⁺ [M + H]⁺: 318.1448; found: 318.1452.

Ethyl (*E*)-2-(5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazol-2-yl)-3-(dimethylamino) acrylate: 40.2 mg, 58% yield. Yellow solid, melting point: 115.5–116.7 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.67–7.53 (m, 2H), 6.94 (d, *J* = 8.4 Hz, 1H), 4.15 (q, *J* = 6.8 Hz, 2H), 3.94 (d, *J* = 6.8 Hz, 6H), 3.16 (s, 3H), 2.63 (s, 3H), 1.19 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 164.9, 161.5, 154.0, 151.7, 149.2, 120.1, 116.9, 111.0, 109.2, 81.6, 60.0, 56.1, 56.0, 47.2, 39.5, 14.4. HRMS (ESI) *m/z*: Calcd for C₁₇H₂₂N₃O₅⁺ [M + H]⁺: 348.1554; found: 348.1556.

Ethyl (*E*)-2-(5-(4-(*tert*-butyl)phenyl)-1,3,4-oxadiazol-2-yl)-3-(dimethylamino) acrylate: 48.7 mg, 71% yield. Yellow oil (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.4 Hz, 2H), 7.77 (s, 1H), 7.49 (d, *J* = 8.4 Hz, 2H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.15 (s, 3H), 2.60 (s, 3H), 1.32 (s, 9H), 1.17 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 164.9, 161.6, 154.9, 154.0, 126.5, 125.9, 121.4, 81.5, 60.0, 47.2, 39.3, 34.9, 31.0, 14.3. HRMS (ESI) *m/z*: Calcd for C₁₉H₂₆N₃O₃⁺ [M + H]⁺: 344.1969; found: 344.1969.

Ethyl (*E*)-3-(dimethylamino)-2-(5-(4-fluorophenyl)-1,3,4-oxadiazol-2-yl)acrylate: 44.5 mg, 73% yield. White solid, melting point: 116.2–117.4 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 2H), 7.79 (s, 1H), 7.17 (t, *J* = 8.0 Hz, 2H), 4.15 (d, *J* = 6.8 Hz, 2H), 3.18 (s, 3H), 2.63 (s, 3H), 1.18 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 164.5 (d, *J* = 251.1 Hz), 164.1, 162.0, 154.1, 128.9 (d, *J* = 8.8 Hz), 120.6 (d, *J* = 3.3 Hz), 116.3, 116.1, 81.4, 60.1, 47.3, 39.6, 14.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -107.40 ~ -107.45 (m, 1H). HRMS (ESI) *m/z*: Calcd for C₁₆H₁₇FN₃O₃⁺ [M + H]⁺: 306.1248; found: 306.1249.

Ethyl (*E*)-2-(5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)-3-(dimethylamino)acrylate: 41.1 mg, 64% yield. White solid, melting point: 142.7–143.9 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.4 Hz, 2H), 7.79 (s, 1H), 7.46 (d, *J* = 8.4 Hz, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.19 (s, 3H), 2.62 (s, 3H), 1.18 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 164.0, 162.1, 154.2, 137.6, 129.3, 127.9, 122.8, 81.3, 60.1, 47.4, 39.6, 14.4. HRMS (ESI) *m*/*z*: Calcd for C₁₅H₁₇ClN₃O₃⁺ [M + H]⁺: 322.0953; found: 322.0952.

Ethyl (*E*)-2-(5-(4-bromophenyl)-1,3,4-oxadiazol-2-yl)-3-(dimethylamino)acrylate: 41.6 mg, 57% yield. White solid, melting point: 142.9–143.7 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.4 Hz, 2H), 7.80 (s, 1H), 7.63 (d, *J* = 8.4 Hz, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.19 (s, 3H), 2.63 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 164.2, 162.2, 154.2, 132.3, 128.1, 126.0, 123.2, 81.3, 60.1, 47.3, 39.6, 14.4. HRMS (ESI) *m/z*: Calcd for C₁₅H₁₇BrN₃O₃⁺ [M + H]⁺: 366.0448; found: 366.0449.

Ethyl (*E*)-3-(dimethylamino)-2-(5-(4-iodophenyl)-1,3,4-oxadiazol-2-yl)acrylate: 46.3 mg, 56% yield. White solid, melting point: 128.8–129.9 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.97 (d, *J* = 8.4 Hz, 2H), 7.82 (s, 1H), 7.76 (d, *J* = 8.4 Hz, 2H), 4.05 (q, *J* = 7.2 Hz, 2H), 3.37 (s, 3H), 3.21 (s, 3H), 1.12 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.1, 163.1, 161.6, 153.7, 137.9, 127.5, 122.7, 98.8, 78.9, 58.8, 46.3, 14.0. HRMS (ESI) *m/z*: Calcd for C₁₅H₁₇IN₃O₃⁺ [M + H]⁺: 414.0309; found: 414.0309.

5k

Ethyl (*E*)-3-(dimethylamino)-2-(5-(4-(trifluoromethyl)phenyl)-1,3,4-oxadiazol -2-yl)acrylate: 44.0 mg, 62% yield. White solid, melting point: 117.7–119.8 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.0 Hz, 2H), 7.82 (s, 1H), 7.75 (d, *J* = 8.0 Hz, 2H), 4.17 (q, *J* = 7.2 Hz, 2H), 3.21 (s, 3H), 2.65 (s, 3H), 1.20 (t, *J* = 7.2 Hz, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ 167.4, 163.7, 162.6, 132.9 (q, J = 32.6 Hz), 127.5, 127.0, 126.0 (q, J = 3.6 Hz), 125.0, 122.2, 81.3, 60.2, 47.3, 39.8, 14.4. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -63.05 (s, 3F). **HRMS (ESI)** m/z: Calcd for C₁₆H₁₇FN₃O₃⁺ [M + H]⁺: 356.1217; found: 356.1217.

51

Ethyl (*E*)-3-(dimethylamino)-2-(5-(naphthalen-2-yl)-1,3,4-oxadiazol-2-yl)acrylate: 38.4 mg, 57% yield. Yellow solid, melting point: 98.6–99.9 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 9.25 (d, *J* = 8.4 Hz, 1H), 8.21 (d, *J* = 7.2 Hz, 1H), 8.01 (d, *J* = 8.0 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.84 (s, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.61–7.52 (m, 2H), 4.21 (q, *J* = 7.2 Hz, 2H), 3.16 (s, 3H), 2.71 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 165.1, 161.6, 154.2, 133.8, 132.2, 130.0, 128.6, 128.2, 127.9, 126.5, 126.2, 124.9, 120.9, 81.5, 60.1, 47.3, 39.7, 14.5. HRMS (ESI) *m/z*: Calcd for C₁₉H₂₀N₃O₃⁺ [M + H]⁺: 338.1499; found: 338.1500.

Ethyl (*E*)-3-(dimethylamino)-2-(5-(furan-2-yl)-1,3,4-oxadiazol-2-yl)acrylate: 27.7 mg, 50% yield. Yellow solid, melting point: 70.6–71.8 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.61 (s, 1H), 7.11 (d, *J* = 3.2 Hz, 1H), 6.61–6.52 (m, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.16 (s, 3H), 2.62 (s, 3H), 1.18 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 161.4, 157.8, 154.3, 145.3, 139.8, 113.5, 112.0, 81.0, 60.1, 47.3, 39.5, 14.3. HRMS (ESI) *m/z*: Calcd for C₁₃H₁₆N₃O₄⁺ [M + H]⁺: 278.1135;

found: 278.1139.

Ethyl (*E*)-3-(dimethylamino)-2-(5-(thiophen-2-yl)-1,3,4-oxadiazol-2-yl)acrylate: 32.2 mg, 55% yield. Yellow solid, melting point: 70.4–71.7 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.73 (d, *J* = 3.2 Hz, 1H), 7.52 (d, *J* = 4.8 Hz, 1H), 7.16– 7.12 (m, 1H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.17 (s, 3H), 2.64 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 161.4, 161.2, 154.2, 129.7, 129.3, 128.0, 125.7, 81.2, 60.1, 47.2, 39.4, 14.4. HRMS (ESI) *m/z*: Calcd for C₁₃H₁₆N₃O₃S⁺ [M + H]⁺: 294.0907; found: 294.0910.

50

Ethyl (*E*)-3-(dimethylamino)-2-(5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)acrylate: 39.7 mg, 69% yield. Yellow solid, melting point: 102.4–103.8 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, *J* = 1.2 Hz, 2H), 7.89 (d, *J* = 5.2 Hz, 2H), 7.81 (s, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.19 (s, 3H), 2.62 (s, 3H), 1.18 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 163.0, 162.9, 154.5, 150.7, 131.3, 120.1, 81.0, 60.2, 47.3, 39.6, 14.4. HRMS (ESI) *m/z*: Calcd for C₁₄H₁₇N₄O₃⁺ [M + H]⁺: 289.1295; found: 289.1297.

Ethyl (*E*)-3-(dimethylamino)-2-(5-methyl-1,3,4-oxadiazol-2-yl)acrylate: 22.5 mg, 50% yield. Yellow oil (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 4.18–4.09 (m, 2H), 3.09 (s, 3H), 2.72–2.42 (m, 6H), 1.21–1.57 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 164.1, 162.1, 153.9, 81.5, 60.1, 47.2, 39.2, 14.4, 11.2. HRMS (ESI) *m/z*: Calcd for C₁₀H₁₆N₃O₃⁺ [M + H]⁺: 226.1186; found: 226.1189.

Ethyl (*E*)-3-(dimethylamino)-2-(5-pentyl-1,3,4-oxadiazol-2-yl)acrylate: 38.2 mg, 68% yield. Yellow oil (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 4.07 (q, J = 7.2 Hz, 2H), 3.07 (s, 3H), 2.78 (t, J = 7.6 Hz, 2H), 2.52 (s, 3H), 1.80–1.65 (m, 2H), 1.31–1.26 (m, 4H), 1.12 (t, J = 7.2 Hz, 3H), 0.83 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 167.3, 161.7, 153.7, 81.5, 59.8, 46.9, 39.0, 30.8, 26.1, 25.3, 22.0, 14.2, 13.7. HRMS (ESI) *m*/*z*: Calcd for C₁₄H₂₄N₃O₃⁺ [M + H]⁺: 282.1812; found: 282.1815.

Ethyl (*E*)-3-(dimethylamino)-2-(1,3,4-oxadiazol-2-yl)acrylate: 32.6 mg, 70% yield. Yellow oil (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.75 (s, 1H), 4.10 (q, *J* = 7.2 Hz, 2H), 3.14 (s, 3H), 2.50 (s, 3H), 1.15 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 162.1, 154.2, 153.3, 80.7, 60.0, 47.1, 39.2, 14.3. HRMS (ESI) *m*/*z*: Calcd for C₉H₁₄N₃O₃⁺ [M + Na]⁺: 234.0849; found: 234.0849.

Ethyl (*E*)-2-(benzo[*d*]oxazol-2-yl)-3-(dimethylamino)acrylate: 29.1 mg, 56% yield. Yellow solid, melting point: 102.2–103.4 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.73–7.67 (m, 1H), 7.54–7.48 (m, 1H), 7.34–7.28 (m, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.10 (s, 3H), 2.58 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 161.1, 154.1, 150.7, 141.4, 124.5, 123.8, 119.7, 110.5, 86.2, 60.0, 47.1, 39.5, 14.4. HRMS (ESI) *m/z*: Calcd for C₁₄H₁₇N₂O₃⁺ [M + H]⁺: 261.1234; found: 261.1233.

Ethyl (*E*)-3-(dimethylamino)-2-(6-methylbenzo[d]oxazol-2-yl)acrylate: 21.9 mg, 40% yield. Yellow oil (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.30 (s, 1H), 7.09 (d, *J* = 8.0 Hz, 1H), 4.14 (q, *J* = 6.8 Hz, 2H), 3.07 (s, 3H), 2.45 (s, 6H), 1.16 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 160.4, 153.9, 150.9, 139.1, 134.8, 125.0, 119.0, 110.6, 86.1, 59.9, 46.8, 39.2, 21.6, 14.3. HRMS (ESI) *m/z*: Calcd for C₁₅H₁₉N₂O₃⁺ [M + H]⁺: 275.1390; found: 275.1388.

Ethyl (*E*)-2-(6-bromobenzo[d]oxazol-2-yl)-3-(dimethylamino)acrylate: 44.6 mg, 66% yield. White solid, melting point: 76.9–78.3 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.66 (s, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H), 4.14 (q, J = 7.2 Hz, 2H), 3.10 (s, 3H), 2.55 (s, 3H), 1.17 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 161.6, 154.3, 151.1, 140.5, 127.2, 120.5, 117.3, 113.8, 85.6, 60.0, 47.0, 39.6, 14.3. HRMS (ESI) *m/z*: Calcd for C₁₄H₁₆BrN₂O₃⁺ [M + H]⁺: 339.0339; found: 339.0338.

Ethyl (*E*)-2-(6-chlorobenzo[d]oxazol-2-yl)-3-(dimethylamino)acrylate: 18.2 mg, 31% yield. Yellow oil (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.60 (d, J = 8.4 Hz, 1H), 7.53 (s, 1H), 7.29 (d, J = 8.4 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 3.13 (s, 3H), 2.58 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 161.9, 154.4, 151.0, 140.2, 130.2, 124.6, 120.2, 111.1, 85.8, 60.2, 47.1, 39.4, 14.4. HRMS (ESI) *m*/*z*: Calcd for C₁₄H₁₆ClN₂O₃⁺ [M + H]⁺: 295.0844; found: 295.0842.

Ethyl (*E*)-3-(dimethylamino)-2-(5-methylbenzo[d]oxazol-2-yl)acrylate: 24.5 mg, 45% yield. Yellow oil (Flash column chromatography eluent, petroleum ether/ethyl

acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.61–7.25 (m, 2H), 7.09 (s, 1H), 4.48–3.82 (m, 2H), 3.09 (s, 3H), 2.43 (s, 6H), 1.41–0.98 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 161.0, 153.9, 148.9, 141.5, 133.6, 125.5, 119.6, 109.8, 86.2, 60.0, 46.8, 39.3, 21.3, 14.3. HRMS (ESI) *m/z*: Calcd for C₁₅H₁₉N₂O₃⁺ [M + H]⁺: 275.1390; found: 275.1387.

Ethyl (*E*)-2-(5-bromobenzo[d]oxazol-2-yl)-3-(dimethylamino)acrylate: 22.3 mg, 33% yield. White solid, melting point: 77.0–78.6 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 12.8 Hz, 2H), 7.38 (s, 2H), 4.16 (q, J = 6.8 Hz, 2H), 3.14 (s, 3H), 2.57 (s, 3H), 1.19 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 162.4, 154.4, 149.7, 143.0, 127.4, 122.5, 116.6, 111.7, 85.8, 60.1, 47.1, 39.5, 14.4. HRMS (ESI) *m/z*: Calcd for C₁₄H₁₆BrN₂O₃⁺ [M + H]⁺: 339.0339; found: 339.0338.

Ethyl (*E*)-3-(dimethylamino)-2-(5-phenylbenzo[d]oxazol-2-yl)acrylate: 28.9 mg, 43% yield. Yellow solid, melting point: 107.5–109.0 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.81 (s, 1H), 7.61 (d, *J* = 7.6 Hz, 2H), 7.55 (d, *J* = 8.8 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.2 Hz, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.12 (s, 3H), 2.61 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 161.7, 154.2, 150.3, 142.0, 141.1, 137.8, 128.7, 127.3, 127.0, 124.0, 118.1,

110.4, 86.1, 60.1, 46.7, 39.6, 14.4. **HRMS (ESI)** *m/z*: Calcd for C₂₀H₂₁N₂O₃⁺ [M + H]⁺: 337.1547; found: 337.1543.

Ethyl (*E*)-2-(5-(*tert*-butyl)benzo[d]oxazol-2-yl)-3-(dimethylamino)acrylate: 31.6 mg, 50% yield. Yellow oil (Flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 7.77–7.70 (m, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.44–7.28 (m, 2H), 4.11 (q, J = 6.8 Hz, 2H), 3.05 (s, 3H), 2.54 (s, 3H), 1.33 (s, 9H), 1.19–1.08 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 160.9, 153.8, 148.5, 147.1, 141.1, 122.0, 116.0, 109.4, 86.1, 59.8, 46.7, 39.1, 34.6, 31.5, 14.3. HRMS (ESI) *m/z*: Calcd for C₁₈H₂₅N₂O₃⁺ [M + H]⁺: 317.1860; found: 317.1858.

Under nitrogen atmosphere, a 10 mL Schlenk tube equipped with a magnetic stir bar was charged with enaminone (**1a**, 28.6 mg, 0.20 mmol), benzoyl hydrazine (**2a**, 27.2 mg, 0.20 mmol), $[Ir(dF(CF_3)ppy)_2(dtbby)]PF_6$ (4.48 mg, 0.004 mmol, 2.0 mol%), difluoro-dibromomethane (**3**, 0.60 mmol, prepare 1.0 mg/mL DMA solution of difluoro-dibromomethane and measure 140 µL with a microsyringe), and DMA (2.0 mL). The reaction mixture was stirred under 2×3 W blue LEDs (450–455 nm) at room temperature with stirring for 2 h. After completion of the reaction, added H₂O (0.5 mL), then the reaction mixture was stirred at room temperature with stirring for another 12 h. After completion of the reaction mixture was diluted with ethyl acetate and H₂O. The resulting mixture was extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered and

concentrated. The residue was purified with silica gel chromatography (petroleum ether/ethyl acetate = 30:1, V/V) to give the product **7a** (20.9 mg, 45% yield).

Ethyl 2-(5-phenyl-1,3,4-oxadiazol-2-yl)acetate: 20.9 mg, 45% yield. White solid, melting point: 60.3–61.5 °C (Flash column chromatography eluent, petroleum ether/ethyl acetate = 30/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.11–7.98 (m, 2H), 7.59–7.46 (m, 3H), 4.24 (q, J = 7.2 Hz, 2H), 4.03 (s, 2H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 165.6, 160.3, 131.8, 129.0, 126.9, 123.7, 62.1, 32.0, 14.0. HRMS (ESI) m/z: Calcd for C₁₂H₁₃N₂O₃ [M + H]⁺: 233.0921; found: 233.0918.

5. Unsuccessful substrates

unsuccessful substrates 1

6. Crystallographic data and molecular structure of 4a (CCDC: 2247417)

General procedure for crystal culture of **4a**: To a test tube (15 mL) with added **4a** (30 mg), dichloromethane (1.0 mL) was added slowly to make it dissolve completely. After it dissolved, a mixture of petroleum ether (2.0 mL) and EtOAc (3.0 mL) was added. Then, the test tube was sealed with a rubber stopper, and connected to air with a syringe needle. Finally, the tube was put in a dry and ventilated place to make the organic solvent to volatilize slowly. After a few days, the crystal of **4a** was obtained. The X-ray crystal structure of **4a** was shown in Figure S2.

Figure S2 ORTEP diagram of 4a with thermal displacement parameters drawn at 30% probability.

Datablock: y

Bond precision:	C-C = 0.0021 A	Wavelength=0.71073		
Cell:	a=6.9139(16)	b=10.160(2)	c=11.688(3)	
Temperature:	aipna=112.767(3) 296 K	Deta=91.686(3)	gamma=91.806(3)	
	Calculated	Reported		
Volume	755.9(3)	755.9(3)		
Space group	P -1	P -1		
Hall group	-P 1	-P 1		
Moiety formula	C15 H17 N3 O3	C15 H17 N	3 03	
Sum formula	C15 H17 N3 O3	C15 H17 N	3 03	
Mr	287.32	287.32		
Dx,g cm-3	1.262	1.262		
Z	2	2		
Mu (mm-1)	0.090	0.090		
F000	304.0	304.0		
F000'	304.14			
h,k,lmax	10,15,17	10,14,16		
Nref	5287	4688		
Tmin,Tmax	0.989,0.991	0.665,0.7	46	
Tmin'	0.988			
Correction meth AbsCorr = MULTI	od= # Reported T Li -SCAN	.mits: Tmin=0.665 Tm	ax=0.746	
Data completeness= 0.887 Theta(max)= 32.079				
R(reflections)=	wR2(reflections) = 0.1679(.4688)			
S = 1.045	Npar= 1	94	0.10/0(1000)	

7. Control experiment

Under nitrogen atmosphere, a 10 mL Schlenk tube equipped with a magnetic stir bar was charged with enaminone (**1a**, 28.6 mg, 0.20 mmol), benzoyl hydrazine (**2a**, 27.2 mg, 0.20 mmol), TEMPO (62.5 mg, 0.40 mmol), $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (4.48 mg, 0.004 mmol, 2.0 mol%), difluoro-dibromomethane (**3**, 0.60 mmol, prepare 1.0 mg/mL DMA solution of difluoro-dibromomethane and measure 140 µL with a microsyringe), and DMA (2.0 mL). The reaction mixture was stirred under 2×3 W blue LEDs (450–455 nm) at room temperature with stirring for 2 h. After completion of the reaction, the reaction mixture was detected by GC-MS (Figure S3). The TEMPO-trapped product **8** was observed during the reaction. This result provided the evidence for support of the proposed mechanism.

Figure S3 GC-MS analysis of the reaction mixture.

8. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of the products

 $^{13}C\{^1H\}$ NMR Spectrum of Compound 4a (100 MHz, CDCl_3)

 $^{13}C\{^{1}H\}$ NMR Spectrum of Compound 4b (100 MHz, CDCl₃)

 $^{13}C\{^1H\}$ NMR Spectrum of Compound 4c (100 MHz, CDCl_3)

 $^{13}C\{^1H\}$ NMR Spectrum of Compound 4d (100 MHz, CDCl_3)

 $^{13}C\{^1H\}$ NMR Spectrum of Compound 4e (100 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR Spectrum of Compound 4f (100 MHz, CDCl₃)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR Spectrum of Compound 4g (100 MHz, CDCl₃)

 $^{13}C\{^1H\}$ NMR Spectrum of Compound 4h (100 MHz, CDCl_3)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR Spectrum of Compound 4i (100 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR Spectrum of Compound 4j (100 MHz, CDCl₃)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR Spectrum of Compound 4k (100 MHz, CDCl_3)

¹H NMR Spectrum of Compound **41** (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound 4m (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound **4n** (400 MHz, CDCl₃)

 ^1H NMR Spectrum of Compound 40 (400 MHz, CDCl_3)

¹H NMR Spectrum of Compound 4q (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound 4t (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound 4u (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound **5a** (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound **5c** (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound **5f** (400 MHz, CDCl₃)

 $^{19}F\{^1H\}$ NMR Spectrum of Compound $\mathbf{5g}~(376~MHz,~CDCl_3)$

 $^{13}C\{^1H\}$ NMR Spectrum of Compound **5h** (100 MHz, CDCl_3)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR Spectrum of Compound 5i (100 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR Spectrum of Compound **5**j (100 MHz, DMSO-*d*₆)

 $^{13}C\{^1H\}$ NMR Spectrum of Compound 5k (100 MHz, CDCl_3)

S68

¹H NMR Spectrum of Compound **5q** (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound **6b** (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound 6c (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound **6e** (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound **6g** (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound 6h (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound 7a (400 MHz, CDCl₃)

