Supporting Information

Solvent and Catalyst Dependent Palladium-Catalyzed Switchable Chemodivergent Cascade Cyclizations of Trimethylenemethanes with ortho-Formyl Cinnamates

${ }^{\text {a }}$ School of Pharmacy, Guangxi Medical University, Nanning, 530021, China

Table of Contents

1. General methods 3
2. Detailed condition screenings 4
2.1 Detailed condition screenings for the synthesis of 3 a and 4a 4
2.2 Detailed condition screenings for the synthesis of $\mathbf{6 a}$ 6
3. General procedure for the synthesis of cycloadducts $\mathbf{3 a}-\mathbf{m}$ 7
4. General procedure for the synthesis of cycloadducts 4a-f. 14
5. General procedure for synthesis of cycloadducts $\mathbf{6 a - f}$ 18
6. Synthesis of cycloadducts $\mathbf{3 f}$ on a 1.0 mmol scale 22
7. Synthesis of cycloadducts $\mathbf{4 f}$ on a 1.0 mmol scale 22
8. More substrate attempts 23
9. Asymmetric explorations 26
10. Crystal data and structural refinement. 27
11. Mechanism study 29
11.1 $\mathrm{C}=\mathbf{O}$ - and $\mathrm{C}=\mathbf{C}$-selectivity [3+2] cycloaddition in DME 29
11.2 NBO charge analysis of the substrates and intermediates 30
$11.3{ }^{1} \mathrm{H}$ NMR mechanistic experiments 33
12. References 36
13. NMR and HRMS spectra 37
14. Computational data 88

1. General methods

${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}),{ }^{13} \mathrm{C}$ NMR (150 MHz) spectra were recorded on Bruker Avance NEO 600 MHz . Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl_{3} solution. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ double doublet, $\mathrm{dt}=$ double triplet; $\mathrm{m}=$ multiplet, and coupling constants (J) are reported in Hertz (Hz). ESI-HRMS was recorded on a Waters Xevo G2-XS using a time-of-flight mass spectrometer equipped with electrospray ionization (ESI) source. Column chromatography was performed on silica gel (100-200 mesh) eluting with ethyl acetate (EtOAc) and petroleum ether. TLC was performed on glass-backed silica plates. UV light and a solution of potassium permanganate were used to visualize products or starting materials. Petroleum ether and EtOAc were distilled. Dried solvents and liquid reagents were transferred by oven-dried syringes. Electron-deficient styrenes [1], electron-deficient cinnamates [2] and TMM donors [3] were prepared according to the literature procedures.

2. Detailed condition screenings

2.1 Detailed condition screenings for the synthesis of 3a and 4a

Enrty ${ }^{\text {a }}$	Solvent	[1a] (M)	2a/1a	$T\left({ }^{\circ} \mathrm{C}\right)$	Base	HB donor	Time (h)	$\begin{aligned} & \begin{array}{l} \text { 3a } \\ (\%)^{b} \end{array} \end{aligned}$	$\begin{aligned} & \text { 4a } \\ & (\%)^{b} \end{aligned}$
1	benzene	0.10	1.2	10	-	-	24	19	45
2	DCM	0.10	1.2	10	-	-	24	40	29
3	THF	0.10	1.2	10	-	-	10	82	trace
4	1,4-dioxane	0.10	1.2	10	-	-	10	95	nd
5	1,3-dioxoane	0.10	1.2	10	-	-	10	86	nd
6	DME	0.10	1.2	10	-	-	10	97	nd
7^{c}	DME	0.10	1.2	10	-	-	10	27	31
8^{d}	DME	0.10	1.2	10	-	-	10	33	trace
$9{ }^{\text {e }}$	DME	0.10	1.2	10	-	-	10	trace	trace
10	benzene	0.10	1.2	10	-	-	24	19	45
11	toluene	0.10	1.2	10	-	-	24	13	49
12	p-xylene	0.10	1.2	10	-	-	24	18	48
13	mesitylene	0.10	1.2	10	-	-	24	18	51
14	chlorobenzene	0.10	1.2	10	-	-	24	12	32
15	mesitylene	0.03	1.2	10	-	-	24	13	55
16	mesitylene	0.05	1.2	10	-	-	24	15	61
17	mesitylene	0.20	1.2	10	-	-	24	13	40
18	mesitylene	0.05	0.8	10	-	-	48	12	35
19	mesitylene	0.05	1.0	10	-	-	48	16	39
20	mesitylene	0.05	1.4	10	-	-	24	20	63

21	mesitylene	0.05	1.6	10	-	-	24	21	62
22	mesitylene	0.05	1.4	30	-	-	24	19	61
23	mesitylene	0.05	1.4	60	-	-	24	16	28
24	mesitylene	0.05	1.6	10	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	24	nd	55
25	mesitylene	0.05	1.6	10	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	-	24	9	57
26	mesitylene	0.05	1.6	10	t-BuOK	-	24	nd	nd
27	mesitylene	0.05	1.6	10	$\mathrm{Et}_{3} \mathrm{~N}$	-	24	12	61
28	mesitylene	0.05	1.6	10	DBU	-	24	10	nd
29	mesitylene	0.05	1.6	10	-	C1	24	10	65
30	mesitylene	0.05	1.6	10	-	C2	24	nd	nd
31	mesitylene	0.05	1.6	10	-	C3	5	nd	78
32	mesitylene	0.05	1.6	10	-	C4	5	nd	80
33	mesitylene	0.05	1.6	10	-	C5	5	nd	89
34	mesitylene	0.05	1.6	10	-	C6	5	nd	92
35	mesitylene	0.05	1.6	10	-	C7	5	nd	81
36	mesitylene	0.05	1.6	10	-	C8	5	nd	91
37^{c}	mesitylene	0.05	1.6	10	-	C6	5	trace	76
38^{d}	mesitylene	0.05	1.6	10	-	C6	5	nd	nd
39^{e}	mesitylene	0.05	1.6	10	-	C6	5	trace	nd

[^0]
2.2 Detailed condition screenings for the synthesis of 6 a

 Enrty ${ }^{a}$	$T\left({ }^{\circ} \mathrm{C}\right)$	d] (10 mo itylene, T U (40 mol	 6a 2a/5a	
		[5a] (M)		
1	10	0.05	1.4	66
2	25	0.05	1.4	70
3	40	0.05	1.4	75
4	65	0.05	1.4	70
5	40	0.03	1.4	75
6	40	0.10	1.4	79
7	40	0.20	1.4	76
8	40	0.10	1.6	87
9	40	0.10	1.8	94
10	40	0.10	2.0	95
11^{c}	40	0.10	2.0	86
12^{d}	40	0.10	2.0	71
13^{e}	40	0.10	2.0	trace

${ }^{a}$ Unless noted otherwise, reactions were performed with 5a $(0.1 \mathrm{mmol})$, $\mathbf{2 a}(0.14 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10$ $\mathrm{mol} \%)$ in mesitylene (1.0 mL) under N_{2} atmosphere for 12 h . After full conversion, the mixture was cooled to room temperature, and 40% DBU were added in situ at room temperature for 10 min .
${ }^{b}$ Isolated yield.
${ }^{c}$ with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(20 \mathrm{~mol} \%)$.
${ }^{d}$ with $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(20 \mathrm{~mol} \%)$.
${ }^{e}$ with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%)$ and $\mathbf{L 1}(20 \mathrm{~mol} \%)$.

3. General procedure for the synthesis of cycloadducts 3a-m

General procedure A: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with ortho-formyl-substituted cinnamate $\mathbf{1}\left(0.10 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($5.8 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$ or $11.6 \mathrm{mg}, 0.0100 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous DME (1.0 mL) and TMM donor $\mathbf{2 a}$ ($23.6 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $10^{\circ} \mathrm{C}$ for $10-48 \mathrm{~h}$, and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=10 / 1$) gave the product $\mathbf{3 a - m}$.

Synthesis of 3a by general procedure A: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with methyl (E) -3-(2-formyl-4-nitrophenyl)acrylate $\mathbf{1 a}(23.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous DME (1.0 mL) and TMM donor $\mathbf{2 a}$ ($23.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at 10 ${ }^{\circ} \mathrm{C}$ for 10 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product 3a: 30.5 mg , 97% yield, $>20: 1 \mathrm{dr}$, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl_{3}): $\delta(\mathrm{ppm}) 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H})$, $5.38(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 1 \mathrm{H}), 3.09-3.02(\mathrm{~m}, 1 \mathrm{H})$, 2.99-2.91 (m, 1H), 2.55 (dd, $J=16.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 172.7$, $148.8,148.3,146.6,142.9,125.6,125.5,121.2,119.5,114.2,82.2,59.5,57.2,52.7,48.5,36.0$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}$337.0795, found 337.0799.

Synthesis of 3b by general procedure A: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with ethyl (E)-3-(2-formyl-4-nitrophenyl)acrylate $\mathbf{1 b}(25.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) and
$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous DME (1.0 mL) and TMM donor 2a (23.6 mg , $0.120 \mathrm{mmol}, 1.2$ equiv) were added via syringe in sequence, and the tube was evacuated and backfilled with nitrogen for three times again. The resulting mixture was stirred at $10^{\circ} \mathrm{C}$ for 10 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product 3b: $29.2 \mathrm{mg}, 89 \%$ yield, $>20: 1 \mathrm{dr}$, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 8.28 ($\mathrm{s}, 1 \mathrm{H}$), 8.27 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.27$ (d, J $=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.00(\mathrm{~m}, 1 \mathrm{H})$, 2.99-2.91 (m, 1H), 2.64-2.48 (m, 1H), $1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 172.2, 148.8, 148.4, 146.7, 142.9, 125.6, 125.5, 121.2, 119.5, 114.1, 82.3, 61.9, 59.6, 57.2, 48.7, 36.1, 14.2; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+} 351.0951$, found 351.0959 .

Synthesis of 3c by general procedure A: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with benzyl (E) -3-(2-formyl-4-nitrophenyl)acrylate $\mathbf{1 c}(31.1 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous DME (1.0 mL) and TMM donor 2a ($23.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at 10 ${ }^{\circ} \mathrm{C}$ for 10 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product 3c: $35.6 \mathrm{mg}, 91 \%$ yield, $>20: 1 \mathrm{dr}$, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.24-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.30(\mathrm{~m}, 6 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H})$, $5.29-5.18(\mathrm{~m}, 3 \mathrm{H}), 4.55(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 1 \mathrm{H}), 3.16-3.01(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.91(\mathrm{~m}, 1 \mathrm{H})$, 2.63-2.50 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 172.0,148.8,148.1,146.5,142.8,135.2$, 128.78, 128.76, 128.7, 125.6, 125.5, 121.1, 119.4, 114.1, 82.2, 67.6, 59.8, 57.2, 48.7, 36.2; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+} 413.1108$, found 413.1112.

Synthesis of 3d by general procedure A: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with tert-butyl (E)-3-(2-formyl-4-nitrophenyl)acrylate $\mathbf{1 d}(27.7 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous DME (1.0 mL)
and TMM donor $\mathbf{2 a}$ ($23.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $10^{\circ} \mathrm{C}$ for 20 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product 3d: $32.3 \mathrm{mg}, 91 \%$ yield, $>20: 1 \mathrm{dr}$, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.29-8.24(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H})$, $5.25(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 1 \mathrm{H}), 2.97-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.39(\mathrm{~m}$, 1 H), 1.52 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 171.3,148.7,147.1,142.9,125.5,125.5$, 121.1, 119.6, 113.8, 82.7, 82.3, 59.4, 57.3, 49.7, 36.0, 28.0; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}$379.1264, found 379.1273.

Synthesis of 3e by general procedure A: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2 methoxyethyl (Z)-3-(2-formyl-4-nitrophenyl)acrylate $\mathbf{1 e}(27.9 \mathrm{mg}, 0.100$ $\mathrm{mmol}, 1.0$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous DME $(1.0 \mathrm{~mL})$ and TMM donor $\mathbf{2 a}(23.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $10{ }^{\circ} \mathrm{C}$ for 10 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1) gave the product $3 \mathrm{e}: 34.4 \mathrm{mg}, 96 \%$ yield, $>20: 1 \mathrm{dr}$, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.59(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.38(\mathrm{~m}, 1 \mathrm{H})$, 4.36-4.30 (m, 1H), 3.68-3.63 (m, 2H), 3.42 (s, 1H), $3.41(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.03(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.96(\mathrm{~m}$, $1 \mathrm{H}), 2.66-2.55(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 172.1,148.8,148.1,146.6,142.9$, 125.7, 125.6, 121.0, 119.4, 114.1, 82.2, 70.2, 64.5, 59.8, 59.0, 57.2, 48.5, 36.2; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}^{+}$381.1057, found 381.1064.

Synthesis of 3f by general procedure A: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-phenyl (Z)-3-(2-formyl-4-nitrophenyl)acrylate $\mathbf{1 f}(29.7 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous DME (1.0 mL) and TMM donor $\mathbf{2 a}$ ($23.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was
stirred at $10^{\circ} \mathrm{C}$ for 10 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product 3f: 34.1 mg , 91% yield, $>20: 1 \mathrm{dr}$, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.38-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.63(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 170.9,150.4,148.8,148.0,146.3,143.0,129.7,126.4,125.7,125.6,121.3$, 121.3, 119.5, 114.6, 82.2, 59.4, 57.2, 48.7, 35.8; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+} 399.0951$, found 399.0962.

Synthesis of 3 g by general procedure \mathbf{A} : An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with methyl (E)-3-(2-formyl-4-nitrophenyl)-2-methylacrylate $\mathbf{1 g}(24.9 \mathrm{mg}, 0.100 \mathrm{mmol}$, 1.0 equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous DME (1.0 mL) and TMM donor $\mathbf{2 a}$ ($23.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $10^{\circ} \mathrm{C}$ for 10 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product $\mathbf{3 g}: 26.5 \mathrm{mg}, 81 \%$ yield, $>20: 1 \mathrm{dr}$, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~s}$, $1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), $0.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 175.5,148.9,146.9,145.6$, 144.5, 127.4, 124.9, 120.6, 118.9, 113.6, 82.9, 61.4, 60.1, 53.0, 51.4, 45.9, 20.9; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}$351.0951, found 351.0952.

Synthesis of 3h by general procedure A: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with methyl (E) -3-(2-formyl-5-methyl-4-nitrophenyl)acrylate $\mathbf{1 i}(24.9 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous DME (1.0 mL) and TMM donor $\mathbf{2 a}(23.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $10^{\circ} \mathrm{C}$ for 10 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum
ether/EtOAc $=10 / 1)$ gave the product $\mathbf{3 h}: 31.5 \mathrm{mg}, 96 \%$ yield, $>20: 1 \mathrm{dr}$, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 4.52$ (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 1 \mathrm{H}), 3.07-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H})$, $2.57-2.51(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 172.7,149.9,146.7,146.5,140.3,136.1$, $128.6,122.1,119.5,114.1,82.2,59.5,57.1,52.7,48.5,36.0,20.8 ;$ HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+} 351.0951$, found 351.0952 .

Synthesis of 3i by general procedure A: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with phenyl (E) -3-(5-chloro-2-formyl-4-nitrophenyl)acrylate $\mathbf{1 i}(33.1 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous DME (1.0 mL) and TMM donor $\mathbf{2 a}$ ($23.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $10^{\circ} \mathrm{C}$ for 10 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether $/ E t O A c=10 / 1$) gave the product 3i: $34.4 \mathrm{mg}, 84 \%$ yield, $>20: 1 \mathrm{dr}$, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (s, 1H), 3.31-3.21 (m, 1H), $3.13(\mathrm{dd}, J=16.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=16.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 170.6,150.3,148.6,146.5,145.9,141.2,129.7,129.0,128.1,126.5$, 122.9, 121.3, 119.2, 114.8, 81.9, 59.5, 57.0, 48.6, 35.9; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{5}{ }^{+} 411.0743$, found 411.0745; Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16}{ }^{37} \mathrm{ClN}_{2} \mathrm{O}_{5}{ }^{+} 413.0713$, found 413.0701.

Synthesis of 3j by general procedure A: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with phenyl (E) -3-(2-formyl-4-(trifluoromethyl)phenyl)acrylate $\mathbf{1 j} \mathbf{~} 32.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.6 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous DME (1.0 mL) and TMM donor $\mathbf{2 a}$ ($23.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $10^{\circ} \mathrm{C}$ for 10 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product $\mathbf{3 j}: 38.8 \mathrm{mg}, 97 \%$ yield, $>20: 1 \mathrm{dr}$, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.36$
(m, 2H), 7.33-7.26 (m, 1H), $7.16(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}$, $1 \mathrm{H}), 3.34-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.57(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 171.0,150.4,146.7,145.0,141.9,131.6(\mathrm{q}, J=32.4 \mathrm{~Hz}), 129.7,127.5(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 126.3$, $125.1,122.9\left(\mathrm{~d}, J=4.4 \mathrm{~Hz}\right.$), 121.3, 119.7, 114.3, 82.8, 59.1, 57.4, 48.8, 35.7; ${ }^{19} \mathrm{~F}$ NMR (565 MHz , CDCl3) $\delta(\mathrm{ppm})-62.4$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+} 400.1155$, found 400.1159.

Synthesis of 3k by general procedure A: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with phenyl (E) -3-(4-cyano-2-formylphenyl)acrylate $\mathbf{1 k}(27.7 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.6 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous DME (1.0 mL) and TMM donor $\mathbf{2 a}$ ($23.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at 10 ${ }^{\circ} \mathrm{C}$ for 48 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product $\mathbf{3 k}: 11.6 \mathrm{mg}, 33 \%$ yield, $>20: 1 \mathrm{dr}$, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 4.71$ $(\mathrm{d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{dd}, J=16.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 170.9,150.4,146.4,146.3,142.5,134.0,129.7,129.7,126.4,125.6$, 121.3, 119.6, 118.2, 114.5, 113.0, 82.4, 59.0, 57.6, 48.7, 35.8; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+} 379.1053$, found 379.1053.

Synthesis of 31 by general procedure A: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with phenyl (E) -3-(2-formyl-5-nitrophenyl)acrylate $\mathbf{1 1}(29.7 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous DME (1.0 mL) and TMM donor $\mathbf{2 a}$ ($23.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at 10 ${ }^{\circ} \mathrm{C}$ for 10 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product 31: $36.4 \mathrm{mg}, 97 \%$ yield, $>20: 1 \mathrm{dr}$, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.29-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.8$
$\mathrm{Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.36-3.31$ (m, 1H), 3.29 (s, 1H), 3.14 (dd, $J=16.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (dd, $J=16.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta(\mathrm{ppm}) 170.7,150.4,149.7,147.6,146.3,142.8,129.7,126.7,126.4$, 124.6, 121.3, 120.1, 119.3, 114.6, 82.3, 59.5, 57.1, 48.7, 35.9; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+} 377.1132$, found 377.1130.

Synthesis of 3m by general procedure A: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with phenyl phenyl (E)-3-(3,4-difluoro-2-formylphenyl)acrylate $\mathbf{1 m}$ ($28.8 \mathbf{~ m g}, 0.100$ mmol, 1.0 equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous DME $(1.0 \mathrm{~mL})$ and TMM donor $\mathbf{2 a}(23.6 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.2$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 48 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product $\mathbf{3 m}: 33.1 \mathrm{mg}, 45 \%$ yield, $>20: 1 \mathrm{dr}$, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{dd}, J=8.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 3.36$ (s, 1H), 3.33 (dt, $J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.05(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.37(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 171.1,150.5,150.3$ (dd, $J=248.1,11.6 \mathrm{~Hz}$), $147.4(\mathrm{dd}, J=253.6,13.7 \mathrm{~Hz})$, $129.6,126.3,121.4,120.2(\mathrm{~d}, J=18.6 \mathrm{~Hz}), 119.8(\mathrm{dd}, J=7.1,3.5 \mathrm{~Hz}), 119.7,115.0,79.9,58.5,57.3$, 48.8, 34.7; ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta(\mathrm{ppm})-138.0,-141.3$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{Na}^{+} 390.0912$, found 390.0916 .

4. General procedure for the synthesis of cycloadducts 4a-f

General procedure B: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with ortho-formyl-substituted cinnamate $1\left(0.10 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}$, $0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$ or $11.6 \mathrm{mg}, 0.0100 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and $\mathbf{C 6}(9.6 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous mesitylene (2.0 mL) and TMM donor $\mathbf{2 a}(27.6 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.4$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $10^{\circ} \mathrm{C}$ for $5-24 \mathrm{~h}$, and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product 4a-f.

Synthesis of 4a by general procedure B: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with methyl (E)-3-(2-formyl-4-nitrophenyl)acrylate $\mathbf{1 a}(23.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{C 6}(9.6 \mathrm{mg}, 0.020$ $\mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous mesitylene (2.0 mL) and TMM donor $\mathbf{2 a}(27.6 \mathrm{mg}, 0.140 \mathrm{mmol}, 1.4$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $10{ }^{\circ} \mathrm{C}$ for 5 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product 4a: 29.0 mg , 92% yield, $>20: 1 \mathrm{dr}$, as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J$ $=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.65(\mathrm{dt}, J=13.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dt}, J=13.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (s, 3H), 3.08 (dd, $J=17.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=17.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 171.0,149.2,148.9,147.9,140.4,125.7,125.5,121.1,118.9,111.4,90.4,70.5,54.4,52.3$, 49.6, 38.4; HRMS (ESI-TOF) m/z: [M+Na] Calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}$337.0795, found 337.0803.

Synthesis of 4b by general procedure B: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with ethyl (E) -

3-(2-formyl-4-nitrophenyl)acrylate $\mathbf{1 b}\left(25.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.0050$ $\mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{C 6}(9.6 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%)$. The tube was capped, evacuated and backfilled with nitrogen for three times. Then degassed anhydrous mesitylene (2.0 mL) and TMM donor $\mathbf{2 a}(27.6 \mathrm{mg}, 0.140 \mathrm{mmol}, 1.4$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $10^{\circ} \mathrm{C}$ for 5 h, and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=$ $10 / 1$) gave the product $\mathbf{4 b}: 30.9 \mathrm{mg}, 94 \%$ yield, $>20: 1 \mathrm{dr}$, as a pale yellow oil; ${ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl_{3}): $\delta(\mathrm{ppm}) 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H})$, $5.66(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=17.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=17.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 170.6,149.3,148.9,147.9,140.4,125.7,125.5$, 121.1, 119.0, 111.4, 90.5, 70.5, 61.5, 54.4, 49.6, 38.7, 14.1; HRMS (ESI-TOF) m/z: [M+Na] Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+} 351.0951$, found 351.0954.

Synthesis of $\mathbf{4 c}$ by general procedure B: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with benzyl (E)-3-(2-formyl-4-nitrophenyl)acrylate $\mathbf{1 c}(31.1 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{C} 6(9.6 \mathrm{mg}, 0.020$ $\mathrm{mmol}, 20 \mathrm{~mol} \%$). The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous mesitylene (2.0 mL) and TMM donor $\mathbf{2 a}(27.6 \mathrm{mg}, 0.140 \mathrm{mmol}, 1.4$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $10{ }^{\circ} \mathrm{C}$ for 5 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product $4 \mathbf{c}: 36.6 \mathrm{mg}$, 94% yield, $>20: 1 \mathrm{dr}$, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{dd}$, $J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}$, $1 \mathrm{H}), 5.17$ (dd, $J=32.4,12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{t}, J$ $=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=16.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=17.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}): $\delta(\mathrm{ppm}) 170.3,149.0,148.8,147.9,140.3,135.1,128.7,128.7,125.7,125.5,121.1,119.0$, 111.4, 90.4, 70.5, 67.3, 54.4, 49.6, 38.7; HRMS (ESI-TOF) m/z: [M + Na $]^{+}$Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}$ 413.1108, found 413.1116 .

Synthesis of 4d by general procedure B: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with tert-butyl (E)-3-(2-formyl-4-nitrophenyl)acrylate $1 \mathbf{1 d}(27.7 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$
equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{C 6}(9.6 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous mesitylene (2.0 mL) and TMM donor 2a ($27.6 \mathrm{mg}, 0.140 \mathrm{mmol}, 1.4$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $10^{\circ} \mathrm{C}$ for 5 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product $\mathbf{4 d}: 29.2 \mathrm{mg}, 82 \%$ yield, $>20: 1 \mathrm{dr}$, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{dt}, J=13.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dt}, J=13.8$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=16.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=17.4,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 1.48 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 169.8,149.7,148.8,148.0,140.3,125.7,125.4$, 121.0, 119.1, 111.4, 90.5, 82.2, 70.5, 54.4, 49.7, 39.9, 28.1; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}$379.1264, found 379.1270.

Synthesis of $\mathbf{4 e}$ by general procedure B: An oven-dried 5 mL testtube equipped with a septum and a magnetic stir bar was charged with 2-methoxyethyl (Z)-3-(2-formyl-4-nitrophenyl)acrylate 1e $(27.9 \mathrm{mg}$, $0.100 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{C} 6(9.6 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous mesitylene (2.0 mL) and TMM donor $\mathbf{2 a}$ (27.6 $\mathrm{mg}, 0.140 \mathrm{mmol}, 1.4$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $10^{\circ} \mathrm{C}$ for 5 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product 4e: $31.9 \mathrm{mg}, 89 \%$ yield, $>20: 1 \mathrm{dr}$, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ $8.21(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H})$, $5.68-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.34-5.21(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{dt}, J=13.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{dt}, J$ $=13.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{dd}, J=17.4,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.79$ (dd, $J=17.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 170.5,149.1,148.9$, $147.9,140.4,125.8,125.5,121.1,119.0,111.4,90.4,70.5,70.2,64.3,59.0,54.4,49.6,38.6$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}^{+}$381.1057, found 381.1065.

Synthesis of $4 \mathbf{f}$ by general procedure B: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2-phenyl (Z)-3-(2-formyl-4-nitrophenyl)acrylate $\mathbf{1 f}(29.7 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv),
$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{C 6}(9.6 \mathrm{mg}, 0.020 \mathrm{mmol}, 20 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous mesitylene $(2.0 \mathrm{~mL})$ and TMM donor $\mathbf{2 a}(27.6 \mathrm{mg}, 0.140 \mathrm{mmol}, 1.4$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $10{ }^{\circ} \mathrm{C}$ for 24 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product 4f: $27.0 \mathrm{mg}, 72 \%$ yield, $>20: 1 \mathrm{dr}$, as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dt}, J=13.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12(\mathrm{dt}, J=13.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=17.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=17.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 169.5,150.3,149.0,148.8,147.9,140.6,129.7,126.4,125.7$, $125.6,121.4,121.2,119.2,111.7,90.6,70.4,54.2,49.9,38.9$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}^{+}$399.0951, found 399.0954.

5. General procedure for synthesis of cycloadducts 6a-f

General procedure C: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with substituted styrene $5(0.10 \mathrm{mmol}, 1.0$ equiv $)$ and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.6 \mathrm{mg}, 0.0100$ mmol, $10 \mathrm{~mol} \%$). The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous mesitylene (1.0 mL) and TMM donor 2a ($39.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 10 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the mixture was cooled to room temperature, and DBU ($6.0 \mu \mathrm{~L}, 0.039 \mathrm{mmol}, 40 \mathrm{~mol} \%$) was directly added and stirred for 10 min , and monitored by TLC (petroleum ether/EtOAc = 6/1). After completion, purification by flash chromatography on silica gel $($ petroleum ether $/ E t O A c=10 / 1)$ gave the product $\mathbf{6 a - f}$.

Synthesis of 6a by general procedure C: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with 5-nitro-2vinylbenzaldehyde 5 ($17.7 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.6$ $\mathrm{mg}, 0.0100 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous mesitylene (1.0 mL) and TMM donor 2a ($39.4 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 10 h, and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After full conversion, the mixture was cooled to room temperature, and DBU ($6.0 \mu \mathrm{~L}, 0.039 \mathrm{mmol}, 40 \mathrm{~mol} \%)$ was directly added and stirred for 10 min , monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product 6a: $24.3 \mathrm{mg}, 95 \%$ yield, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 10.27(\mathrm{~s}, 1 \mathrm{H}), 8.66(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.41(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.56(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.10$ (dd, $J=18.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}): $\delta(\mathrm{ppm}) 190.6,159.2,153.7,146.9,134.2,128.6,128.5,128.3,116.0,107.4,46.0,41.7,36.9$, 16.6; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{Na}^{+}$279.0740, found 279.0750.

Synthesis of 6b by general procedure C: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with 4-methyl-5-nitro-2-vinylbenzaldehyde $\mathbf{5 b}$ ($19.1 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($11.6 \mathrm{mg}, 0.0100 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The tube was capped, evacuated and backfilled with nitrogen for three times. Then degassed anhydrous mesitylene (1.0 mL) and TMM donor $\mathbf{2 a}$ ($39.4 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 10 h, and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After full conversion, the mixture was cooled to room temperature, and $\mathrm{DBU}(6.0 \mu \mathrm{~L}, 0.039 \mathrm{mmol}, 40 \mathrm{~mol} \%)$ was directly added and stirred for 10 min , monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product $\mathbf{6 b}: 18.6 \mathrm{mg}, 69 \%$ yield, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 10.17(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~s}$, $1 \mathrm{H}), 4.75-4.60(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=18.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.71$ (s, 3H), 2.57-2.47 (m, 1H), $2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 190.4,159.3,151.5$, 147.6, 140.2, 132.3, 132.1, 130.6, 116.1, 107.4, 45.9, 41.5, 36.7, 21.3, 16.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{Na}^{+}$293.0897, found 293.0910.

Synthesis of 6c by general procedure C: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with 4-chloro-5-nitro-2-vinylbenzaldehyde $5 \mathbf{c}\left(21.1 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0\right.$ equiv) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($11.6 \mathrm{mg}, 0.0100 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The tube was capped, evacuated and backfilled with nitrogen for three times. Then degassed anhydrous mesitylene (1.0 mL) and TMM donor $\mathbf{2 a}$ ($39.4 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 10 h, and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After full conversion, the mixture was cooled to room temperature, and DBU ($6.0 \mu \mathrm{~L}, 0.039 \mathrm{mmol}, 40 \mathrm{~mol} \%$) was directly added and stirred for 10 min , monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product $\mathbf{6 c}: 24.5 \mathrm{mg}, 84 \%$ yield, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 10.18(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}$, $1 \mathrm{H}), 4.71-4.60(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=18.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.68(\mathrm{~m}, 1 \mathrm{H})$, 2.60-2.50 (m, 1H), $2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 189.3, 159.1, 152.1, 133.3, $132.5,131.3,130.8,115.8,107.4,78.9,45.7,41.5,36.6,16.6$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11}{ }^{35} \mathrm{ClO}_{2} \mathrm{~N}_{3} \mathrm{Na}^{+}$313.0351, found 313.0359; Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11}{ }^{37} \mathrm{ClO}_{2} \mathrm{~N}_{3} \mathrm{Na}^{+}$315.0321, found 315.0342 .

Synthesis of 6d by general procedure C: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with methyl 5-nitro-2-vinylbenzoate $5 \mathbf{d}\left(20.7 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0\right.$ equiv) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($11.6 \mathrm{mg}, 0.0100 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The tube was capped, evacuated and backfilled with nitrogen for three times. Then degassed anhydrous mesitylene (1.0 mL) and TMM donor $\mathbf{2 a}$ ($39.4 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 10 h, and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After full conversion, the mixture was cooled to room temperature, and DBU ($6.0 \mu \mathrm{~L}, 0.039 \mathrm{mmol}, 40 \mathrm{~mol} \%$) was directly added and stirred for 10 min , monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product $\mathbf{6 d}: 24.3 \mathrm{mg}, 85 \%$ yield, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.69(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{dd}, J=$ $9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.48(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.07$ (dd, $J=18.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 166.1,159.4,153.6,146.1,130.9,128.2,126.8,125.7,116.1,107.5,52.9,46.5,42.3$, 38.1, 16.6; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}$309.0846, found 309.0852.

Synthesis of 6e by general procedure C: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with 5-nitro-2vinylbenzonitrile 5e ($17.4 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.6$ $\mathrm{mg}, 0.0100 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous mesitylene (1.0 mL) and TMM donor 2a ($39.4 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 10 h, and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After full conversion, the mixture was cooled to room temperature, and DBU ($6.0 \mu \mathrm{~L}, 0.039 \mathrm{mmol}, 40 \mathrm{~mol} \%$) was directly added and stirred for 10 min , monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1) gave the product 6c: $24.7 \mathrm{mg}, 98 \%$ yield, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.52(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{dd}, J=$ $9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.10(\mathrm{~m}, 1 \mathrm{H})$, 2.84-2.69 (m, 1H), 2.65-2.55 (m, 1H), $2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 158.9$, 155.3, 146.6, 128.2, 128.1, 128.0, 115.7, 115.6, 113.6, 107.4, 45.6, 41.5, 40.4, 16.6; HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}^{+}$276.0743, found 276.0744.

Synthesis of 6f by general procedure C: An oven-dried 5 mL test-tube equipped with a septum and a magnetic stir bar was charged with 2,4-dinitro-1-vinylbenzene $\mathbf{5 f}$ ($19.4 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.6 \mathrm{mg}$, $0.0100 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous mesitylene (1.0 mL) and TMM donor 2a ($39.4 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.0$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 10 h, and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After full conversion, the mixture was cooled to room temperature, and $\mathrm{DBU}(6.0 \mu \mathrm{~L}, 0.039 \mathrm{mmol}, 40 \mathrm{~mol} \%)$ was directly added and stirred for 10 min , monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product $6 \mathbf{f}: 26.2 \mathrm{mg}, 96 \%$ yield, as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.67(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{dd}, J=$ $9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=18.6$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 159.0, 149.5, 146.5, 146.2, 129.4, 127.4, 119.9, 115.7, 107.4, 46.2, 42.0, 37.0, 16.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{+}$274.0822, found 274.0828.

6. Synthesis of cycloadducts $3 f$ on a 1.0 mmol scale

An oven-dried 50 mL sealed tube equipped with a septum and a magnetic stir bar was charged with 2-phenyl (Z)-3-(2-formyl-4-nitrophenyl)acrylate $1 f(297.0 \mathrm{mg}, 1.000 \mathrm{mmol}, 1.0$ equiv) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(58.0 \mathrm{mg}, 0.0500 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous DME (10.0 mL) and TMM donor $\mathbf{2 a}(236.0 \mathrm{mg}$, $1.200 \mathrm{mmol}, 1.2$ equiv) were added via syringe in sequence, and the tube was evacuated and backfilled with nitrogen for three times again. The resulting mixture was stirred at $10^{\circ} \mathrm{C}$ for 24 h , and monitored by TLC (petroleum ether/EtOAc $=6 / 1$). After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product 3f: $308.4 \mathrm{mg}, 82 \%$ yield, $>20: 1 \mathrm{dr}$, as a colorless oil.

7. Synthesis of cycloadducts $4 f$ on a 1.0 mmol scale

An oven-dried 50 mL sealed tube equipped with a septum and a magnetic stir bar was charged with 2-phenyl (Z)-3-(2-formyl-4-nitrophenyl)acrylate $\mathbf{1 f}(297.0 \mathrm{mg}, 1.000 \mathrm{mmol}, 1.0$ equiv), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(58.0 \mathrm{mg}, 0.0500 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathbf{C 6}(96.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 20 \mathrm{~mol} \%)$. The tube was capped, evacuated and back-filled with nitrogen for three times. Then degassed anhydrous mesitylene (20.0 mL) and TMM donor $\mathbf{2 a}(276.0 \mathrm{mg}, 1.400 \mathrm{mmol}, 1.4$ equiv) were added via syringe in sequence, and the tube was evacuated and back-filled with nitrogen for three times again. The resulting mixture was stirred at $10{ }^{\circ} \mathrm{C}$ for 48 h , and monitored by TLC (petroleum ether/EtOAc $=$ $6 / 1)$. After completion, the solvent was evaporated in vacuo. Purification by flash chromatography on silica gel (petroleum ether/EtOAc $=10 / 1$) gave the product $4 \mathrm{f}: 270.7 \mathrm{mg}, 64 \%$ yield, $>20: 1 \mathrm{dr}$, as a yellow oil.

8. More substrate attempts

In order to further expand the substrate scope, (Z)-formyl cinnamate, more dielectrophiles, TMM donors and aryl ethylenes were investigated under the standard or optimal conditions.

More investigations in $\mathrm{C}=\mathrm{C}$ selective [3+2]/ aldol reaction

NR ($10 / 60^{\circ} \mathrm{C}$)

More investigations in $\mathrm{C}=\mathrm{O}$ selective [3+2] / Michael reaction

\qquad

NR

condition C: $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathbf{C 6}(20 \mathrm{~mol} \%)$, mesitylene, $10^{\circ} \mathrm{C}$;
condition $\mathbf{D}: \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathbf{C 6}(20 \mathrm{~mol} \%)$, mesitylene, $60^{\circ} \mathrm{C}$.

condition C NR
condition D NR

NR
NR

NR
NR

NR

More investigations in cascade cycloadditions for dielectrophlies

condition $\mathbf{A}: \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, toluene, rt;
condition B: $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, toluene, $60^{\circ} \mathrm{C}$.

More investigations in Pd-TMM cycloadditions for aryl-substituted alkenes

5
2a
$5=$

messy

9. Asymmetric explorations

Great efforts have been devoted to investigating the asymmetric version of the cascade reactions. Unfortunately, there was barely enantiocontrol afforded employing commonly used chiral phosphines.

10. Crystal data and structural refinement

Procedure for the recrystallization of 3a: To a 10 mL tube containing $\mathbf{3 a}(20 \mathrm{mg})$ was added $\mathrm{CHCl}_{3}(3.0 \mathrm{~mL})$, which was kept aside overnight at room temperature to obtain crystals. The crystals were subjected for single crystal XRD to determine the configuration of 3a (CCDC 2283650)

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

3a
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$
314.29

273 K
1.54178

Triclinic
P-1
$a=8.2559(10) \quad a=90.558(7)$
$b=8.4217(11) \quad b=110.791(7)$
$\mathrm{c}=11.5815(15) \quad \mathrm{g}=98.454(7)$
Volume

Z

Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.136$
Absorption correction
Refinement method
742.96(17)

2
$1.405 \mathrm{~g} / \mathrm{cm}^{3}$
$0.892 \mathrm{~mm}^{-1}$
328
$0.220 \times 0.200 \times 0.180 \mathrm{~mm}^{3}$
5.322 to 67.136
$-9<=\mathrm{h}<=9,-10<=\mathrm{k}<=10,-13<=1<=13$
7925
$2548[\mathrm{R}(\mathrm{int})=0.0458]$
96.3 \%

None
Full-matrix least-squares on F^{2}

Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

2548/0/210
1.007
$\mathrm{R}_{1}=0.0766, \mathrm{wR}_{2}=0.2154$
$\mathrm{R}_{1}=0.0952, \mathrm{wR}_{2}=0.2378$
n/a
0.448 and -0.396

11. Mechanism study

All structures were fully optimized using B3LYP functional in Gaussian16 [4]. Standard 6$31 \mathrm{~g}(\mathrm{~d})$ basis sets (The $\mathrm{C}=\mathrm{O}$-selective [3+2] cycloadditions in DME have been investigated at 6$311 \mathrm{G}(\mathrm{d}, \mathrm{p})$) were applied for the atoms except phosphorus (P) and palladium (Pd), which was described by relativistic effective core potential (ECP). Phosphorus and palladium were modified by Lanl2dz basis set, in which the secondary outer p functions of the standard Lanl2dz basis set were replaced with optimized ones and an f polarization function was added [5]. Normal coordinate analysis of each stationary point was performed to confirm whether the optimized geometry was a minima or a transition state, and to calculate zero-point energy and Gibbs free energy. Natural bond orbital (NBO) [6,7] calculations were performed to analyze how the charge distributes in the bonding and how it transfers in the reaction. In each elementary step, intrinsic reaction coordinate (IRC) [8] calculation was used to verify whether each TS connects the reactant and the product. The effect of solvent (DME) environment on catalytic process was evaluated using the solvation model based on density (SMD) [9] with its dielectric constant of 38.3. The free energy of each species in solution was deemed as the sum of the gas-phase free energy and the free energy of solvation.

11.1 $\mathrm{C}=\mathbf{O}$ - and $\mathrm{C}=\mathbf{C}$-selectivity $[3+2]$ cycloaddition in DME

To elucidate high $\mathrm{C}=\mathrm{O}$ selectivity for the $[3+2]$ cycloaddition in DME, density functional theory (DFT) calculations were conducted. As depicted in the Scheme below, two pathways were proposed and calculated, including $\mathrm{C}=\mathrm{O}$ selective addition (green line) and $\mathrm{C}=\mathrm{C}$ selective addition (blue line).

The energy barrier for the $\mathrm{C}=\mathrm{O}$-selective [3+2] process from $\mathbf{1 a}$ to \mathbf{M}-Ts is $52.4 \mathrm{kcal} \mathrm{mol}^{-1}$, in

C=C-selective process, from $\mathbf{1 a}$ to $\mathbf{D}-\mathbf{T s}$ is $51.1 \mathrm{kcal} \mathrm{mol}^{-1}$. In addition, a lower free energy (25.9 kcal mol^{-1} vs $34.3 \mathrm{kcal} \mathrm{mol}^{-1}$) was observed via D-Int to form D-Ts. These results demonstrate that the $\mathrm{C}=\mathrm{O}[3+2]$ process is more favorable in the solvent.

11.2 NBO charge analysis of the substrates and intermediates

Pd-TMM dipole

NBO charge analysis revealed that the soft carbon nucleophile C3 preferentially attacks at the soft electrophile C2. Moreover, ortho-formyl cinnamate 1a combined with urea $\mathbf{C 8}$ via $\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bond, which could drive the charge transferred from $\mathbf{C 1}$ to oxygen atom, and thus enhanced the $\mathrm{C}=\mathrm{O}$-selectivity.

11.3 ${ }^{1} \mathrm{H}$ NMR mechanistic experiments

$1 f$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1d
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\infty}{\infty} \stackrel{\sim}{\infty}$

הָ

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

12. References

[1] (a) S.Y. Liang, B. Jiang, B.X. Xiao. et al., ChemCatChem 12 (2020) 5374-5377. (b) B. Jiang, B.X. Xiao, Q. Ouyang. et al., Org. Lett. 21 (2019) 3310-3313.
[2] (a) J.B. Lu, C.H. Shi, D. Hu. et al., Org. Lett. 23 (2021) 145-149. (b) N. Yasmin, M. Ghosh, J.K. Ray, RSC Adv. 4 (2014) 19932-19938.
[3] B.M. Trost, G. Mata, Angew. Chem. Int. Ed. 57 (2018) 12333-12337.
[4] M.J. Frish, G.W. Trucks, H.B. Schlegel, et al., Gaussian 16, Revision C.01, Gaussian. Inc., Wallingford CT, 2016.
[5] M. Couty, M.B. Hall, J. Comput. Chem. 17 (1996) 1359-1370.
[6] E.D. Glendening, C.R. Landis, F. Weinhold, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (2012) 1-42.
[7] A.E. Reed, L.A. Curtiss, Weinstock. et al., J. Chem. Phys. 88 (1988) 899-926.
[8] C. Gonzalez, H.B. Schlegel, J. Chem. Phys. 90 (1989) 2154-2161.
[9] A.V. Marenich, C.J. Cramer, D.G. Truhla, J. Phys. Chem. B 113 (2009) 6378-6396.

13. NMR and HRMS spectra

3a
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| -172.730 |
| ---: | :--- |
| |
| |

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]

3b
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3b
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3c
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

-171.273
/148.697
$\bigcirc 147.04$
142.863
125.53
125.46
-121.141
119.639
113.816
82.678
-82.294
77.270
T7.058
76.848
-59.397
$\backslash 5.331$
-49.703
-36.000
-27.996

3d
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^2](200

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
-172.131
${ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(200

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^3]

3 g
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3h
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$3 i$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Spectrum from 20230617 .wiff2 (sample 76) $43,+$ TOF MS (200 - 600) from 0.037 to 0.088 min, noise filter... 4 min, noise filtered (noise multipier $=1.5$), Gaussian smoothed (0.5 points), Recalibrated, centroided

3j
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3j
${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Spectrum from 20230617 .wifi2 (sample 75) - 42, + TOF MS (200 - 600) from 0.886 to 0.336 min, noise filtere.. 4 min, noise filtered (noise multipier $=1.5$), Gaussian smoothed (0.5 points), Recalibrated, centroided

3k
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^4]

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Spectrum from 20230617.wifi2 (sample 77) - 44, +TOF MS (200-600) from 0.037 to 0.073 min, noise filtered (noise multiplier $=1.5$), Gaussian smoothed (0.5 points), Recalibrated, centroded

3m
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3m
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3m
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
\qquad

4a
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4b
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{aligned} & \stackrel{i}{n} \\ & \stackrel{n}{\circ} \\ & \stackrel{1}{1} \end{aligned}$		 	$\begin{aligned} & \text { 萳 } \\ & \stackrel{\circ}{\circ} \end{aligned}$				

4b
${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4c
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4c
${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

HRMS (ESI-TOF) m/z: $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}^{+}\right.$
Calcd for 381.1057

$4 f$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$4 f$
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6a
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

6b
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

-190.442
151.533
147.600
$\int_{132.309}^{14.174}$
-116.121
-107.39
${ }^{77.255}$
76.833
-45.875
$\begin{aligned} & -41.497 \\ & -36.680 \end{aligned}$
-16.635

6b
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6c
${ }^{1} \mathrm{H}$ NMR（ $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\stackrel{m}{\infty}$

 ～～～～ヘッチ
$\stackrel{0}{\stackrel{\circ}{1}}$

6 c
${ }^{13} \mathrm{C}$ NMR（ $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6e
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

14. Computational data

D-Int

zero-point Energies/(ev): -2632.431614
thermal Free Energies/(ev): -2632.431614

G(solv)/(kcal/mol): -26.49

C
C
C
Pd
P
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
H
H
H
H
H
H
H

0.81328700	2.70918600	0.95318900
-0.35838100	3.61528600	1.07887800
-0.29784700	4.93460500	0.85559000
0.55210800	0.79931200	0.11177400
2.97524400	0.45639100	0.27323000
3.74304900	-0.48915900	1.67479200
5.13177400	-0.51964100	1.89693600
5.66159100	-1.22819000	2.97528100
4.81395400	-1.90297000	3.85847800
3.43352000	-1.85894700	3.66287300
2.90265800	-1.15310200	2.57957300
3.97780900	2.02547000	0.32689300
4.44633600	2.64068500	-0.84345500
5.12785100	3.85813000	-0.78045900
5.34870300	4.48029800	0.44911100
4.88178700	3.87856300	1.61946600
4.19940500	2.66331600	1.55960200
3.55046300	-0.32964400	-1.30683600
4.67881300	-1.15643700	-1.40548700
5.07950800	-1.65890700	-2.64413400
4.36416600	-1.33763400	-3.79925900
3.23476200	-0.52299500	-3.70889000
2.82100800	-0.02786400	-2.47023500
-1.15619000	5.58709900	0.98928400
0.62972100	5.40284900	0.53749500
5.79944700	0.02830500	1.23910100
6.73687700	-1.24495000	3.13165000
5.22913700	-2.44899900	4.70126700
2.76403900	-2.36539700	4.35268400
1.82699400	-1.11251500	2.44222200

H
H

H
H
H
H
H
H
H

H
H
H
C
C
C
H
C

H
C
C
H
H
H
C
C
H
H
H
C
C
C
H
C
H
C

5.28803200	2.16901500	-1.80772400
5.49056600	4.31607400	-1.69689900
5.04636400	4.35458200	2.58238500
3.84632400	2.20706100	2.47982500
5.24235400	-1.42437600	-0.51856100
5.95234500	-2.30368500	-2.70420700
4.68068300	-1.72837700	-4.76274000
2.66233200	-0.27636300	-4.59890400
1.92333700	0.58414800	-2.41726000
-4.69887000	-3.53414500	-1.28108400
-2.72446700	-3.22483400	0.15398900
-3.86733300	-2.93194300	-1.63735700
-2.74610000	-2.75636000	-0.82372800
-3.92403000	-2.33588400	-2.89843200
-4.80071300	-2.46886900	-3.52617600
-1.66503200	-1.97613600	-1.26158900
-0.47624000	-4.46352500	0.92778800
-2.85631700	-1.55276600	-3.34014900
-1.73610400	-1.36556600	-2.52705900
-2.89888200	-1.06739900	-4.31124700
0.06660700	-3.22012400	-2.83110700
-0.93999600	-0.70535600	-2.86053900
0.86628600	-3.56377100	-2.18428500
1.74501500	-4.54354600	-2.65132400
1.61770300	-4.93923900	-3.65551500
-1.44900200	-1.17128600	4.51450500
-1.63816200	-3.60897000	4.97541500
-1.24289200	-1.89346600	3.72877800
-1.34679100	-3.26096800	3.98813800
-0.86845800	-1.44988300	2.45804500
-0.77539900	-0.38555300	2.25630800
-1.07172700	-4.18100100	2.97321600
-1.14973800	-5.24718100	3.16845700
-0.59124100	-2.36327200	1.42925500

C	-0.69536200	-3.73758700	1.70441200
P	-0.12756500	-1.69805300	-0.24698300
C	1.00172100	-3.04048400	-0.88986800
H	2.17655200	-3.13617600	0.92675200
C	2.04594800	-3.51862900	-0.08009500
C	2.91677900	-4.50348500	-0.54588600
C	2.77009400	-5.02026700	-1.83444800
H	3.71017300	-4.86594500	0.10261000
H	3.44765700	-5.78859100	-2.19712800
C	-1.65855800	2.92016400	1.46888100
H	-1.39419900	2.08904900	2.13545200
C	-2.58630400	3.79648700	2.19921900
N	-3.32979100	4.48453600	2.76711400
C	-3.80532600	0.86698200	1.67406000
C	-3.59813900	1.52476400	0.45103500
C	-4.58261600	1.35860700	-0.55827700
C	-5.70771500	0.55722500	-0.33417100
C	-5.86288200	-0.07941400	0.88746600
C	-4.92186300	0.06960100	1.90406300
H	-3.08780700	0.97516000	2.47806500
H	-6.44275800	0.44294900	-1.12142500
H	-5.07093600	-0.43463400	2.85089000
C	-4.49256600	1.99811600	-1.90341400
H	-3.63307600	2.66757300	-2.08228400
O	-5.31336400	1.81420400	-2.78376700
C	-2.33234600	2.33886000	0.18190500
H	-2.62002800	3.22378800	-0.39026700
C	-1.34489000	1.50126400	-0.67313900
H	-1.80167300	0.55264200	-0.94140000
N	-7.03538500	-0.93506900	1.11511200
O	-7.13573900	-1.48345300	2.21368400
O	-7.84236900	-1.05775200	0.19488400
C	-0.84918400	2.11214700	-1.93655700
O	-1.07603600	3.44817300	-2.03991900
O	-0.28336900	1.50050300	-2.84090400

C	-0.56029600	4.08132600	-3.21826300
H	0.52770100	3.98107100	-3.26406200
H	-0.99556000	3.63936700	-4.11839800
H	-0.84217900	5.13139700	-3.13149600
H	1.13809700	2.38169000	1.95329000
H	1.64736300	3.21601500	0.46639500

D-Ts

zero-point Energies/(ev): -2632.391237
thermal Free Energies/(ev): -2632.495721
G(solv)/(kcal/mol): -25.75

C	0.38863700	2.28410700	1.52846100
C	-0.62268600	3.04113400	2.32249100
C	-0.38171700	4.21607500	2.91107200
Pd	0.57359100	0.27290300	0.54006200
P	2.97854600	0.55687000	-0.11763100
C	4.26596000	-0.13022700	1.03585600
C	5.64343800	0.08888700	0.85778700
C	6.56748600	-0.42357800	1.76831400
C	6.13015600	-1.15200300	2.87864400
C	4.76516100	-1.36119200	3.07648900
C	3.84042500	-0.85122600	2.16065300
C	3.60393800	2.30770500	-0.29209300
C	3.71215900	2.96741600	-1.52540900
C	4.08745000	4.31200300	-1.58328700
C	4.35408400	5.02482400	-0.41278700
C	4.24475300	4.38078300	0.82167800
C	3.87097900	3.03758200	0.88170300
C	3.33390000	-0.20752100	-1.77155600
C	4.37905900	-1.11046800	-2.01186300
C	4.54854500	-1.67659600	-3.27760500
C	3.68410300	-1.34409200	-4.32080300
C	2.63451300	-0.45234600	-4.08850400
C	2.44803400	0.10178700	-2.82119900
H	-1.13403000	4.72365100	3.50776900

H	0.58796600	4.69768400	2.82068600
H	5.99219500	0.67075600	0.00940100
H	7.62922100	-0.24848100	1.61542900
H	6.85143900	-1.54564200	3.58991900
H	4.41677600	-1.91427800	3.94481600
H	2.77560500	-1.00035700	2.32167600
H	3.51188400	2.43325400	-2.44760300
H	4.17960000	4.79888200	-2.55095300
H	4.64874500	6.06965600	-0.46151500
H	4.45609600	4.92108600	1.74098800
H	3.80700500	2.54811900	1.85018600
H	5.05922600	-1.38559700	-1.21329800
H	5.36084000	-2.37919500	-3.44496800
H	3.82160100	-1.78265500	-5.30568700
H	1.95007200	-0.19312900	-4.89224000
H	1.61579000	0.77869900	-2.64480300
H	-4.60740000	-3.62866600	-1.54067800
H	-2.77459100	-3.58955000	0.10620100
C	-3.74076200	-2.99746700	-1.71758200
C	-2.70415700	-2.96904600	-0.78121700
C	-3.67161400	-2.20931300	-2.86814600
H	-4.47921200	-2.23232800	-3.59478500
C	-1.58732500	-2.14280100	-0.97672900
H	-0.64113200	-4.89847000	0.96982900
C	-2.56309800	-1.38535500	-3.07578600
C	-1.53336000	-1.34468600	-2.13388100
H	-2.50179600	-0.76543000	-3.96631000
H	-0.04466100	-3.73389100	-2.28730400
H	-0.68069300	-0.69042300	-2.29936000
C	0.83699000	-3.93876800	-1.68955900
C	1.77754600	-4.86362800	-2.15245000
H	1.61350900	-5.36171300	-3.10452800
H	-1.77479300	-2.10097800	4.91282700
H	-2.04707300	-4.57180100	5.01841700
C	-1.53890600	-2.71425000	4.04702400

C	-1.68890300	-4.10060500	4.10709600
C	-1.07370000	-2.11377500	2.87480300
H	-0.93098300	-1.03620000	2.83156900
C	-1.36632100	-4.88164900	2.99426400
H	-1.47253400	-5.96239200	3.03827600
C	-0.76041300	-2.88422800	1.74536700
C	-0.90224300	-4.27993100	1.82347500
P	-0.16032200	-2.01129800	0.21203900
C	1.02678100	-3.28195500	-0.46596700
H	2.35212200	-3.07353500	1.22990400
C	2.18024100	-3.57342900	0.28153300
C	3.11198700	-4.50337500	-0.17587300
C	2.91426200	-5.15148200	-1.39806500
H	3.99472700	-4.71756400	0.42106600
H	3.64202500	-5.87385600	-1.75814200
C	-1.96405300	2.34408800	2.30500300
H	-1.82407700	1.30889200	2.64426400
C	-2.99796800	2.96318300	3.13619200
N	-3.81897700	3.46161600	3.78838700
C	-3.80706800	0.29130000	1.05653700
C	-3.56062000	1.51867100	0.42007700
C	-4.46651200	1.93994500	-0.58626800
C	-5.56851000	1.14354500	-0.92532200
C	-5.76199200	-0.06719400	-0.28125300
C	-4.89249300	-0.50661400	0.71537600
H	-3.13452000	-0.06815500	1.82642400
H	-6.24867100	1.48102100	-1.69790100
H	-5.06766200	-1.45870100	1.19979800
C	-4.31647800	3.20708400	-1.36027000
H	-3.42982800	3.82781200	-1.14097100
O	-5.10850100	3.56165600	-2.21377600
C	-2.32850300	2.33774500	0.78518100
H	-2.51246300	3.38483800	0.54841600
C	-1.08275900	1.88717600	-0.00725000
H	-1.26800400	0.93726700	-0.51770900

N	-6.88899100	-0.92451800	-0.67547700
O	-6.97658200	-2.03049600	-0.13900100
O	-7.66831800	-0.49293400	-1.52241300
C	-0.51535100	2.81524000	-1.02427500
O	-0.82009800	4.11799100	-0.80311400
O	0.16848100	2.46018900	-1.97125000
C	-0.25314200	5.05389400	-1.73669300
H	0.83819300	4.99915300	-1.71323300
H	-0.60198800	4.84312400	-2.75089600
H	-0.59783700	6.03483300	-1.40839400
H	0.85142800	1.52917300	2.20285300
H	1.15563500	2.92475300	1.09732000

M-Int

zero-point Energies/(ev): -2632.442496

thermal Free Energies/(ev): -2632.545401

G(solv)/(kcal/mol): -26.03

C	-0.06751900	2.56407400	0.62040500
C	1.34129600	2.78840000	0.24013800
C	1.72068400	3.62377300	-0.74425800
Pd	-0.62538400	0.59875300	0.03361600
P	-2.79946900	1.23817900	0.59953300
C	-4.27614300	0.19015100	0.17658700
C	-5.42416400	0.69924600	-0.44591600
C	-6.52735500	-0.12714800	-0.67745900
C	-6.49753300	-1.46579600	-0.28838300
C	-5.35668800	-1.98069500	0.33287800
C	-4.25403700	-1.16031900	0.56085400
C	-3.29801700	2.92500300	0.00858600
C	-3.72070200	3.95439600	0.85992700
C	-4.05089500	5.20979200	0.34117800
C	-3.96671100	5.45052800	-1.02990100
C	-3.53814300	4.43250700	-1.88640500
C	-3.19703900	3.18342700	-1.36978700
C	-2.95145400	1.27238600	2.45253300

C	-4.20215800	1.46274500	3.06823600
C	-4.31099700	1.47238300	4.45811200
C	-3.17694500	1.28057000	5.25328700
C	-1.93607900	1.07184100	4.65246700
C	-1.82330900	1.06367800	3.25950500
H	2.76650200	3.77155100	-1.00361100
H	0.98870400	4.18452500	-1.31964200
H	-5.46754800	1.74087300	-0.74552500
H	-7.41194900	0.28278800	-1.15794800
H	-7.35703800	-2.10619100	-0.46694200
H	-5.32259000	-3.02328400	0.63600500
H	-3.37308200	-1.57327000	1.04493400
H	-3.78589100	3.78555700	1.92928200
H	-4.37085100	5.99975800	1.01522200
H	-4.22368700	6.42751800	-1.42996800
H	-3.45806200	4.61428300	-2.95477900
H	-2.83617800	2.40660300	-2.03956700
H	-5.09427000	1.59114500	2.46195600
H	-5.28309800	1.62315100	4.92014800
H	-3.26499000	1.28725100	6.33643000
H	-1.04574200	0.91787500	5.25499200
H	-0.85262600	0.88816500	2.80893900
H	0.83784900	-1.18296200	-5.93490900
H	-0.88898300	-1.28771800	-4.19001100
C	1.13313000	-1.33917800	-4.90052500
C	0.15271600	-1.39383400	-3.90703100
C	2.47948500	-1.49482500	-4.57082900
H	3.24098900	-1.45739000	-5.34534300
C	0.50632300	-1.59903900	-2.56501700
H	-2.15811000	-4.25645500	-1.65679400
C	2.84038600	-1.70470800	-3.23799500
C	1.86569600	-1.75210000	-2.24121200
H	3.88562100	-1.83320300	-2.96868600
H	0.38624100	-4.32051900	-1.76013000
H	2.15453900	-1.89894000	-1.20829700

C	0.23819800	-4.22757100	-0.68818400
C	0.58526600	-5.28749200	0.15074700
H	0.98913700	-6.20178000	-0.27613900
H	-4.73918200	-0.74401300	-4.02961600
H	-5.45827200	-3.12322000	-4.16122200
C	-4.17131300	-1.51584900	-3.51731500
C	-4.57648400	-2.85003800	-3.58780300
C	-3.04337500	-1.16774300	-2.77370400
H	-2.74495400	-0.12441000	-2.70842400
C	-3.84802800	-3.82902700	-2.91058500
H	-4.16055700	-4.86917700	-2.95466300
C	-2.29008000	-2.14657800	-2.10519800
C	-2.71197700	-3.48214700	-2.17652500
P	-0.76237800	-1.59433100	-1.19906400
C	-0.27971400	-3.03710200	-0.15108700
H	-0.78496300	-1.99445600	1.66809000
C	-0.42713700	-2.92625400	1.23955900
C	-0.07530100	-3.98614000	2.07715000
C	0.42980200	-5.16816900	1.53382500
H	-0.16925700	-3.87800300	3.15326500
H	0.71861600	-5.98602200	2.18781800
C	2.40450000	1.95445600	0.94008700
H	3.37886500	2.44714500	0.84347500
C	2.12940400	1.78127900	2.37129100
N	1.89332500	1.63545600	3.49955400
C	6.01723100	-0.77879700	1.03768100
C	4.99844600	0.01128500	0.46592300
C	3.64415900	-0.27622200	0.77678800
C	3.35360900	-1.32049500	1.65830000
C	4.38802300	-2.06677200	2.21236300
C	5.72686200	-1.81605400	1.91113000
H	7.05076700	-0.58767800	0.76643400
H	2.32090200	-1.54105400	1.89116800
H	6.50362200	-2.43067200	2.34811500
C	2.47288600	0.54260000	0.21664800

H	2.70678800	0.80776800	-0.83256400
O	1.30291000	-0.15225100	0.31983600
C	5.34518700	1.11052200	-0.44580300
H	4.60794800	1.38032300	-1.19634000
C	6.48772500	1.82274800	-0.41916000
H	7.26533400	1.64846200	0.31818200
N	4.06729500	-3.16449900	3.13747000
O	5.00284900	-3.84716100	3.55952400
O	2.88710600	-3.34090400	3.43823500
C	6.80501600	2.91512500	-1.36239100
O	5.78716600	3.19966100	-2.21440600
O	7.86764000	3.50661800	-1.37475800
C	6.05778200	4.24681800	-3.15692800
H	6.27652200	5.18454000	-2.63874600
H	6.91122200	3.98563100	-3.78876700
H	5.15179600	4.34200000	-3.75641100
H	-0.21974600	2.64175800	1.69909700
H	-0.72779100	3.25911100	0.10076800

M-Ts

zero-point Energies/(ev): -2632.384784
thermal Free Energies/(ev): -2632.491929
G(solv)/(kcal/mol): -26.43

C	0.02451700	0.79503700	-2.03444900
C	1.31195400	0.39159200	-2.61779500
C	1.41694200	-0.59538900	-3.51946400
Pd	-0.91491900	-0.11603500	-0.01934800
P	-2.94383100	1.13165300	-0.25571300
C	-4.39015300	0.68074400	0.82938500
C	-5.63984700	0.27401000	0.34074600
C	-6.67349900	-0.05561800	1.22267200
C	-6.47654000	0.02494100	2.60140100
C	-5.23426500	0.43149500	3.09863800
C	-4.19856100	0.74848400	2.22064400
C	-3.62402600	0.94148300	-1.97729600

C	-4.01099000	2.01932400	-2.78710000
C	-4.45872500	1.80105200	-4.09304600
C	-4.53411900	0.50571300	-4.60598200
C	-4.14938500	-0.57611100	-3.80930800
C	-3.68730600	-0.35948500	-2.51093900
C	-2.87673500	2.97022100	0.01231300
C	-4.03157000	3.75618700	0.17014100
C	-3.92552100	5.13150500	0.37622600
C	-2.66692500	5.73741000	0.43596000
C	-1.51414700	4.96524500	0.28978200
C	-1.61849900	3.58691600	0.08006700
H	2.37021800	-0.85807700	-3.97085400
H	0.54520700	-1.15272300	-3.85027500
H	-5.81298200	0.21639900	-0.72904700
H	-7.63626100	-0.36851000	0.82663200
H	-7.28364600	-0.22482000	3.28500000
H	-5.07025300	0.49961200	4.17091600
H	-3.23292300	1.05323600	2.61732700
H	-3.96106900	3.03275500	-2.40288800
H	-4.74919400	2.64877200	-4.70814300
H	-4.88394000	0.33936100	-5.62136900
H	-4.19855900	-1.58883100	-4.20095100
H	-3.36625900	-1.20307700	-1.90429500
H	-5.01320600	3.29142300	0.14174600
H	-4.82529400	5.72925500	0.49822700
H	-2.58613900	6.80772700	0.60632700
H	-0.53307800	5.42590700	0.35750200
H	-0.71968200	2.98308400	-0.01419000
H	-2.72113500	-6.03907300	-1.89312800
H	-2.36935000	-4.54354000	0.03537000
C	-1.87659200	-5.35471800	-1.89349600
C	-1.67826100	-4.50634500	-0.80056600
C	-0.99428000	-5.33258800	-2.97373700
H	-1.14685400	-5.99685900	-3.82011400
C	-0.59588500	-3.61450800	-0.77560800

H	0.04952800	-4.62763100	2.58697600
C	0.08943700	-4.45000700	-2.95811500
C	0.28177500	-3.59443900	-1.87366300
H	0.78636300	-4.42766800	-3.79239700
H	1.60330900	-4.71094500	0.34682900
H	1.12399500	-2.90777400	-1.87754700
C	2.06996900	-3.92380300	0.93124100
C	3.36238700	-4.11083800	1.42847300
H	3.88455900	-5.04384500	1.23086100
H	-4.43403900	-2.66297000	3.41197200
H	-3.63911400	-4.58639500	4.78703900
C	-3.45703200	-3.10268600	3.23145600
C	-3.00979900	-4.17728800	4.00084400
C	-2.64103500	-2.57244600	2.22914300
H	-2.98377800	-1.72567400	1.64261900
C	-1.74486700	-4.72136300	3.76221500
H	-1.38792900	-5.55485300	4.36184400
C	-1.37409000	-3.11661000	1.97560300
C	-0.93266200	-4.19752600	2.75601000
P	-0.36068600	-2.37599000	0.59619100
C	1.37680800	-2.72807600	1.17666600
H	1.48874400	-0.78826900	2.11390100
C	2.00947100	-1.72549200	1.93052800
C	3.29614100	-1.91782400	2.43719900
C	3.97821300	-3.11038100	2.18296500
H	3.76777000	-1.13309000	3.02280200
H	4.98320000	-3.25727900	2.56898100
C	2.50325500	1.14041500	-2.05993500
H	3.45010200	0.66739100	-2.34184600
C	2.52183300	2.53154300	-2.52757500
N	2.52702300	3.62880300	-2.90779000
C	5.33298200	2.60544400	1.20081600
C	4.53585400	1.67868600	0.49864600
C	3.16327700	1.97090800	0.29239200
C	2.63680100	3.16732400	0.78086400

C	3.45923000	4.05822000	1.46110900
C	4.81028300	3.79696800	1.68234500
H	6.37397100	2.36616800	1.39304800
H	1.59139600	3.39466200	0.63091400
H	5.41678500	4.50906800	2.22751000
C	2.25135300	1.04116100	-0.50342800
H	2.48692900	-0.00345000	-0.24372200
O	0.91606800	1.33309600	-0.29049000
C	5.13142200	0.42568000	0.01051300
H	4.48852200	-0.44936900	-0.02696400
C	6.40984600	0.27645600	-0.38397800
H	7.10902600	1.10667500	-0.41219100
N	2.88681500	5.31388800	1.97081200
O	3.63783400	6.07658500	2.57852100
O	1.69265700	5.52991300	1.76307100
C	6.99680000	-1.00594700	-0.82903100
O	6.10566800	-2.02745800	-0.82638300
O	8.15914600	-1.13392600	-1.16261800
C	6.62827000	-3.29736500	-1.23949300
H	6.97473500	-3.25334500	-2.27600800
H	7.46454300	-3.59643800	-0.60171400
H	5.79907500	-3.99860200	-1.14046400
H	-0.24322800	1.84216300	-2.11888600
H	-0.79490700	0.12375400	-2.31046800

5a

C
C
C
C
C
C
H
H
H

0.65064700	-1.65026100	-0.14942000
1.47039900	-0.50775600	-0.12343900
0.84592400	0.76068500	-0.04854900
-0.54842100	0.86131900	0.00128800
-1.31341000	-0.29024000	-0.01604300
-0.73008500	-1.55437000	-0.08936300
1.10821000	-2.62642100	-0.24942200
-1.01264000	1.83662500	0.06325800
-1.35960300	-2.43332900	-0.11404300

C	1.62490300	2.02796700	0.02970000
O	1.11948600	3.12743600	0.01838800
H	2.72094400	1.92254700	0.11775900
C	2.93705400	-0.65846300	-0.20548800
C	3.62932000	-1.66737500	0.33029300
H	3.48175600	0.10901700	-0.74515300
H	4.70513900	-1.72592900	0.21734900
H	3.15629600	-2.45065400	0.91254100
N	-2.78833300	-0.18249500	0.04039700
O	-3.43059800	-1.22553300	0.01697800
O	-3.27385800	0.93766900	0.10726700

1a

C
C
C
C
C
C
H
H
H
C
O
H
C
C
H
H
N
O
O
C

O

O

1.89082400	-1.90714400	0.36393600
0.96558200	-0.91546000	-0.01223500
1.46310700	0.34663800	-0.41461100
2.83970100	0.58691600	-0.43731600
3.71322400	-0.42184500	-0.07161000
3.25637700	-1.67526500	0.33117500
1.52810400	-2.86340000	0.71919500
3.20723100	1.55518700	-0.75005200
3.96660900	-2.43673400	0.62279000
0.56474700	1.44989600	-0.87245600
0.96206900	2.58503300	-1.03424200
-0.48561200	1.19286000	-1.07134900
-0.48007000	-1.19346300	0.07535000
-1.00952300	-2.40592700	-0.14807900
-1.13343900	-0.37185300	0.35164100
-0.40317100	-3.24510400	-0.46958000
5.17067100	-0.16551100	-0.10235500
5.91153600	-1.08053000	0.23675500
5.54569500	0.94134300	-0.46283200
-2.43872300	-2.75640200	-0.00373800
-2.87237400	-3.86335500	-0.23695800
-3.20893400	-1.73430100	0.42659300

C	-4.59963000	-2.04564000	0.62625200
H	-4.70966900	-2.84839300	1.35644900
H	-5.05247400	-1.12862600	0.99685400
H	-5.06218300	-2.35274600	-0.31298900
C	-2.20874300	2.93259100	0.81824300
H	-1.56083700	3.57710400	0.20882400
H	-2.68986600	3.55459200	1.58816200
C	-3.28900000	2.32057600	-0.04519900
H	-3.85555400	1.57972700	0.53709100
H	-3.98210700	3.11773600	-0.35496800
O	-1.44126300	1.90839900	1.43676000
O	-2.71081700	1.71010400	-1.18676200
C	-3.67317000	1.16270600	-2.06966100
H	-4.35480900	1.93810400	-2.44537400
H	-3.13142100	0.72955500	-2.91063600
H	-4.26317900	0.37682500	-1.58028100
C	-0.49138200	2.42392400	2.35742500
H	-0.98675200	2.97621300	3.16735900
H	0.04055300	1.57292100	2.78329100
H	0.22666900	3.08845200	1.86068500

$\mathbf{1 a + C 8}$			
C	-2.82520500	-5.50936400	0.05095300
C	-2.77935600	-4.11047700	-0.07496800
C	-1.57481900	-3.44711400	0.27967100
C	-0.47467100	-4.17569300	0.74849300
C	-0.56806100	-5.54925600	0.85279000
C	-1.73270600	-6.23193800	0.50471300
H	-3.74428600	-6.03291200	-0.17898200
H	0.43982400	-3.66614400	1.01923900
H	-1.77135700	-7.30798900	0.60830700
C	-3.96728600	-3.37030000	-0.52821000
H	-4.12759500	-2.37487500	-0.13197600
C	-4.87633500	-3.83591100	-1.39539300
H	-4.79153800	-4.80930200	-1.86460500

N	0.59805500	-6.31713700	1.35276500
O	0.47488800	-7.53110300	1.43207000
O	1.60063900	-5.68610900	1.65150400
C	-6.07828400	-3.07410700	-1.82092700
O	-6.12134900	-1.83269400	-1.30377200
O	-6.91931100	-3.53440900	-2.55749900
C	-7.26299100	-1.02638800	-1.66778600
H	-7.31526500	-0.91626100	-2.75119500
H	-8.18103600	-1.49054400	-1.30609200
H	-7.09896000	-0.06482500	-1.18829300
C	1.29369300	1.85449200	0.16876700
N	-0.06177900	1.63182400	0.37067500
H	-0.35471500	0.66445800	0.46469600
N	2.00682600	0.66335000	0.15736800
H	1.47771900	-0.18992500	0.27955200
O	1.79306100	2.95385500	0.02180900
C	-1.08545200	2.58329600	0.42471800
C	-0.89027900	3.96162300	0.25624000
C	-2.38252800	2.10767700	0.66451200
C	-1.98486600	4.82037700	0.32540500
H	0.10403000	4.34343800	0.08448300
C	-3.45891500	2.98354400	0.72577800
H	-2.54567900	1.04838400	0.82243200
C	-3.27648900	4.35330300	0.55351300
H	-4.11182300	5.03644300	0.61156100
C	3.38436000	0.49154200	-0.04403700
C	4.28911700	1.54964800	-0.19647600
C	3.86094700	-0.82627300	-0.09014300
C	5.64008600	1.26914800	-0.39233100
H	3.93488800	2.56777100	-0.15971500
C	5.21190200	-1.07993700	-0.28775300
H	3.17187900	-1.65506300	0.02364100
C	6.12078300	-0.03528800	-0.44191800
H	7.17177200	-0.23414200	-0.59652700
C	-4.84163700	2.42469900	0.92742100

C	-1.76161600	6.29459300	0.08844300
C	5.70401000	-2.50431600	-0.27640900
C	6.58906300	2.42179200	-0.61194300
F	-2.73170400	7.05085000	0.64760200
F	-1.75479800	6.58546500	-1.23607900
F	-0.58354000	6.71888400	0.58746000
F	-5.68961300	3.32080300	1.46506300
F	-4.83973900	1.33574100	1.73432500
F	-5.39562500	2.01968000	-0.24921000
F	6.80814500	-2.66703500	-1.03463500
F	4.76957400	-3.36768600	-0.73714000
F	6.02485100	-2.91204400	0.97562500
F	6.27986400	3.48832500	0.15463700
F	6.56404700	2.84590200	-1.89983100
F	7.86862300	2.08741400	-0.33719900
C	-1.42263100	-1.98950200	0.12711800
O	-0.42368500	-1.36568500	0.45101200
H	-2.27329600	-1.45152400	-0.32016700

Pd-TMM dipole

C	-0.27589800	3.46452900	-1.32009000
C	-1.30428100	2.51690300	-1.75816800
H	-1.24281300	2.23672000	-2.81283500
H	-2.32459800	2.65298200	-1.40818800
C	0.99435100	2.79012500	-1.60334800
H	1.17039000	2.52388800	-2.64853300
H	1.89086500	3.13579200	-1.09071700
C	-0.42377900	4.54996700	-0.48545400
H	0.45712000	5.06803200	-0.11568300
Pd	-0.01357400	1.08003000	-0.79420700
P	-1.83772500	-0.39397600	-0.08225900
P	2.01851300	0.01815600	-0.01724000
C	2.04748700	-0.38025000	1.79558500
C	3.56523500	1.03142100	-0.22945900
C	2.49669500	-1.54585200	-0.89933200

C	-2.35238100	-1.55113800	-1.44543600
C	-3.39761200	0.52242000	0.33039300
C	-1.65689700	-1.53603000	1.37841200
C	1.29718800	0.45421200	2.63929100
C	1.30837300	0.26194100	4.02183100
C	2.05766700	-0.77684100	4.57646600
C	2.79606100	-1.62049100	3.74381600
C	2.79485700	-1.42308600	2.36231600
C	4.21752100	1.64398200	0.84884400
C	5.34178800	2.44643700	0.63322000
C	5.82915400	2.64401200	-0.65829800
C	5.18345500	2.03855200	-1.73996100
C	4.05848900	1.24337300	-1.52841200
C	1.53456900	-2.20548700	-1.67835300
C	1.85285900	-3.38397400	-2.35842200
C	3.14104500	-3.91311200	-2.27516500
C	4.11393700	-3.25402800	-1.51878800
C	3.79767000	-2.07606600	-0.84146000
C	-2.92946000	-2.80948700	-1.20939300
C	-3.31702000	-3.62278900	-2.27642600
C	-3.13484700	-3.19206100	-3.59208700
C	-2.56037600	-1.94327300	-3.83791600
C	-2.16880100	-1.13011200	-2.77302200
C	-3.29568100	1.81363000	0.86874300
C	-4.44044900	2.54075600	1.20229300
C	-5.70148100	1.97521200	1.00883200
C	-5.81467000	0.68708300	0.47888200
C	-4.67125500	-0.03624700	0.13777200
C	-2.38838900	-1.34547700	2.56000400
C	-2.20593800	-2.19582900	3.65348400
C	-1.29678100	-3.25071500	3.58163400
C	-0.56128000	-3.44764600	2.41038500
C	-0.73377600	-2.59399500	1.32184600
H	-4.77528000	-1.02959000	-0.28742700
H	-6.79550800	0.24663500	0.31887600

H	-6.59515100	2.54224300	1.25565700
H	-4.33020900	3.55812600	1.56420300
H	-2.32077100	2.27332700	0.99961300
H	-3.07079200	-3.15987400	-0.19197600
H	-3.76187500	-4.59421400	-2.07704300
H	-3.43680500	-3.82694200	-4.42081100
H	-2.41267500	-1.60088900	-4.85867700
H	-1.71403100	-0.16323700	-2.96747300
H	-3.10680300	-0.53602500	2.63000600
H	-2.78345100	-2.03271400	4.55967900
H	-1.15969200	-3.91446400	4.43113100
H	0.15291500	-4.26398400	2.34396200
H	-0.14963800	-2.76071800	0.42180400
H	4.57062600	-1.55730000	-0.28242300
H	5.12357000	-3.65229800	-1.46279200
H	3.39132000	-4.82759300	-2.80622700
H	1.09360800	-3.87804600	-2.95838600
H	0.53647100	-1.78786500	-1.76724800
H	3.85428700	1.49754900	1.86066700
H	5.83619300	2.91342700	1.48091400
H	6.70391300	3.26700400	-0.82366500
H	5.55344400	2.18857500	-2.75071400
H	3.56172400	0.78309300	-2.37827000
H	3.36939300	-2.09148600	1.72963000
H	3.37569900	-2.43550200	4.16951000
H	2.06166300	-0.93238300	5.65198400
H	0.72404500	0.91797300	4.66104100
H	0.69886800	1.25325200	2.20833700
H	-1.70839400	5.37145300	0.39687100
H			
H	-0.01339300		
H	-2998400	-1000	

[^0]: ${ }^{a}$ Unless noted otherwise, reactions were performed with $\mathbf{1 a}(0.1 \mathrm{mmol})$, $\mathbf{2 a}(0.12 \mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, base (1.2 equiv) and H -bond donor ($20 \mathrm{~mol} \%$) in solvent (1.0 mL) under N_{2} atmosphere at $10^{\circ} \mathrm{C}$.
 ${ }^{5}$ Isolated yield.
 ${ }^{c}$ with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.5 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(10 \mathrm{~mol} \%)$.
 ${ }^{d}$ with $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(10 \mathrm{~mol} \%)$.
 ${ }^{e}$ with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.5 \mathrm{~mol} \%)$ and $\mathbf{L} 1(10 \mathrm{~mol} \%)$.

[^1]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & & \\ \mathrm{fl} 1(\mathrm{ppm})\end{array}$

[^2]:

[^3]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & \\ \mathrm{flpm})\end{array}$

[^4]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

