Supporting Information

Syntheses of 3*H*-1,2,4-Triazol-3-ones by Copper-Promoted Oxidative N-N Bond Formation of Amidines with Isocyanates

Baihui Liang,^a Xiangya Cai,^a JingYu Liu,^a Wei Li,^a Jie Huang,^a Youzhi Chen,^a Haiyin Deng,^a Quanquan Zhou,^{*b} Tianxiang Chen,^c Xiuwen Chen,^{*a} Zhongzhi Zhu^{*a} ^a School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.

E-mail: zhongzhi_zhu@126.com, chenxiuwen2010@126.com.

^b Institute of Advanced Materials (IAM), Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, P. R. of China.

E-mail: quanquan.zhou@jxnu.edu.cn.

^c Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong (China)

Table of contents

1. General information	S2
2. Typical procedure for the synthesis of 3 and 5a	S2
3. Characterization data for all compounds	S3-S16
4. Gram-scale reaction and further transformations of 3aa	S16
5. NMR spectra of the obtained compounds	S17-S53

1. General information

All the obtained products were characterized by melting points (m.p), ¹H-NMR and ¹³C-NMR. Melting points were measured on an Electrothemal SGW-X4 microscopy digital melting point apparatus and are uncorrected; ¹H-NMR and ¹³C-NMR spectra were obtained on Bruker-500 and referenced to 7.28 ppm and 77.16 ppm for chloroform solvent with TMS as internal standard (0 ppm). Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), multiplet (m); TLC was performed using commercially prepared 100-400 mesh silica gel plates (GF254), and visualization was effected at 254 nm; Unless otherwise stated, all the reagents were purchased from commercial sources (Energy chemical, J&K Chemic, TCI, Fluka, Acros, SCRC), used without further purification. Mass spectroscopy data of the products were collected on an HRMS-TOF instrument.

2. Typical procedure for the synthesis of 3 and 5a

Synthetic procedure for 3

Isocyanate 1 (0.2 mmol), amidine hydrochloride 2 (0.2 mmol), $Cu(OAc)_2$ (0.4 mmol), TBAI (0.2 mmol) and DMSO (2 mL) were introduced in a Schlenk tube, successively. Then the Schlenk tube was closed and the resulting mixture was stirred at 80 °C by heating the mantle for 12 h. The combined filtrate was concentrated and purified by a flash column chromatography (EtOAc/petroleumether) on silica gel to afford the products **3**.

Synthetic procedure for 5a

Isocyanate 1a (0.2 mmol), amidine hydrochloride 2a (0.2 mmol), Cu(OAc)₂ (0.02 mmol), TBAI (0.2 mmol) and DMSO (2 mL) were introduced in a Schlenk tube, successively. Then the Schlenk tube was closed and the resulting mixture was stirred at 80 °C by heating the mantle for 4 h. The combined filtrate was concentrated and purified by a flash column chromatography (EtOAc/petroleumether) on silica gel to afford the products 5a.

3. Characterization data for all compounds

(1)

5-Phenyl-2-(*p*-tolyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (3aa): yellow solid (43.7 mg, 86% yield); mp: 200.0-201.0 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.65 (s, 1H), 7.92 (dd, J = 7.6, 2.1 Hz, 2H), 7.90 – 7.85 (m, 2H), 7.57 – 7.51 (m, 3H), 7.29 (d, J = 8.3 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 153.3, 145.0, 135.9, 134.6, 131.0, 129.9, 129.5, 126.7, 125.7, 118.5, 21.0. HRMS (ESI) m/z: calcd for C₁₅H₁₄IN₃ [M+H]⁺ 252.1131; found 252.1131. HRMS (ESI) m/z: calcd for C₁₅H₁₃N₃ONa [M+Na]⁺ 274.0950; found 274.0945.

(2)

2,5-Diphenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3ab): yellow solid (41.7 mg, 88% yield); mp: 190.9-191.9 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.69 (s, 1H), 8.00 (d, J = 8.0 Hz, 2H), 7.97 – 7.89 (m, 2H), 7.61 – 7.52 (m, 3H), 7.49 (t, J = 7.9 Hz, 2H), 7.25 (t, J = 7.4 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 153.4, 145.3, 138.3, 131.1, 129.5, 129.5, 126.6, 125.8, 125.4, 118.5. HRMS (ESI) m/z: calcd for C₁₄H₁₁N₃ONa [M+Na]⁺ 260.0794; found 260.0790.

(3)

2-(4-Ethylphenyl)-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3ac): yellow solid (39.9 mg, 75% yield); mp: 230.8-231.8 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3:

1); ¹H NMR (500 MHz, DMSO- d_6) δ 12.65 (s, 1H), 7.96 – 7.84 (m, 4H), 7.57 – 7.50 (m, 3H), 7.35 – 7.27 (m, 2H), 2.63 (m, J = 7.6 Hz, 2H), 1.20 (t, J = 7.6 Hz, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 153.3, 145.0, 141.0, 136.1, 131.0, 129.5, 128.7, 126.7, 125.7, 118.7, 28.1, 16.1. HRMS (ESI) m/z: calcd for C₁₆H₁₅N₃ONa [M+Na]⁺ 288.1107; found 288.1102.

(4)

2-(4-Butylphenyl)-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3ad): yellow solid (38.1 mg, 65% yield); mp: 150.0-151.0 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.65 (s, 1H), 7.93 – 7.90 (m, 2H), 7.90 – 7.86 (m, 2H), 7.57 – 7.51 (m, 3H), 7.30 – 7.25 (m, 2H), 2.59 (t, *J* = 7.7 Hz, 2H), 1.59 – 1.52 (m, 2H), 1.35 – 1.26 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H).¹³C NMR (126 MHz, DMSO-*d*₆) δ 153.3, 145.0, 139.5, 136.1, 131.0, 129.5, 129.2, 126.7, 125.7, 118.6, 34.7, 33.6, 22.2, 14.2. HRMS (ESI) m/z: calcd for C₁₈H₁₉N₃ONa [M+Na]⁺ 316.1420; found 316.1415.

(5)

2-(4-(tert-Butyl)phenyl)-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3ae): yellow solid (43.9 mg, 75% yield); mp: 236.4-237.4 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.64 (s, 1H), 7.93 – 7.87 (m, 4H), 7.57 – 7.52 (m, 3H), 7.51 – 7.47 (m, 2H), 1.31 (s, 9H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 153.3, 147.9, 145.1, 135.8, 131.0, 129.5, 126.7, 126.1, 125.7, 118.4, 34.7, 31.6. HRMS (ESI) m/z: calcd for C₁₈H₁₉N₃ONa [M+Na]⁺ 316.1420; found 316.1417.

2-(4-Chlorophenyl)-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3af): yellow solid (45.0 mg, 83% yield); mp: 284.0-285.0 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.76 (s, 1H), 8.03 (d, *J* = 8.9 Hz, 2H), 7.97 - 7.88 (m, 2H), 7.55 (dt, *J* = 6.4, 3.2 Hz, 5H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 153.3, 145.6, 137.1, 131.2, 129.6, 129.5, 129.2, 126.5, 125.8, 119.9. HRMS (ESI) m/z: calcd for C₁₄H₁₀ClN₃ONa [M+Na]⁺ 294.0404; found 294.0400.

(7)

5-Phenyl-2-(4-(trifluoromethoxy)phenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one

(3ag): yellow solid (50.7 mg, 79% yield); mp: 210.0-211.0 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.78 (s, 1H), 8.17 – 8.08 (m, 2H), 7.97 – 7.89 (m, 2H), 7.56 (dd, J = 5.2, 2.0 Hz, 3H), 7.50 (d, J = 8.5 Hz, 2H) ¹³C NMR (126 MHz, DMSO-*d*₆) δ 153.4, 145.7, 145.3, 137.3, 131.3, 129.6, 126.5, 125.8, 122.4, 120.6 (q, J = 255.9 Hz), 119.9. ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -57.01. HRMS (ESI) m/z: calcd for C₁₅H₁₀F₃N₃O₂Na [M+Na]⁺ 344.0617; found 344.0613.

5-Phenyl-2-(*o***-tolyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (3ah)**: yellow solid (23.1 mg, 46% yield); $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz,

DMSO-*d*₆) δ 12.50 (s, 1H), 7.89 – 7.83 (m, 2H), 7.56 – 7.49 (m, 3H), 7.42 – 7.30 (m, 4H), 2.27 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 192.1 – 188.7 (m), 153.9, 145.3, 136.1, 135.2, 131.3, 130.8, 129.5, 128.9, 127.6, 127.0, 125.5, 18.3. HRMS (ESI) m/z: calcd for C₁₅H₁₃N₃ONa [M+Na]⁺ 274.0950; found 274.0945.

(9)

2-(2-Fluorophenyl)-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3ai): yellow solid (29.6 mg, 58% yield); $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.62 (s, 1H), 7.94 – 7.83 (m, 2H), 7.64 (m, *J* = 7.8, 1.7 Hz, 1H), 7.57 – 7.47 (m, 4H), 7.44 (m, *J* = 10.0, 8.3, 1.4 Hz, 1H), 7.36 (m, *J* = 7.6, 1.4 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 156.6 (d, *J* = 251.4 Hz), 153.9, 146.1, 131.0, 130.6 (d, *J* = 7.7 Hz), 129.5, 128.6, 126.7, 125.6, 125.3 (d, *J* = 3.7 Hz), 124.8 (d, *J* = 11.8 Hz), 117.2 (d, *J* = 19.2 Hz).¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -120.31. HRMS (ESI) m/z: calcd for C₁₄H₁₀FN₃ONa [M+Na]⁺ 278.0700; found 278.0696.

(10)

5-Phenyl-2-(2-(trifluoromethyl)phenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (3aj): yellow solid (26.2 mg, 43% yield); mp: 210.0-211.0 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.93 (dd, J = 7.8, 1.5 Hz, 1H), 7.85 (td, J = 8.1, 2.0 Hz, 3H), 7.72 (d, J = 8.1 Hz, 2H), 7.56 – 7.47 (m, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 155.2, 146.3, 134.9, 134.0, 130.9, 130.8, 130.0, 129.5, 127.9 (q, J = 5.1 Hz), 127.3, 126.8 (q, J = 30.9 Hz), 125.5, 123.7 (q, J = 273.5 Hz). ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -58.83. HRMS (ESI) m/z: calcd for C₁₅H₁₀F₃N₃ONa [M+Na]⁺ 328.0668; found 328.0662.

2-(2,4-Dimethylphenyl)-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3ak): yellow solid (25.5 mg, 48% yield); mp: 259.8-260.8 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.89 – 7.80 (m, 2H), 7.55 – 7.47 (m, 3H), 7.26 (d, *J* = 8.0 Hz, 1H), 7.18 (d, *J* = 2.0 Hz, 1H), 7.12 (dd, *J* = 8.0, 2.0 Hz, 1H), 2.34 (s, 3H), 2.21 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 154.3, 145.4, 138.3, 135.0, 133.8, 131.7, 130.7, 129.5, 127.5, 127.4, 127.2, 125.4, 21.1, 18.2. HRMS (ESI) m/z: calcd for C₁₆H₁₅N₃ONa [M+Na]⁺ 288.1107; found 288.1100.

(12)

2-(3,5-Dimethylphenyl)-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3al): yellow solid (41.3 mg, 78% yield); mp: 191.8-192.8 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.66 (s, 1H), 7.92 (dd, *J* = 7.6, 2.2 Hz, 2H), 7.64 (d, *J* = 1.6 Hz, 2H), 7.54 (dd, *J* = 5.7, 1.7 Hz, 3H), 6.88 (s, 1H), 2.33 (s, 6H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 153.5, 145.2, 138.6, 138.3, 131.0, 129.5, 126.8, 126.8, 125.7, 116.2, 21.6. HRMS (ESI) m/z: calcd for C₁₆H₁₅N₃ONa [M+Na]⁺ 288.1107; found 288.1103.

(13)

2-Phenethyl-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3am): yellow solid (43.5 mg, 82% yield); mp: 168.1-169.1 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.19 (s, 1H), 7.84 – 7.76 (m, 2H), 7.53 – 7.44 (m, 3H), 7.28 (dd, J = 8.0, 6.8 Hz, 2H), 7.24 – 7.18 (m, 3H), 3.95 (dd, J = 8.0, 6.7 Hz, 2H), 3.02 (t, J = 7.3 Hz, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 154.7, 143.9, 138.8, 130.5, 129.4, 129.1, 128.8, 127.2, 126.8, 125.3, 45.7, 34.7. HRMS (ESI) m/z: calcd for C₁₆H₁₅N₃ONa [M+Na]⁺ 288.1107; found 288.1099.

(14)

2-Ethyl-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3an): yellow solid (32.1 mg, 83% yield); mp: 180.0-181.0 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.21 (s, 1H), 7.85 - 7.74 (m, 2H), 7.54 - 7.39 (m, 3H), 3.75 (m, J = 7.2 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 154.4, 143.8, 130.4, 129.4, 127.2, 125.2, 39.5, 14.5. HRMS (ESI) m/z: calcd for C₁₀H₁₂N₃ONa [M+Na]⁺ 212.0794; found 212.0791.

(15)

5-Phenyl-2-propyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3ao): yellow solid (34.5 mg, 85% yield); mp: 175.1-176.1 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.20 (s, 1H), 7.85 – 7.73 (m, 2H), 7.56 – 7.39 (m, 3H),

3.67 (t, J = 7.0 Hz, 2H), 1.70 (m, J = 7.2 Hz, 2H), 0.88 (t, J = 7.4 Hz, 3H).¹³C NMR (126 MHz, DMSO- d_6) δ 154.8, 143.8, 130.4, 129.4, 127.2, 125.2, 46.1, 22.2, 11.4. HRMS (ESI) m/z: calcd for C₁₁H₁₃N₃ONa [M+Na]⁺ 226.0950; found 226.0946.

(16)

2-Isopropyl-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3ap): yellow solid (32.9 mg,81% yield); mp: 209.5-210.5 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.17 (s, 1H), 7.83 – 7.77 (m, 2H), 7.51 – 7.43 (m, 3H), 4.35 (p, J = 6.7 Hz, 1H), 1.31 (d, J = 6.7 Hz, 6H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 154.0, 143.8, 130.3, 129.4, 127.3, 125.2, 45.9, 21.6. HRMS (ESI) m/z: calcd for C₁₁H₁₃N₃ONa [M+Na]⁺ 226.0950; found 226.0947.

(17)

2-Butyl-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3aq): yellow solid (33.4 mg, 77% yield); mp 212.6-213.6 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, Chloroform-*d*) δ 10.98 (s, 1H), 7.92 – 7.83 (m, 2H), 7.44 (dd, J = 9.2, 7.1 Hz, 3H), 3.90 (t, J = 7.2 Hz, 2H), 1.83 (m, J = 7.3 Hz, 2H), 1.43 (m, J = 7.5 Hz, 2H), 0.98 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 156.3, 145.0, 130.0, 128.9, 126.8, 125.2, 44.9, 30.9, 19.8, 13.7. HRMS (ESI) m/z: calcd for C₁₂H₁₅N₃ONa [M+Na]⁺ 240.1107; found 240.1102.

(18)

2-Cyclohexyl-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (**3ar**): yellow solid (39.9 mg, 82% yield); mp: 237.6-238.6 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.18 (s, 1H), 7.79 (dd, J = 7.9, 1.8 Hz, 2H), 7.57 – 7.29 (m, 3H), 3.95 (m, J = 11.7, 3.8 Hz, 1H), 1.81 (m, J = 12.3, 4.3, 3.8 Hz, 4H), 1.68 (m, J = 27.6, 14.0, 10.4 Hz, 3H), 1.36 (m, J = 13.8, 3.7 Hz, 2H), 1.20 m, J = 16.3, 13.0, 2.8 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 154.1, 143.7, 130.3, 129.4, 127.3, 125.2, 53.2, 31.7, 25.4, 25.4. HRMS (ESI) m/z: calcd for C₁₄H₁₇N₃ONa [M+Na]⁺ 266.1263; found 266.1266.

(19) (19)

2,5-Di-*p*-tolyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3ba): yellow solid (42.9 mg, 81% yield); mp: 160.4-161.4 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.56 (s, 1H), 7.89 – 7.83 (m, 2H), 7.83 – 7.78 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.29 – 7.25 (m, 2H), 2.37 (s, 3H), 2.32 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 153.3, 145.1, 140.9, 136.0, 134.4, 130.1, 129.8, 125.7, 123.9, 118.5, 21.5, 21.0. HRMS (ESI) m/z: calcd for C₁₆H₁₅N₃ONa [M+Na]⁺ 288.1107; found 288.1100.

(20)

5-(4-Methoxyphenyl)-2-(*p***-tolyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (3bb)**: yellow solid (42.7 mg, 76% yield); mp: 230.8-231.8 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.49 (s, 1H), 7.90 – 7.81 (m, 4H), 7.29 – 7.23 (m, 2H), 7.12 – 7.06 (m, 2H), 3.83 (s, 3H), 2.32 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.4, 153.4, 145.1, 136.1, 134.3, 129.8, 127.4, 119.2, 118.4,

114.9, 55.9, 21.0. HRMS (ESI) m/z: calcd for $C_{16}H_{15}N_3O_2Na$ [M+ Na]⁺ 304.1056; found 304.1046.

(21)

5-(4-Fluorophenyl)-2-(*p*-tolyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (3bc): yellow solid (42.0 mg, 78% yield); mp: 282.0-283.0 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.66 (s, 1H), 7.99 – 7.94 (m, 2H), 7.89 – 7.83 (m, 2H), 7.41 (t, *J* = 8.8 Hz, 2H), 7.30 – 7.26 (m, 2H), 2.33 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 163.77 (d, *J* = 248.4 Hz), 153.25, 144.28, 135.88, 134.60, 129.88, 128.17 (d, *J* = 8.8 Hz), 123.31 (d, *J* = 3.1 Hz), 118.52, 116.71 (d, *J* = 22.3 Hz), 20.96. ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -109.73. HRMS (ESI) m/z: calcd for C₁₅H₁₂FN₃ONa [M+Na]⁺ 292.0856; found 292.0850.

(22)

5-(4-Chlorophenyl)-2-(*p*-tolyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (3bd): yellow solid (45.6 mg, 80% yield); mp: 175.5-176.5 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.70 (s, 1H), 7.94 – 7.90 (m, 2H), 7.88 – 7.84 (m, 2H), 7.65 – 7.61 (m, 2H), 7.30 – 7.26 (m, 2H), 2.33 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 153.2, 144.2, 135.8, 135.6, 134.7, 129.9, 129.7, 127.5, 125.6, 118.6, 21.0. HRMS (ESI) m/z: calcd for C₁₅H₁₂ClONa [M+Na]⁺ 308.0561; found 308.0554.

(23)

5-(4-Iodophenyl)-2-(*p*-tolyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (3be): yellow solid (53.5 mg, 71% yield); mp: 287.3-288.3 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.93 (d, *J* = 8.4 Hz, 1H), 7.85 (d, *J* = 8.6 Hz, 1H), 7.69 (d, *J* = 8.5 Hz, 1H), 7.28 (d, *J* = 8.3 Hz, 1H), 2.33 (s, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 153.2, 144.4, 138.4, 135.8, 134.7, 129.9, 127.5, 126.2, 118.6, 98.0, 21.0. HRMS (ESI) m/z: calcd for C₁₅H₁₂IN₃ONa [M+Na]⁺ 399.9917; found 399.9908.

(24) N_{N} NH NNO₂

5-(4-Nitrophenyl)-2-(*p***-tolyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (3bf)**: yellow solid (36.7 mg, 62% yield); mp: 324.0-325.0 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 2: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.94 (s, 1H), 8.38 (d, *J* = 9.0 Hz, 2H), 8.16 (d, *J* = 8.9 Hz, 2H), 7.88 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J* = 8.6 Hz, 2H), 2.33 (s, 3H).¹³C NMR (126 MHz, DMSO-*d*₆) δ 153.8, 148.5, 144.0, 135.8, 134.9, 132.9, 129.9, 126.8, 124.8, 118.7, 21.0. HRMS (ESI) m/z: calcd for C₁₅H₁₂N₄O₃Na [M+Na]⁺ 319.0801.

(25)

5-(2-Ethoxyphenyl)-2-(*p***-tolyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (3bg)**: yellow solid (46.6 mg, 79% yield); mp: 191.8-192.8 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.92 – 7.83 (m, 2H), 7.75 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.48 (ddd, *J* = 8.8, 7.4, 1.8 Hz, 1H), 7.26 (d, *J* = 8.2 Hz, 2H), 7.16 (d,

J = 8.4 Hz, 1H), 7.06 (t, J = 7.5 Hz, 1H), 4.16 (m, J = 6.9 Hz, 2H), 2.31 (s, 3H), 1.38 (t, J = 6.9 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ 156.6, 153.1, 144.0, 136.0, 134.4, 132.5, 129.8, 129.5, 121.0, 118.5, 115.9, 113.2, 64.3, 20.9, 14.7. HRMS (ESI) m/z: calcd for C₁₇H₁₇N₃O₂Na [M+Na]⁺ 318.1212; found 318.1207.

(26)

5-(2-Chlorophenyl)-2-(*p*-tolyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (3bh): yellow solid (35.3 mg, 62% yield); mp: 206.2-207.2 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.47 (s, 1H), 7.87 – 7.81 (m, 2H), 7.75 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.66 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.58 (m, *J* = 7.7, 1.8 Hz, 1H), 7.52 (m, *J* = 7.5, 1.3 Hz, 1H), 7.30 – 7.25 (m, 2H), 2.32 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 152.9, 143.8, 135.8, 134.7, 132.5, 132.3, 131.6, 131.0, 129.9, 128.1, 126.3, 118.6, 21.0. HRMS (ESI) m/z: calcd for C₁₅H₁₂ClN₃ONa [M+Na]⁺ 308.0561; found 308.0554.

(27)

5-(3-Chlorophenyl)-2-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (**3bi**): yellow solid (39.9 mg, 70% yield); $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.80 (s, 1H), 8.10 (t, J = 2.1 Hz, 1H), 7.98 (dd, J = 8.0, 2.0 Hz, 1H), 7.97 – 7.91 (m, 2H), 7.56 (p, J = 3.5 Hz, 3H), 7.52 (t, J = 8.1 Hz, 1H), 7.31 (dd, J = 8.0, 2.1 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 167.9, 153.4, 145.8, 139.5, 133.9, 131.4, 131.3, 129.6, 126.4, 125.9, 125.0, 117.7, 116.6. HRMS (ESI) m/z: calcd for C₁₅H₁₂ClN₃ONa [M+Na]⁺ 308.0561; found 308.0555.

5-Cyclopropyl-2-(*p***-tolyl)-2,4-dihydro-3H-1,2,4-triazol-3-one** (**3bj**): yellow solid (26.2 mg, 61% yield); mp: 214.2-215.2 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.73 (s, 1H), 7.77 – 7.70 (m, 2H), 7.24 – 7.18 (m, 2H), 2.29 (s, 3H), 1.85 (m, *J* = 8.4, 5.1 Hz, 1H), 1.01 – 0.94 (m, 2H), 0.93 – 0.86 (m, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 152.9, 149.5, 136.0, 133.9, 129.7, 118.1, 20.9, 7.8, 6.9. HRMS (ESI) m/z: calcd for C₁₂H₁₄N₃O [M+H]⁺ 216.1131; found 216.1130.

(29)

5-Isopropyl-2-(*p*-tolyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (3bk): yellow solid (26.0 mg, 60% yield); mp: 167.7-168.7 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.86 (s, 1H), 7.78 – 7.73 (m, 2H), 7.22 (d, *J* = 8.3 Hz, 2H), 2.83 (m, *J* = 6.9 Hz, 1H), 2.30 (s, 3H), 1.23 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 153.2, 152.3, 136.1, 133.9, 129.8, 118.1, 26.9, 20.9, 20.1. HRMS (ESI) m/z: calcd for C₁₁H₁₃N₃O [M+H]⁺ 226.0950; found 226.0943.

(30)

5-Propyl-2-(*p*-tolyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (3bl): yellow solid (29.5 mg, 68% yield); mp: 149.0-150.0 °C; $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.81 (s, 1H), 7.78 – 7.72 (m, 2H), 7.24 – 7.20 (m, 2H), 2.47 (t, *J* = 7.5 Hz, 2H), 2.30 (s, 3H), 1.66 (m, *J* = 7.5 Hz, 2H), 0.94 (t, *J* = 7.4 S14

Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 153.1, 147.9, 136.1, 133.9, 129.8, 118.1, 28.5, 20.9, 19.9, 13.8. HRMS (ESI) m/z: calcd for C₁₂H₁₅N₃ONa [M+Na]⁺ 240.1107; found 240.1099.

(31)

4-Methyl-5-phenyl-2-(*p*-tolyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (4a) yellow oily (37.6 mg, 71% yield); $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1);¹H NMR (500 MHz, Chloroform-*d*) δ 7.98 – 7.91 (m, 2H), 7.73 – 7.66 (m, 2H), 7.57 – 7.50 (m, 3H), 7.25 (d, J = 8.1 Hz, 2H), 3.45 (s, 3H), 2.38 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 152.7, 146.4, 135.5, 135.1, 130.6, 129.5, 129.0, 128.1, 126.8, 118.8, 29.4, 21.0. HRMS (ESI) m/z: calcd for C₁₆H₁₅N₂O [M+Na]⁺ 288.1107; found 288.1100.

(32)

4-Benzyl-5-phenyl-2-(*p*-tolyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (4b): yellow oily (56.6 mg, 83% yield); $R_f = 0.3$ (petroleum ether: ethyl acetate = 3: 1); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.06 – 7.97 (m, 2H), 7.57 – 7.54 (m, 2H), 7.53 – 7.50 (m, 1H), 7.46 (dd, J = 8.2, 6.7 Hz, 2H), 7.36 – 7.27 (m, 5H), 7.25 – 7.20 (m, 2H), 5.04 (s, 2H), 2.40 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 152.7, 146.7, 136.1, 135.5, 135.2, 130.7, 129.5, 129.0, 128.9, 128.4, 127.9, 127.1, 126.7, 118.8, 45.8, 21.0. HRMS (ESI) m/z: calcd for C₁₆H₁₅N₃O [M+Na]⁺ 364.1420; found 364.1413.

N-(*p*-tolylcarbamoyl)benzimidamide (5a): ¹H NMR (500 MHz, Chloroform-*d*) δ 9.92 (s, 1H), 7.95 – 7.82 (m, 2H), 7.80 (d, *J* = 8.4 Hz, 1H), 7.57 – 7.51 (m, 1H), 7.47 (td, *J* = 7.7, 7.2, 1.8 Hz, 2H), 7.44 – 7.35 (m, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 6.27 (s, 1H), 2.33 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 165.7, 163.5, 136.3, 135.5, 132.7, 131.8, 129.4, 128.8, 127.0, 119.2, 20.8. HRMS (ESI) m/z: calcd for C₁₅H₁₅N₃ONa [M+Na]⁺ 276.1107; found 276.1101.

4. Gram-scale reaction and further transformations of 3aa

(a)

1-isocyanato-4-methylbenzene **1a** (10 mmol), benzamidine hydrochloride **2a** (10 mmol), $Cu(OAc)_2$ (20 mmol), TBAI (10 mmol) and DMSO (50 mL) were introduced in a 100mL roundbottomed, successively. Then the roundbottomed was closed and the resulting mixture was stirred at 80 °C by heating the mantle for 24 h. The combined filtrate was concentrated and purified by a flash column chromatography (EtOAc/petroleumether) on silica gel to afford the products **3aa**.

(b)

Stir a mixture of 1 equiv. of **3aa** (0.2 mmol), halide (0.6 mmol) and K₂CO₃ (0.4 mmol) in acetone (2 mL) at 60°C for 12 hours in a Schlenk tube. Cool the mixture. Evaporate

the solvent under vacuum. Add 5 ml of water to the reaction mixture. Extract the reaction mixture with ethyl acetate (2 mL x 2). Dry the combined organic fractions over anhydrous sodium sulfate. Concentrate the organic fractions under vacuum. Purify the crude product by column chromatography using a mixture of dichloromethane/ethano(98:2) as eluent to obtain 4.

5. NMR spectra of the obtained compounds

¹H and ¹³C NMR spectra of 2,5-Diphenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3ab) (500 MHz, DMSO-*d*₆)

H and ¹³ C NMR spectra of

2-(4-Chlorophenyl)-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3af) (500 MHz, DMSO-*d*₆)

$^{1}\mathrm{H}$	and	¹³ C	NMR	spectra	of
------------------	-----	-----------------	-----	---------	----

5-Phenyl-2-(4-(trifluoromethoxy)phenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (3ag) (500 MHz, DMSO-*d*₆)

¹ H	and	¹³ C	NMR	spectra	of
----------------	-----	-----------------	-----	---------	----

2-(2-Fluorophenyl)-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3ai) (500 MHz,

¹ H	and	¹³ C	NMR	spectra	of
----------------	-----	-----------------	-----	---------	----

5-Phenyl-2-(2-(trifluoromethyl)phenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (3aj)

(500 MHz, DMSO-d₆)

¹H and ¹³C NMR spectra of 2-Ethyl-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3an) (500 MHz, DMSO-*d*₆)

¹H and ¹³C NMR spectra of 2-Butyl-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3aq) (500 MHz, CDCl₃)

¹H and ¹³C NMR spectra of 2,5-Di-p-tolyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3ba) (500 MHz, DMSO-*d*₆)

5-(4-Fluorophenyl)-2-(p-tolyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (3bc) (500 MHz, DMSO-*d*₆)

5-(3-Chlorophenyl)-2-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3bi) (500 MHz, DMSO-*d*₆)

¹H and ¹³C NMR spectra of N-(p-tolylcarbamoyl)benzimidamide (5a) (500 MHz,

