Electronic Supplementary Information

Photoinduced Defluorinative Alkylation of Trifluorome-thyl alkenes with Carbonyl Derivatives by C–C Bond Scission

Lu-Yu Yan, Tian-Zhen Zhang, Ze-Zhong Lv, and Ming-Chen Fu*

Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.

E-mail: mcfu@hfut.edu.cn

Table of Contents

1. General Information	3
2. Procedure for the Synthesis of Substrates	4
3. Investigation of the Key Reaction Parameters	8
4. General Procedure and Spectral Data	11
5. Scaling-up Reaction	42
6. Preliminary Mechanistic Studies	43
7. References	46
8. NMR Spectra	48

1. General Information

1.1 Analytical Methods

The NMR spectra were recorded on a Bruker 600 MHz spectrometer. The chemical shifts (δ) in ¹H NMR were reported in ppm relative to tetramethylsilane (Me₄Si) as internal standard (0.0 ppm) or proton resonance resulting from incomplete deuteration of NMR solvent: CDCl₃ (7.26 ppm). Coupling constants (*J*) are expressed in hertz. ¹³C NMR spectra were recorded at 151 MHz, and the chemical shifts (δ) were reported in ppm relative to CDCl₃ (77.10 ppm). ¹⁹F NMR spectra were recorded at 564 MHz. HRMS analysis was performed on Finnigan LCQ advantage Max Series MS System. ESI-mass data was acquired using a Thermo LTQ Orbitrap XL Instrument equipped with an ESI source and controlled by Xcalibur software.

1.2 Materials

All reactions were carried out in oven-dried Schlenk tubes under argon atmosphere (purity \geq 99.99%) unless otherwise mentioned. Other Commercial reagents were purchased from Adamas-beta, Energy Chemical, TCI and Aldrich. Organic solutions were concentrated under reduced pressure on Buchi rotary evaporator. Flash column chromatographic purification of products was accomplished using forced-flow chromatography on silica gel (200-300 mesh). The Photo Reaction Setup was purchased from Anhui kemi machinery technology Co., Ltd.

2. Procedure for the Synthesis of Substrates

2.1 Preparation of ketone derived dihydroquinazolinones¹

A dry round-bottom flask was charged with 2-aminobenzamides (1.0 equiv.), ketone (1.05 equiv.), I_2 (5 mol%) and DMF (0.67 M). The reaction mixture was stirred at 80 °C for 18 h. After completion of the reaction, as indicated by TLC, and then cooled down to room temperature. Water was added to the mixture, and the generated solid was filtered off. The crude products were washed with water and purified by recrystallization from EtOH to give the desired product.

2.2 Preparation of aldehyde-derived 1,4-dihydropyridines (DHPs)²

A dry round-bottom flask was charged with ethyl 3-aminocrotonate (1.0 equiv.) and ethylene glycol (2.5 M). Next, ethyl acetoacetate (1.0 equiv.) was added, followed by the aldehyde (1.0 equiv.). Finally, TBAHS (12 mol %) was added in one portion. The flask was closed with a septum and heated at 80 °C for 4 h. At this time, the reaction was cooled to room temperature and diluted with EtOAc. The solution was poured into a separatory funnel containing brine and extracted three times with EtOAc. After drying over anhydrous Na₂SO₄, it was filtered and taken to dryness. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate) to give the desired product.

2.3 Preparation of trifluoromethyl alkenes

MeO

S9

S13

CI

Í

MeO.

cı⁄

S3

S7

CF₃

CF3

 CF_3

CF₃

CF₃

CF3

S2

S6

ОМе

S4

S8

Br

CF₃

°CF₃

CF3

S17

Ĭ

°CF₃

MeO

MeC

S19

Н

0

S23

S20

ΗN

ő

S16

ⁿP

″Pr

ö

S25

S26

1) Preparation of substrates S1-S22³

To a Schlenk tube equipped a magnetic stir bar, boronic acid (10 mmol, 1.0 equiv.) and Pd(PPh₃)₂Cl₂ (70.2 mg, 1 mol%) were added. The vessel was evacuated and filled with argon (three times), and then THF (30 mL) and aqueous K₂CO₃ (20 mL) were added. After the addition of 2-bromo-3,3,3-trifluoropropene (2 mL, 20 mmol, 2.0 equiv.), the reaction mixture was stirred at 60 °C for 12 h under argon atmosphere. The resultant mixture was cooled to room temperature, quenched with saturated aqueous NH₄Cl, and extracted with EtOAc (3 × 30 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate) to give the desired trifluoromethyl alkene.

2) Preparation of substrates S23-S28³

A dry round-bottom flask was charged with carboxylic acid (1.1 equiv.), DMAP (0.1 equiv.) and 4-(3,3,3-trifluoroprop-1-en-2-yl)phenol or 3-(3,3,3-trifluoroprop-1-en-2-yl)aniline (1.0 equiv.), followed by the addition of DCM (0.4 M) and EDCI (1.1 equiv.). The reaction mixture was stirred at room temperature for 12 h (TLC tracking detection). Once complete, the reaction was quenched by water. The organic layer was then separated, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The mixture was purified by column chromatography (petroleum ether/ethyl acetate) to afford the corresponding trifluoromethyl alkenes.

3) Preparation of substrates S294

Step I

To a 50 mL of sealed tube was added estrone (2.7 g, 10 mmol, 1.0 equiv.), which was dissolved in DCM (25 mL). After cooling to 0 °C, Tf₂O (2.2 mL, 13 mmol, 1.3 equiv.) was added, followed by the addition of pyridine (2.8 mL, 20 mmol, 2.0 equiv.). The mixture was stirred at 0 °C for 1h, slowly warmed to room temperature and quenched by water. The layers were separated and the aqueous layer was extracted with DCM, combined organic layers were dried over anhydrous Na₂SO₄ and solvent was removed under reduced pressure. The crude mixture was purified by

column chromatography on silica gel (petroleum ether/ethyl acetate = 10:3) to give estrone trifluoromethanesulfonic ester (2.8 g, yield: 70%) which was used in the next step.

Step II

To a 50 mL Schlenk tube equipped a magnetic stir bar, estrone trifluoromethanesulfonic ester (2.8 g, 7 mmol, 1.0 equiv.), bis(pinacolato)diboron (3.6 g, 14 mmol, 2.0 equiv.), KOAc (2.0 g, 21 mmol, 3.0 equiv.), and Pd(dppf)Cl₂ (205 mg, 4 mol%) were added, the vessel was evacuated and filled with argon (three times), and then dioxane (30 mL) was added. The tube was heated to 120 °C (oil bath). After stirring for 8 h, the reaction mixture was cooled to room temperature and diluted with THF, dried over anhydrous Na₂SO₄, then filtered and concentrated. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give the desired boronate pinacol (2.3 g, yield: 86%) which was used in the next step.

Step III

To a 50 mL Schlenk tube equipped a magnetic stir bar, boronate pinacol (2.3 g, 6 mmol, 1.0 equiv.), Cs_2CO_3 (2.4 g, 7.2 mmol, 1.2 equiv.), and Pd(dppf)Cl₂ (440 mg, 0.6 mmol, 0.1 equiv.) were added, the vessel was evacuated and filled with argon (three times), and then degassed DME (23.4 mL), degassed, deionized H₂O (7 mL) and 2-bromo-3,3,3- trifluoroprop-1-ene (1.24 mL, 12 mmol, 2.0 equiv.) were added. The tube was heated to 80 °C (oil bath) for 24 hours. Once completed, the reaction was cooled to room temperature and diluted with EtOAc (50 mL). The resultant crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the desired trifluoromethyl alkene (1.33 g, yield: 63%).

4) Preparation of substrates S30⁵

A dry round-bottom flask was charged with 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)acetic acid (1.0 equiv.), 3-(3,3,3-trifluoroprop-1-en-2-yl)aniline (1.0 equiv.) and HOBT (1.2 equiv.), followed by the addition of DCM (0.25 M), TEA (2.0 equiv.) and EDCI (1.2 equiv.). The reaction mixture was stirred at 0 °C for 12 h (TLC tracking detection). Once complete, the reaction was quenched by water. The organic layer was then separated, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The mixture was purified by column chromatography (petroleum ether/ethyl acetate = 3:1) to afford the corresponding trifluoromethyl alkene.

3. Investigation of the Key Reaction Parameters

Table S1. Screening of bases

NH H Me +	CF ₃ 4CzIPN (2 base (1.5 DMF (1 mL), 7 40 W blue	2 mol%) equiv.) Ar, r.t., 24 h e LEDs Ph
1A, 0.1 mmol	2 , 1.5 mmol	3
entry	base	yield (%)
1	KOAc	23
2	K ₂ HPO ₄	trace
3	Na ₂ HPO ₄	trace
4	K_2CO_3	85
5	Na ₂ CO ₃	92
6	Cs_2CO_3	60
7	2,4,6-collidine	trace
8	DIPEA	n.d.

Reaction conditions: **1A** (0.1 mmol, 1.0 equiv.), **2** (0.15 mmol, 1.5 equiv.), 4CzIPN (2 mol%), base (0.15 mmol, 1.5 equiv.), DMF (1 mL), stirred at room temperature for 24 h under 40 W blue LEDs irradiation. Isolated yield. n.d. = not detected.

Table S2. Screening of solvents

NH NH H Me +	Ph CF ₃ 4Czl Na ₂ C solvent (1 40 ¹	PN (2 mol%) O ₃ (1.5 equiv.) mL), Ar, r.t., 24 h W blue LEDs	\square
1A , 0.1 mmol	2 , 1.5 mmol	3	
entry	solvent	yield (%)	
1	DMSO	73	
2	DMA	58	
3	MeCN	trace	
4	THF	trace	
5	acetone	trace	
6	EA	n.d.	
7	dioxane	n.d.	
8	toluene	n.d.	
9	DMF	92	
		-	

Reaction conditions: **1A** (0.1 mmol, 1.0 equiv.), **2** (0.15 mmol, 1.5 equiv.), 4CzIPN (2 mol%), Na₂CO₃ (0.15 mmol, 1.5 equiv.), solvent (1 mL), stirred at room temperature for 24 h under 40 W blue LEDs irradiation. Isolated yield. n.d. = not detected.

Table S3. Screening of catalyst

NH NH Me +	Ph CF3 PC (2 mol%) Na ₂ CO ₃ (1.5 equiv.) DMF (1 mL), Ar, r.t., 24 h 40 W blue LEDs	Ph
1A, 0.1 mmol	2 , 1.5 mmol	3
entry	catalyst	yield (%)
1	[Ir(dFppy)2(dtbbpy)]PF6	70
2	[Ir(dtbbpy)(ppy) ₂]PF ₆	70
3	[Ir(dF(CF ₃)ppy) ₂ (dtbbpy)]PF ₆	83
4	Ir(ppy) ₃	n.d.
5	4DPAIPN	52
6	3DPA2FBN	trace
7	4CzIPN	92
8	Eosin Y	8

Reaction conditions: **1A** (0.1 mmol, 1.0 equiv.), **2** (0.15 mmol, 1.5 equiv.), PC (2 mol%), Na_2CO_3 (0.15 mmol, 1.5 equiv.), DMF (1 mL), stirred at room temperature for 24 h under 40 W blue LEDs irradiation. Isolated yield. n.d. = not detected.

[lr(dFppy)₂(dtbbpy)]PF₆

lr(ppy)₃

4CzIPN

[Ir(dtbbpy)(ppy)2]PF6

3DPA2FBN

Table S4. Control experiments

	+ Ph + F Ph + CF3 + Standard condition 4CzIPN (2 mol%) Na ₂ CO ₃ (1.5 equiv.) DMF (1 mL), Ar, r.t., 24 h 40 W blue LEDs	Ph CF2
1A , 0.1 mmol	2 , 1.5 mmol	3
entry	variation from standard conditions	yield (%)
1	390 nm blue LEDs	30
2	420 nm blue LEDs	74
3	450 nm blue LEDs	82
4	without light	n.d.
5	without base	8
6	without PC	n.d.
7	reaction time: 15 h	53
8	0.1 mmol Na ₂ CO ₃	57
9	0.2 mmol Na ₂ CO ₃	81
10	1B instead of 1A	56
11	1B . Eosin Y instead of 1A . 4CzIPN	83

Standard conditions: **1A** (0.1 mmol, 1.0 equiv.), **2** (0.15 mmol, 1.5 equiv.), 4CzIPN (2 mol%), Na₂CO₃ (0.15 mmol, 1.5 equiv.), in DMF (1 mL), stirred at room temperature for 24 h under 40 W blue LEDs irradiation. Isolated yield. n.d. = not detected.

Scheme S1. Failed substrates

4. General Procedure and Spectral Data

4.1 General Procedure A

Dihydroquinazolinones (0.1 mmol, 1.0 equiv.), trifluoromethyl alkenes (0.15 mmol, 1.5 equiv.) (if solid), 4CzIPN (2 - 4 mol%), Na₂CO₃ (0.15 mmol, 1.5 equiv.) were added in 10 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for three times). To this solid, trifluoromethyl alkenes (1.5 mmol, 1.5 equiv.) (if liquid) and anhydrous DMF (1 mL) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under irradiation with 40 W blue LEDs, maintained at approximately room temperature in the airconditioned room of 25 °C. After 24 h, ethyl acetate (5 mL) was added to the reaction mixture. The resulting solution was washed with brine (3×10 mL) and dried over anhydrous Na₂SO₄. The organic layers were combined and concentrated on rotary evaporator. The residue was purified by flash column chromatography on silica gel to give the product (Eluent: petroleum ether/ethyl acetate).

4.2 General Procedure B

1,4-dihydropyridines (0.1 mmol, 1.0 equiv.) (if solid), 4-(3,3,3-trifluoroprop-1-en-2-yl)-1,1'biphenyl (0.15 mmol, 1.5 equiv.), Eosin Y (2 - 4 mol%), Na₂CO₃ (0.15 mmol, 1.5 equiv.) were added in 10 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for three times). To this solid, 1,4-dihydropyridines (1.0 equiv., 0.1 mmol) (if liquid) and anhydrous DMF (1 mL) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under irradiation with 40 W blue LEDs, maintained at approximately room temperature in the air-conditioned room of 25 °C. After 24 h, ethyl acetate (5 mL) was added to the reaction mixture. The resulting solution was washed with brine (3 × 10 mL) and dried over anhydrous Na₂SO₄. The organic layers were combined and concentrated on rotary evaporator. The residue was purified by flash column chromatography on silica gel to give the product (Eluent: petroleum ether/ethyl acetate).

Reaction Setup

Figure S1 Photo-reaction setup and reaction tube

4.3 Characterization data for the products

4-(3-cyclohexyl-1,1-difluoroprop-1-en-2-yl)-1,1'-biphenyl (3)⁶

The substrate was prepared following the general procedure A using **S1** (37.3 mg, 0.15 mmol, 1.5 equiv.), 2-cyclohexyl-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (24.4 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (1.6 mg, 2 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **3** was isolated using flash column chromatography on silica gel (petroleum ether) as a white solid (28.7 mg, 92%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.66 – 7.56 (m, 4H), 7.49 – 7.33 (m, 5H), 2.36 – 2.27 (m, 2H), 1.77 – 1.61 (m, 5H), 1.38 – 1.29 (m, 1H), 1.22 – 1.10 (m, 3H), 1.02 – 0.87 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 154.06 (dd, *J* = 290.7, 286.2 Hz), 140.58, 139.83, 133.06 (dd, *J* = 4.6, 3.3 Hz), 128.78, 128.59 (t, *J* = 3.3 Hz), 127.34, 127.03, 126.99, 90.77 (dd, *J* = 22.1, 12.2 Hz), 35.73, 35.11, 32.89, 26.41, 26.06.

¹⁹**F** NMR (564 MHz, CDCl₃) δ -90.72 (d, J = 43.2 Hz, 1F), -91.27 (d, J = 43.3 Hz, 1F).

4-(1,1-difluoro-4-(p-tolyl)but-1-en-2-yl)-1,1'-biphenyl (4)

The substrate was prepared following the general procedure A using **S1** (24.8 mg, 0.1 mmol, 1.0 equiv.), 2-methyl-2-(4-methylbenzyl)-2,3-dihydroquinazolin-4(1*H*)-one (53.2 mg, 0.2 mmol, 2.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **4** was isolated using flash column chromatography on silica gel (petroleum ether) as a white solid (23.7 mg, 71%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.69 – 7.59 (m, 4H), 7.50 – 7.35 (m, 5H), 7.11 (d, *J* = 7.9 Hz, 2H), 7.07 (d, *J* = 7.9 Hz, 2H), 2.77 – 2.71 (m, 2H), 2.71 – 2.66 (m, 2H), 2.34 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 153.81 (dd, *J* = 291.2, 287.2 Hz), 140.55, 140.06, 137.92, 135.56, 132.49 – 132.41 (m), 129.06, 128.81, 128.61 (t, *J* = 3.4 Hz), 128.27, 127.40, 127.16, 127.02, 91.63 (dd, *J* = 21.9, 13.0 Hz), 36.67 (t, *J* = 1.51 Hz), 29.69 (d, *J* = 1.3 Hz), 21.03.

¹⁹**F NMR (564 MHz, CDCl₃)** δ -90.51 (d, J = 41.8 Hz, 1F), -90.99 (d, J = 41.8 Hz, 1F). **HRMS** (ESI) (m/z): [M+Na]⁺ Calcd for C₂₃H₂₀F₂Na⁺, 357.1425; found: 357.1429.

4,4"-(4,4-difluorobut-3-ene-1,3-diyl)di-1,1'-biphenyl (5)

The substrate was prepared following the general procedure A using **S1** (24.8 mg, 0.1 mmol, 1.0 equiv.), 2-([1,1'-biphenyl]-4-ylmethyl)-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (65.6 mg, 0.2 mmol, 2.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **5** was isolated using flash column chromatography on silica gel (petroleum ether) as a white solid (32.9 mg, 83%).

¹**H NMR (600 MHz, CDCl**₃) δ 7.68 – 7.59 (m, 6H), 7.57 – 7.42 (m, 8H), 7.42 – 7.33 (m, 2H), 7.28 – 7.22 (m, 2H), 2.85 – 2.73 (m, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 153.86 (dd, *J* = 291.4, 287.4 Hz), 141.00, 140.54, 140.13, 140.10, 139.08, 132.39 (dd, *J* = 4.3, 3.6 Hz), 128.85, 128.83, 128.74, 128.64 (t, *J* = 3.3 Hz), 127.44, 127.21, 127.12, 127.09, 127.04, 127.01, 91.60 (dd, *J* = 21.9, 13.1 Hz), 33.77 (t, *J* = 3.02 Hz), 29.54 (d, *J* = 1.1 Hz).

¹⁹**F NMR (564 MHz, CDCl₃)** δ -86.17 (d, J = 41.5 Hz, 1F), -86.66 (d, J = 41.5 Hz, 1F). **HRMS** (ESI) (m/z): [M+H]⁺ Calcd for C₂₈H₂₃F₂⁺, 397.1762; found: 397.1755.

4-(1,1-difluoro-4-(4-fluorophenyl)but-1-en-2-yl)-1,1'-biphenyl (6)

The substrate was prepared following the general procedure A using **S1** (24.8 mg, 0.1 mmol, 1.0 equiv.), 2-(4-fluorobenzyl)-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (54.0 mg, 0.2 mmol, 2.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **6** was isolated using flash column chromatography on silica gel (petroleum ether) as a colorless oil (26.4 mg, 78%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.65 – 7.58 (m, 4H), 7.49 – 7.35 (m, 5H), 7.14 – 7.06 (m, 2H), 6.97 (t, *J* = 8.7 Hz, 2H), 2.77 – 2.64 (m, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 161.41 (d, *J* = 243.8 Hz), 153.85 (dd, *J* = 291.5, 287.4 Hz), 140.48, 140.16, 136.52 (d, *J* = 3.3 Hz), 132.23 (dd, *J* = 4.3, 3.6 Hz), 129.80 (d, *J* = 7.9 Hz), 128.83, 128.59 (t, *J* = 3.3 Hz), 127.45, 127.21, 127.01, 115.11 (d, *J* = 21.2 Hz), 91.31 (dd, *J* = 21.8, 13.1 Hz), 33.18 (t, *J* = 2.2 Hz), 29.59.

¹⁹**F** NMR (564 MHz, CDCl₃) δ -90.42 (d, J = 41.4 Hz, 1F), -90.82 (d, J = 41.4 Hz, 1F), -116.02 - - 118.66 (m, 1F).

HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₂₂H₁₇F₃Na⁺, 361.1175; found: 361.1171.

4-(4-(4-chlorophenyl)-1,1-difluorobut-1-en-2-yl)-1,1'-biphenyl (7)

The substrate was prepared following the general procedure A using **S1** (24.8 mg, 0.1 mmol, 1.0 equiv.), 2-(4-chlorobenzyl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one (57.2 mg, 0.2 mmol, 2.0

equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **7** was isolated using flash column chromatography on silica gel (petroleum ether) as a colorless oil (24.8 mg, 70%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.66 – 7.57 (m, 4H), 7.51 – 7.34 (m, 5H), 7.27 – 7.23 (m, 2H), 7.12 – 7.04 (m, 2H), 2.76 – 2.71 (m, 2H), 2.70 – 2.65 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 153.83 (dd, *J* = 291.5, 287.4 Hz), 140.46, 140.19, 139.32, 132.17 - 132.09 (m), 131.85, 129.79, 128.83, 128.58 (t, *J* = 3.3 Hz), 128.46, 127.46, 127.22, 127.01, 91.24 (dd, *J* = 21.8, 13.3 Hz), 33.32 (t, *J* = 3.02), 29.35.

¹⁹**F NMR (564 MHz, CDCl₃)** δ -90.31 (d, J = 41.2 Hz, 1F), -90.73 (d, J = 41.2 Hz, 1F). **HRMS** (ESI) (m/z): [M+Na]⁺ Calcd for C₂₂H₁₇ClF₂Na⁺, 377.0879; found: 377.0885.

4-(1,1-difluoro-4-phenylbut-1-en-2-yl)-1,1'-biphenyl (8)⁷

The substrate was prepared following the general procedure A using **S1** (24.8 mg, 0.1 mmol, 1.0 equiv.), 2-benzyl-2-phenyl-2,3-dihydroquinazolin-4(1*H*)-one (62.8 mg, 0.2 mmol, 2.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **8** was isolated using flash column chromatography on silica gel (petroleum ether) as a colorless oil (20.5 mg, 64%).

¹**H NMR (600 MHz, CDCl**₃) δ 7.66 – 7.60 (m, 4H), 7.51 – 7.45 (m, 2H), 7.44 – 7.36 (m, 3H), 7.34 – 7.28 (m, 2H), 7.24 – 7.15 (m, 3H), 2.80 – 2.70 (m, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 153.83 (dd, *J* = 291.3, 287.3 Hz), 141.00, 140.54, 140.09, 132.43 - 132.36 (m), 128.82, 128.61 (t, *J* = 3.4 Hz), 128.42, 128.39, 127.42, 127.19, 127.02, 126.11, 91.55 (dd, *J* = 21.9, 13.0 Hz), 34.10 (t, *J* = 2.6 Hz), 29.58 (d, *J* = 1.4 Hz).

¹⁹**F** NMR (564 MHz, CDCl₃) δ -90.45 (d, J = 41.6 Hz), -90.92 (d, J = 41.6 Hz).

4-(5-(3,4-dimethoxyphenyl)-1,1-difluoropent-1-en-2-yl)-1,1'-biphenyl (9)

The substrate was prepared following the general procedure A using **S1** (24.8 mg, 0.1 mmol, 1.0 equiv.), 2-(3,4-dimethoxyphenethyl)-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (48.9 mg, 0.15 mmol, 1.5 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **9** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (18.9 mg, 48%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.61 – 7.57 (m, 4H), 7.48 – 7.32 (m, 5H), 6.78 (d, *J* = 8.1 Hz, 1H), 6.70 – 6.62 (m, 2H), 3.85 (s, 3H), 3.83 (s, 3H), 2.59 (t, *J* = 7.6 Hz, 2H), 2.49 – 2.45 (m, 2H), 1.76 – 1.69 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 153.65 (dd, J = 290.8, 287.0 Hz), 148.75, 147.14, 140.50, 140.01, 134.40, 132.52 (dd, J = 4.0, 3.1 Hz), 128.80, 128.57 (t, J = 3.3 Hz), 127.40, 127.08, 126.97, 120.17, 111.58, 111.12, 91.91 (dd, J = 21.6, 13.0 Hz), 55.91, 55.75, 34.74, 29.52 (t, J = 2.2 Hz), 27.00. ¹⁹F NMR (564 MHz, CDCl₃) δ -90.84 (d, J = 43.0 Hz, 1F), -91.03 (d, J = 43.0 Hz, 1F). HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₂₅H₂₄F₂NaO₂⁺, 417.1637; found: 417.1631.

4-(1,1-difluoro-4-(4-(trifluoromethyl)phenyl)but-1-en-2-yl)-1,1'-biphenyl (10)

The substrate was prepared following the general procedure A using **S1** (24.8 mg, 0.1 mmol, 1.0 equiv.), 2-methyl-2-(4-(trifluoromethyl)benzyl)-2,3-dihydroquinazolin-4(1*H*)-one (64.0 mg, 0.2 mmol, 2.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **10** was isolated using flash column chromatography on silica gel (petroleum ether) as a colorless oil (27.5 mg, 71%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.70 – 7.58 (m, 4H), 7.47 (t, *J* = 7.7 Hz, 3H), 7.43 – 7.32 (m, 6H), 2.78 (s, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 153.87 (dd, *J* = 291.6, 287.7 Hz), 141.71, 140.46, 140.28, 132.04 - 131.96 (m), 131.86 (d, *J* = 0.9 Hz), 130.63 (q, *J* = 32.0 Hz), 128.84, 128.79, 128.60 (t, *J* = 3.3 Hz), 127.48, 127.27, 127.02, 125.22 (q, *J* = 3.8 Hz), 123.04 (q, *J* = 3.9 Hz), 91.14 (dd, *J* = 21.7, 13.5 Hz), 33.77 (t, *J* = 2.3 Hz), 29.21 (d, *J* = 1.3 Hz).

¹⁹**F NMR (564 MHz, CDCl₃)** δ -62.59 (s, 3F), -90.29 (d, *J* = 41.0 Hz, 1F), -90.68 (d, *J* = 40.7 Hz, 1F).

HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₂₃H₁₇F₅Na⁺, 411.1143; found: 411.1149.

4-(1,1-difluoro-4-(4-methoxyphenyl)but-1-en-2-yl)-1,1'-biphenyl (11)

The substrate was prepared following the general procedure A using **S1** (24.8 mg, 0.1 mmol, 1.0 equiv.), 2-(4-methoxybenzyl)-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (56.4 mg, 0.2 mmol, 2.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **11** was isolated using flash column chromatography on silica gel (petroleum ether) as a colorless oil (17.5 mg, 50%).

¹**H NMR (600 MHz, CDCl**₃) δ 7.65 – 7.60 (m, 4H), 7.42 (m, 5H), 7.09 (d, *J* = 8.5 Hz, 2H), 6.84 (d, *J* = 8.5 Hz, 2H), 3.80 (s, 3H), 2.99 – 2.49 (m, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 157.93, 153.81 (dd, *J* = 291.3, 287.3 Hz), 140.53, 140.04, 133.06, 132.47 – 132.39 (m), 129.34, 128.82, 128.61 (t, *J* = 3.3 Hz), 127.41, 127.16, 127.02, 113.76, 91.54 (dd, *J* = 22.1, 12.8 Hz), 55.25, 33.15 (t, *J* = 3.02 Hz), 29.77.

¹⁹F NMR (564 MHz, CDCl₃) δ -90.83 (d, *J* = 43.6 Hz, 1F), -91.24 (d, *J* = 43.5 Hz, 1F).

HRMS (ESI) (m/z): $[M+Na]^+$ Calcd for $C_{23}H_{20}F_2NaO^+$, 373.1374; found: 373.1365.

4-(4-(2-bromophenyl)-1,1-difluorobut-1-en-2-yl)-1,1'-biphenyl (12)

The substrate was prepared following the general procedure A using **S1** (24.8 mg, 0.1 mmol, 1.0 equiv.), 2-(2-bromobenzyl)-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (66.0 mg, 0.2 mmol, 2.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **12** was isolated using flash column chromatography on silica gel (petroleum ether) as a colorless oil (21.5 mg, 54%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.65 – 7.60 (m, 4H), 7.55 – 7.43 (m, 5H), 7.37 (t, *J* = 7.3 Hz, 1H), 7.23 (t, *J* = 7.4 Hz, 1H), 7.17 (d, *J* = 6.4 Hz, 1H), 7.09 – 7.05 (m, 1H), 2.90 – 2.71 (m, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 153.95 (dd, J = 292.0, 287.9 Hz), 140.52, 140.27, 140.07, 132.86, 132.27 – 132.18 (m), 130.59, 128.81, 128.56 (t, J = 3.5 Hz), 127.93, 127.43, 127.41, 127.14, 127.00, 124.31, 91.38 (dd, J = 21.9, 12.9 Hz), 34.78 (dd, J = 3.0, 2.2 Hz), 27.82 (d, J = 1.5 Hz). ¹⁹F NMR (564 MHz, CDCl₃) δ -89.74 (d, J = 40.3 Hz, 1F), -90.47 (d, J = 40.3 Hz, 1F). HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₂₂H₁₇BrF₂Na⁺, 421.0374; found: 421.0378.

tert-butyl 4-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)piperidine-1-carboxylate (13)⁶

The substrate was prepared following the general procedure A using **S1** (24.8 mg, 0.1 mmol, 1.0 equiv.), *tert*-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (51.8 mg, 0.15 mmol, 1.5 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **13** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (29.7 mg, 72%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.63 – 7.57 (m, 4H), 7.49 – 7.41 (m, 2H), 7.41 – 7.34 (m, 3H), 4.05 (s, 2H), 2.59 (t, *J* = 12.3 Hz, 2H), 2.38 (dt, *J* = 7.2, 2.4 Hz, 2H), 1.73 – 1.59 (m, 2H), 1.53 – 1.42 (m, 10H), 1.20 – 1.08 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 154.77, 154.25 (dd, J = 291.4, 286.9 Hz), 140.42, 140.11, 132.53 (dd, J = 4.3, 3.6 Hz), 128.81, 128.51 (t, J = 3.3 Hz), 127.44, 127.18, 126.98, 90.21 (dd, J = 22.1, 12.9 Hz), 79.28, 43.84, 34.28 (t, J = 2.2 Hz), 31.73, 28.45. (one carbon signal was overlapped). ¹⁹F NMR (564 MHz, CDCl₃) δ -90.09 (d, J = 41.8 Hz, 1F), -90.56 (d, J = 41.8 Hz, 1F).

4-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)tetrahydro-2H-pyran (14)⁶

The substrate was prepared following the general procedure A using **S1** (24.8 mg, 0.1 mmol, 1.0 equiv.), 2-methyl-2-(tetrahydro-2*H*-pyran-4-yl)-2,3-dihydroquinazolin-4(1*H*)-one (49.2 mg, 0.2 mmol, 2.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **14** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a yellow solid (15.7 mg, 50%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.63 – 7.58 (m, 4H), 7.49 – 7.33 (m, 5H), 3.96 – 3.87 (m, 2H), 3.32 – 3.24 (m, 2H), 2.47 – 2.33 (m, 2H), 1.62 – 1.52 (m, 3H), 1.38 – 1.29 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 154.15 (dd, *J* = 291.2, 286.9 Hz), 140.43, 140.09, 132.57 (dd, *J* = 5.1, 2.6 Hz), 128.81, 128.52 (t, *J* = 3.3 Hz), 127.44, 127.17, 126.98, 90.05 (dd, *J* = 22.1, 12.9 Hz), 67.79, 34.60, 33.24 (t, *J* = 2.4 Hz), 32.63.

¹⁹F NMR (564 MHz, CDCl₃) δ -90.17 (d, J = 41.5 Hz, 1F), -90.59 (d, J = 42.2 Hz, 1F).

4-(3-cyclopentyl-1,1-difluoroprop-1-en-2-yl)-1,1'-biphenyl (15)⁶

The substrate was prepared following the general procedure A using **S1** (24.8 mg, 0.1 mmol, 1.0 equiv.), 2-cyclopentyl-2-methyl-2,3-dihydroquinazolin-4(1H)-one (46.0 mg, 0.2 mmol, 2.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **15** was isolated using flash column chromatography on silica gel (petroleum ether) as a white solid (20.1 mg, 67%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.64 – 7.57 (m, 4H), 7.47 – 7.33 (m, 5H), 2.43 (dt, *J* = 7.2, 2.4 Hz, 2H), 1.94 – 1.80 (m, 1H), 1.77 – 1.66 (m, 2H), 1.65 – 1.59 (m, 2H), 1.53 – 1.42 (m, 2H), 1.23 – 1.10 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 153.93 (dd, *J* = 290.1, 286.1 Hz), 140.59, 139.90, 132.95 (dd, *J* = 4.5, 3.1 Hz), 128.77, 128.68 (t, *J* = 3.2 Hz), 127.33, 127.02, 127.00, 92.03 (dd, *J* = 22.0, 12.3 Hz), 38.26 (t, *J* = 2.3 Hz), 33.46, 32.15, 24.98.

¹⁹**F NMR (564 MHz, CDCl**₃) δ -91.57 (d, *J* = 44.4 Hz, 1F), -91.98 (d, *J* = 44.4 Hz, 1F).

4-(1,1-difluoro-4-methylhex-1-en-2-yl)-1,1'-biphenyl (16)⁶

The substrate was prepared following the general procedure A using **S1** (24.8 mg, 0.1 mmol, 1.0 equiv.), 2-(*sec*-butyl)-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (32.7 mg, 0.15 mmol, 1.5 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **16** was isolated using flash column chromatography on silica gel (petroleum ether) as a colorless oil (21.7 mg, 76%).

¹H NMR (600 MHz, CDCl₃) δ 7.63 – 7.57 (m, 4H), 7.48 – 7.42 (m, 2H), 7.42 – 7.33 (m, 3H), 2.47 – 2.41 (m, 1H), 2.27 – 2.21 (m, 1H), 1.45 – 1.36 (m, 2H), 1.23 – 1.13 (m, 1H), 0.90 – 0.85 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 154.04 (dd, J = 290.4, 286.3 Hz), 140.57, 139.87, 132.90 (dd, J = 4.3, 3.5 Hz), 128.78, 128.62 (t, J = 3.2 Hz), 127.34, 127.04, 127.00, 91.25 (dd, J = 22.0, 12.4 Hz), 34.49, 32.65 (t, J = 2.2 Hz), 29.07, 18.62, 11.27.

¹⁹**F NMR (564 MHz, CDCl**₃) δ -91.05 (d, *J* = 43.6 Hz, 1F), -91.37 (d, *J* = 43.6 Hz, 1F).

4-(1,1-difluoro-4,4-dimethylpent-1-en-2-yl)-1,1'-biphenyl (17)⁸

The substrate was prepared following the general procedure A using **S1** (24.8 mg, 0.1 mmol, 1.0 equiv.), 2-(tert-butyl)-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (43.6 mg, 0.2 mmol, 2.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product**17**was isolated using flash column chromatography on silica gel (petroleum ether) as a white solid (17.4 mg, 61%).

¹**H** NMR (**600 MHz, CDCl**₃) δ 7.59 (dd, *J* = 20.8, 7.8 Hz, 4H), 7.48 – 7.32 (m, 5H), 2.38 (s, 2H), 0.84 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 154.43 (dd, *J* = 290.3, 287.8 Hz), 140.54, 139.66, 134.55 (dd, *J* = 4.6, 2.9 Hz), 128.77, 128.75, 127.31, 126.96, 126.89, 90.81 (dd, *J* = 21.5, 12.6 Hz), 41.03, 32.77 (t, *J* = 2.5 Hz), 29.77.

¹⁹**F** NMR (564 MHz, CDCl₃) δ -89.32 (d, J = 40.3 Hz, 1F), -91.99 (d, J = 40.3 Hz, 1F).

(3r,5r,7r)-1-(3,3-difluoro-2-(naphthalen-2-yl)allyl)adamantane (18)⁹

The substrate was prepared following the general procedure A using **S13** (33.3 mg, 0.15 mmol, 1.5 equiv.), 2-((3r,5r,7r)-adamantan-1-yl)-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (29.6 mg, 0.1

mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **18** was isolated using flash column chromatography on silica gel (petroleum ether) as a white solid (28.4 mg, 84%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.92 – 7.76 (m, 4H), 7.55 – 7.41 (m, 3H), 2.32 (t, 2H), 1.85 (br s, 3H), 1.64 – 1.50 (m, 6H), 1.44 – 1.38 (m, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 154.58 (dd, *J* = 291.0, 287.6 Hz), 133.37 (dd, *J* = 4.7, 3.1 Hz), 133.21, 132.28, 127.88, 127.77, 127.58, 127.19 (t, *J* = 3.0 Hz), 126.48 (t, *J* = 2.8 Hz), 126.12, 125.90, 89.83 (dd, *J* = 22.0, 12.3 Hz), 42.67, 41.99, 36.83, 34.71, 28.57.

¹⁹**F** NMR (564 MHz, CDCl₃) δ -88.48 (d, J = 39.9 Hz, 1F), -91.80 (d, J = 39.8 Hz, 1F).

4,4-difluoro-3-(naphthalen-2-yl)-1-phenylbut-3-en-1-one (19)

The substrate was prepared following the general procedure A using **S13** (22.2 mg, 0.1 mmol, 1.0 equiv.), 2-benzoyl-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (53.2 mg, 0.2 mmol, 2.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **19** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a white solid (19.4 mg, 63%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.99 (d, *J* = 7.5 Hz, 2H), 7.83 – 7.75 (m, 4H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.51 – 7.43 (m, 5H), 4.17 (t, *J* = 1.8 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 195.34 (dd, *J* = 3.3, 2.3 Hz), 154.92 (dd, *J* = 292.6, 288.6 Hz), 136.28, 133.46, 133.17, 132.47, 130.89 (t, *J* = 4.0 Hz), 128.73, 128.16, 128.15, 127.97, 127.55, 127.10 (t, *J* = 3.5 Hz), 126.26, 126.19, 125.80 (dd, *J* = 4.1, 2.6 Hz), 87.33 (dd, *J* = 22.0, 17.3 Hz), 38.49 (d, *J* = 2.5 Hz).

¹⁹**F NMR (564 MHz, CDCl₃)** δ -87.62 (d, *J* = 35.6 Hz, 1F), -88.80 (d, *J* = 35.9 Hz, 1F). **HRMS** (ESI) (m/z): [M+Na]⁺ Calcd for C₂₀H₁₄F₂NaO⁺, 331.0905; found: 331.0901.

4-(1,1-difluoro-4-phenoxybut-1-en-2-yl)-1,1'-biphenyl (20)

The substrate was prepared following the general procedure A using **S1** (24.8 mg, 0.1 mmol, 1.0 equiv.), 2-methyl-2-(phenoxymethyl)-2,3-dihydroquinazolin-4(1*H*)-one (53.6 mg, 0.2 mmol, 2.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **20** was isolated using flash column chromatography on silica gel (petroleum ether) as a colorless oil (26.9 mg, 80%).

¹H NMR (600 MHz, CDCl₃) δ 7.64 – 7.57 (m, 4H), 7.50 – 7.33 (m, 5H), 7.30 – 7.22 (m, 2H), 6.97 – 6.90 (m, 1H), 6.86 (d, J = 8.5 Hz, 2H), 4.02 (t, J = 6.9 Hz, 2H), 2.93 (dd, J = 9.4, 4.2 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 158.58, 154.31 (dd, J = 291.4, 288.7 Hz), 140.47, 140.29, 132.13 – 132.03 (m), 129.43, 128.82, 128.63 (t, J = 3.3 Hz), 127.46, 127.22, 127.02, 120.85, 114.53, 88.98 (dd, J = 21.6, 15.0 Hz), 65.37 (t, J = 3.02 Hz), 28.10 (d, J = 1.4 Hz). ¹⁹F NMR (564 MHz, CDCl₃) δ -89.09 (d, J = 39.0 Hz, 1F), -89.42 (d, J = 39.0 Hz, 1F). HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₂₂H₁₈F₂NaO⁺, 359.1218; found: 359.1223.

2-(1,1-difluoro-4,4-dimethoxybut-1-en-2-yl)naphthalene (21)

The substrate was prepared following the general procedure A using **S13** (33.3 mg, 0.15 mmol, 1.5 equiv.), 2-(dimethoxymethyl)-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (23.6 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **21** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (26.1 mg, 94%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.87 – 7.78 (m, 4H), 7.52 – 7.45 (m, 3H), 4.37 (t, *J* = 5.8 Hz, 1H), 3.29 (d, *J* = 1.1 Hz, 6H), 2.80 (dd, *J* = 3.9, 1.5 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 154.53 (dd, *J* = 290.4, 288.6 Hz), 133.22, 132.50, 130.81 (dd, *J* = 4.1, 3.1 Hz), 128.11, 127.95, 127.59, 127.47 (t, *J* = 3.2 Hz), 126.29, 126.21 – 126.14 (m), 102.38 (dd, *J* = 3.7, 2.8 Hz), 88.75 (dd, *J* = 21.5, 16.3 Hz), 53.09, 31.88 (d, *J* = 1.5 Hz). (one carbon signal was overlapped).

¹⁹**F** NMR (564 MHz, CDCl₃) δ -89.82 (d, J = 39.4 Hz, 1F), -90.02 (d, J = 39.2 Hz, 1F). HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₁₆H₁₆F₂NaO₂⁺, 301.1011; found: 301.1016.

4-(1,1-difluoro-5-(4-isopropylphenyl)-4-methylpent-1-en-2-yl)-1,1'-biphenyl (22)

The substrate was prepared following the general procedure B using **S1** (37.3 mg, 0.15 mmol, 1.5 equiv.), diethyl 4-(1-(4-isopropylphenyl)propan-2-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (41.3 mg, 0.1 mmol, 1.0 equiv.), Eosin Y (1.3 mg, 2 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **22** was isolated using flash column chromatography on silica gel (petroleum ether) as a colorless oil (29.3 mg, 75%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.65 – 7.55 (m, 4H), 7.49 – 7.29 (m, 5H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.01 (d, *J* = 8.0 Hz, 2H), 2.93 – 2.83 (m, 1H), 2.65 (dd, *J* = 13.5, 6.2 Hz, 1H), 2.55 – 2.46 (m, 1H),

2.41 (dd, *J* = 13.5, 8.2 Hz, 1H), 2.36 – 2.24 (m, 1H), 1.83 – 1.74 (m, 1H), 1.26 (d, *J* = 6.9 Hz, 6H), 0.89 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 154.07 (dd, *J* = 290.8, 286.5 Hz), 146.37, 140.58, 139.93, 138.09, 132.61 – 132.53 (m), 128.99, 128.80, 128.60 (t, *J* = 3.2 Hz), 127.37, 127.04, 127.01, 126.18, 91.15 (dd, *J* = 21.9, 12.6 Hz), 42.74, 34.37, 33.69, 33.27 (t, *J* = 2.2 Hz), 24.09, 19.16.

¹⁹**F NMR (564 MHz, CDCl₃)** δ -90.64 (d, J = 42.9 Hz, 1F), -90.94 (d, J = 43.0 Hz, 1F).

HRMS (ESI) (m/z): $[M+Na]^+$ Calcd for $C_{27}H_{28}F_2Na^+$, 413.2051; found: 413.2054.

4-(1,1-difluoro-4-phenylpent-1-en-2-yl)-1,1'-biphenyl (23)

The substrate was prepared following the general procedure B using **S1** (37.3 mg, 0.15 mmol, 1.5 equiv.), diethyl 2,6-dimethyl-4-(1-phenylethyl)-1,4-dihydropyridine-3,5-dicarboxylate (35.7 mg, 0.1 mmol, 1.0 equiv.), Eosin Y (1.3 mg, 2 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **23** was isolated using flash column chromatography on silica gel (petroleum ether) as a colorless oil (22.4 mg, 67%).

¹H NMR (600 MHz, CDCl₃) δ 7.65 – 7.57 (m, 4H), 7.50 – 7.32 (m, 5H), 7.29 (t, J = 7.6 Hz, 2H), 7.20 (t, J = 7.3 Hz, 1H), 7.15 (d, J = 7.2 Hz, 2H), 2.79 – 2.63 (m, 3H), 1.27 (d, J = 6.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 154.13 (dd, J = 290.8, 287.0 Hz), 146.16, 140.54, 140.02, 132.43 (dd, J = 4.5, 3.2 Hz), 128.80, 128.71 (t, J = 3.1 Hz), 128.34, 127.39, 127.10, 127.00, 126.94, 126.23, 90.98 (dd, J = 21.8, 13.2 Hz), 37.74 (t, J = 2.3 Hz), 36.22 (d, J = 1.0 Hz), 21.10. ¹⁹F NMR (564 MHz, CDCl₃) δ -90.59 (d, J = 41.8 Hz, 1F), -91.28 (d, J = 41.8 Hz, 1F).

HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₂₃H₂₀F₂Na⁺, 357.1425; found: 357.1421.

4-(4-(4-bromophenyl)-1,1-difluorobut-1-en-2-yl)-1,1'-biphenyl (24)

The substrate was prepared following the general procedure B using **S1** (37.3 mg, 0.15 mmol, 1.5 equiv.), diethyl 4-(4-bromobenzyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (42.1 mg, 0.1 mmol, 1.0 equiv.), Eosin Y (1.3 mg, 2 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **24** was isolated using flash column chromatography on silica gel (petroleum ether) as a colorless oil (27.9 mg, 70%).

¹**H NMR (600 MHz, CDCl**₃) δ 7.67 – 7.59 (m, 4H), 7.50 – 7.35 (m, 7H), 7.03 (d, *J* = 8.3 Hz, 2H), 2.76 – 2.65 (m, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 153.83 (dd, J = 291.5, 287.4 Hz), 140.46, 140.20, 139.84, 132.15 - 132.07 (m), 131.43, 130.21, 128.84, 128.59 (t, J = 3.3 Hz), 127.47, 127.23, 127.02, 119.90, 91.24 (dd, J = 21.8, 13.2 Hz), 33.39 (t, J = 3.02 Hz), 29.28 (d, J = 1.5 Hz). ¹⁹F NMR (564 MHz, CDCl₃) δ -90.30 (d, J = 41.2 Hz, 1F), -90.71 (d, J = 41.2 Hz, 1F).

HRMS (ESI) (m/z): $[M+Na]^+$ Calcd for $C_{22}H_{17}BrF_2Na^+$, 421.0374; found: 421.0379.

4-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)-2,2-dimethyl-1,3-dioxolane (25)

The substrate was prepared following the general procedure B using **S1** (37.3 mg, 0.15 mmol, 1.5 equiv.), diethyl 4-(4,4-dimethyl-1,3-dioxolan-2-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (35.3 mg, 0.1 mmol, 1.0 equiv.), Eosin Y (1.3 mg, 2 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **25** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (27.4 mg, 83%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.60 (d, *J* = 8.2 Hz, 4H), 7.47 – 7.34 (m, 5H), 4.18 – 4.06 (m, 1H), 3.96 (dd, *J* = 8.1, 6.0 Hz, 1H), 3.59 (dd, *J* = 8.0, 6.6 Hz, 1H), 2.87 – 2.78 (m, 1H), 2.67 – 2.56 (m, 1H), 1.42 (s, 3H), 1.31 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 154.34 (t, *J* = 12.08 Hz), 140.40, 140.36, 131.99 (d, *J* = 1.1 Hz), 128.81, 128.63 (t, *J* = 3.2 Hz), 127.47, 127.22, 127.00, 109.19, 88.85 (dd, *J* = 19.2, 17.5 Hz), 74.00 (t, *J* = 3.1 Hz), 68.88, 32.43, 26.89, 25.61.

¹⁹F NMR (564 MHz, CDCl₃) δ -89.31 (s, 2F).

HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₂₀H₂₀F₂NaO₂⁺, 353.1324; found: 353.1321.

2-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)tetrahydrofuran (26)⁸

The substrate was prepared following the general procedure B using **S1** (37.3 mg, 0.15 mmol, 1.5 equiv.), diethyl 2,6-dimethyl-4-(tetrahydrofuran-2-yl)-1,4-dihydropyridine-3,5-dicarboxylate (32.3 mg, 0.1 mmol, 1.0 equiv.), Eosin Y (1.3 mg, 2 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **26** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a white solid (24.3 mg, 81%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.64 – 7.56 (m, 4H), 7.50 – 7.41 (m, 4H), 7.37 – 7.33 (m, 1H), 3.93 – 3.81 (m, 2H), 3.78 – 3.64 (m, 1H), 2.83 – 2.69 (m, 1H), 2.64 – 2.48 (m, 1H), 2.00 – 1.74 (m, 3H), 1.57 – 1.45 (m, 1H).

¹³**C NMR (151 MHz, CDCl₃)** δ 154.34 (t, *J* = 12.08 Hz), 140.52, 140.09, 132.47 (d, *J* = 1.6 Hz), 128.78, 128.67 (t, *J* = 3.3 Hz), 127.38, 127.11, 126.99, 89.79 (dd, *J* = 19.2, 16.8 Hz), 77.05, 67.81, 33.76, 30.95, 25.58.

¹⁹F NMR (564 MHz, CDCl₃) δ -90.15 (s, 2F).

tert-butyl 4-(3,3-difluoro-2-(4-methoxyphenyl)allyl)piperidine-1-carboxylate (27)¹⁰

The substrate was prepared following the general procedure A using **S2** (30.3 mg, 0.15 mmol, 1.5 equiv.), *tert*-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (34.5 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **27** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (31.6 mg, 86%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.22 (d, *J* = 8.3 Hz, 2H), 6.89 (d, *J* = 8.7 Hz, 2H), 4.03 (d, *J* = 12.4 Hz, 2H), 3.81 (s, 3H), 2.56 (t, *J* = 12.2 Hz, 2H), 2.29 (d, *J* = 7.2 Hz, 2H), 1.60 (d, *J* = 12.9 Hz, 2H), 1.43 (s, 9H), 1.42 – 1.36 (m, 1H), 1.16 – 1.06 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 158.67, 154.75, 154.06 (dd, *J* = 289.9, 286.9 Hz), 129.28 (t, *J* = 3.2 Hz), 125.68 (dd, *J* = 4.1, 3.1 Hz), 113.93, 89.89 (dd, *J* = 21.9, 13.6 Hz), 79.25, 55.23, 43.35, 34.45, 34.17 (t, *J* = 2.4 Hz), 31.68, 28.43.

¹⁹**F** NMR (564 MHz, CDCl₃) δ -91.76 (d, J = 45.3 Hz, 1F), -92.10 (d, J = 45.2 Hz, 1F).

tert-butyl 4-(3,3-difluoro-2-(3-methoxyphenyl)allyl)piperidine-1-carboxylate (28)¹⁰

The substrate was prepared following the general procedure A using **S3** (30.3 mg, 0.15 mmol, 1.5 equiv.), *tert*-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (34.5 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **28** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (29.4 mg, 80%).

¹**H NMR (600 MHz, CDCl**₃) δ 7.30 – 7.25 (m, 1H), 6.91 – 6.80 (m, 3H), 4.03 (d, *J* = 11.9 Hz, 2H), 3.81 (s, 3H), 2.57 (t, *J* = 12.1 Hz, 2H), 2.31 (dt, *J* = 7.1, 2.0 Hz, 2H), 1.61 (d, *J* = 14.1 Hz, 2H), 1.44 (s, 9H), 1.42 – 1.38 (m, 1H), 1.16 – 1.05 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 159.56, 154.75, 154.18 (dd, *J* = 291.4, 286.9 Hz), 135.02 (dd, *J* = 3.4, 2.2 Hz), 129.46, 120.62 (t, *J* = 3.1 Hz), 114.41 (t, *J* = 3.3 Hz), 112.32, 90.43 (dd, *J* = 20.9, 14.2 Hz), 79.25, 55.22, 43.70, 34.40, 34.23 (t, *J* = 2.5 Hz), 31.69, 28.43.

¹⁹F NMR (564 MHz, CDCl₃) δ -90.44 (d, J = 42.0 Hz, 1F), -90.55 (d, J = 42.1 Hz, 1F).

tert-butyl 4-(3,3-difluoro-2-(2-methoxyphenyl)allyl)piperidine-1-carboxylate (29)¹⁰

The substrate was prepared following the general procedure A using **S4** (30.3 mg, 0.15 mmol, 1.5 equiv.), *tert*-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (34.5 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **29** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (27.5 mg, 75%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.32 – 7.26 (m, 1H), 7.12 (d, *J* = 7.4 Hz, 1H), 6.97 – 6.86 (m, 2H), 4.02 (s, 2H), 3.81 (s, 3H), 2.58 (t, *J* = 12.1 Hz, 2H), 2.27 (d, *J* = 7.1 Hz, 2H), 1.64 (d, *J* = 11.6 Hz, 2H), 1.44 (s, 9H), 1.37 – 1.27 (m, 1H), 1.15 – 1.05 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 157.26 (d, *J* = 2.0 Hz), 154.81, 153.46 (t, *J* = 287.20 Hz), 130.84 - 130.78 (m), 129.11, 122.66 (dd, *J* = 5.1, 1.6 Hz), 120.46, 111.03, 87.22 (dd, *J* = 23.9, 16.6 Hz), 79.18, 55.4, 43.52, 34.81, 34.23 (t, *J* = 2.5 Hz), 31.75, 28.44.

¹⁹**F** NMR (564 MHz, CDCl₃) δ -89.43 (d, J = 43.0 Hz, 1F), -93.40 (d, J = 43.0 Hz, 1F).

tert-butyl 4-(2-(4-(tert-butyl)phenyl)-3,3-difluoroallyl)piperidine-1-carboxylate (30)¹⁰

The substrate was prepared following the general procedure A using **S5** (34.2 mg, 0.15 mmol, 1.5 equiv.), *tert*-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (34.5 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **30** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (32.6 mg, 83%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.37 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 7.5 Hz, 2H), 4.04 (s, 2H), 2.58 (t, *J* = 12.3 Hz, 2H), 2.34 – 2.29 (m, 2H), 1.62 (d, *J* = 12.4 Hz, 2H), 1.44 (s, 9H), 1.43 – 1.40 (m, 1H), 1.32 (s, 9H), 1.17 – 1.06 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 154.77, 154.19 (dd, *J* = 291.4, 286.9 Hz), 150.19, 130.52 – 130.40 (m), 127.70 (t, *J* = 3.3 Hz), 125.39, 90.15 (dd, *J* = 21.7, 12.9 Hz), 79.24, 43.73, 34.51, 34.29, 34.18 (t, *J* = 2.4 Hz), 31.71, 31.26, 28.44.

¹⁹**F** NMR (564 MHz, CDCl₃) δ -90.55 (d, J = 41.8 Hz, 1F), -91.00 (d, J = 41.8 Hz, 1F).

tert-butyl 4-(3,3-difluoro-2-(4-phenoxyphenyl)allyl)piperidine-1-carboxylate (31)

√ N_{Boc}

The substrate was prepared following the general procedure A using **S6** (39.6 mg, 0.15 mmol, 1.5 equiv.), *tert*-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (34.5 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **31** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (33.5 mg, 78%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.35 (t, *J* = 7.8 Hz, 2H), 7.25 (d, *J* = 8.7 Hz, 2H), 7.12 (t, *J* = 7.8 Hz, 1H), 7.04 (d, *J* = 8.3 Hz, 2H), 6.98 (d, *J* = 8.6 Hz, 2H), 4.05 (s, 2H), 2.59 (s, 2H), 2.31 (d, *J* = 7.1 Hz, 2H), 1.62 (d, *J* = 12.5 Hz, 2H), 1.47 – 1.39 (m, 10H), 1.12 (dd, *J* = 21.0, 10.9 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 156.66, 156.60, 154.76, 154.16 (dd, *J* = 291.4, 286.9 Hz), 129.80, 129.50 (t, *J* = 3.2 Hz), 128.18 (dd, *J* = 4.2, 3.3 Hz), 123.61, 119.25, 118.46, 89.89 (dd, *J* = 22.2, 13.2 Hz), 79.29, 43.68, 34.42, 34.23 (t, *J* = 2.3 Hz), 31.69, 28.44.

¹⁹**F** NMR (564 MHz, CDCl₃) δ -90.97 (d, J = 43.4 Hz, 1F), -91.30 (d, J = 38.2 Hz, 1F). HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₂₅H₂₉F₂NNaO₃⁺, 452.2008; found: 452.2012.

tert-butyl 4-(2-(4-chlorophenyl)-3,3-difluoroallyl)piperidine-1-carboxylate (32)

The substrate was prepared following the general procedure A using **S7** (30.9 mg, 0.15 mmol, 1.5 equiv.), *tert*-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (34.5 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **32** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (29.7 mg, 80%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.33 (d, *J* = 8.5 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 4.03 (s, 2H), 2.56 (t, *J* = 12.3 Hz, 2H), 2.33 – 2.28 (m, 2H), 1.58 (d, *J* = 12.7 Hz, 2H), 1.43 (s, 9H), 1.41 – 1.34 (m, 1H), 1.15 – 1.06 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 154.72, 154.16 (dd, J = 291.4, 286.9 Hz), 133.16, 132.05 (dd, J = 4.4, 3.6 Hz), 129.47 (t, J = 3.3 Hz), 128.76, 89.74 (dd, J = 22.7, 13.0 Hz), 79.31, 43.55, 34.23 (t, J = 2.1 Hz), 31.65, 28.43. (one carbon signal was overlapped).

¹⁹**F NMR (564 MHz, CDCl₃)** δ -89.86 (d, J = 41.0 Hz, 1F), -90.34 (d, J = 40.9 Hz, 1F). **HRMS** (ESI) (m/z): [M+Na]⁺ Calcd for C₁₉H₂₄ClF₂NNaO₂⁺, 394.1356; found: 394.1353.

1-bromo-4-(3-cyclohexyl-1,1-difluoroprop-1-en-2-yl)benzene (33)¹¹

The substrate was prepared following the general procedure B using **S8** (37.5 mg, 0.15 mmol, 1.5 equiv.), diethyl 4-cyclohexyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (33.5 mg, 0.1

mmol, 1.0 equiv.), Eosin Y (1.3 mg, 2 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **33** was isolated using flash column chromatography on silica gel (petroleum ether) as a colorless oil (23.6 mg, 75%).

¹**H NMR (600 MHz, CDCl**₃) δ 7.47 (d, *J* = 8.5 Hz, 2H), 7.17 (d, *J* = 7.6 Hz, 2H), 2.24 (dt, *J* = 7.2, 2.4 Hz, 2H), 1.71 – 1.58 (m, 5H), 1.30 – 1.04 (m, 4H), 0.97 – 0.85 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 153.88 (dd, J = 290.8, 286.7 Hz), 133.05 (dd, J = 4.7, 3.4 Hz), 131.54, 129.89 (t, J = 3.3 Hz), 120.99, 90.36 (dd, J = 22.9, 12.4 Hz), 35.66 (t, J = 1.9 Hz), 35.00, 32.80, 26.33, 26.00.

¹⁹**F** NMR (564 MHz, CDCl₃) δ -95.17 (d, J = 42.2 Hz, 1F), -95.72 (d, J = 42.2 Hz, 1F).

tert-butyl 4-(2-(3-chloro-4-fluorophenyl)-3,3-difluoroallyl)piperidine-1-carboxylate (34)

The substrate was prepared following the general procedure A using **S9** (33.6 mg, 0.15 mmol, 1.5 equiv.), *tert*-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (34.5 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **34** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (29.6 mg, 76%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.33 (dd, *J* = 6.9, 1.6 Hz, 1H), 7.19 – 7.10 (m, 2H), 4.04 (d, *J* = 10.7 Hz, 2H), 2.58 (t, *J* = 12.4 Hz, 2H), 2.35 – 2.21 (m, 2H), 1.59 (d, *J* = 12.9 Hz, 2H), 1.43 (s, 9H), 1.40 – 1.34 (m, 1H), 1.16 – 1.06 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 157.17 (d, *J* = 250.1 Hz), 154.71, 154.26 (dd, *J* = 291.4, 289.9 Hz), 130.73 (dd, *J* = 8.0, 4.1 Hz), 130.30 (t, *J* = 3.4 Hz), 128.11 – 127.84 (m), 121.19 (d, *J* = 18.0 Hz), 116.70 (d, *J* = 21.2 Hz), 89.13 (dd, *J* = 23.4, 13.0 Hz), 79.35, 43.46, 34.33, 34.19 (t, *J* = 2.3 Hz), 31.63, 28.42.

¹⁹**F NMR (564 MHz, CDCl₃)** δ -89.46 (d, *J* = 40.1 Hz, 1F), -89.94 (d, *J* = 40.1 Hz, 1F), -116.57 (s, 1F).

HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₁₉H₂₄ClF₃NO₂⁺, 390.1442; found: 390.1440.

3-(3-cyclohexyl-1,1-difluoroprop-1-en-2-yl)benzamide (35)

The substrate was prepared following the general procedure A using **S10** (34.8 mg, 0.15 mmol, 1.5 equiv.), 2-cyclohexyl-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (24.4 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The

product **35** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1) as a white solid (17.0 mg, 61%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.78 (s, 1H), 7.68 (d, J = 7.5 Hz, 1H), 7.44 (dt, J = 15.3, 7.5 Hz, 2H), 6.21 (s, 2H), 2.32 – 2.26 (m, 2H), 1.71 – 1.59 (m, 5H), 1.23 – 1.16 (m, 1H), 1.15 – 1.05 (m, 3H), 0.94 – 0.84 (m, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 169.41, 154.10 (dd, J = 290.8, 287.1 Hz), 134.88 (dd, J = 4.8, 3.2 Hz), 133.61, 131.89 (t, J = 3.1 Hz), 128.69, 127.39 (t, J = 3.2 Hz), 125.86, 90.64 (dd, J = 22.8, 12.1 Hz), 35.66, 35.07, 32.80, 26.31, 25.99.

¹⁹**F** NMR (564 MHz, CDCl₃) δ -90.27 (d, J = 41.9 Hz, 1F), -91.01 (d, J = 41.9 Hz, 1F). HRMS (ESI) (m/z): $[M+Na]^+$ Calcd for C₁₆H₁₉F₂NNaO⁺, 302.1327; found: 302.1322.

tert-butyl 4-(2-(4-cyanophenyl)-3,3-difluoroallyl)piperidine-1-carboxylate (36)

The substrate was prepared following the general procedure A using **S11** (29.6 mg, 0.15 mmol, 1.5 equiv.), *tert*-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (34.5 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **36** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) as a colorless oil (25.7 mg, 71%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.65 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.3 Hz, 2H), 4.04 (d, *J* = 9.1 Hz, 2H), 2.56 (t, *J* = 12.5 Hz, 2H), 2.36 (d, *J* = 7.1 Hz, 2H), 1.58 (d, *J* = 13.2 Hz, 2H), 1.43 (s, 9H), 1.39 – 1.34 (m, 1H), 1.17 – 1.06 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 154.68, 154.46 (dd, J = 294.5, 289.9 Hz), 138.71 – 138.61 (m), 132.33, 128.76 (t, J = 3.5 Hz), 118.50, 111.10, 89.99 (dd, J = 23.3, 12.1 Hz), 79.40, 43.59, 34.43 (t, J = 2.3 Hz), 33.87, 31.65, 28.41.

¹⁹**F NMR (564 MHz, CDCl₃)** δ -86.92 (d, J = 34.8 Hz, 1F), -87.89 (d, J = 34.8 Hz, 1F). **HRMS** (ESI) (m/z): [M+Na]⁺ Calcd for C₂₀H₂₄F₂N₂NaO₂⁺, 385.1698; found: 385.1707.

tert-butyl 4-(3,3-difluoro-2-(4-(methylthio)phenyl)allyl)piperidine-1-carboxylate (37)

The substrate was prepared following the general procedure A using **S12** (32.7 mg, 0.15 mmol, 1.5 equiv.), *tert*-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (34.5 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **37** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (26.1 mg, 68%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.25 – 7.19 (m, 4H), 4.03 (s, 2H), 2.56 (t, *J* = 11.9 Hz, 2H), 2.49 (s, 3H), 2.31 (d, *J* = 7.2 Hz, 2H), 1.59 (d, *J* = 12.8 Hz, 2H), 1.43 (s, 9H), 1.42 – 1.36 (m, 1H), 1.15 – 1.04 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 154.74, 154.15 (dd, *J* = 291.4, 286.9 Hz), 137.66, 130.22 – 130.13 (m), 128.52 (t, *J* = 3.3 Hz), 126.40, 90.01 (dd, *J* = 22.1, 13.0 Hz), 79.28, 43.67, 34.30 – 34.14 (m), 31.68, 28.43, 15.59. (one carbon signal was overlapped).

¹⁹F NMR (564 MHz, CDCl₃) δ -90.51 (d, J = 42.6 Hz, 1F), -90.88 (d, J = 42.6 Hz, 1F). HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₂₀H₂₇F₂NNaO₂S⁺, 406.1623; found: 406.1620.

tert-butyl 4-(3,3-difluoro-2-(naphthalen-2-yl)allyl)piperidine-1-carboxylate (38)¹²

The substrate was prepared following the general procedure A using **S13** (33.3 mg, 0.15 mmol, 1.5 equiv.), *tert*-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (34.5 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **38** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a white solid (34.8 mg, 90%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.83 (t, *J* = 7.8 Hz, 3H), 7.76 (s, 1H), 7.54 – 7.47 (m, 2H), 7.43 (d, *J* = 8.5 Hz, 1H), 4.03 (s, 2H), 2.54 (t, *J* = 12.4 Hz, 2H), 2.45 (d, *J* = 7.2 Hz, 2H), 1.65 (d, *J* = 12.8 Hz, 2H), 1.49 – 1.37 (m, 10H), 1.21 – 1.03 (m, 2H).

¹³**C NMR (151 MHz, CDCl₃)** δ 154.74, 154.35 (dd, J = 291.4, 288.41 Hz), 133.23, 132.46, 131.04 (dd, *J* = 4.4, 3.2 Hz), 128.16, 127.88, 127.61, 127.27 (t, *J* = 3.3 Hz), 126.35, 126.20, 126.01 (t, *J* = 3.0 Hz), 90.65 (dd, *J* = 22.0, 13.1 Hz), 79.27, 43.96, 34.46 (d, *J* = 0.9 Hz), 34.29 (t, *J* = 2.4 Hz), 31.72, 28.44.

¹⁹F NMR (564 MHz, CDCl₃) δ -90.27 (d, *J* = 41.9 Hz, 1F), -90.88 (d, *J* = 41.9 Hz, 1F).

tert-butyl 4-(3,3-difluoro-2-(naphthalen-1-yl)allyl)piperidine-1-carboxylate (39)

The substrate was prepared following the general procedure A using **S14** (33.3 mg, 0.15 mmol, 1.5 equiv.), *tert*-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (34.5 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **39** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (28.6 mg, 74%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.91 – 7.80 (m, 3H), 7.57 – 7.38 (m, 3H), 7.33 (d, *J* = 7.0 Hz, 1H), 4.04 (s, 2H), 2.57 (s, 2H), 2.40 (s, 2H), 1.82 – 1.57 (m, 2H), 1.44 (s, 9H), 1.41 – 1.35 (m, 1H), 1.16 (d, *J* = 10.6 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 154.77, 154.01 (dd, J = 288.4, 286.9 Hz), 133.86, 131.45 (d, J = 2.3 Hz), 131.40 – 131.33 (m), 128.66, 128.41, 127.35 – 127.29 (m), 126.39, 125.99, 125.28, 124.76, 88.50 (dd, J = 22.4, 17.1 Hz), 79.27, 43.77, 36.32, 34.27 (t, J = 2.6 Hz), 31.78, 28.44. ¹⁹F NMR (564 MHz, CDCl₃) δ -87.70 (d, J = 41.7 Hz, 1F), -92.21 (d, J = 42.1 Hz, 1F). HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₂₃H₂₈F₂NO₂⁺, 388.2083; found: 388.2088.

tert-butyl 4-(3,3-difluoro-2-(4-(trifluoromethyl)phenyl)allyl)piperidine-1-carboxylate (40)

The substrate was prepared following the general procedure A using **S15** (36.0 mg, 0.15 mmol, 1.5 equiv.), *tert*-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (34.5 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **40** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (36.8 mg, 91%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.62 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 4.04 (d, *J* = 13.3 Hz, 2H), 2.61 – 2.54 (m, 2H), 2.39 – 2.34 (m, 2H), 1.60 (d, *J* = 12.4 Hz, 2H), 1.43 (s, 9H), 1.42 – 1.35 (m, 1H), 1.17 – 1.07 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 154.71, 154.38 (dd, *J* = 292.9, 288.4 Hz), 137.52 – 137.42 (m), 129.34 (dd, *J* = 36.7, 28.7 Hz), 128.46 (t, *J* = 3.3 Hz), 125.49 (q, *J* = 3.8 Hz), 124.72 (q, *J* = 271.8 Hz), 89.95 (dd, *J* = 23.0, 12.6 Hz), 79.34, 43.63, 34.29 (t, *J* = 2.4 Hz), 34.14, 31.65, 28.41.

¹⁹**F NMR (564 MHz, CDCl₃)** δ -62.70 (s, 3F), -88.53 (d, *J* = 38.1 Hz, 1F), -89.32 (d, *J* = 38.1 Hz, 1F).

HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₂₀H₂₄F₅NNaO₂⁺, 428.1619; found: 428.1613.

tert-butyl 4-(3,3-difluoro-2-(4-(trimethylsilyl)phenyl)allyl)piperidine-1-carboxylate (41)

The substrate was prepared following the general procedure A using **S16** (36.6 mg, 0.15 mmol, 1.5 equiv.), *tert*-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (34.5 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **41** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (26.6 mg, 65%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.50 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 7.2 Hz, 2H), 4.03 (s, 2H), 2.58 (t, *J* = 11.8 Hz, 2H), 2.34 (d, *J* = 7.2 Hz, 2H), 1.62 (d, *J* = 10.3 Hz, 2H), 1.48 – 1.37 (m, 10H), 1.18 – 1.08 (m, 2H), 0.27 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 154.76, 154.23 (dd, *J* = 291.4, 286.9 Hz), 139.59, 133.99 – 133.90 (m), 133.47, 127.36 (t, *J* = 3.2 Hz), 90.45 (dd, *J* = 21.8, 12.8 Hz), 79.25, 43.69, 34.25 (d, *J* = 0.8 Hz), 34.20 (t, *J* = 2.4 Hz), 31.70, 28.43, -1.17.

¹⁹**F** NMR (564 MHz, CDCl₃) δ -90.26 (d, J = 42.0 Hz, 1F), -90.72 (d, J = 41.8 Hz, 1F). HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₂₂H₃₃F₂NNaO₂Si⁺, 432.2141; found: 432.2144.

1-(4-(3-cyclohexyl-1,1-difluoroprop-1-en-2-yl)phenyl)ethan-1-one (42)¹³

The substrate was prepared following the general procedure B using **S17** (32.1 mg, 0.15 mmol, 1.5 equiv.), diethyl 4-cyclohexyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (33.5 mg, 0.1 mmol, 1.0 equiv.), Eosin Y (1.3 mg, 2 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **42** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) as a colorless oil (22.8 mg, 82%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.94 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.3 Hz, 2H), 2.60 (s, 3H), 2.31 (dt, *J* = 7.2, 2.3 Hz, 2H), 1.67 – 1.59 (m, 5H), 1.26 – 1.18 (m, 1H), 1.15 – 1.04 (m, 3H), 0.91 (dd, *J* = 22.1, 12.2 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 197.54, 154.19 (dd, *J* = 292.6, 287.7 Hz), 139.22 (dd, *J* = 4.9, 3.7 Hz), 135.69, 128.42, 128.34 (t, *J* = 3.02 Hz), 90.84 (dd, *J* = 23.0, 11.7 Hz), 35.83, 34.80, 32.80, 26.56, 26.30, 25.99.

¹⁹**F NMR (564 MHz, CDCl**₃) δ -88.77 (d, *J* = 38.6 Hz, 1F), -89.51 (d, *J* = 38.6 Hz, 1F).

methyl 4-(3-cyclohexyl-1,1-difluoroprop-1-en-2-yl)benzoate (43)13

The substrate was prepared following the general procedure B using **S18** (34.5 mg, 0.15 mmol, 1.5 equiv.), diethyl 4-cyclohexyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (33.5 mg, 0.1 mmol, 1.0 equiv.), Eosin Y (1.3 mg, 2 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **43** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (17.9 mg, 61%).

¹**H NMR (600 MHz, CDCl₃)** δ 8.01 (d, *J* = 8.4 Hz, 2H), 7.38 (d, *J* = 7.3 Hz, 2H), 3.91 (s, 3H), 2.30 (dt, 2H), 1.69 – 1.60 (m, 5H), 1.25 – 1.18 (m, 1H), 1.14 – 1.04 (m, 3H), 0.91 (dd, *J* = 22.3, 12.2 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 166.75, 154.15 (dd, *J* = 292.3, 287.6 Hz), 139.02 (dd, *J* = 4.8, 3.6 Hz), 129.62, 128.74, 128.17 (t, *J* = 3.4 Hz), 90.85 (dd, *J* = 22.8, 11.8 Hz), 52.11, 35.81, 34.84, 32.80, 26.31, 25.99.

¹⁹**F** NMR (564 MHz, CDCl₃) δ -89.05 (d, J = 39.1 Hz, 1F), -89.72 (d, J = 39.1 Hz, 1F).

tert-butyl 4-(3,3-difluoro-2-(4-vinylphenyl)allyl)piperidine-1-carboxylate (44)

The substrate was prepared following the general procedure A using **S19** (29.7 mg, 0.15 mmol, 1.5 equiv.), *tert*-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (34.5 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **44** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (19.6 mg, 54%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.40 (dd, *J* = 7.9, 4.6 Hz, 2H), 7.29 – 7.24 (m, 2H), 6.76 – 6.60 (m, 1H), 5.76 (dd, *J* = 17.6, 4.4 Hz, 1H), 5.26 (dd, *J* = 10.9, 4.4 Hz, 1H), 4.02 (s, 2H), 2.56 (s, 2H), 2.33 (s, 2H), 1.60 (d, *J* = 12.2 Hz, 2H), 1.50 – 1.34 (m, 10H), 1.11 (d, *J* = 11.1 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 154.76, 154.20 (dd, J = 291.4, 286.9 Hz), 136.58, 136.17, 132.98 (dd, J = 4.3, 3.3 Hz), 128.26 (t, J = 3.3 Hz), 126.31, 114.21, 90.28 (dd, J = 22.0, 13.0 Hz), 79.31, 43.57, 34.26 (t, J = 2.4 Hz), 34.18 (d, J = 0.8 Hz), 31.68, 28.43.

¹⁹**F** NMR (564 MHz, CDCl₃) δ -90.24 (d, J = 41.8 Hz, 1F), -90.57 (d, J = 41.8 Hz, 1F). HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₂₁H₂₇F₂NNaO₂⁺, 386.1902; found: 386.1894.

ootert-butyl 4-(2-(benzo[d][1,3]dioxol-5-yl)-3,3-difluoroallyl)piperidine-1-carboxylate (45)¹⁰

The substrate was prepared following the general procedure A using **S20** (32.4 mg, 0.15 mmol, 1.5 equiv.), *tert*-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (34.5 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **45** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (27.1 mg, 71%).

¹**H NMR (600 MHz, CDCl₃)** δ 6.80 – 6.73 (m, 3H), 5.97 (s, 2H), 4.03 (s, 2H), 2.58 (t, *J* = 12.1 Hz, 2H), 2.26 (d, *J* = 7.2 Hz, 2H), 1.59 (d, *J* = 12.7 Hz, 2H), 1.44 (s, 9H), 1.42 – 1.37 (m, 1H), 1.15 – 1.05 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 154.75, 154.11 (dd, J = 289.9, 287.6 Hz), 147.74, 146.75, 127.21 (d, J = 2.3 Hz), 121.72 (t, J = 3.2 Hz), 108.68 (t, J = 3.3 Hz), 108.34, 101.15, 90.22 (dd, J = 20.1, 15.8 Hz), 79.26, 43.81, 34.65, 34.15 (t, J = 2.4 Hz), 31.66, 28.43.

¹⁹**F** NMR (564 MHz, CDCl₃) δ -91.37 (d, J = 44.8 Hz, 1F), -91.45 (d, J = 44.4 Hz, 1F).

tert-butyl 4-(2-(dibenzo[b,d]thiophen-4-yl)-3,3-difluoroallyl)piperidine-1-carboxylate (46)

The substrate was prepared following the general procedure A using **S21** (41.7 mg, 0.15 mmol, 1.5 equiv.), *tert*-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (34.5 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **46** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (38.9 mg, 88%).

¹**H NMR (600 MHz, CDCl₃)** δ 8.18 – 8.10 (m, 2H), 7.86 (dd, *J* = 5.1, 3.7 Hz, 1H), 7.50 – 7.43 (m, 3H), 7.31 (d, *J* = 7.3 Hz, 1H), 4.04 (d, *J* = 12.7 Hz, 2H), 2.56 (t, *J* = 12.0 Hz, 2H), 2.46 (d, *J* = 7.0 Hz, 2H), 1.71 (d, *J* = 12.7 Hz, 2H), 1.44 (s, 9H), 1.39 – 1.32 (m, 1H), 1.22 – 1.12 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 154.76, 153.63 (t, J = 10.57 Hz), 139.70 (dd, J = 2.4, 1.2 Hz), 139.06, 136.08, 135.65, 128.83 (dd, J = 5.0, 1.4 Hz), 127.37 (d, J = 1.8 Hz), 127.02, 124.74, 124.52, 122.72, 121.74, 121.06, 89.70 (dd, J = 23.6, 15.8 Hz), 79.25, 43.61, 34.96, 34.43 (t, J = 2.5 Hz), 31.87, 28.44.

¹⁹F NMR (564 MHz, CDCl₃) δ -85.94 (d, J = 37.4 Hz, 1F), -90.81 (d, J = 37.5 Hz, 1F). HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₂₅H₂₇F₂NNaO₂S⁺, 466.1623; found: 466.1627.

2-(3-cyclohexyl-1,1-difluoroprop-1-en-2-yl)benzo[b]thiophene (47)

The substrate was prepared following the general procedure B using **S22** (34.2 mg, 0.15 mmol, 1.5 equiv.), diethyl 4-cyclohexyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (33.5 mg, 0.1 mmol, 1.0 equiv.), Eosin Y (1.3 mg, 2 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **47** was isolated using flash column chromatography on silica gel (petroleum ether) as a colorless oil (23.4 mg, 80%).

¹H NMR (600 MHz, CDCl₃) δ 7.79 (d, *J* = 7.9 Hz, 1H), 7.74 (d, *J* = 7.7 Hz, 1H), 7.38 – 7.28 (m, 2H), 7.25 (s, 1H), 2.37 – 2.33 (m, 2H), 1.79 – 1.63 (m, 5H), 1.61 – 1.56 (m, 1H), 1.21 – 1.14 (m, 3H), 1.04 – 0.96 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 154.46 (dd, J = 297.0, 288.8 Hz), 139.58, 139.23 (dd, J = 5.2, 1.5 Hz), 136.72 (dd, J = 7.1, 4.3 Hz), 124.37, 124.21, 123.23, 121.92 – 121.82 (m), 87.57 (dd, J = 26.9, 11.2 Hz), 36.47 (t, J = 1.9 Hz), 35.25, 32.96, 26.35, 26.11. (one carbon signal was overlapped). ¹⁹F NMR (564 MHz, CDCl₃) δ -83.55 (d, J = 30.4 Hz, 1F), -87.73 (d, J = 30.4 Hz, 1F). HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₁₇H₁₈F₂NaS⁺, 315.0989; found: 315.0994.

N-(3-(3-cyclohexyl-1,1-difluoroprop-1-en-2-yl)phenyl)-2-(2-fluoro-[1,1'-biphenyl]-4-yl)propenamide (48)

The substrate was prepared following the general procedure A using **S23** (41.3 mg, 0.1 mmol, 1.0 equiv.), 2-cyclohexyl-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (48.8 mg, 0.2 mmol, 2.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **48** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) as a white solid (37.2 mg, 78%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.54 (d, J = 7.5 Hz, 2H), 7.48 – 7.35 (m, 6H), 7.31 – 7.17 (m, 4H), 7.03 (d, J = 7.7 Hz, 1H), 3.73 (q, J = 7.0 Hz, 1H), 2.24 (d, J = 7.2 Hz, 2H), 1.70 – 1.60 (m, 8H), 1.26 – 1.19 (m, 1H), 1.15 – 1.06 (m, 3H), 0.94 – 0.85 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 171.56, 159.88 (d, *J* = 249.4 Hz), 153.95 (dd, *J* = 290.1, 286.4 Hz), 142.13 (d, *J* = 7.4 Hz), 137.79, 135.23, 135.08 (dd, *J* = 4.4, 3.3 Hz), 131.30 (d, *J* = 3.9 Hz), 128.95, 128.91 (d, *J* = 2.9 Hz), 128.49, 128.24 (d, *J* = 13.6 Hz), 127.80, 124.43 (t, *J* = 2.6 Hz), 123.61 (d, *J* = 3.3 Hz), 119.60 (t, *J* = 3.0 Hz), 118.67, 115.37 (d, *J* = 23.6 Hz), 90.86 (dd, *J* = 22.2, 12.5 Hz), 47.67, 35.64, 35.19, 32.81, 26.36, 26.01, 18.69.

¹⁹**F NMR (564 MHz, CDCl₃)** δ -90.97 (d, *J* = 43.1 Hz, 1F), -91.19 (d, *J* = 42.9 Hz, 1F), -116.72 (s, 1F).

HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₃₀H₃₀F₃NNaO⁺, 500.2172; found: 500.2176.

N-(3-(3-cyclohexyl-1,1-difluoroprop-1-en-2-yl)phenyl)-4-(*N*,*N*-dipropylsulfamoyl)benzamide (49)

The substrate was prepared following the general procedure A using **S24** (45.4 mg, 0.1 mmol, 1.0 equiv.), 2-cyclohexyl-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (48.8 mg, 0.2 mmol, 2.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The

product **49** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) as a colorless oil (29.1 mg, 56%).

¹**H NMR (600 MHz, CDCl₃)** δ 8.35 (s, 1H), 7.93 (d, *J* = 8.3 Hz, 2H), 7.76 (d, *J* = 8.2 Hz, 2H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.63 (s, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.11 (d, *J* = 7.6 Hz, 1H), 3.10 – 3.04 (m, 4H), 2.30 – 2.26 (m, 2H), 1.72 – 1.62 (m, 5H), 1.57 – 1.48 (m, 4H), 1.30 – 1.25 (m, 1H), 1.15 – 1.09 (m, 3H), 0.96 – 0.90 (m, 2H), 0.86 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 164.71, 154.01 (dd, J = 290.6, 286.5 Hz), 142.75, 138.73, 137.87, 135.15 (dd, J = 4.7, 3.2 Hz), 129.10, 127.93, 127.28, 124.81 (dd, J = 4.5, 2.7 Hz), 120.10 – 120.02 (m), 119.10, 90.90 (dd, J = 22.4, 12.5 Hz), 49.95, 35.68, 35.18, 32.83, 26.37, 26.03, 21.91, 11.13. ¹⁹F NMR (564 MHz, CDCl₃) δ -90.84 (d, J = 42.7 Hz, 1F), -91.09 (d, J = 43.0 Hz, 1F). HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₂₈H₃₇F₂N₂O₃S⁺, 519.2487; found: 519.2484.

2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)-*N*-(3-(3-cyclohexyl-1,1difluoroprop-1-en-2-yl) phenyl) acetamide (50)

The substrate was prepared following the general procedure A using **S30** (78.9 mg, 0.15 mmol, 1.5 equiv.), 2-cyclohexyl-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (24.4 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **50** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) as a light yellow oil (30.7 mg, 52%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.64 – 7.60 (m, 2H), 7.46 (d, *J* = 8.5 Hz, 3H), 7.35 – 7.30 (m, 2H), 7.24 (t, *J* = 7.9 Hz, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 6.96 (d, *J* = 2.4 Hz, 1H), 6.87 (d, *J* = 9.0 Hz, 1H), 6.71 (dd, *J* = 9.0, 2.4 Hz, 1H), 3.80 (d, *J* = 2.5 Hz, 5H), 2.44 (s, 3H), 2.24 – 2.18 (m, 2H), 1.67 – 1.54 (m, 5H), 1.23 – 1.17 (m, 1H), 1.12 – 1.04 (m, 3H), 0.92 – 0.84 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 168.33, 168.27, 156.39, 153.90 (dd, *J* = 290.1, 286.4 Hz), 139.64, 137.52, 136.68, 135.02 (dd, *J* = 4.6, 2.8 Hz), 133.44, 131.17, 130.94, 130.19, 129.21, 128.88, 124.59 (t, *J* = 2.7 Hz), 119.96 (t, *J* = 2.9 Hz), 119.05, 115.20, 112.43, 112.28, 100.76, 90.82 (dd, *J* = 22.1, 12.7 Hz), 55.75, 35.63, 35.16, 33.33, 32.79, 26.35, 26.00, 13.36.

¹⁹**F NMR (564 MHz, CDCl₃)** δ -90.93 (d, J = 43.0 Hz, 1F), -91.15 (d, J = 43.0 Hz, 1F). **HRMS** (ESI) (m/z): [M+H]⁺ Calcd for C₃₄H₃₄ClF₂N₂O₃⁺, 591.2221; found: 591.2219.

4-(3-cyclohexyl-1,1-difluoroprop-1-en-2-yl)phenyl (*S*)-2-(6-methoxynaphthalen-2-yl)propanoate (51)

The substrate was prepared following the general procedure A using **S26** (60.0 mg, 0.15 mmol, 1.5 equiv.), 2-cyclohexyl-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (24.4 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **51** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 15:1) as a colorless oil (32.5 mg, 70%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.75 (dd, *J* = 17.4, 7.9 Hz, 3H), 7.50 (d, *J* = 8.5 Hz, 1H), 7.25 (d, *J* = 7.9 Hz, 2H), 7.21 – 7.12 (m, 2H), 6.98 (d, *J* = 8.5 Hz, 2H), 4.10 (q, *J* = 7.1 Hz, 1H), 3.93 (s, 3H), 2.22 (d, *J* = 7.2 Hz, 2H), 1.70 (d, *J* = 7.2 Hz, 3H), 1.66 – 1.57 (m, 5H), 1.25 – 1.18 (m, 1H), 1.12 – 1.05 (m, 3H), 0.94 – 0.84 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 173.13, 157.75, 153.96 (dd, *J* = 290.4, 286.0 Hz), 149.69, 135.04, 133.82, 131.57 (dd, *J* = 4.6, 3.1 Hz), 129.31, 129.20 (t, *J* = 3.2 Hz), 128.98, 127.37, 126.14, 126.08, 121.29, 119.12, 105.59, 90.39 (dd, *J* = 22.7, 12.5 Hz), 55.32, 45.58, 35.52, 35.20, 32.80, 26.36, 25.99, 18.46.

¹⁹**F NMR (564 MHz, CDCl₃)** δ -91.09 (d, J = 43.6 Hz, 1F), -91.52 (d, J = 43.5 Hz, 1F). **HRMS** (ESI) (m/z): [M+H]⁺ Calcd for C₂₉H₃₁F₂O₃⁺, 465.2236; found: 465.2232.

4-(3-cyclohexyl-1,1-difluoroprop-1-en-2-yl)phenyl 5-(2,5-dimethylphenoxy)-2,2dimethylpentanoate (52)

The substrate was prepared following the general procedure A using **S27** (63.0 mg, 0.15 mmol, 1.5 equiv.), 2-cyclohexyl-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (24.4 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **52** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (29.1 mg, 60%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.30 (d, *J* = 8.1 Hz, 2H), 7.06 – 6.99 (m, 3H), 6.67 (d, *J* = 7.5 Hz, 1H), 6.64 (s, 1H), 4.00 (d, *J* = 4.3 Hz, 2H), 2.31 (s, 3H), 2.28 – 2.24 (m, 2H), 2.19 (s, 3H), 1.91 – 1.85 (m, 4H), 1.70 – 1.59 (m, 5H), 1.38 (s, 6H), 1.32 – 1.22 (m, 1H), 1.18 – 1.08 (m, 3H), 0.98 – 0.87 (m, 2H).
¹³C NMR (151 MHz, CDCl₃) δ 176.30, 156.84, 153.99 (dd, *J* = 290.3, 286.0 Hz), 149.85, 136.47, 131.47 (dd, *J* = 4.7, 3.2 Hz), 130.34, 129.26 (t, *J* = 3.3 Hz), 123.60, 121.43, 120.75, 111.93, 90.43 (dd, *J* = 22.6, 12.6 Hz), 67.74, 42.46, 37.15, 35.56 (d, *J* = 1.9 Hz), 35.25, 32.83, 26.38, 26.02, 25.27, 25.14, 21.40, 15.80.

¹⁹**F NMR (564 MHz, CDCl₃)** δ -86.90 (d, J = 43.7 Hz, 1F), -87.30 (d, J = 43.6 Hz, 1F). **HRMS** (ESI) (m/z): [M+Na]⁺ Calcd for C₃₀H₃₈F₂NaO₃⁺, 507.2681; found: 507.2688.

(3*S*,8*S*,9*S*,10*R*,13*S*,14*S*,17*S*)-17-acetyl-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl 4-(3-cyclohexyl-1,1-difluoroprop-1-en-2yl)benzoate (53)

The substrate was prepared following the general procedure B using **S28** (77.1 mg, 0.15 mmol, 1.5 equiv.), diethyl 4-cyclohexyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (33.5 mg, 0.1 mmol, 1.0 equiv.), Eosin Y (2.6 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **53** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) as a white solid (43.4 mg, 75%).

¹**H NMR (600 MHz, CDCl₃)** δ 8.01 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 7.4 Hz, 2H), 5.41 (d, *J* = 4.0 Hz, 1H), 4.88 – 4.82 (m, 1H), 2.54 (t, *J* = 9.0 Hz, 1H), 2.45 (d, *J* = 7.8 Hz, 2H), 2.32 – 2.27 (m, 2H), 2.21 – 2.14 (m, 1H), 2.12 (s, 3H), 2.07 – 1.97 (m, 3H), 1.92 (dt, *J* = 13.3, 3.4 Hz, 1H), 1.75 – 1.56 (m, 10H), 1.53 – 1.45 (m, 3H), 1.26 – 1.14 (m, 4H), 1.11 – 1.01 (m, 7H), 0.90 (dd, *J* = 23.0, 12.8 Hz, 2H), 0.63 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 209.58, 165.63, 154.11 (dd, *J* = 292.1, 287.5 Hz), 139.58, 138.88 - 138.79 (m), 129.59, 129.35, 128.11 (t, *J* = 3.2 Hz), 122.48, 90.87 (dd, *J* = 22.8, 11.8 Hz), 74.43, 63.66, 56.81, 49.87, 43.98, 38.77, 38.15, 37.01, 36.64, 35.78, 34.86, 32.80, 31.81, 31.77, 31.56, 27.83, 26.30, 25.99, 24.47, 22.80, 21.04, 19.35, 13.22.

¹⁹**F** NMR (564 MHz, CDCl₃) δ -89.22 (d, J = 39.4 Hz, 1F), -89.83 (d, J = 39.3 Hz, 1F). HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₃₇H₄₈F₂NaO₃⁺, 601.3464; found: 601.3468.

(8*R*,9*S*,13*S*,14*S*)-3-(3-cyclohexyl-1,1-difluoroprop-1-en-2-yl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (54)⁶

The substrate was prepared following the general procedure A using **S29** (52.2 mg, 0.15 mmol, 1.5 equiv.), 2-cyclohexyl-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (24.4 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **54** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a colorless oil (24.7 mg, 60%).

¹**H NMR (600 MHz, CDCl**₃) δ 7.26 (d, *J* = 6.8 Hz, 1H), 7.08 (d, *J* = 8.2 Hz, 1H), 7.03 (s, 1H), 2.92 (dd, *J* = 8.6, 3.7 Hz, 2H), 2.56 – 2.38 (m, 2H), 2.31 (td, *J* = 11.2, 4.0 Hz, 1H), 2.24 (dt, *J* = 7.2, 2.4 Hz, 2H), 2.19 – 1.95 (m, 4H), 1.72 – 1.42 (m, 11H), 1.32 – 1.26 (m, 1H), 1.17 – 1.09 (m, 3H), 0.96 – 0.88 (m, 5H).

¹³C NMR (151 MHz, CDCl₃) δ 220.92, 153.94 (dd, *J* = 289.9, 285.8 Hz), 138.64, 136.39, 131.48 (dd, *J* = 3.8 Hz), 128.72 (t, *J* = 3.2 Hz), 125.60 (t, *J* = 3.1 Hz), 125.29, 90.68 (dd, *J* = 21.8, 12.4 Hz), 50.52, 47.99, 44.35, 38.04, 35.85, 35.57, 35.18, 32.85, 31.58, 29.41, 26.49, 26.41, 26.03, 25.58, 21.58, 13.85.

¹⁹**F** NMR (564 MHz, CDCl₃) δ -91.52 (d, J = 45.1 Hz, 1F), -91.90 (d, J = 45.1 Hz, 1F).

N-(3-(3-cyclohexyl-1,1-difluoroprop-1-en-2-yl)phenyl)-2-(10-oxo-10,11dihydrodibenzo[*b*,*f*]thiepin-2-yl)propanamide (55)

The substrate was prepared following the general procedure B using **S25** (46.7 mg, 0.1 mmol, 1.0 equiv.), diethyl 4-cyclohexyl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (67.0 mg, 0.2 mmol, 2.0 equiv.), Eosin Y (2.6 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **55** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) as a colorless oil (31.3 mg, 59%).

¹**H NMR (600 MHz, CDCl₃)** δ 8.18 (d, *J* = 8.0 Hz, 1H), 7.61 (dd, *J* = 14.3, 7.9 Hz, 2H), 7.46 – 7.37 (m, 4H), 7.34 – 7.21 (m, 4H), 7.00 (d, *J* = 7.6 Hz, 1H), 4.35 (dd, *J* = 35.3, 11.7 Hz, 2H), 3.66 (q, *J* = 7.0 Hz, 1H), 2.21 (d, *J* = 7.1 Hz, 2H), 1.65 – 1.55 (m, 5H), 1.53 (d, *J* = 7.0 Hz, 3H), 1.22 – 1.16 (m, 1H), 1.13 – 1.03 (m, 3H), 0.92 – 0.80 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 191.42, 171.49, 153.91 (dd, *J* = 290.4, 286.3 Hz), 143.16, 140.09, 138.23, 137.82, 136.04, 135.01 (dd, *J* = 7.3, 3.0 Hz), 133.60, 132.61, 131.89, 131.49, 130.83, 128.89,

128.71, 126.88, 126.22, 124.35 (d, J = 2.7 Hz), 119.56 (t, J = 2.9 Hz), 118.64, 90.85 (dd, J = 22.0, 12.9 Hz), 51.00, 47.73, 35.61, 35.15, 32.78, 26.35, 25.98, 18.88. ¹⁹F NMR (564 MHz, CDCl₃) δ -91.03 (d, J = 43.2 Hz, 1F), -91.23 (d, J = 43.0 Hz, 1F). HRMS (ESI) (m/z): [M+H]⁺ Calcd for C₃₂H₃₂F₂NO₂S⁺, 532.2116; found: 532.2122.

(3*aR*,5*aS*,8*aS*,8*bR*)-5-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)-2,2,7,7tetramethyltetrahydro-5*H*-bis([1,3]dioxolo)[4,5-*b*:4',5'-*d*]pyran (56)

The substrate was prepared following the general procedure B using **S1** (37.3 mg, 0.15 mmol, 1.5 equiv.), diethyl 2,6-dimethyl-4-((3aR,5aS,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-5*H*-bis([1,3]dioxolo)[4,5-*b*:4',5'-*d*]pyran-5-yl)-1,4-dihydropyridine-3,5-dicarboxylate (48.1 mg, 0.1 mmol, 1.0 equiv.), Eosin Y (1.3 mg, 2 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **56** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a white solid (23.9 mg, 52%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.60 – 7.55 (m, 4H), 7.49 – 7.32 (m, 5H), 5.02 (d, *J* = 2.4 Hz, 1H), 4.49 (d, *J* = 5.3 Hz, 1H), 4.13 (d, *J* = 2.0 Hz, 1H), 3.93 (dd, *J* = 9.6, 5.4 Hz, 1H), 3.14 (td, *J* = 9.4, 3.0 Hz, 1H), 2.90 – 2.82 (m, 1H), 2.63 – 2.56 (m, 1H), 1.52 (s, 3H), 1.35 (s, 3H), 1.33 (s, 3H), 1.28 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 154.36 (dd, *J* = 290.7, 288.0 Hz), 140.51, 140.03, 132.12 (t, *J* = 3.9 Hz), 128.78, 128.73 (t, *J* = 3.3 Hz), 127.39, 127.02, 126.98, 110.79, 108.79, 96.77 (d, *J* = 3.3 Hz), 88.70 (dd, *J* = 21.6, 15.0 Hz), 75.77, 74.29, 73.60, 70.54 (t, *J* = 2.2 Hz), 30.40 (d, *J* = 1.3 Hz), 27.90, 27.78, 25.95, 25.78.

¹⁹**F** NMR (564 MHz, CDCl₃) δ -88.90 (d, J = 39.7 Hz, 1F), -89.58 (d, J = 39.6 Hz, 1F). HRMS (ESI) (m/z): [M+Na]⁺ Calcd for C₂₆H₂₈F₂NaO₅⁺, 481.1797; found: 481.1796.

(3*aR*,4R,6*R*,6*aR*)-4-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)-6-methoxy-2,2dimethyltetrahydrofuro[3,4-*d*][1,3]dioxole (57)¹⁴

The substrate was prepared following the general procedure B using **S1** (37.3 mg, 0.15 mmol, 1.5 equiv.), diethyl 4-((3aR, 6R, 6aR)-6-methoxy-2, 2-dimethyltetrahydrofuro[3, 4-d][1, 3]dioxol-4-yl)-2, 6-dimethyl-1, 4-dihydropyridine-3, 5-dicarboxylate (42.5 mg, 0.1 mmol, 1.0 equiv.), Eosin Y (1.3 mg) (1.3 mg

mg, 2 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), anhydrous DMF (1 mL). The product **57** was isolated using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) as a white solid (34.9 mg, 87%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.63 – 7.58 (m, 4H), 7.48 – 7.33 (m, 5H), 4.95 (s, 1H), 4.65 (d, J = 5.9 Hz, 1H), 4.57 (d, J = 5.9 Hz, 1H), 4.18 (t, J = 7.7 Hz, 1H), 3.35 (s, 3H), 2.81 – 2.64 (m, 2H), 1.42 (s, 3H), 1.29 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 154.32 (dd, *J* = 291.0, 288.3 Hz), 140.48, 140.42, 131.54 (dd, *J* = 4.0, 3.4 Hz), 128.86 – 128.78 (m), 127.44, 127.34, 127.02, 112.32, 109.93 (d, *J* = 1.5 Hz), 89.32 (dd, *J* = 21.2, 15.4 Hz), 85.58, 84.48 (t, *J* = 2.8 Hz), 83.54, 55.11, 33.28, 26.38, 24.90. (one carbon signal was overlapped).

¹⁹**F NMR (564 MHz, CDCl**₃) δ -89.50 (d, *J* = 39.8 Hz, 1F), -90.06 (d, *J* = 39.8 Hz, 1F).

Crystals suitable for X-ray diffraction were prepared by recrystallization from petroleum ether and ethyl acetate at room temperature.

Figure S2 Crystal data and structure refinement for (3*aR*,4R,6*R*,6*aR*)-4-(2-([1,1'-biphenyl]-4-yl)-3,3difluoroallyl)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxole

Empirical formula	$C_{23}H_{24}F_2O_4$	
Formula weight	402.42	
Temperature	248 K	
Wavelength	1.34139 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 5.97500(10) Å	$\alpha = 90^{\circ}$.
	b = 16.6014(4) Å	β= 90°.
	c = 20.4417(5) Å	$\gamma = 90^{\circ}.$
Volume	2027.68(8) Å ³	
Z	4	
Density (calculated)	1.318 Mg/m ³	
Absorption coefficient	0.540 mm ⁻¹	
F (000)	848	
Crystal size	0.07 x 0.07 x 0.05 mm ³	

Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 53.594° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole 2.983 to 55.122°. -6 <=h <=7, -20 <=k <=19, -24 <=l <=2423095 3868 [R(int) = 0.0414] 99.9 % Semi-empirical from eq.alents 0.7508 and 0.6240 Full-matrix least-squares on F² 3868 / 0 / 265 1.063 R1 = 0.0419, wR2 = 0.0984 R1 = 0.0544, wR2 = 0.1060 0.07(7) n/a 0.135 and -0.208 e.Å⁻³

5. Scaling-up Reaction

A. Synthesis of tert-butyl 4-(3,3-difluoro-2-(naphthalen-2-yl)allyl)piperidine-1-carboxylate

Tert-butyl 4-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)piperidine-1-carboxylate (5 mmol, 1.0 equiv.), 4CzIPN (4 mol%), Na₂CO₃ (7.5 mmol, 1.5 equiv.) were added in a 100 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for three times), 2-(3,3,3-trifluoroprop-1-en-2-yl)naphthalene (7.5 mmol, 1.5 equiv.) and anhydrous DMF (50 mL) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under irradiation with 40 W blue LEDs, maintained at approximately room temperature in the air-conditioned room of 25 °C. After 24 h, ethyl acetate (100 mL) was added to the reaction mixture. The resulting solution was washed with brine (3 × 50 mL) and dried over anhydrous Na₂SO₄. The organic layers were combined and concentrated on rotary evaporator. The residue was purified by silica gel column chromatography to give the product (white solid, 1.59 g, 82%, petroleum ether/ethyl acetate = 20:1).

B. Synthesis of (3*a*R,4*R*,6*R*,6*a*R)-4-(2-([1,1'-biphenyl]-4-yl)-3,3-difluoroallyl)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-*d*][1,3]dioxole

Diethyl 4-((3aR, 5S, 6aR)-5-methoxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)-2,6dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (4 mmol, 1.0 equiv.), 4-(3,3,3-trifluoroprop-1-en-2-yl)-1,1'-biphenyl (1.5 equiv., 6 mmol), Eosin Y (2 mol%), Na₂CO₃ (6 mmol, 1.5 equiv.) were added in a 100 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for three times), and anhydrous DMF (40 mL) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under irradiation with 40 W blue LEDs, maintained at approximately room temperature in the air-conditioned room of 25 °C. After 24 h, ethyl acetate (80 mL) was added to the reaction mixture. The resulting solution was washed with brine (3 × 40 mL) and dried over anhydrous Na₂SO₄. The organic layers were combined and concentrated on rotary evaporator. The residue was purified by silica gel column chromatography to give the product (white solid, 1.0 g, 62%, petroleum ether/ethyl acetate = 20:1).

6. Preliminary Mechanistic Studies

6.1. Radical Trap Experiment

2-cyclohexyl-2-methyl-2,3-dihydroquinazolin-4(1*H*)-one (24.4 mg, 0.1 mmol, 1.0 equiv.), 4-(3,3,3-trifluoroprop-1-en-2-yl)-1,1'-bipheny (37.3 mg, 0.15 mmol, 1.5 equiv.), 4CzIPN (1.6 mg, 2 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.), TEMPO (0.2 mmol) were added in a 10 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for three times), and anhydrous DMF (1 mL) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under irradiation with 40 W blue LEDs, maintained at approximately room temperature in the air-conditioned room of 25 °C for 24 h. The reaction mixture was sent for HRMS analysis, the compounds **58** were detected by HRMS.

Figure S3 Radical trapping experiment

6.2. Radical Clock Experiment

2-(cyclopropylmethyl)-2-phenyl-2,3-dihydroquinazolin-4(1*H*)-one (55.6 mg, 0.2 mmol, 2.0 equiv.), 4-(3,3,3-trifluoroprop-1-en-2-yl)-1,1'-biphenyl (24.8 mg, 0.1 mmol, 1.0 equiv.), 4CzIPN (3.2 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.) were added in a 10 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for three times), and anhydrous DMF (1 mL) was added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under irradiation with 40 W blue LEDs, maintained at approximately room temperature in the air-conditioned room of 25 °C. After 24 h, ethyl acetate (5 mL) was added to the reaction mixture. The resulting solution was washed with brine (3 × 10 mL) and dried over anhydrous Na₂SO₄. The organic layers were combined and concentrated on rotary evaporator. The residue was purified by flash column chromatography on silica gel (colorless oil, 15.1 mg, 53%, petroleum ether).

4-(3,3,3-trifluoroprop-1-en-2-yl)-1,1'-biphenyl (24.8 mg, 0.1 mmol, 1.0 equiv.), Eosin Y (2.6 mg, 4 mol%), Na₂CO₃ (15.9 mg, 0.15 mmol, 1.5 equiv.) were added in a 10 mL Schlenk tube equipped with a stirring bar. The tube was evacuated and filled with argon (repeated for three times), then anhydrous DMF (1 mL) and diethyl 4-(2,6-dimethylhept-5-en-1-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (56.6 mg, 0.15 mmol, 1.5 equiv.) were added using a gastight syringe under argon atmosphere. The reaction mixture was stirred under irradiation with 40 W blue LEDs, maintained at approximately room temperature in the air-conditioned room of 25 °C. After 24 h, ethyl acetate (5 mL) was added to the reaction mixture. The resulting solution was washed with brine (3 × 10 mL) and dried over anhydrous Na₂SO₄. The organic layers were combined and concentrated on rotary evaporator. The residue was purified by flash column chromatography on silica gel (colorless oil, 15.2 mg, 43%, petroleum ether).

4-(1,1-difluorohepta-1,6-dien-2-yl)-1,1'-biphenyl (59)¹⁴

¹H NMR (600 MHz, CDCl₃) δ 7.64 – 7.55 (m, 4H), 7.47 – 7.38 (m, 4H), 7.37 – 7.34 (m, 1H), 5.84 – 5.72 (m, 1H), 5.05 – 4.94 (m, 2H), 2.48 – 2.43 (m, 2H), 2.12 – 2.05 (m, 2H), 1.55 – 1.48 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 153.65 (dd, J = 290.3, 287.3 Hz), 140.55, 139.98, 138.08, 132.70 – 132.57 (m), 128.78, 128.55 (t, J = 3.4 Hz), 127.36, 127.09, 126.99, 114.95, 91.92 (dd, J = 21.1, 13.5 Hz), 33.08, 27.01 (t, J = 2.4 Hz), 26.96.

¹⁹F NMR (564 MHz, CDCl₃) δ -91.05 (d, J = 43.0 Hz, 1F), -91.18 (d, J = 43.1 Hz, 1F).

4-(1,1-difluoro-4-methyl-4-(3-methylcyclopentyl)pent-1-en-2-yl)-1,1'-biphenyl (60)

¹**H NMR (600 MHz, CDCl₃)** δ 7.62 – 7.56 (m, 4H), 7.46 – 7.33 (m, 5H), 2.37 (d, *J* = 2.2 Hz, 2H), 1.91 – 1.64 (m, 4H), 1.61 – 1.46 (m, 2H), 1.30 – 1.19 (m, 1H), 1.11 – 0.98 (m, 1H), 0.96 (d, *J* = 6.5 Hz, 1.3H), 0.89 (d, *J* = 6.7 Hz, 1.7H), 0.71 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 156.38 – 152.14 (m), 140.60, 140.57, 139.65, 139.61, 134.86 – 134.77 (m), 128.83 (dd, J = 6.0, 2.9 Hz), 128.76, 127.30, 126.97, 126.96, 126.87, 126.85, 90.63 (dd, J = 21.6, 12.9 Hz), 50.37, 48.57, 38.48, 38.43, 37.27 (t, J = 2.2 Hz), 37.09 (t, J = 2.2 Hz), 36.77, 35.25, 34.90, 34.61, 34.10, 33.96, 27.70, 26.01, 24.62, 24.56, 24.33, 24.23, 21.10, 20.57. ¹⁹F NMR (564 MHz, CDCl₃) δ -85.16 (d, J = 40.6 Hz), -87.46 (dd, J = 40.6, 17.8 Hz).

HRMS (ESI) (m/z): [M+Na]+ Calcd for C₂₄H₂₈F₂Na⁺, 377.2051; Found 377.2056.

6.3 Light On-Off Experiments

Figure S4 Light on-off experiments

To examine the impact of light, we conducted experiments under alternating periods of irradiation and darkness. These resulted in a total interruption of the reaction progress in the absence of light and recuperation of reactivity on further illumination, which allows precise temporal control over the entire reaction period. These results demonstrated that light is a necessary component of the reaction.

7. References

- L. Li, L. Fang, W. Wu and J. Zhu, Visible-Light-Mediated Intermolecular Radical Conjugate Addition for the Construction of Vicinal Quaternary Carbon Centers, *Org. Lett.*, 2020, 22, 5401–5406.
- 2 K. B. Pal, E. M. Di Tommaso, A. K. Inge and B. Olofsson, Stereospecific Photoredox-Catalyzed Vinylations to Functionalized Alkenes and C-Glycosides, *Angew. Chem., Int. Ed.*, 2023, 62, e202301368.
- 3 J.-X. Wang, W. Ge, M.-C. Fu and Y. Fu, Photoredox-Catalyzed Allylic Defluorinative Alkoxycarbonylation of Trifluoromethyl Alkenes through Intermolecular Alkoxycarbonyl Radical Addition, *Org. Lett.*, 2022, **24**, 1471–1475.
- 4 (a) M. Schäfer, T. Stünkel, C. G. Daniliuc and R. Gilmour, Regio-and Enantioselective Intermolecular Aminofluorination of Alkenes via Iodine(I)/Iodine(III) Catalysis, *Angew. Chem., Int. Ed.*, 2022, 61, e202205508; (b) Z. Cai, R. Gu, W. Si, Y. Xiang, J. Sun, Y. Jiao and X. Zhang, Photoinduced allylic defluorinative alkylation of trifluoromethyl alkenes with Katritzky salts under catalyst- and metal-free conditions, *Green Chem.*, 2022, 24, 6830–6835.
- 5 Z. Lin, Y. Lan and C. Wang, Synthesis of *gem*-Difluoroalkenes via Nickel-Catalyzed Reductive C-F and C-O Bond Cleavage, *ACS Catal.*, 2019, **9**, 775–780.
- 6 Y. Liu, X. Tao, Y. Mao, X. Yuan, J. Qiu, L. Kong, S. Ni, K. Guo, Y. Wang and Y. Pan, Electrochemical C–N bond activation for deaminative reductive coupling of Katritzky salts, *Nat. Commun.*, 2021, 12, 6745.
- 7 R.-Y. Yang, H. Wang and B. Xu, Base promoted *gem*-difluoroolefination of alkyl triflones, *Chem. Commun.*, 2021, 57, 4831–4834.
- Y.-Q. Guo, Y. Wu, R. Wang, H. Song, Y. Liu and Q. Wang, Photoredox/Hydrogen Atom Transfer Cocatalyzed C-H Difluoroallylation of Amides, Ethers, and Alkyl Aldehydes, *Org. Lett.*, 2021, 23, 2353–2358.
- 9 X. Li, Y. Jiao, L. Han, J. Sun and X. Zhang, Defluorinative alkylation of 1-trifluoromethyl alkenes with alkyl radicals derived from visible light-induced deoxygenation of xanthate salts: synthesis of *gem*-difluoroalkenes, *Org. Biomol. Chem.*, 2023, 21, 3330–3334.
- 10 S. Yan, W. Yu, J. Zhang, H. Fan, Z. Lu, Z. Zhang and T. Wang, Access to gem-Difluoroalkenes via Organic Photoredox-Catalyzed gem-Difluoroallylation of Alkyl Iodides, J. Org. Chem., 2022, 87, 1574–1584.
- 11 A. A. Gladkov, G. N. Chernov, V. V. Levin, V. A. Kokorekin and A. D. Dilman, Photoredox Activation of Organozinc Reagents: Barbier-Type Reaction of Alkyl Halides with α-(Trifluoromethyl)styrenes, *Org. Lett.*, 2021, 23, 9645–9648.
- 12 C. Zhu, Y.-F. Zhang, Z.-Y. Liu, L. Zhou, H. Liu and C. Feng, Selective C–F bond carboxylation of *gem*-difluoroalkenes with CO₂ by photoredox/palladium dual catalysis, *Chem. Sci.*, 2019, **10**, 6721–6726.
- 13 Y. Guo, Y. Cao, H. Song, Y. Liu and Q. Wang, Photoredox relay-catalyzed gem-

difluoroallylation of alkyl iodides, Chem. Commun., 2021, 57, 9768-9771.

14 H.-W. Du, Y. Chen, J. Sun, Q.-S. Gao, H. Wang and M.-D. Zhou, Synthesis of gem-Difluoroalkenes via Zn-Mediated Decarboxylative/Defluorinative Cross-Coupling, Org. Lett., 2020, 22, 9342–9345.

8. NMR Spectra

¹H NMR (600 MHz, CDCl₃) spectrum of compound 3

¹⁹F NMR (564 MHz, CDCl₃) spectrum of compound 4

-90.48 -90.55 -90.96 -91.03

U сн3 Ph

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20(fl(ppm)

¹⁹F NMR (564 MHz, CDCl₃) spectrum of compound 6

Ph

-90.38 -90.45 -90.79 -90.86	-117.25 -117.25 -117.25 -117.26 -117.28

¹⁹F NMR (564 MHz, CDCl₃) spectrum of compound 8

-90.41 -90.48 -90.95

¹⁹F NMR (564 MHz, CDCl₃) spectrum of compound 10

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20(fl(ppm)

-89.71 -89.78 -90.43 -90.51

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20(fl(ppm)

¹⁹F NMR (564 MHz, CDCl₃) spectrum of compound 16

Ph

-91.01 -91.09 -91.33 -91.41

¹⁹F NMR (564 MHz, CDCl₃) spectrum of compound 18

L-88.45 L-88.52 L-91.76 C-91.83

Ph CF2

-89.06 -89.13 -89.39 -89.45

 g_{00}

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -201 fl (ppm)

¹⁹F NMR (564 MHz, CDCl₃) spectrum of compound 24

-90.26 -90.33 -90.68 -90.75

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20(fl (ppm)

¹³C NMR (151 MHz, CDCl₃) spectrum of compound 26

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -201 fl(ppm)

-90.40 -90.48 -90.51

¹⁹F NMR (564 MHz, CDCl₃) spectrum of compound 28

Meo

-90.51 -90.58 -91.04

¹⁹F NMR (564 MHz, CDCl₃) spectrum of compound 32

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -201 fl (ppm)

¹³C NMR (151 MHz, CDCl₃) spectrum of compound 33

110 100 fl (ppm) -1 . 90 . 70 . 60 . 50

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -201 fl (ppm)

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20(fl (ppm)

¹⁹F NMR (564 MHz, CDCl₃) spectrum of compound 41

¹⁹F NMR (564 MHz, CDCl₃) spectrum of compound 42

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -201 fl (ppm)

-0.5 -1

.0

-90.20 -90.27 -90.53

CF2 N.Boc

¹⁹F NMR (564 MHz, CDCl₃) spectrum of compound 46

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20(fl(ppm)

¹⁹F NMR (564 MHz, CDCl₃) spectrum of compound 50

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20(fl(ppm)

¹H NMR (600 MHz, CDCl₃) spectrum of compound 52

¹⁹F NMR (564 MHz, CDCl₃) spectrum of compound 52

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20(fl(ppm)

¹⁹F NMR (564 MHz, CDCl₃) spectrum of compound 54

-91.48 -91.56 -91.86 -91.94

¹H NMR (600 MHz, CDCl₃) spectrum of compound 56

¹⁹F NMR (564 MHz, CDCl₃) spectrum of compound 56

Ph

--88.86 --88.93 --89.54 --89.61

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20(f1 (ppm)

¹³C NMR (151 MHz, CDCl₃) spectrum of compound 57

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20(fl (ppm))