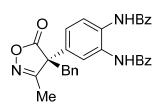
Enantioselective construction of quaternary stereocenters via organocatalytic arylation of isoxazolin-5-ones with *o*-quinone diimides

Ricardo Torán, Eduardo Portillo, Amparo Sanz-Marco, Carlos Vila, and Gonzalo Blay*

Table of Contents

Experimental Procedures	S3
Materials and methods	S3
General procedure for the enantioselective arylation	
of isoxazolin-5-ones 1 with quinone diimides 2.	S3
Characterization data for compounds 3 .	S3
One mmol scale synthesis of compound 3aa	S13
Synthetic transformations	S14
Synthesis of compounds 4	S14
Synthesis of compound 5	S15
Synthesis of compound 6	S16
NMR spectra for compounds 3-6	S17
HPLC traces for compounds 3-6	S45
Determination of the relative stereochemistry of compounds 4	S69
X-Ray structure of compound 3ha	S71
Structural determination of compounds 3ad-3ag.	S72
References	S72

Experimental Procedures

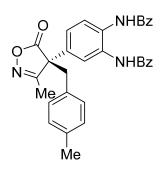

Materials and methods

All reagents were purchased from commercial suppliers and used without further purification. All solvents employed in the reactions were distilled from appropriate drying agents prior to use. Reactions were monitored by TLC analysis using Merck Silica Gel 60 F-254 thin layer plates. Flash column chromatography was performed on Merck silica gel 60, 0.040-0.063 mm. Melting points were determined in capillary tubes. NMR spectra were run at 300 MHz for 1H and at 75 MHz for 13C NMR using residual nondeuterated solvent (CHCl3) as internal standard (δ 7.26 and 77.0 ppm, respectively). Chemical shifts are given in ppm. The carbon type was determined by DEPT experiments. High resolution mass spectra (ESI) were recorded on a Q-TOF spectrometer equipped with an electrospray source with a capillary voltage of 3.3 kV (ESI). Specific optical rotations were measured using sodium light (D line 589 nm). Chiral HPLC analyses were performed in a chromatograph equipped with a UV diode-array detector using chiral stationary phase columns from Daicel or Phenomenex. Isoxazolinones 1^[1] and quinone diimides 2^[2] were prepared according to literature procedures.

General procedure for the enantioselective arylation of isoxazolin-5-ones 1 with quinone diimides 2.

Isoxazolin-5-one 1 (0.11 mmol, 1.1 eq), diimide 2 (0.10 mmol, 1 eq), and squaramide SQ-3 (6.0 mg, 0.01 mmol) were introduced in a round bottom flask. Dichloromethane (10 mL) was added, and the mixture was stirred at -20 °C until completion (TLC). After this time, the reaction mixture was directly chromatographed on silica gel eluting with hexane:EtOAc mixtures to give compound 3.

(R)-N,N'-(4-(4-Benzyl-3-methyl-5-oxo-4,5-dihydroisoxazol-4-yl)-1,2-phenylene)dibenzamide (3aa)

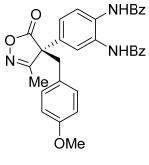


46.4 mg (92%) of **3aa** were obtained from **1a** (19.5 mg) and **2a** (31.4 mg). The enantiomeric excess (93%) was determined using chiral HPLC (Lux i-Amylose-1), hexane:^{*i*}PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 27.1$ min, minor enantiomer: $t_r = 53.3$ min.

White solid; **m.p.** 111.2-114.0 °C; $[\alpha]_D^{25}$ -48.5 (*c* 0.27, CHCl₃); ¹H NMR (300 MHz, DMSO-*d*₆) δ 10.24 (1H, s, NH), 10.14 (1H, s, NH), 8.00-7.95 (4H, m, Ar), 7.88 (1H, d, *J* = 8.7 Hz, Ar), 7.67 (1H, d, *J* = 2.4 Hz, Ar), 7.61-7.50 (6H, m, Ar), 7.42-7.25 (6H, m, Ar), 3.78 (1H, d, *J* = 13.5 Hz, CH-Ph), 3.61 (1H, d, *J* = 13.5 Hz, CH-Ph), 2.13 (3H, s, Me); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 178.7 (C), 168.9 (C), 165.8 (C), 165.5 (C), 134.1 (C), 134.0 (C), 133.9 (C), 132.0 (C), 132.03 (C), 131.9 (CH), 131.8 (CH),

130.6 (C), 129.50 (CH), 128.63 (CH), 128.63 (CH), 128.58 (CH), 127.69 (CH), 127.68 (CH), 127.6 (CH), 126.7 (CH), 123.9 (CH), 123.6 (CH), 61.1 (C), 37.5 (CH₂), 12.6 (CH₃); **HRMS** (ESI) *m/z*: 504.1903 [M+H]⁺, C₃₁H₂₆N₃O₄⁺ requires 504.1918.

(*R*)-*N*,*N'*-(4-(3-Methyl-4-(4-methylbenzyl)-5-oxo-4,5-dihydroisoxazol-4-yl)-1,2phenylene)dibenzamide (3ba)

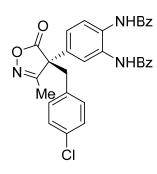


48.7 mg (94%) of **3ba** were obtained from **1b** (22.3 mg) and **2a** (31.4 mg). The enantiomeric excess (95%) was determined using chiral HPLC (Lux i-Amylose-1), hex:'PrOH 80:20, 1.5 mL min⁻¹, major enantiomer: $t_r = 13.5$ min, minor enantiomer: $t_r = 44.5$ min.

White solid; **m.p.** 119.7-121.3°C; **[α]**_D²⁵ -55.7 (*c* 0.47, CHCl₃); ¹H NMR (300 MHz, DMSO-d₆) δ 10.22 (1H, s, NH), 10.12 (1H, s, NH), 7.99-7.94 (4H, m,

Ar), 7.85 (1H, d, J = 8.6 Hz, Ar), 7.65-7.51 (8H, m, Ar), 7.38 (1H, dd, J = 8.4, 2.4 Hz, Ar), 7.17-7.11 (4H, m, Ar), 3.72 (1H, d, J = 13.5 Hz, CH-Ar), 3.55 (1H, d, J = 13.5 Hz, CH-Ar), 2.29 (3H, s, CH₃), 2.11 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO-d₆) δ 179.2 (C), 169.4 (C), 166.2 (C), 166.0 (C), 137.3 (C), 134.52 (C), 134.49 (C), 134.48 (CH), 134.4 (C), 132.48 (C), 132.3 (C), 131.3 (C), 131.1 (C), 129.8 (CH), 129.7 (CH), 129.1 (CH), 129.0 (CH), 128.1 (CH), 128.0 (CH), 127.1 (CH), 124.3 (CH), 61.6 (C), 37.6 (CH₂), 21.1 (CH₃), 13.0 (CH₃); HRMS (ESI) *m/z*: 518.2063 [M+H]⁺, C₃₂H₂₈N₃O₄⁺ requires 518.2074.

(*R*)-*N*,*N*'-(4-(4-(4-(4-Methoxybenzyl)-3-methyl-5-oxo-4,5-dihydroisoxazol-4-yl)-1,2-phenylene)dibenzamide (3ca)

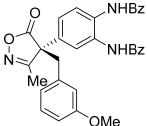


50.1 mg (95%) of **3ca** were obtained from **1c** (24.1 mg) and **2a** (31.4 mg). The enantiomeric excess (96%) was determined using chiral HPLC (Lux Cellulose-2), hex:^{*i*}PrOH 75:25, 1 mL min⁻¹, major enantiomer: $t_r = 49.3$ min, minor enantiomer: $t_r = 42.0$ min.

White solid; **m.p.** 116.0-117.0°C; $[\alpha]_D^{25}$ -49.1 (*c* 0.54, CHCl₃); ¹H NMR (300 MHz, DMSO-d₆) δ 10.21 (1H, s, NH), 10.12 (1H, s, NH), 7.98-7.94 (4H, m,

Ar), 7.85 (1H, d, J = 8.7 Hz, Ar), 7.64-7.51 (7H, m, Ar), 7.37 (1H, dd, J = 8.55, 2.4 Hz, Ar), 7.16 (2H, d, J = 8.7 Hz, Ar), 6.90 (2H, d, J = 8.7 Hz, Ar), 3.75 (3H, s, OCH₃), 3.72 (1H, d, J = 16.2 Hz, CH-Ar), 3.53 (1H, d, J = 13.8 Hz, CH-Ar), 2.12 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO-d₆) δ 178.8 (C), 169.0 (C), 165.8 (C), 165.5 (C), 158.7 (C), 134.1 (C), 134.0 (C), 132.0 (CH), 131.9 (C), 131.8 (C), 130.7 (C), 130.6 (CH), 128.62 (CH), 128.57 (CH), 127.7 (CH), 127.6 (CH), 126.7 (CH), 125.6 (C), 123.9 (CH), 123.6 (CH), 114.0 (CH), 61.2 (C), 55.0 (CH₃), 36.8 (CH₂), 12.5 (CH₃); HRMS (ESI) *m/z*: 534.2009 [M+H]⁺, C₃₂H₂₈N₃O₅⁺ requires 534.2023.

(*R*)-*N*,*N*'-(4-(4-(4-Chlorobenzyl)-3-methyl-5-oxo-4,5-dihydroisoxazol-4-yl)-1,2phenylene)dibenzamide (3da)

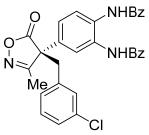


39.2 mg (74%) of **3da** were obtained from **1d** (24.5 mg) and **2a** (31.4 mg). The enantiomeric excess (93%) was determined using chiral HPLC (Lux Cellulose-2), hex:ⁱPrOH 75:25, 1 mL min⁻¹, major enantiomer: $t_r = 35.7$ min, minor enantiomer: $t_r = 27.7$ min.

White solid; **m.p.** 157.3-158.4 °C; $[\alpha]_D^{25}$ -49.2 (*c* 0.67, CHCl₃); ¹H NMR (300 MHz, DMSO-d₆) δ 10.21 (1H, s, NH), 10.13 (1H, s, NH), 7.96 (4H, ws, Ar),

7.86 (1H, d, J = 8.4 Hz, Ar) 7.65-7.53 (8H, m, Ar), 7.44-7.37 (3H, m, Ar), 7.28-7.25 (2H, m, Ar), 3.79 (1H, d, J = 13.2 Hz, CH-Ar), 3.60 (1H, d, J = 13.2 Hz, CH-Ar), 2.13 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO-d₆) δ 178.6 (C), 168.9 (C), 165.8 (C), 165.2 (C), 134.1 (C), 133.9 (C), 133.0 (C), 132.6 (C), 132.0 (CH), 131.89 (C), 131.84 (C), 131.4 (CH), 130.3 (C), 128.7 (CH), 128.62 (CH), 128.57 (CH), 127.7 (CH), 127.6 (CH), 126.7 (CH), 124.0 (CH), 123.6 (CH), 61.0 (C), 36.6 (CH₂), 12.5 (CH₃); HRMS (ESI) *m/z*: 538.1513 [M+H]⁺, C₃₁H₂₅ClN₃O₄⁺ requires 538.1528.

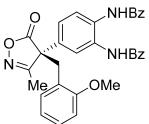
(*R*)-*N*,*N*'-(4-(4-(3-Methoxybenzyl)-3-methyl-5-oxo-4,5-dihydroisoxazol-4-yl)-1,2-phenylene)dibenzamide (3ea)



51.6 mg (97%) of **3a** were obtained from **1g** (24.1 mg) and **2a** (31.4 mg). The enantiomeric excess (94%) was determined using chiral HPLC (Lux i-Amylose-1), hex:/PrOH 70:30, 1 mL min⁻¹, major enantiomer: $t_r = 15.43$ min, minor enantiomer: $t_r = 50.00$ min.

OMePink solid; m.p. $151.9-154.0^{\circ}$ C; $[\alpha]_{D}^{25}$ -48.4 (*c* 0.83, CHCl₃); ¹H NMR (300MHz, CDCl₃) δ 9.71 (1H, s, NH), 9.53 (1H, s, NH), 8.08 (4H, m, Ar), 7.53 (8H, m, Ar), 7.16 (1H, dd, *J*= 8.4, 7.3 Hz, Ar), 6.79 (1H, ddd, *J* = 8.4, 2.4, 1.0 Hz, Ar), 6.70 (1H, dd, *J* = 8.5, 2.2 Hz, Ar), 6.53 (2H,m, Ar), 3.74 (3H, s, CH₃O), 3.33 (1H, d, *J* = 13.3 Hz, CH-Ph), 2.97 (1H, d, *J* = 13.3 Hz, CH-Ph), 1.66(3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 178.5 (C), 167.6 (C), 166.59 (C), 166.55 (C), 159.6 (C),134.4 (C), 132.9 (C), 132.6 (CH), 131.7 (C), 131.5 (C), 131.4 (C), 129.8 (CH), 128.9 (CH), 127.8 (CH),127.7 (CH), 126.9 (CH), 124.1 (CH), 123.3 (CH), 121.3 (CH), 115.0 (CH), 113.2 (CH), 60.7 (C), 55.1(CH₃), 37.9 (CH₂), 12.6 (CH₃); **HRMS** (ESI) *m/z*: 534.2027 [M+H]⁺, C₃₂H₂₇N₃O₅⁺ requires 534.2023.

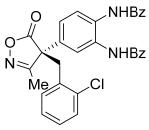
(R)-N,N'-(4-(4-(3-Chlorobenzyl)-3-methyl-5-oxo-4,5-dihydroisoxazol-4-yl)-1,2-


phenylene)dibenzamide (3fa)

51.5 mg (96%) of **3fa** were obtained from **1f** (24.5 mg) and **2a** (31.4 mg). The enantiomeric excess (92%) was determined using chiral HPLC (Lux i-Amylose-1), hex:^{*i*}PrOH 70:30, 1 mL min⁻¹, major enantiomer: $t_r = 13.26$ min, minor enantiomer: $t_r = 47.45$ min.

Pink solid; **m.p.** 104.4-105.3°C; $[\alpha]_D^{25}$ -41.1 (*c* 0.85, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 9.79 (1H, s, NH), 9.58 (1H, s, NH), 8.11 (4H, ddt, *J* = 19.7, 6.0, 1.5 Hz, Ar), 7.55 (8H, m, Ar), 7.21 (2H, m, Ar), 6.82 (2H, m, Ar), 6.62 (1H, dd, *J* = 8.5, 2.2 Hz, Ar), 3.24 (1H, d, *J* = 13.3 Hz, CH-Ph), 2.89 (1H, d, *J* = 13.4 Hz, CH-Ph), 1.61 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 178.0 (C), 167.3 (C), 166.7 (C), 134.8 (C), 134.5 (C), 132.8 (CH), 132.7 (C), 131.8 (C), 131.6 (C), 131.2 (C), 130.1 (CH), 129.3 (CH), 128.93 (CH), 128.90 (CH), 128.3 (CH), 127.9 (CH), 127.8 (CH), 127.3 (CH), 127.1 (CH), 124.0 (CH), 123.1 (CH), 60.5 (C), 37.3 (CH₂), 12.5 (CH₃); HRMS (ESI) *m/z*: 538.1523 [M+H]⁺, C₃₁H₂₅ClN₃O₄⁺ requires 538.1528.

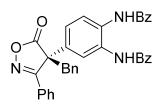
(*R*)-*N*,*N*'-(4-(4-(2-Methoxybenzyl)-3-methyl-5-oxo-4,5-dihydroisoxazol-4-yl)-1,2phenylene)dibenza-mide (3ga)



46.5 mg (88%) of **3ga** were obtained from **1g** (24.1 mg) and **2a** (31.4 mg). The enantiomeric excess (90%) was determined using chiral HPLC (Lux Cellulose-2), hex:^{*i*}PrOH 75:25, 1 mL min⁻¹, major enantiomer: $t_r = 43.1$ min, minor enantiomer: $t_r = 34.9$ min.

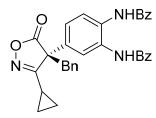
White solid; **m.p.** 216.3-217.5°C; $[\alpha]_{D}^{25}$ -72.0 (*c* 1.00, CHCl₃); ¹H NMR (300 MHz, DMSO-d₆) δ 10.24 (1H, s, NH), 10.13 (1H, s, NH), 8.00-7.94 (4H, m, Ar), 7.86 (1H, d, *J* = 8.4 Hz, Ar), 7.66-7.52 (7H, m, Ar), 7.38 (1H, dd, *J* = 8.55, 2.4 Hz, Ar), 7.21 (1H, t, *J* = 7.8 Hz, Ar), 7.17 (1H, d, *J* = 7.5 Hz, Ar), 7.03 (1H, d, *J* = 7.8 Hz, Ar), 6.92 (1H, t, *J* = 7.5 Hz, Ar), 3.82 (1H, d, *J* = 13.5 Hz, CH-Ph), 3.78 (3H, s, OCH₃), 3.53 (1H, d, *J* = 13.5 Hz, CH-Ph), 2.01 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO-d₆) δ 178.6 (C), 169.1 (C), 165.8 (C), 165.5 (C), 157.3 (C), 134.1 (C), 133.9 (C), 132.03 (CH), 132.00 (CH), 131.8 (C), 131.7 (C), 131.5 (CH), 131.4 (C), 129.3 (CH), 128.62 (CH), 128.57 (CH), 127.7 (CH), 127.5 (CH), 126.7 (CH), 123.9 (CH), 123.6 (CH), 121.9 (C), 120.4 (CH), 60.1 (C), 54.9 (CH), 52.6 (CH₂), 30.7 (CH₃), 12.5 (CH₃); **HRMS** (ESI) *m/z*: 534.2027 [M+H]⁺, C₃₂H₂₇N₃Os⁺ requires 534.2023.

(R) - N, N' - (4 - (4 - (2 - Chlorobenzyl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 1, 2 - (2 - Chlorobenzyl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 1, 2 - (2 - Chlorobenzyl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 1, 2 - (2 - Chlorobenzyl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 1, 2 - (2 - Chlorobenzyl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 1, 2 - (2 - Chlorobenzyl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 1, 2 - (2 - Chlorobenzyl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 1, 2 - (2 - Chlorobenzyl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 1, 2 - (2 - Chlorobenzyl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 1, 2 - (2 - Chlorobenzyl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 1, 2 - (2 - Chlorobenzyl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 1, 2 - (2 - Chlorobenzyl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 3 - (2 - Chlorobenzyl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 3 - methyl - 5 - oxo - 4, 5 - dihydroisoxazol - 4 - yl) - 3 - methyl - 5 - oxo - 4 - yl) - 3 - methyl - 5 - oxo - 4 - yl) - 3 - methyl - 5 - oxo - 4 - yl) - 3 - methyl - 5 - me


phenylene)dibenzamide (3ha)

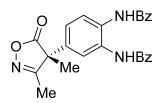
51.1 mg (95%) of **3ha** were obtained from **1h** (24.5 mg) and **2a** (31.4 mg). The enantiomeric excess (93%) was determined using chiral HPLC (Lux i-Amylose-1), hex:'PrOH 80:20, 1 mL min⁻¹, major enantiomer: $t_r = 19.87$ min, minor enantiomer: $t_r = 41.84$ min.

White solid; **m.p.** 174.0-175.5°C; $[\alpha]_{D}^{25}$ -69.9 (*c* 0.89, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 9.58 (1H, s, NH), 9.45 (1H, s, NH), 8.04 (4H, m, Ar), 7.52 (8H, m, Ar), 7.34 (1H, m, Ar), 7.17 (2H, m, Ar), 7.05 (1H, dd, J = 7.3, 2.1 Hz, Ar), 6.84 (1H, dd, J = 8.6, 2.2 Hz, Ar), 3.64 (1H, d, J = 14.0 Hz, CH-Ph), 3.34 (1H, d, J = 14.1 Hz, CH-Ph), 1.83 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 178.7 (C), 168.0 (C), 166.69 (C), 166.65 (C), 134.0 (C), 133.02 (C), 132.96 (C), 132.5 (CH), 131.8 (C), 131.7 (C), 131.5 (C), 131.2 (C), 130.6 (CH), 130.0 (CH), 129.3 (CH), 128.8 (CH), 127.8 (CH), 127.7 (CH), 127.4 (CH), 126.8 (CH), 124.0 (CH), 123.4 (CH), 60.1 (C), 34.7 (CH₂), 13.0 (CH₃); HRMS (ESI) *m/z*: 538.1525 [M+H]⁺, C₃₁H₂₅ClN₃O₄⁺ requires 538.1528.


(R)-N,N'-(4-(4-Benzyl-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-1,2-phenylene)dibenzamide (3ia)

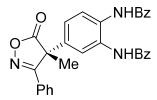
46.7 mg (83%) of **3ia** were obtained from **1i** (27.6 mg) and **2a** (31.4 mg). The enantiomeric excess (89%) was measured by chiral HPLC (Lux i-Amylose-1), hex:^{*i*}PrOH 85:15, 1 mL min⁻¹, major enantiomer: $t_r = 22.85$ min, minor enantiomer: $t_r = 28.20$ min.

White solid; **m.p.** 151.4-152.3 °C; $[\alpha]_{D}^{25}$ -29.2 (*c* 0.94, CHCl₃); ¹H NMR (300 MHz, DMSO-d₆) δ 10.23 (1H, s, NH), 10.11 (1H, s, NH). 7.97-7.93 (4H, m, Ar), 7.88 (1H, d, *J* = 9 Hz, Ar), 7.80 (1H, d, *J* = 3 Hz, Ar), 7.60-7.46 (12H, m, Ar), 7.26-7.18 (3H, m, Ar), 6.85-6.82 (2H, m, Ar), 3.92 (2H, ws, CH₂-Ph); ¹³C NMR (75 MHz, DMSO-d₆) δ 178.6 (C), 166.8 (C), 165.8 (C), 165.5 (C), 134.1 (C), 133.9 (C), 133.6 (C), 132.2 (CH), 132.1 (C), 132.02 (CH), 131.98 (CH), 131.2 (C), 129.5 (CH), 129.3 (CH), 128.6 (CH), 128.5 (CH), 127.8 (CH), 127.7 (CH), 127.5 (CH), 127.1 (CH), 127.0 (CH), 126.9 (C), 123.42 (CH), 123.35 (CH), 59.8 (C), 38.2 (CH₂); **HRMS** (ESI) *m/z*: 566.2082 [M+H]⁺, C₃₆H₂₈N₃O₄⁺ requires 566.2074.


(*R*)-*N*,*N*'-(4-(4-Benzyl-3-cyclopropyl-5-oxo-4,5-dihydroisoxazol-4-yl)-1,2-phenylene)dibenzamide (3ja)

43.5 mg (82%) of **3ja** were obtained from **1j** (23.6 mg) and **2a** (31.4 mg). The enantiomeric excess (91%) was measured by chiral HPLC (Lux i-Amylose-1), hex:^{*i*}PrOH 80:20, 1 mL min⁻¹, major enantiomer: $t_r = 19.0$ min, minor enantiomer: $t_r = 53.5$ min.

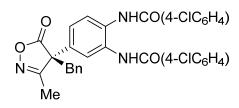
Yellow oil; $[a]_D^{25}$ -17.5 (*c* 0.87, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 9.78 (1H, s, NH), 9.59 (1H, s, NH), 8.11 (4H, ddt, *J* = 13.0, 6.8, 1.6 Hz, Ar), 7.70 (1H, d, *J* = 2.3 Hz), 7.53 (7H, m, Ar), 7.24 (3H, dd, *J* = 6.6, 2.9 Hz, Ar), 7.03 (2H, m, Ar), 6.81 (1H, dd, *J* = 8.5, 2.2 Hz, Ar), 3.37 (1H, d, *J* = 13.3 Hz, CH-Ph), 3.10 (1H, d, *J* = 13.2 Hz, CH-Ph), 0.79 (5H, m); ¹³C NMR (75 MHz, CDCl₃) δ 178.6 (C), 173.0 (C), 166.6 (C), 166.5 (C), 133.09 (C), 132.97 (C), 132.94 (C) 132.6 (CH), 132.5 (CH), 132.2 (C), 131.7 (C), 131.4 (C), 129.6 (CH), 128.9 (CH), 128.5 (CH), 127.9 (CH), 127.8 (CH), 127.7 (CH), 126.6 (CH), 124.4 (CH), 123.5 (CH), 39.0 (CH3), 11.8 (CH₂), 11.0 (CH₂), 8.3 (CH); HRMS (ESI) *m/z*: 530.2077 [M+H]⁺, C₃₃H₂₈N₃O₄⁺ requires 530.2074.


(R)-N,N'-(4-(3,4-Dimethyl-5-oxo-4,5-dihydroisoxazol-4-yl)-1,2-phenylene)dibenzamide (3ka)

15.3 mg (37%) of **3ka** were obtained from **1k** (12.4 mg) and **2a** (31.4 mg). The enantiomeric excess (71%) was determined using chiral HPLC (Lux i-Amylose-1), hex:'PrOH 80:20, 1 mL min⁻¹, major enantiomer: $t_r = 19.6$ min, minor enantiomer: $t_r = 28.6$ min.

Pink solid; **m.p.** 223.2-223.5 °C; $[\alpha]_{D}^{25}$ -70.1 (*c* 0.40, CHCl₃); ¹H NMR (300 MHz, DMSO-d₆) δ 10.21 (1H, s, NH), 10.09 (1H, s, NH), 7.95 (4H, m, Ar), 7.81 (1H, d, J = 8.5 Hz, Ar), 7.55 (7H, m, Ar), 7.23 (1H, J = 8.5, 2.3 Hz, Ar), 2.01 (3H, s, CH₃), 1.78 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO-d₆) δ 179.6 (C), 170.6 (C), 165.8 (C), 165.5 (C), 134.1 (C), 133.9 (C), 132.0 (CH), 131.9 (CH), 131.8 (C), 131.7 (C), 130.9 (C), 128.6 (CH), 128.5 (CH), 127.7 (CH), 127.5 (CH), 126.7 (CH), 123.4 (CH), 123.2 (CH), 53.8 (C), 18.0 (CH₃), 11.7 (CH₃); **HRMS** (ESI) *m/z*: 428.1609 [M+H]⁺, C₂₅H₂₃N₃O₄⁺ requires 428.1605.

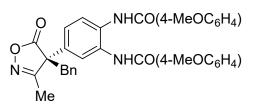
(R)-N,N'-(4-(4-Methyl-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-1,2-phenylene)dibenzamide (3la)



45.6 mg (93%) of **3la** were obtained from from **1l** (19.2 mg) and **2a** (31.4 mg). The enantiomeric excess (80%) was measured by chiral HPLC (Chiralpak ADH), hex:'PrOH 80:20, 1 mL min⁻¹, major enantiomer: $t_r = 20.9$ min, minor enantiomer: $t_r = 15.7$ min.

White solid; **m.p.** 116.2-117.6 °C; [*α*]_D²⁵ -19.1 (*c* 0.96, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 9.45 (1H, s, NH), 9.43 (1H, s, NH), 7.98 (4H, m, Ar), 7.50 (11H, m, Ar), 7.22 (2H, m, Ar), 6.93 (1H, dd, *J* = 8.5, 2.2 Hz, Ar), 1.75 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 179.1 (C), 168.4 (C), 166.7 (C), 166.6 (C),

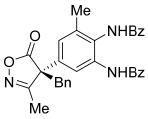
133.3 (C), 133.1 (C), 132.4 (C), 132.34 (CH), 132.28 (CH), 131.8 (C), 131.7 (CH), 131.6 (C), 129.0 (CH), 128.7 (CH), 127.7 (CH), 127.6 (CH), 127.2 (CH), 126.8 (CH), 126.4 (C), 124.0 (CH), 122.9 (CH), 52.8 (C), 19.9 (CH₃); **HRMS** (ESI) *m/z*: 490.1769 [M+H]⁺, C₃₀H₂₄N₃O₄⁺ requires 490.1761.


(*R*)-*N*,*N*'-(4-(4-Benzyl-3-methyl-5-oxo-4,5-dihydroisoxazol-4-yl)-1,2-phenylene)bis(4-chlorobenzamide) (3ab)

50.4 mg (89%) of **3ab** were obtained from **1a** (19.5 mg) and **2b** (38.3 mg). The enantiomeric excess (95%) was measured by chiral HPLC (Chiralpak IC), hex:^{*i*}PrOH 80:20, 1 mL min⁻¹, major enantiomer: $t_r = 24.3$ min, minor enantiomer: $t_r = 53.1$ min.

White solid; **m.p.** 232.6-233.4 °C; $[\alpha]_D^{25}$ -52.3 (*c* 0.47, CHCl₃); ¹H NMR (300 MHz, DMSO-d₆) δ 10.23 (1H, s, NH), 10.14 (1H, s NH), 8.00-7.95 (4H, m, Ar), 7.84 (1H, d, *J* = 6 Hz, Ar), 7.62 (1H, d, *J* = 9 Hz, Ar), 7.41-7.30 (4H, m, Ar), 7.26-7.23 (2H, m, Ar), 3.78 (1H, d, *J* = 15 Hz, CH-Ph), 3.59 (1H, d, *J* = 12 Hz, CH-Ph), 2.12 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO-d₆) δ 178.7 (C), 168.9 (C), 164.7 (C), 164.6 (C), 136.8 (C), 136.7 (C), 133.9 (C), 133.0 (C), 132.9 (C), 131.8 (C), 130.7 (C), 129.7 (CH), 129.6 (CH), 129.5 (CH), 128.64 (CH), 128.60 (CH), 127.7 (CH), 126.9 (CH), 124.1 (CH), 123.7 (CH), 61.1 (C), 37.4 (CH₂), 12.6 (CH₃); **HRMS** (ESI) *m/z*: 572.1141 [M+H]⁺, C₃₁H₂₄Cl₂N₃O₄⁺ requires 572.1138.

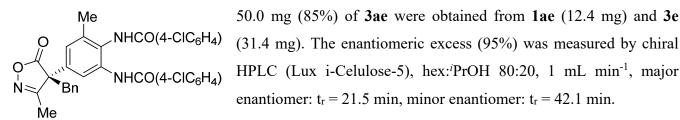
(*R*)-*N*,*N*'-(4-(4-Benzyl-3-methyl-5-oxo-4,5-dihydroisoxazol-4-yl)-1,2-phenylene)bis(4-methoxybenza-mide) (3ac)



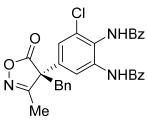
26.3 mg (47%) of **3ac** were obtained from **1a** (19.5 mg) and **2c** (37.4 mg). Enantiomeric excess could not be determined.

Yellow oil; $[\alpha]_D^{25}$ -33.0 (*c* 0.88, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 9.78 (1H, s, NH), 9.56 (1H, s NH), 8.15 (2H, d, *J* = 8.9

Hz, Ar), 8.05 (2H, d, J = 8.9 Hz, Ar), 7.51 (1H, d, J = 8.5 Hz, Ar), 7.46 (1H, d, J = 2.3 Hz, Ar), 7.24 (3H, dd, J = 5.0, 1.9 Hz, Ar), 7.06-6,93 (4H, m, Ar), 6.91-6.81 (2H, m, Ar), 7.84 (1H, d, J = 8.5, 2.3 Hz, Ar), 3.82 (3H, s, CH₃O), 3.80 (3H, s, CH₃O), 3.22 (1H, d, J = 13.3 Hz, CH-Ph), 2.80 (1H, d, J = 13.3 Hz, CH-Ph), 1.55 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 178.2 (C), 167.6 (C), 166.2 (C), 163.1 (C), 132.9 (C), 131.9 (C), 131.7 (C), 131.2 (C), 130.1 (CH), 129.8 (CH), 129.7 (CH), 129.2 (CH+C), 128.8 (CH), 128.7 (CH+C), 127.9 (93), 127.1 (CH), 125.0 (C), 124.0 (CH), 123.1 (CH), 114.1 (CH), 114.0 (CH), 60.7 (C), 55.44 (CH₃), 55.40 (CH₃), 37.7 (CH₂), 12.4 (CH₃); HRMS (ESI) *m/z*: 564.2129 [M+H]⁺, C₃₃H₃₀N₃O₆⁺ requires 564.2129.

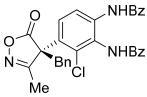

(*R*)-*N*,*N*'-(5-(4-Benzyl-3-methyl-5-oxo-4,5-dihydroisoxazol-4-yl)-3-methyl-1,2phenylene)dibenzamide (3ad)

40.0 mg (78%) of **3ad** were obtained from **1a** (19.5 mg) and **2d** (32.8 mg). The enantiomeric excess (93%) was determined using HPLC (Chiralpak IC), hex:'PrOH 80:20, 1 mL min⁻¹, major enantiomer: $t_r = 15.1$ min, minor enantiomer: $t_r = 27.1$ min.


White solid; **m.p.** 131.0-133.2 °C; $[\alpha]_D^{25}$ -86.7 (*c* 0.47, CHCl₃); ¹H NMR (300 MHz, DMSO-d₆) δ 10.02 (1H, s, NH), 9.84 (1H, s, NH), 8.00 (2H, d, *J* = 6.9 Hz, Ar), 7.90 (2H, d, *J* = 6.9 Hz, Ar), 7.61-7.47 (7H, m, Ar), 7.37-7.26 (6H, m, Ar), 3.80 (1H, d, *J* = 13.5 Hz, CH-Ph), 3.63 (1H, d, *J* = 13.5 Hz, CH-Ph), 2.37 (3H, s, CH₃), 2.14 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO-d₆) δ 178.7 (C), 168.9 (C), 165.6 (C), 165.3 (C), 137.9 (C), 135.2 (C), 134.2 (C) 134.01 (C), 133.96 (C), 131.9 (CH), 131.8 (CH), 130.5 (C), 129.5 (CH), 128.7 (CH), 128.6 (CH), 128.5 (CH), 127.7 (CH), 127.6 (CH), 127.5 (CH), 125.0 (CH), 120.7 (CH), 61.2 (C), 37.4 (CH₂), 18.6 (CH₃), 12.6 (CH₃); **HRMS** (ESI) *m/z*: 518.2090 [M+H]⁺, C₃₂H₂₈N₃O₄⁺ requires 518.2074.

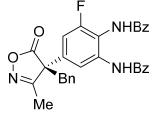
(*R*)-*N*,*N*'-(5-(4-Benzyl-3-methyl-5-oxo-4,5-dihydroisoxazol-4-yl)-3-methyl-1,2-phenylene)bis(4-chlorobenzamide) (3ae)

White solid; **m.p.** 242.0-242.4 °C $[\alpha]_D^{25}$ -49.9 (*c* 0.85, CHCl₃); ¹H NMR (500 MHz, DMSO-d₆) 10.08 (1H, s, NH), 9.87 (1H, s, NH), 8.31 (1H, s, Ar), 7.98 (2H, d, *J* = 8.5 Hz Ar), 7.90 (2H, d, *J* = 8.5 Hz Ar), 7.60 (2H, d, *J* = 8.6 Hz Ar), 7.56 (2H, d, *J* = 8.6 Hz Ar), 7.53 (1H, s, Ar), 7.38-7.30 (3H, m, Ar), 7.30 (1H, unresolved d, Ar), 7.25 (2H, d, *J* = 6.5 Hz Ar), 3.77 (1H, d, *J* = 13.5 Hz, CH₂-Ph), 3.61 (1H, *J* = 13.5 Hz, CH₂-Ph), 2.32 (3H, s, CH₃), 2.12 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO-d₆) δ 178.7 (C), 168.9 (C), 164.7 (C), 164.2 (C), 137.9 (C), 136.7 (C), 136.6 (C), 135.2 (C), 134.0 (C), 133.0 (C), 132.9 (C), 131.9 (C), 130.6 (C), 129.6 (CH), 129.5 (CH), 128.7 (CH), 128.59 (CH), 128.55 (CH), 127.7 (CH), 125.1 (CH), 121.0 (CH), 61.1 (C), 37.4 (CH₂), 18.6 (CH₃), 12.6 (CH₃); HRMS (ESI) *m/z*: 586.1294 [M+H]⁺, C₃₂H₂₆Cl₂N₃O₄⁺ requires 586.1295.


(*R*)-*N*,*N*'-(5-(4-Benzyl-3-methyl-5-oxo-4,5-dihydroisoxazol-4-yl)-3-chloro-1,2-phenylene)dibenzamide (3af) and (*R*)-*N*,*N*'-(4-(4-Benzyl-3-methyl-5-oxo-4,5-dihydroisoxazol-4-yl)-3-chloro-1,2phenylene)dibenza-mide (3'af)

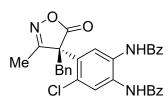
31.7 mg (62%) of **3af** and 10.8 mg (18%) of **3'af** were obtained from **1a** (19.5 mg) and **2f** (34.8 mg).

The enantiomeric excess (90%) of **3af** was determined using chiral HPLC (Chiralpak IC), hex:^{*i*}PrOH 80:20, 1.5 mL min⁻¹, major enantiomer: $t_r = 8.4$ min, minor enantiomer: $t_r = 14.3$ min.


White solid; **m.p.** 215.3-216.1 °C; $[\alpha]_D^{25}$ -75.7 (*c* 0.47, CHCl₃); ¹H NMR (300 MHz, DMSO-d₆) δ 10.10 (1H, s, NH), 10.05 (1H, s, NH), 8.00-7.97 (2H, m, Ar), 7.88-7.86 (2H, m, Ar), 7.74 (1H, d, *J* = 3.0 Hz, Ar), 7.65 (1H, d, *J* = 3.0 Hz, Ar), 7.61-7.46 (6H, m, Ar), 7.36-7.31 (3H, m, Ar), 7.26-7.24 (2H, m, Ar), 3.84 (1H, d, *J* = 15 Hz, CH-Ph), 3.7 (1H, d, *J* = 12 Hz), 2.17 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO-d₆) δ 178.3 (C), 168.5 (C), 165.8 (C), 165.4 (C), 137.3 (C), 134.0 (C), 133.74 (C), 133.68 (C), 133.6 (C), 133.2 (C), 132.04 (CH), 132.01 (CH), 129.5 (CH), 129.3 (C), 128.6 (CH), 128.53 (CH), 128.50 (CH), 127.7 (CH), 124.0 (CH), 121.8 (CH), 61.1 (CH), 37.3 (CH₂), 12.6 (CH₃); **HRMS** (ESI) *m/z*: 538.1519 [M+H]⁺, C₃₁H₂₅ClN₃O₄⁺ requires 538.1528.

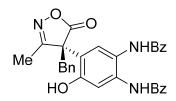
The enantiomeric excess (>99%) of **3'af** was determined using chiral HPLC (Chiralpak IC), hex:^{*i*}Pr 80:20, 1.5 mL min⁻¹, major enantiomer: $t_r = 58.47$ min, minor enantiomer: $t_r = 33.63$ min.

Yellow oil; $[\alpha]_{D}^{25}$ +5.5 (*c* 0.43, CHCl₃); ¹H NMR (300 MHz, DMSO-d₆) δ 10.10 (1H, s, NH), 10.00 (1H, s, NH), 8.09 (1H, d, *J* = 9.0 Hz, Ar), 8.00-7.97 (2H, m, Ar), 7.94 (1H, d, *J* = 9.0 Hz), 7.88-7.85 (2H, m, Ar), 7.59-7.47 (6H, m, Ar), 7.36-7.33 (3H, m, Ar), 7.21-7.18 (2H, m, Ar), 3.94 (1H, d, *J* = 12 Hz, CH-Ph), 3.53 (1H, d, *J* = 12 Hz, CH-Ph), 2.01 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO-d₆) δ 177.9 (C), 166.3 (C), 165.7 (C), 165.4 (C), 137.5 (C), 134.1 (C), 133.5 (C), 132.7 (C), 132.5 (C), 132.0 (CH), 122.0 (C), 130.1 (CH), 129.4 (C), 128.6 (CH), 128.5 (CH), 128.3 (CH), 128.2 (CH), 127.9 (CH), 127.8 (CH), 127.6 (CH), 123.5 (CH), 60.6 (C), 39.3 (CH₂), 12.2 (CH₃)


(*R*)-*N*,*N*'-(5-(4-benzyl-3-methyl-5-oxo-4,5-dihydroisoxazol-4-yl)-3-fluoro-1,2-phenylene)dibenzamide (3ag)

28.1 mg (54%) of **3ag** were obtained from from **1a** (19.5 mg) and **2g** (33.2 mg). The enantiomeric excess (97%) was determined using HPLC (Chiralpak IC), hex:^{*i*}PrOH 80:20, 1 mL min⁻¹, major enantiomer: $t_r = 16.4$ min, minor enantiomer: $t_r = 25.5$ min.

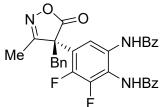
Yellow oil; $[a]_{D}^{25}$ -60.8 (*c* 0.26, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.84 (1H, s, NH), 8.40 (1H, s, NH), 7.99 (4H, dt, *J* = 8.6 Hz, *J* = 1.5 Hz, Ar), 7.86 (1H, t, *J*_{H-F} = 1.8 Hz, *J*_{H-H} = 1.8 Hz, Ar), 7.64-7.46 (7H, m, Ar), 7.32-7.27 (3H, m, Ar), 7.14-7.09 (2H, m, Ar), 6.91 (1H, dd, *J*_{H-F} = 10.7 Hz, *J*_{H-H} = 2.2 Hz, Ar), 3.61 (1H, d, *J* = 13.4 Hz, CH-Ph), 3.32 (1H, d, *J* = 13.4 Hz, CH-Ph), 2.05 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 178.1 (C), 167.3 (C), 167.1 (C), 165.9 (C), 170.4 (C, d, *J*_{C-F} = 265 Hz), 154.9 (C), 134.8 (C), 134.7 (C), 133.5 (C), 133.1 (CH), 133.2 (C), 132.8 (C), 132.5 (C, d, *J*_{C-F} = 8 Hz), 132.4 (CH), 129.2 (CH), 129.1 (CH), 129.0 (CH), 128.8 (CH), 128.2 (CH), 127.7 (CH), 127.5 (CH), 119.1 (CH, d, *J*_{C-F} = 4 Hz), 110.3 (CH, d, *J*_{C-F} = 22 Hz), 60.9 (C), 39.0 (CH₂), 13.1 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ -119.80 (1F, s); HRMS (ESI) *m/z*: 522.1826 [M+H]⁺, C₃₁H₂₅FN₃O₄⁺ requires 522.1824.


(*R*)-*N*,*N*'-(4-(4-Benzyl-3-methyl-5-oxo-4,5-dihydroisoxazol-4-yl)-5-chloro-1,2-phenylene)dibenzamide (3ah)

47.3 mg (88%) of **3ah** were obtained from **1a** (19.5 mg) and **2h** (34.8 mg). The enantiomeric excess (98%) was measured using chiral HPLC (Chiralpak IC), hex:'PrOH 80:20, 1 mL min⁻¹, major enantiomer: $t_r = 11.3$ min, minor enantiomer: $t_r = 17.5$ min.

White solid; **m.p.** 253.5-255.2 °C; $[\alpha]_D^{25}$ -16.7 (*c* 0.30, CHCl₃); ¹H NMR (300 MHz, DMSO-d₆) δ 10.30 (1H, s, NH), 10.22 (1H, s, NH), 8.20 (1H, s, Ar), 8.03-7.94 (6H, m, Ar), 7.63-7.54 (6H, m, Ar), 7.35-7.33 (3H, m, Ar), 7.21-7.18 (2H, m, Ar), 3.90 (1H, d, *J* = 12 Hz, CH-Ph), 3.43 (1H, d, *J* = 12 Hz, CH-Ph), 2.04 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO-d₆) δ 177.9 (C), 166.2 (C), 166.0 (C), 165.7 (C), 133.91 (C), 133.90 (C), 133.4 (C), 132.4 (C), 132.2 (CH), 132.2 (CH), 130.4 (C), 130.0 (CH), 128.8 (CH), 128.7 (C), 128.63 (CH), 128.60 (CH), 128.4 (CH), 127.9 (CH), 127.8 (CH), 127.7 (CH), 127.5 (CH), 127.4 (CH), 127.3 (C), 126.5 (CH), 60.1 (C), 39.1 (CH₃), 12.3 (CH₂); **HRMS** (ESI) *m/z*: 538.1527 [M+H]⁺, C₃₁H₂₅ClN₃O₄⁺ requires 538.1528.

(*R*)-*N*,*N*'-(4-(4-Benzoyl-3-methyl-5-oxo-4,5-dihydroisoxazol-4-yl)-5-hydroxy-1,2-phenylene)dibenzamide (3ai)



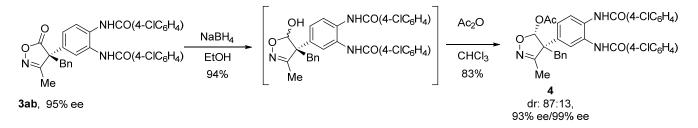
44.2 mg (85%) of **3ai** were obtained from **1a** (19.5 mg) and **2i** (33.0 mg). The enantiomeric excess (70%) was measured by chiral HPLC (Lux i-Amylose-1), hex:^{*i*}PrOH 80:20, 1 mL min⁻¹, major enantiomer: $t_r = 15.4$ min, minor enantiomer: $t_r = 20.0$ min.

White solid; **m.p.** 223.2-223.5 °C; **[α]**_D²⁵ -70.1 (*c* 0.40, CHCl₃); ¹**H** NMR (300 MHz, DMSO-d₆) 10.15 (1H, s, NH), 10.01 (1H, s, NH), 8.02 (2H, m, Ar), 7.93 (1H, m, Ar), 7.76 (1H, s, Ar), 7.56 (6H, m, Ar), 7.45 (1H, m, Ar), 7.32 (3H, m, Ar), 7.19 (2H, m, Ar), 3.76 (1H, d, *J* = 12.9 Hz, CH₂-Ph), 3.31 (1H, *J* = 12.8 Hz, CH₂-Ph), 1.95 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO-d₆) δ 179.2 (C), 166.3 (C), 166.0 (C),

165.2 (C), 152.7 (C), 134.3 (C), 134.1 (C), 133.6 (C), 133.4 (C), 132.0 (CH), 131.9 (CH), 129.9 (CH), 128.7 (CH), 128.6 (CH), 128.3 (CH), 127.6 (CH), 127.4 (CH), 126.1 (CH), 122.2 (C), 117.6 (C), 110.9 (CH), 57.7 (C), 37.7 (CH₂), 12.2 (CH₃); **HRMS** (ESI) *m/z*: 520.1869 [M+H]⁺, C₃₁H₂₆N₃O₅⁺ requires 520.1867.

(*R*)-*N*,*N*'-(5-(4-Benzyl-3-methyl-5-oxo-4,5-dihydroisoxazol-4-yl)-3,4-difluoro-1,2-phenylene)dibenzamide (3aj)

26.9 mg (54%) were obtained from **1a** (19.5 mg) and **2j** (35.0 mg). The enantiomeric excess (97%) was determined using HPLC (Chiralpak IC), hex:^{*i*}PrOH 90:10, 1 mL min⁻¹, major enantiomer: $t_r = 32.9$ min, minor enantiomer: $t_r = 41.6$ min.


Yellow oil; $[a]_{D}^{25}$ -57.3 (*c* 0.35, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 9.85 (1H, NH, Ar), 8.95 (1H, NH, Ar), 8.96 (4H, m, Ar), 7.56 (8H, m, Ar), 7.27 (4H, m, Ar), 6.91 (2H, m, Ar), 3.26 (1H, d, *J* = 12.9 Hz, CH-Ph), 3.16 (1H, d, *J* = 12.9 Hz, CH-Ph), 1.64 (3H, s, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 177.3 (C), 166.7 (C), 166.3 (C), 164.9 (C), 145.9 (C, dd, *J*_{C-F} = 249, 13 Hz), 145.3 (C, dd, *J*_{C-F} = 250, 14 Hz), 133.4 (CH), 132.8 (CH), 132.5 (C), 131.8 (C), 131.2 (C), 129.8 (br, C), 129.5 (CH), 129.2 (CH), 128.9 (CH), 128.7 (CH), 128.4 (CH), 127.9 (CH), 127.6 (CH), 121.9 (C, d, *J*_{C-F} = 10 Hz), 121.3 (C, d, *J*_{C-F} = 11 Hz), 118.5 (CH), 57.0 (C), 38.0 (CH₂), 12.3 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ -138.71 (1F, d, *J*_{F-F} = 20.5 Hz), -139.99 (1F, bd); HRMS (ESI) *m/z*: 540.1727 [M+H]⁺, C₃₁H₂₄F₂N₃O₄⁺ requires 540.1729.

One mmol scale synthesis of compound 3aa

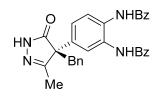
Isoxazolin-5-one **1a** (131 mg, 1.1 mmol), diimide **2a** (314 mg, 1.0 mmol), and squaramide **SQ-3** (60 mg, 0.1 mmol) were introduced in a round bottom flask and dissolved in dichloromethane (100 mL). The mixture was stirred at -20 °C overnight. The solvent was removed under reduced pressure and the mixture chromatographed over silica gel eluting with hexane:EtOAc (8:2 to 6:4) to give 500 mg (99%) of compound **3aa** with identical spectroscopic features as those reported above and with 93% ee.

Synthetic transformations

(4*R*,5*R*)-4-Benzyl-4-(3,4-bis(4-chlorobenzamido)phenyl)-3-methyl-4,5-dihydroisoxazol-5-yl acetate and (4*R*,5*S*)-4-benzyl-4-(3,4-bis(4-chlorobenzamido)phenyl)-3-methyl-4,5-dihydroisoxazol-5-yl acetate (4)

Isoxazol-5-one **3ab** (115 mg, 0.2 mmol, 1 eq) was added in portions to a solution of NaBH₄ (3 8 mg, 1 mmol, 5 eq) in a 1:1 mixture of EtOH:CH₂Cl₂ (2 mL). The solution was stirred at room temperature for 24 h and quenched with water (1 mL). The phases were separated and the aqueous layer was extracted with dichloromethane (3×15mL). The combined organic layers were dried over MgSO₄, and concentrated under reduced pressure to obtain 109 mg (94%) of a mixture of lactols that were used in the next step without further purification.

The previously obtained lactol mixture was introduced in a round bottom flask and dissolved in CHCl₃ (5 mL). Acetic anhydride (26 μ L, 0.27 mmol, 1.5 eq) and pyridine (78 μ L, 0.97 mmol, 5.4 eq) were added dropwise and the reaction was stirred at room temperature for 24h. Then, the mixture was purified by flash column chromatography using mixtures of hexane:EtOAc as eluent to give 91.6 mg (83%) of compound 4 as a ca. 87:13 diastereomer mixture. Pure samples of each diastereomer could be obtained by sem-prepartive HPLC.

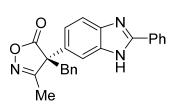

Major diastereoisomer (4*R***,5***S***)-4**: The enantiomeric excess (93%) was measured by chiral HPLC (Chiralpak IC), hex:ⁱPrOH 80:20, 1 mL min⁻¹, major enantiomer: $t_r = 29.3$ min, minor enantiomer: $t_r = 20.3$ min.

Yellow oil; $[\alpha]_D^{25}$ +43.3 (*c* 0.98, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 9.53 (1H, s, NH), 9.37 (1H, s, NH), 7.98 (4H, dd, J = 12.5, 8.6 Hz, Ar), 7.55-7.43 (6H, m, Ar), 7.28-7.24 (3H, m, Ar), 7.01 (2H, dd, J = 6.6, 2.8 Hz, Ar), 6.96 (1H, dd, J = 8.6, 2.1 Hz, Ar), 6.49 (1H, s, Ar), 3.40 (1H, d, J = 13.6 Hz, CH-Ph), 2.94 (1H, d, J = 13.6 Hz, CH-Ph), 1.59 (3H, s, CH₃), 1.55 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 169.1 (C), 165.4 (C), 165.2 (C), 159.4 (C), 139.3 (C), 139.1 (C), 134.0 (C), 132.7 (C), 131.3 (C), 130.5 (C), 130.3 (C), 129.8 (CH), 129.24 (CH), 129.20 (CH), 129.1 (CH), 128.9 (CH), 128.6 (CH), 127.9 (CH), 127.6 (CH), 125.8 (CH), 124.9 (CH), 100.5 (CH), 67.2 (C), 38.4 CH₂), 20.5 (CH₃), 11.1 (CH₃); **HRMS** (ESI) *m/z*: 654.0940 [M+K]⁺, C₃₃H₂₇Cl₂KN₃O₅⁺ requires 654.0959.

Minor diastereoisomer (4*R***,5***R***)-4**: The enatiomeric excess (99%) was measured by chiral HPLC (Chiralpak IC), hex:ⁱPrOH 80:20, 1 mL min⁻¹, major enantiomer: $t_r = 48.3$ min, minor enantiomer: $t_r = 54.4$ min.

Yellow oil; $[a]_{D}^{25}$ -142.5 (*c* 0.53, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 9.23 (1H, s, NH), 8.78 (1H, s, NH), 7.87 (4H, dd, J = 8.6, 2.8 Hz, Ar), 7.72 (1H, d, J = 8.6 Hz, Ar), 7.53 (1H, d, J = 2.2 Hz, Ar), 7.46 (4H, dd, J = 8.6, 5.1 Hz, Ar), 7.29 (1H, dd, J = 8.6, 2.3 Hz, Ar), 7.20-7.12 (3H, m, Ar), 6.97 (2H, dd, J = 7.5, 2.1 Hz, Ar), 6.93 (1H, s, Ar), 3.71 (1H, d, J = 16.4 Hz, CH-Ph), 3.43 (1H, d, J = 16.4 Hz, CH-Ph), 1.95 (3H, s, CH₃), 1.78 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 169.1 (C), 165.9 (C), 165.0 (C), 162.3 (C), 139.0 (C), 138.7 (C), 136.1 (C), 135.1 (C), 132.1 (C), 131.6 (C), 131.1 (C), 130.6 (C), 129.2 (CH), 128.9 (CH), 128.8 (CH), 128.6 (CH), 128.54 (CH), 126.53 (CH), 126.1 (C), 124.6 (CH), 123.3 (CH), 64.2 (C), 33.8 (CH₂), 20.5 (CH₃), 10.1 (CH₃); HRMS (ESI) *m/z*: 654.0940 [M+K]⁺, C_{33H₂₇Cl₂KN₃Os⁺ requires 654.0959.}

(*R*)-*N*,*N*'-(4-(4-benzyl-3-methyl-5-oxo-4,5-dihydro-1*H*-pyrazol-4-yl)-1,2-phenylene)dibenzamide (5).

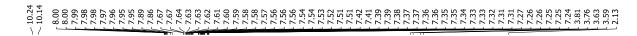


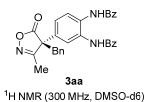
In a round bottom flask, compound **3aa** (47.3 mg, 0.094 mmol) was dissolved in absolute EtOH (1 mL) under nitrogen atmosphere. Then, 98% N₂H₄·H₂O (45.8 μ L, 0.94 mmol) was added and the reaction mixture was stirred at 80 °C for 16h. After this time, the reaction was concentrated under reduced pressure,

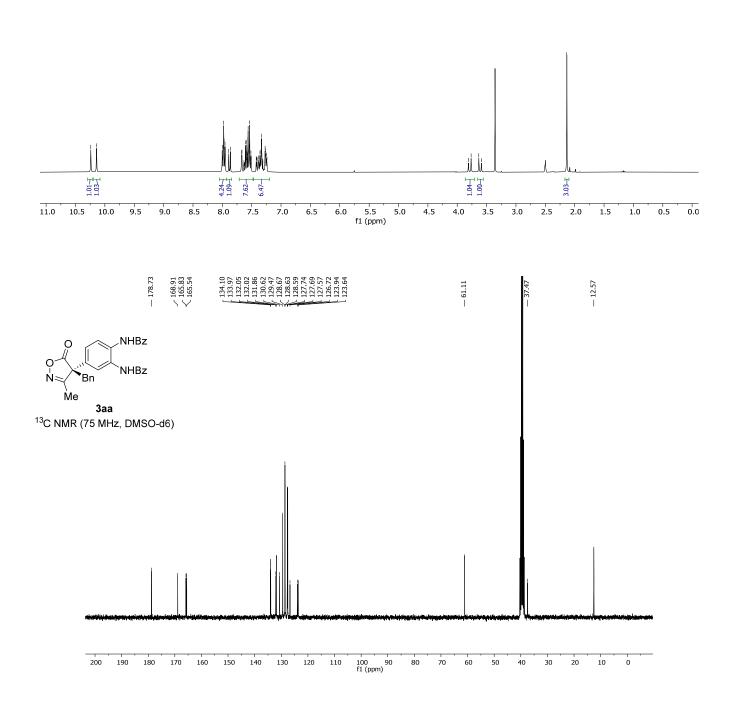
dissolved in EtOAc (75 mL), washed with brine (2 ×10 mL), dried over MgSO₄ and concentrated under reduced pressure to afford 39.6 mg (84%) of compound **5**. The enantiomeric excess (92%) was determined using chiral HPLC (ADH), hexane:^{*i*}PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 35.9$ min, minor enantiomer: $t_r = 17.0$ min.

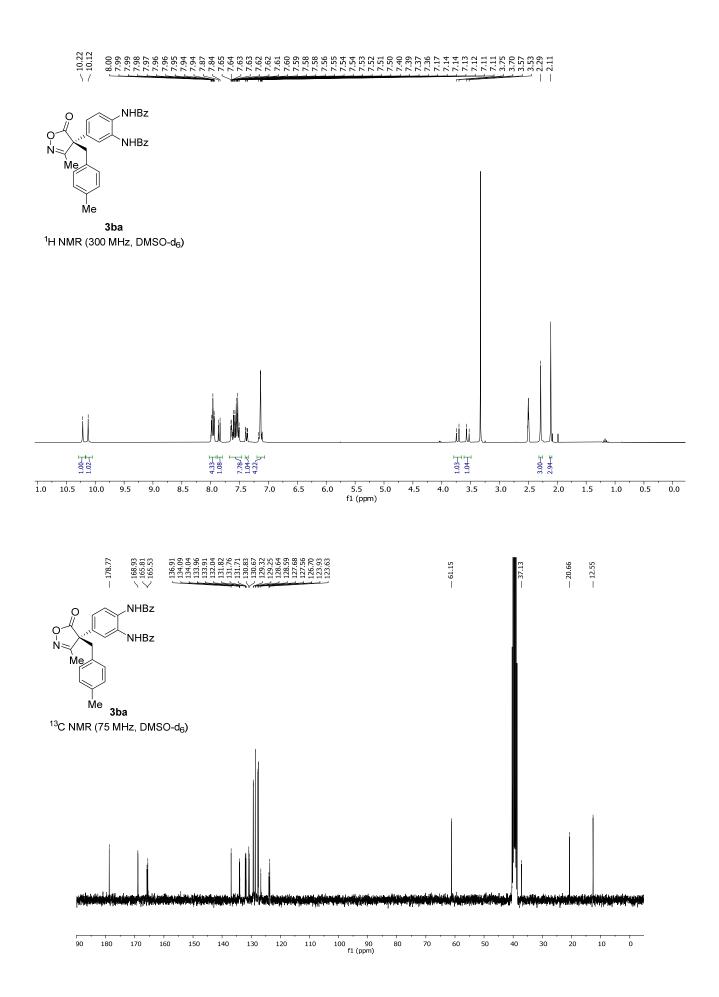
Yellow oil; $[a]_{D}^{25}$ 17.8 (*c* 0.29, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 9.33 (1H, s, NH), 9.31 (1H, s, NH), 8.17 (1H, s, NH), 8.00 (1H, d, *J* = 6.8 Hz, Ar), 7.61-7.45 (8H, m, *J* = Ar), 7.24-7.22 (3H, m, Ar), 7.13-7.10 (2H, m, Ar), 6.98 (1H, dd, *J* = 8.5, 2.2 Hz, Ar), 3.55 (1H, d, *J* = 13.2 Hz, CH-Ph), 3.21 (1H, d, *J* = 13.2 Hz, CH-Ph), 1.93 (3H, s, Me); ¹³C NMR (75 MHz, CDCl₃) δ 177.9 (C), 166.5 (C), 162.5 (C), 134.1 (C), 133.54 (C), 133.48 (C), 133.3 (C), 132.34 (CH), 132.28 (CH), 131.4 (C), 130.8 (C), 129.3 (CH), 128.80 (CH), 128.78 (C), 128.5 (CH), 127.63 (CH), 127.61 (C), 127.5 (CH), 126.4 (CH), 124.2 (CH), 123.6 (CH), 61.8 (C), 38.5 (CH₂), 15.0 (CH₃); HRMS (ESI) *m/z*: 503.2082 [M+H]⁺, C₃₁H₂₇N₄O₃⁺ requires 503.2078.

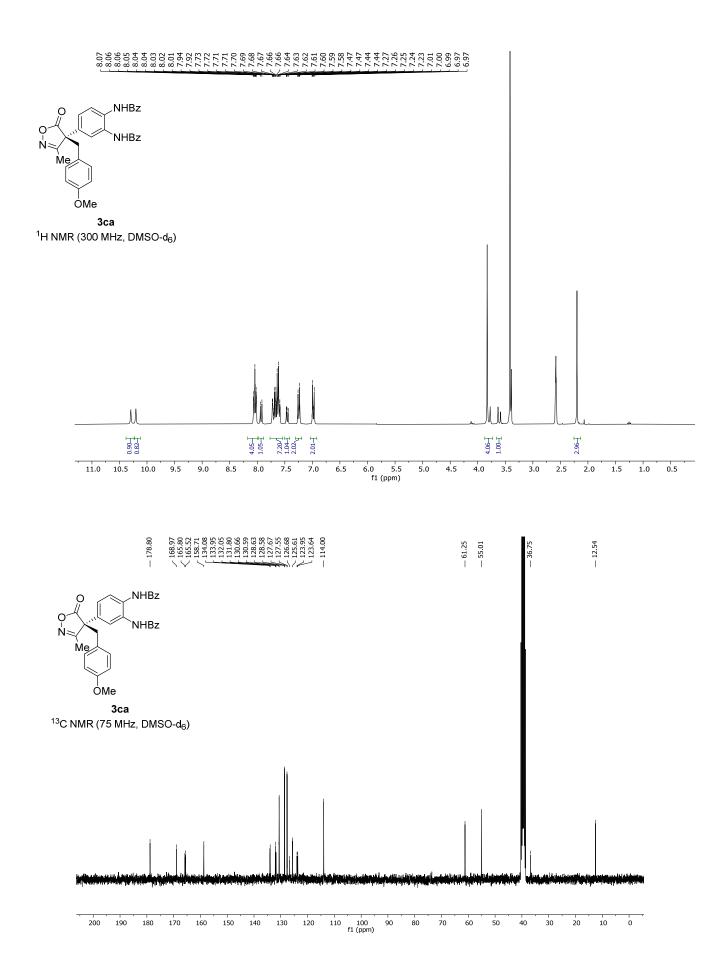
(R)-4-Benzyl-3-methyl-4-(2-phenyl-1H-benzo[d]imidazol-6-yl)isoxazol-5(4H)-one (6)

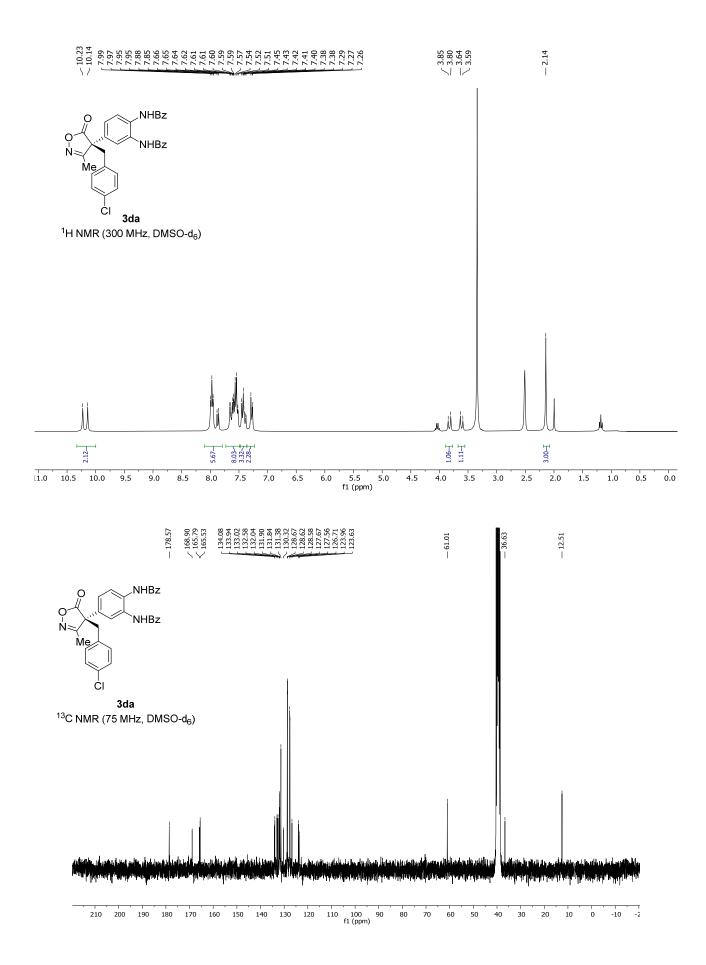


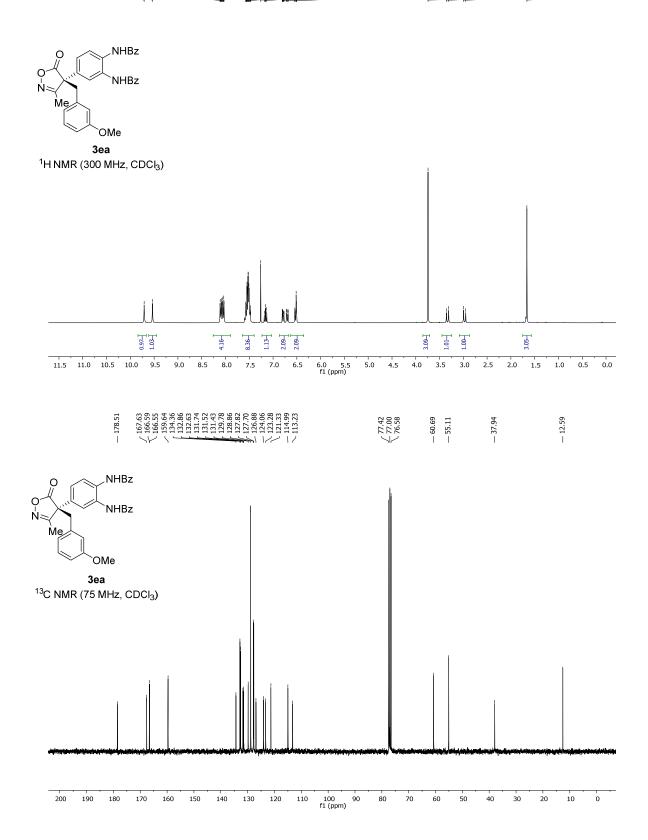

A solution of compound **3aa** (30 mg, 0.06 mmol) and p-TsOH·H₂O (23 mg (0.12 mmol) in xylenes (1 mL) was stirred at 100 °C for 72h. Then, the mixture was cooled to room temperature, diluted with EtOAc (30 mL) and washed with saturated aqueous NaHCO₃ (10 mL) and brine (10 mL), dried

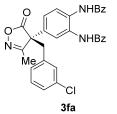

and concentrated under reduced pressure. Flash column chromatography using mixtures of hexane:EtOAc (8:2 to 5:5) gave 13.2 mg (58%) of compound 6. The enantiomeric excess (91%) was determined using chiral HPLC (IC), hexane:^{*i*}PrOH 80:20, 1.0 mL min⁻¹, major enantiomer: $t_r = 22.0$ min, minor enantiomer: $t_r = 15.1$ min.

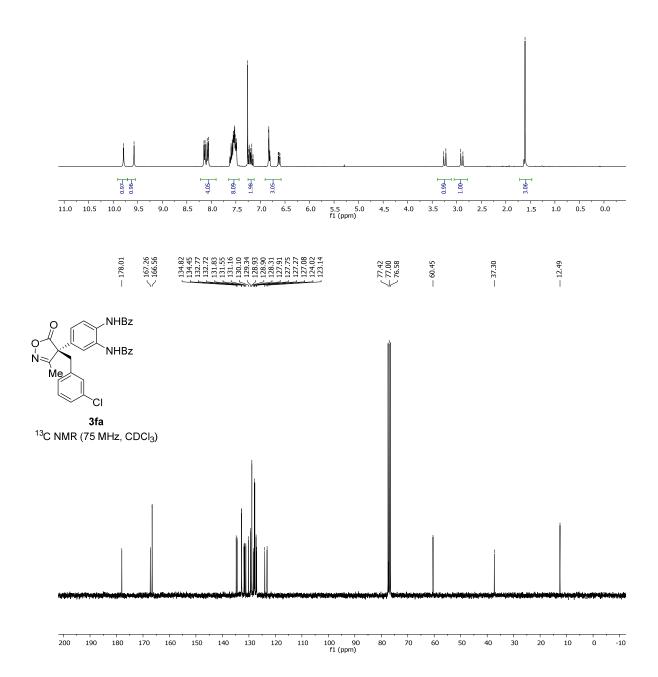

Yellow solid; **m.p.** 140.2-142.4 °C; $[\alpha]_D^{25}$ -55.3 (*c* 0.27, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.09-8.06 (2H, m, Ar), 7.84-7.67 (1H, m, Ar), 7.51-7.49 (4H, m, Ar), 7.33-7.30 (3H, m, Ar), 7.21-7.18 (2H, m, Ar), 7.08 (1H, bs, NH), 3.73 (1H, d, *J* = 13.4 Hz, CH-Ph), 3.43 (1H, d, *J* = 13.4 Hz, CH-Ph), 2.00 (3H, s, Me); ¹³C NMR (75 MHz, CDCl₃) δ 179.7 (C), 168.5 (C), 153.2 (C), 136.5 (C), 133.4 (C), 130.7 (CH), 129.3 (C), 129.2 (CH), 129.0 (CH), 128.3 (C), 128.1 (CH), 126.7 (CH), 120.9 (C), 61.6 (C), 38.6 (CH₂), 13.0 (CH₃); **HRMS** (ESI) *m/z*: 382.1552 [M+H]⁺, C₂₄H₂₀N₃O₂⁺ requires 382.1550.

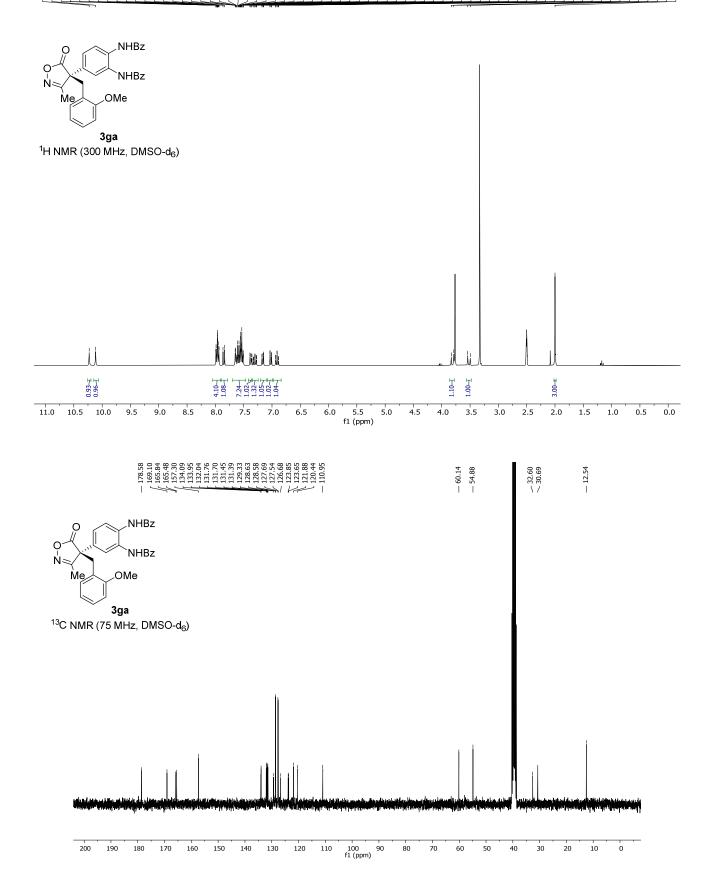

NMR spectra for compounds 3-6



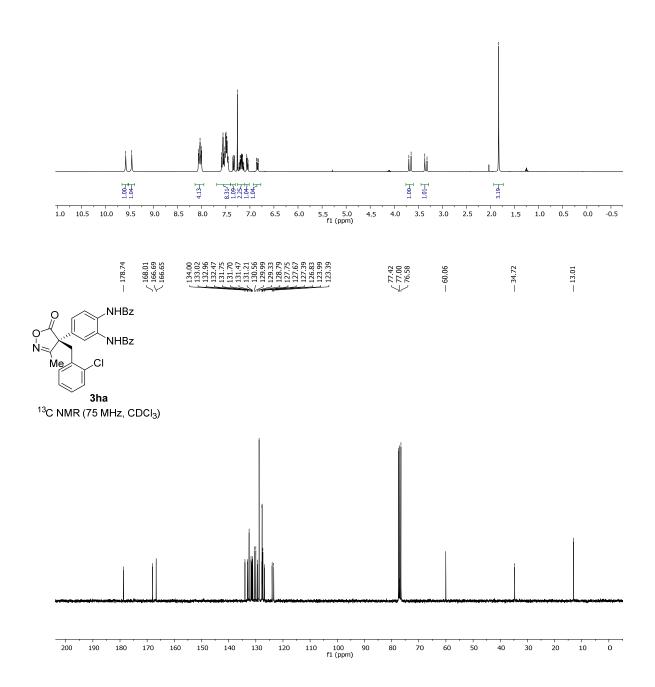


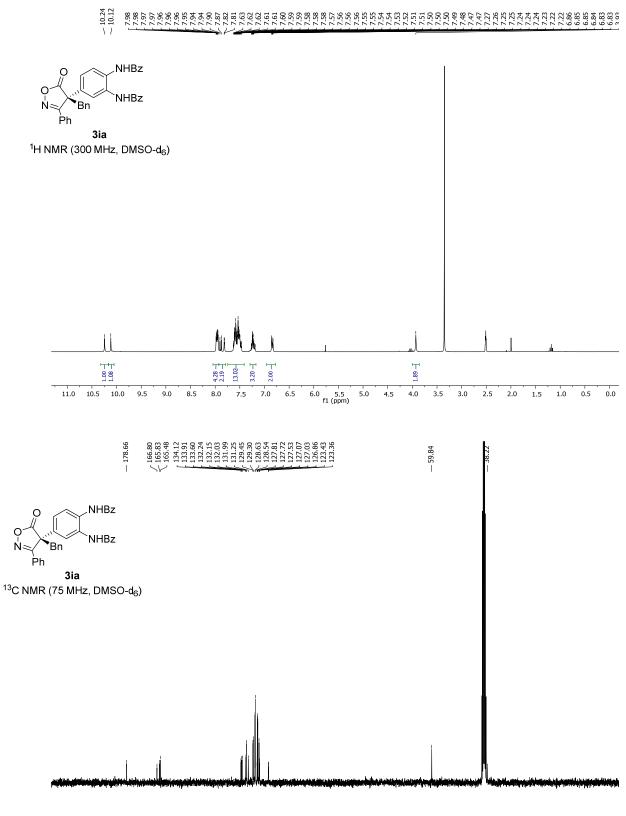



7.9.2 8.8.15



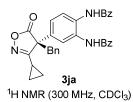
¹H NMR (300 MHz, CDCl₃)

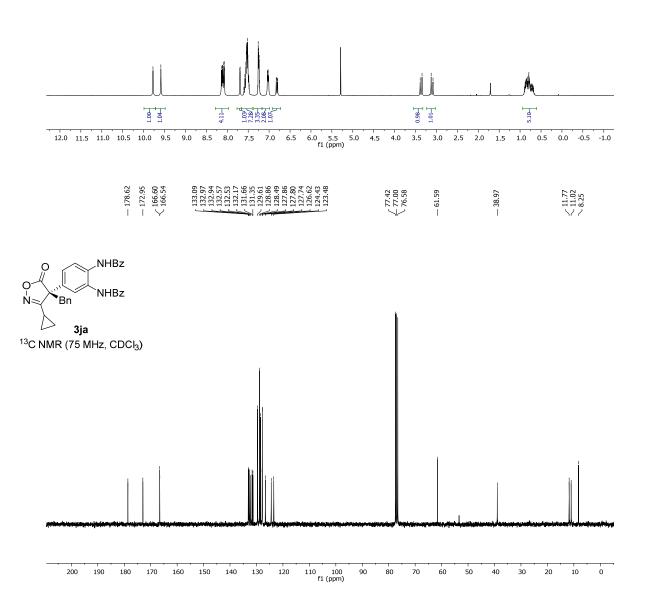

10.13 11.10.13 12.13 12.14 12.15</li



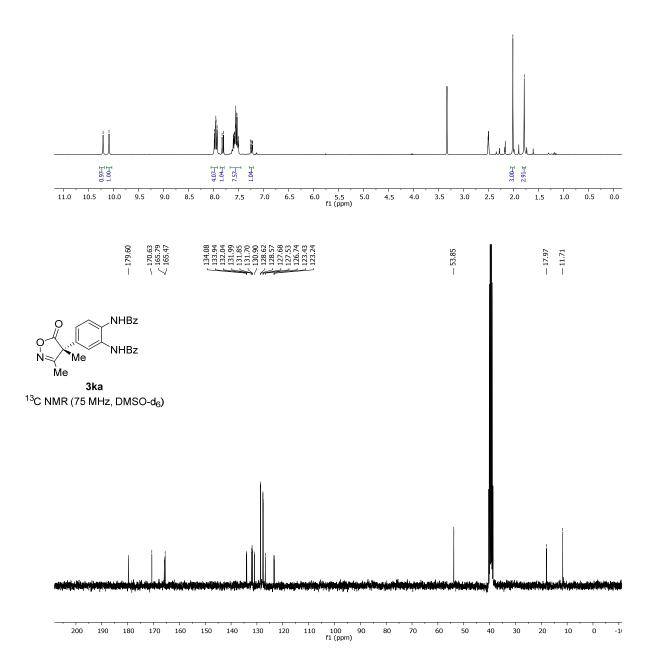
9.58 9.45 <li

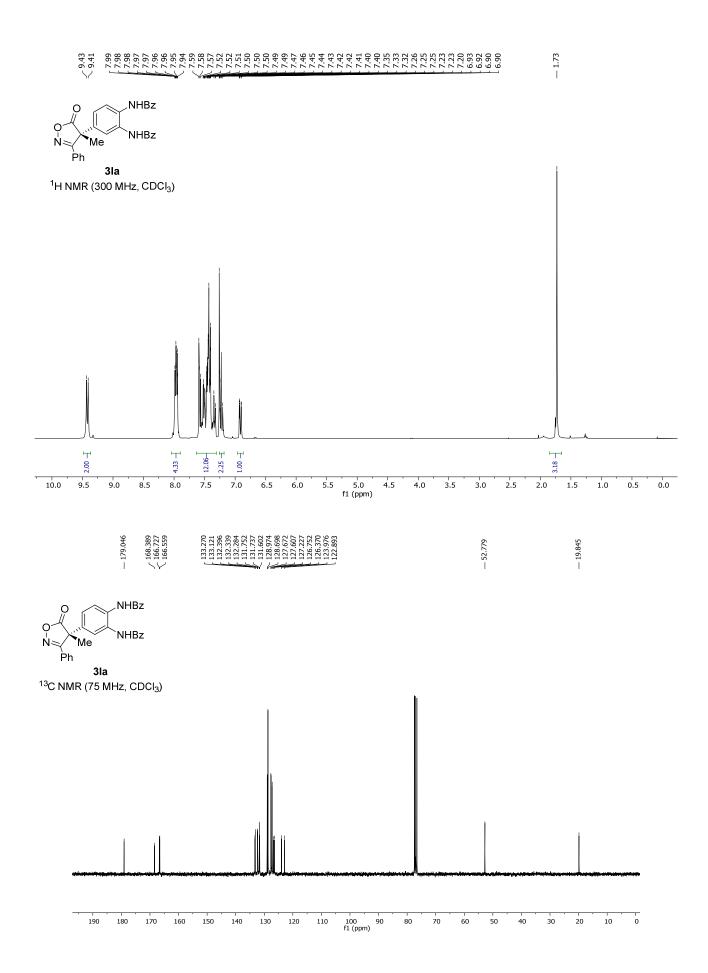
NHBz NHBz NHBz NHBz 3ha

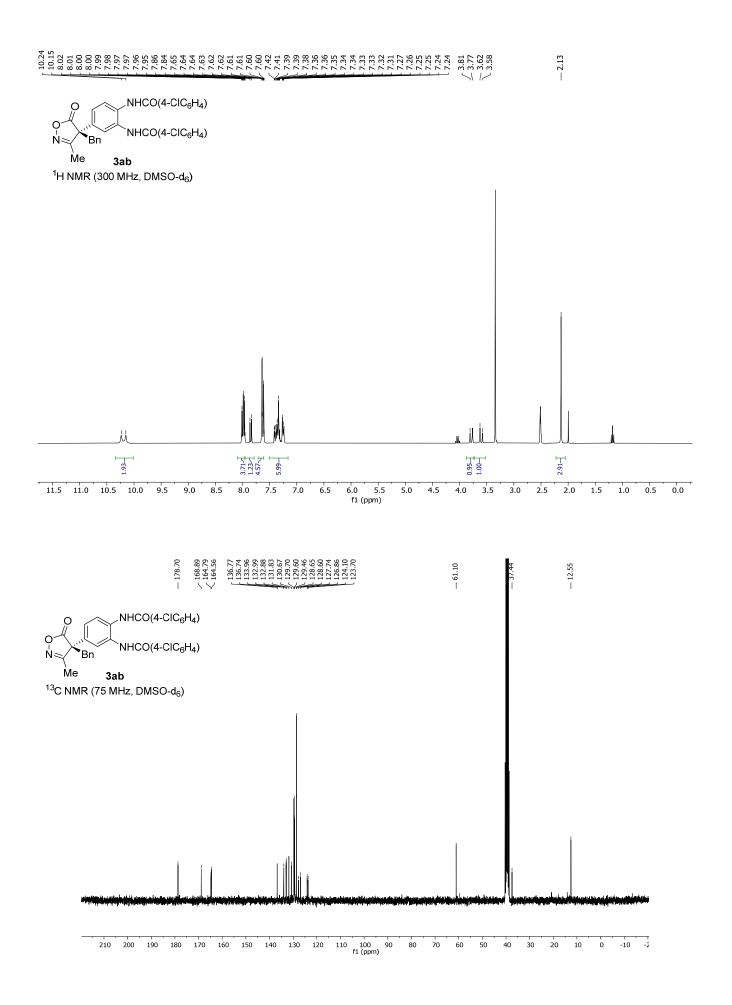

¹H NMR (300 MHz, CDCl₃)

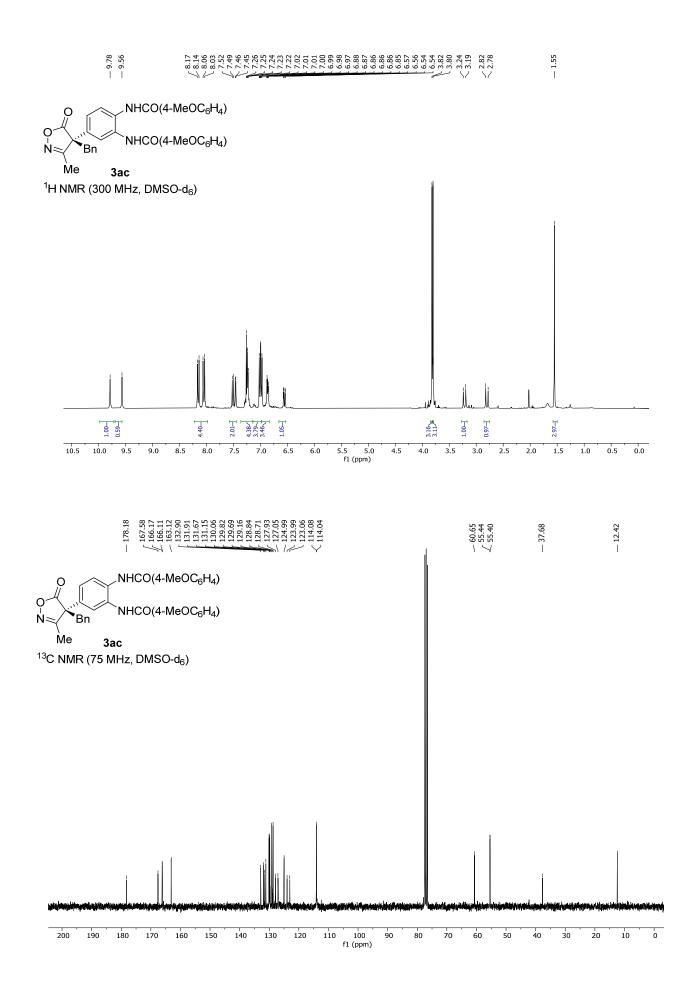


100 90 f1 (ppm) o -10

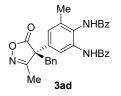


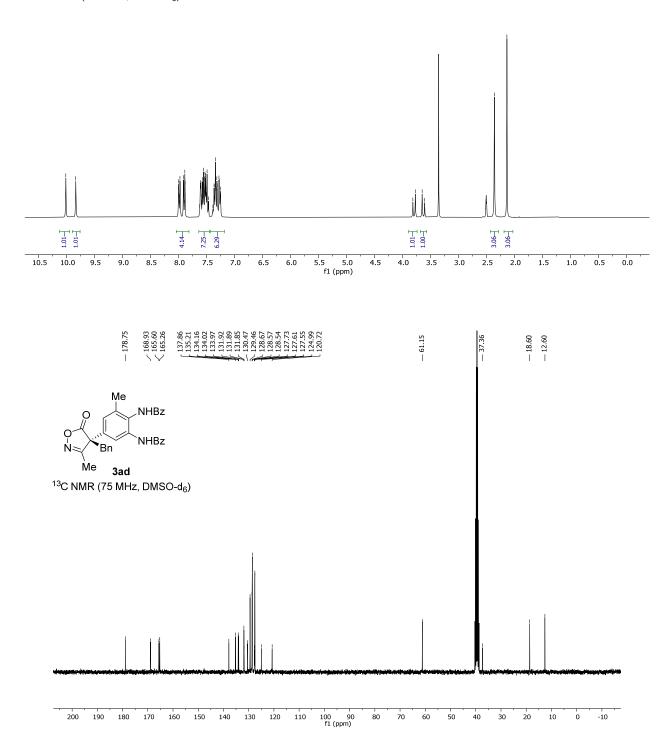


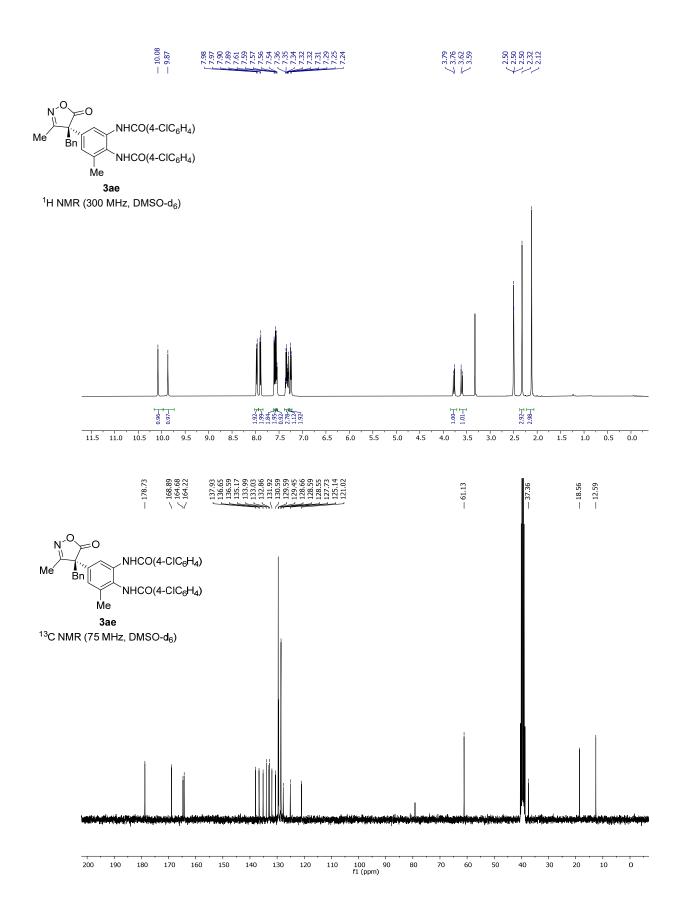

NHBz N Me 3ka

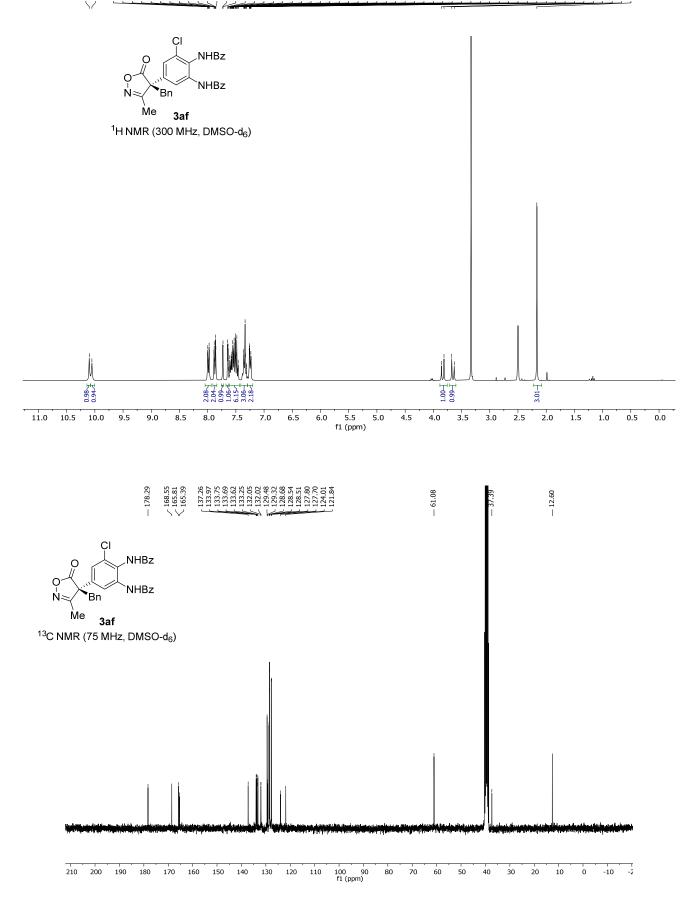

¹H NMR (300 MHz, DMSO-d₆)

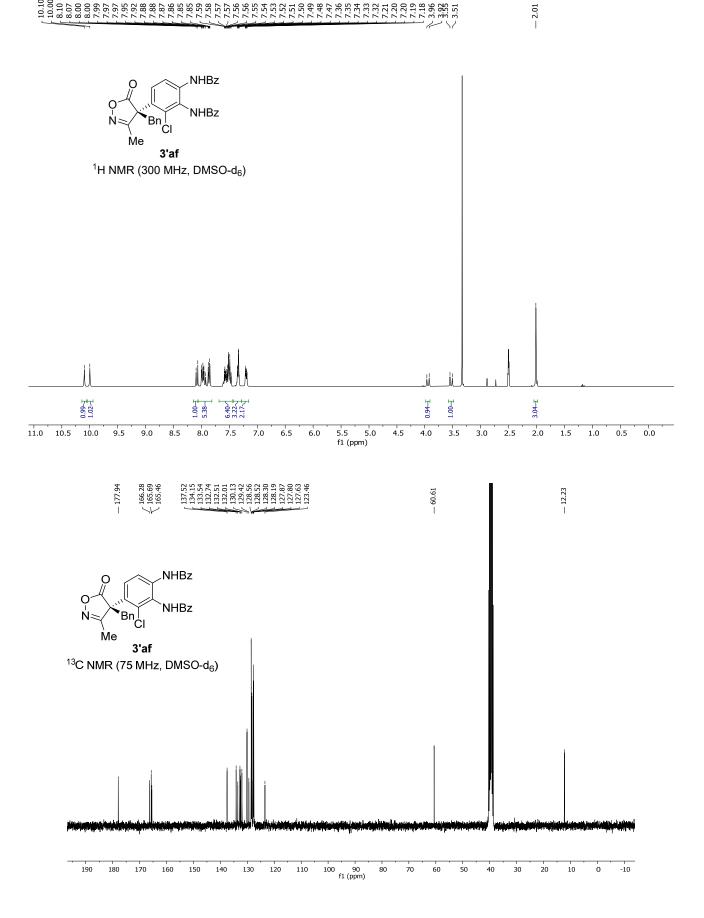
— 2.01 — 1.78

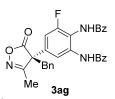




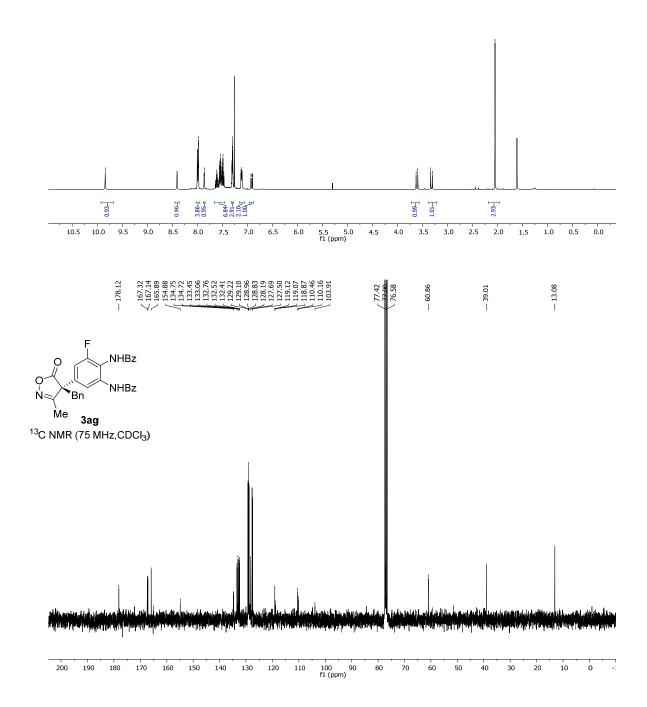

S30

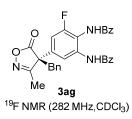



¹H NMR (500 MHz, DMSO-d₆)



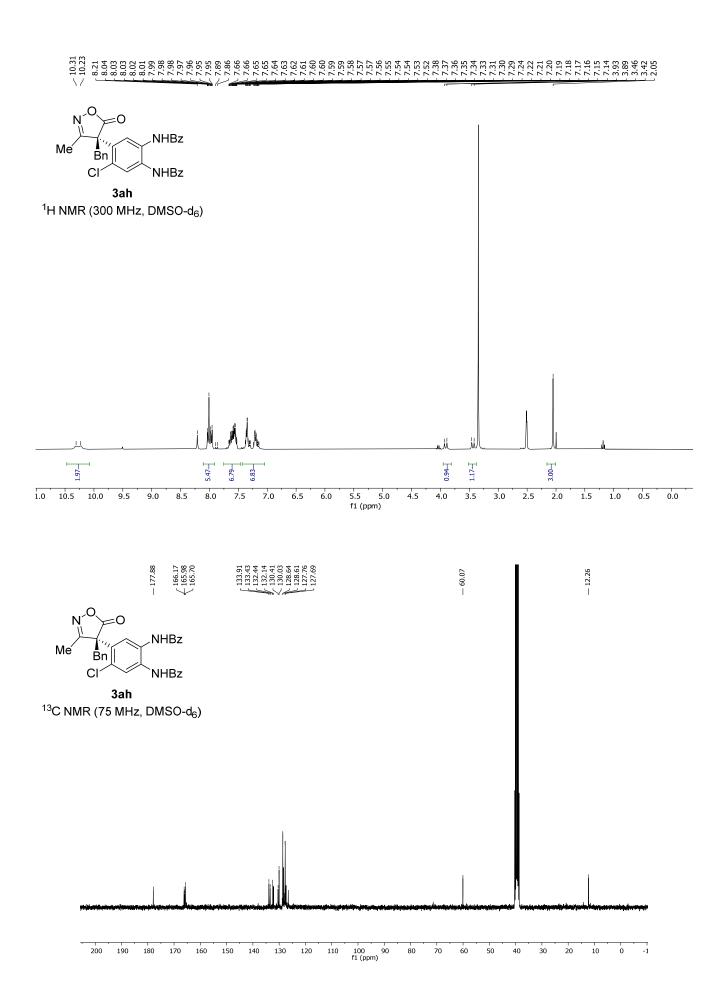
10.10 10.05 8.8.00 8.8.00 8.8.00 10.05 8.8.00 10.05

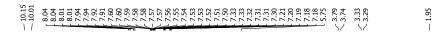


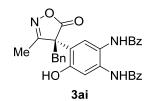


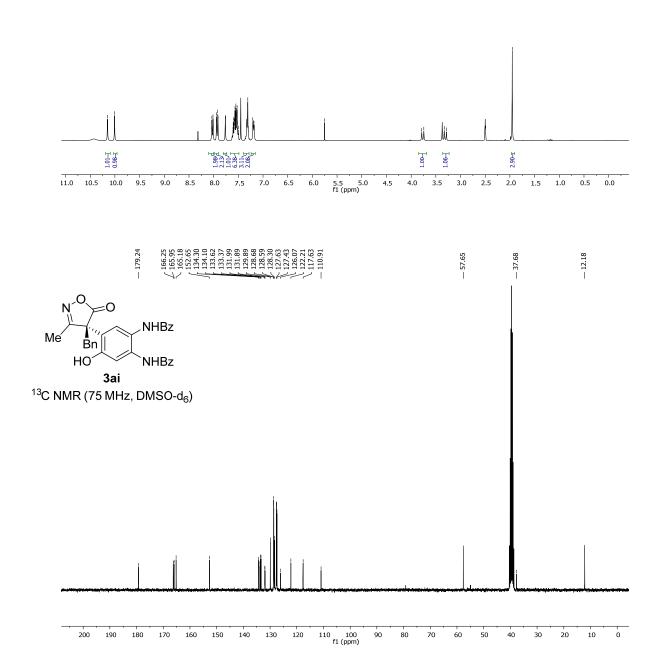
— 9.84

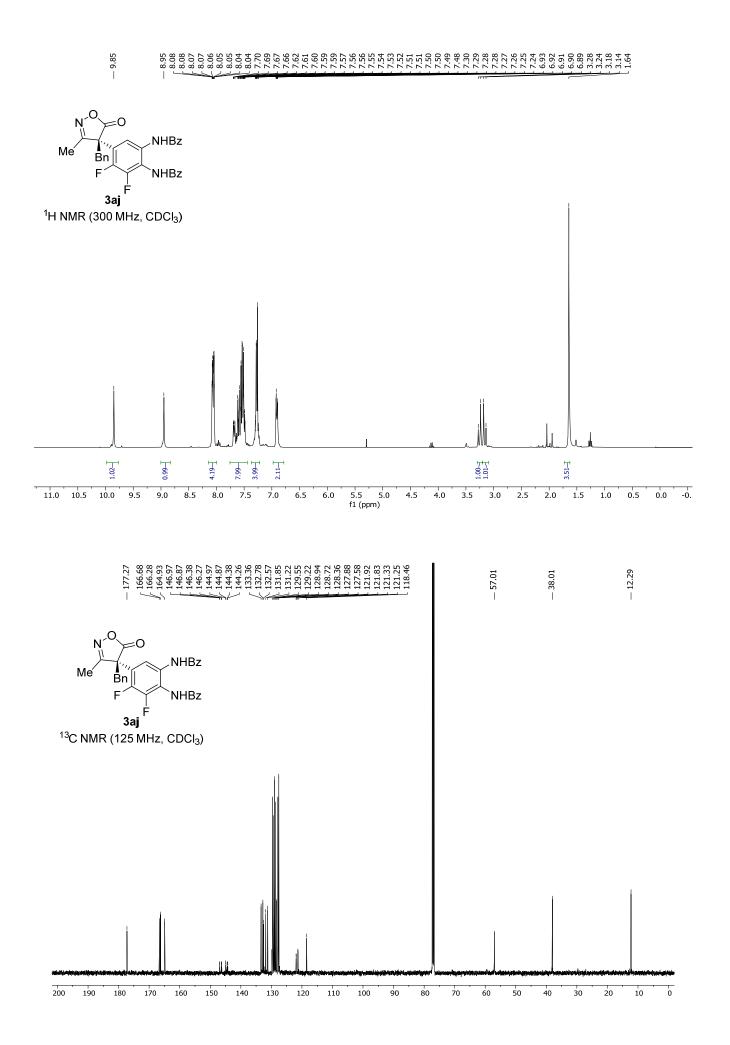
¹H NMR (400 MHz,CDCl₃)

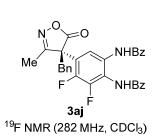


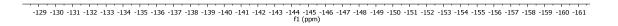

— -119.80

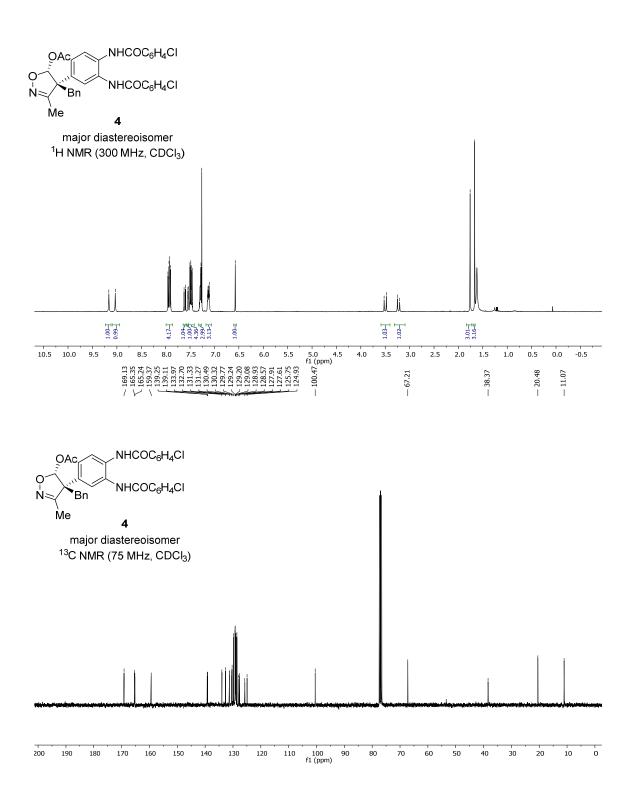


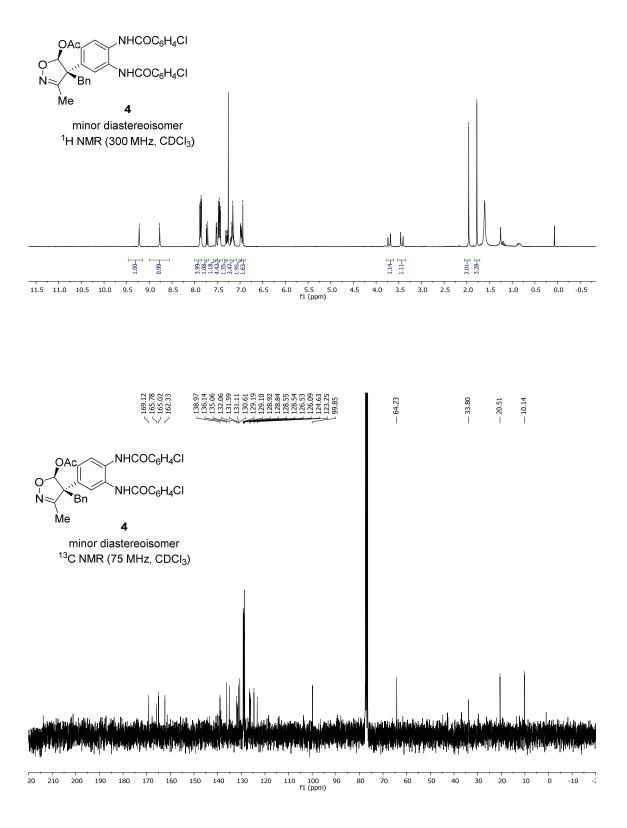

-70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -20 fl (ppm)

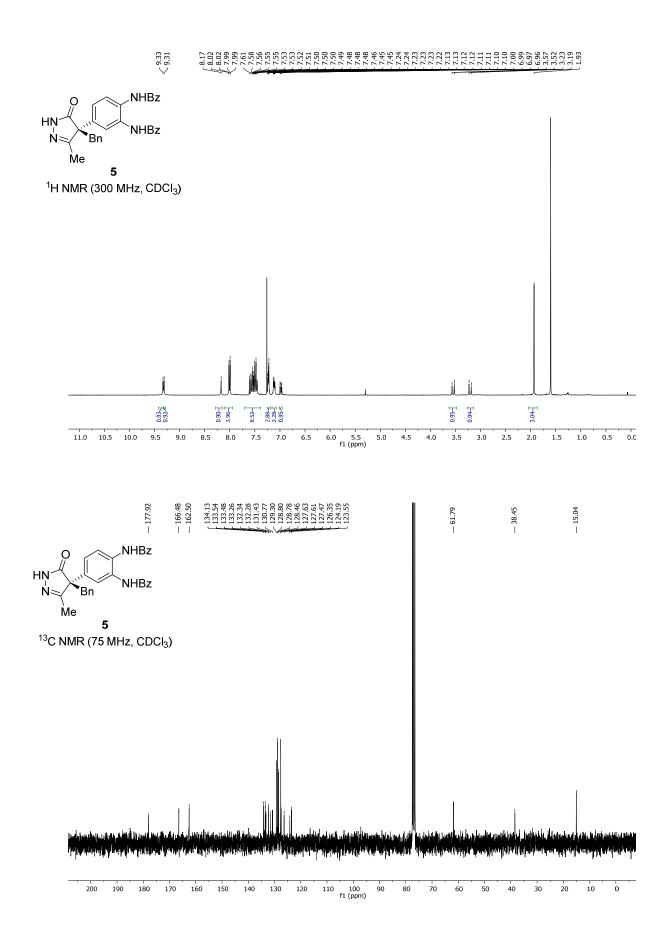


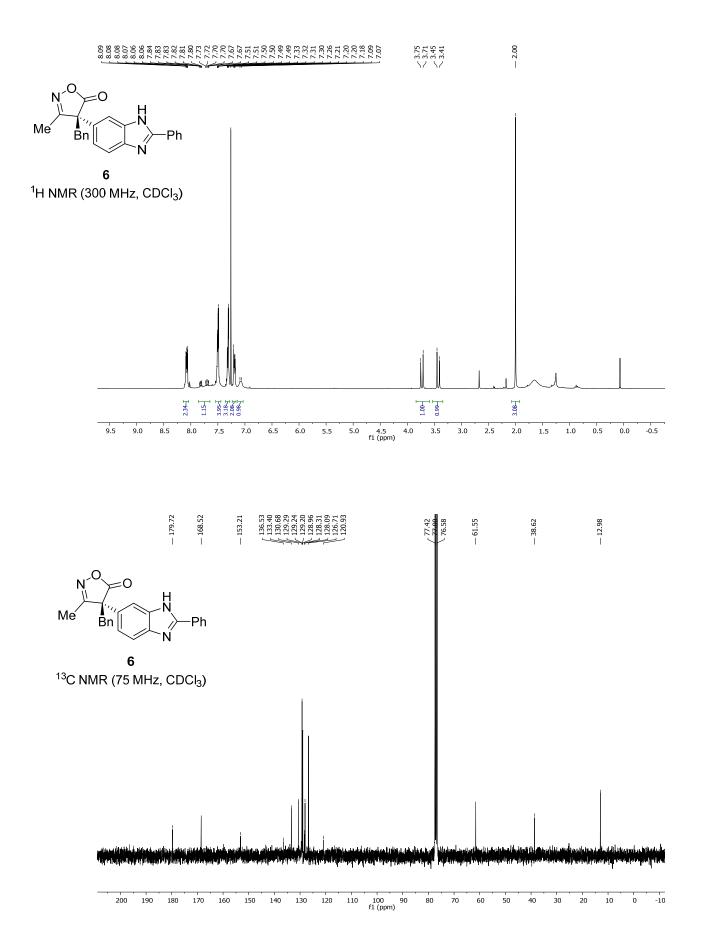


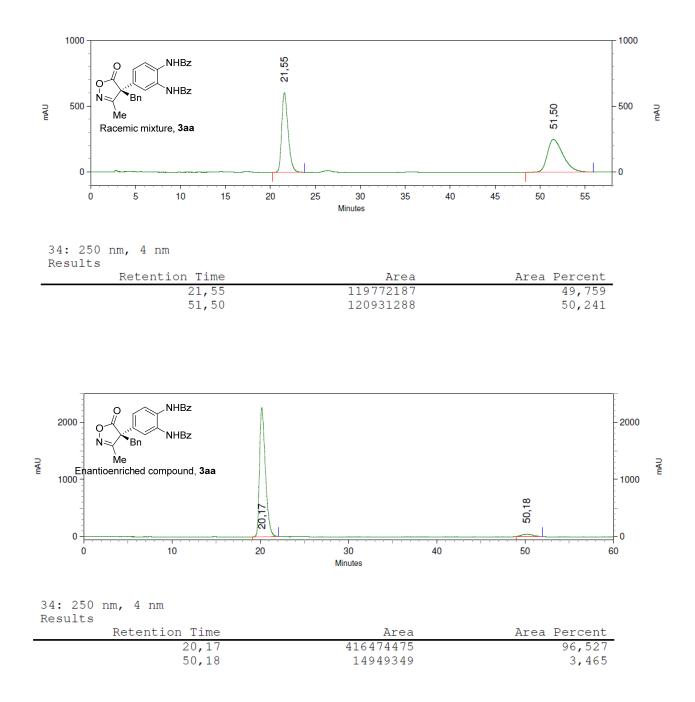

¹H NMR (300 MHz, DMSO-d₆)

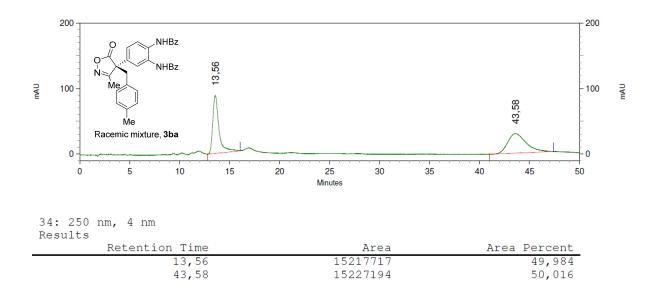


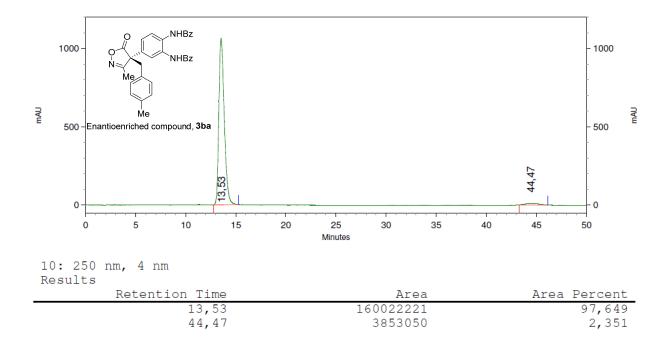

<-138.67</p>
 <-138.74</p>
 −-139.99

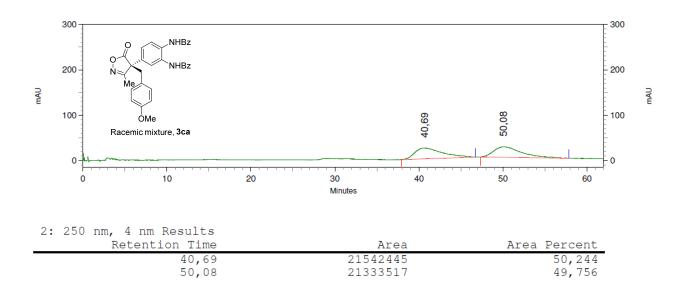


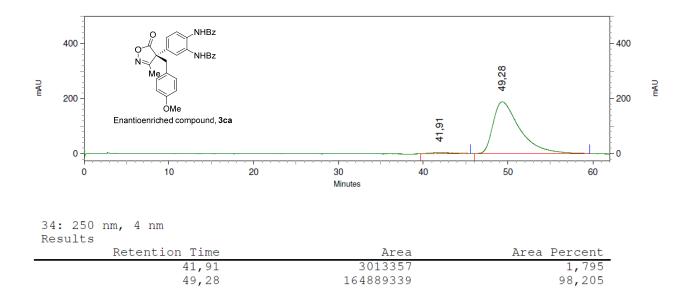

- 9.16 - 9.16 - 9.16 - 9.16 - 9.16 - 9.16 - 9.16 - 9.13 - 9.13 - 9.13 - 9.13 - 9.13 - 9.13 - 9.13 - 9.13 - 9.14 - 9.15 - 17

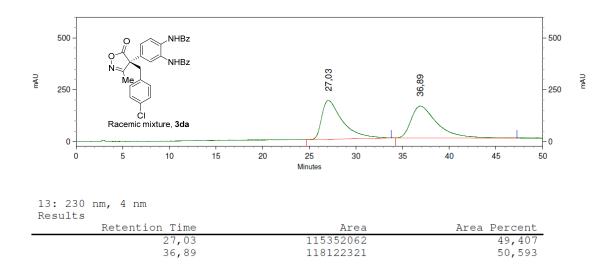


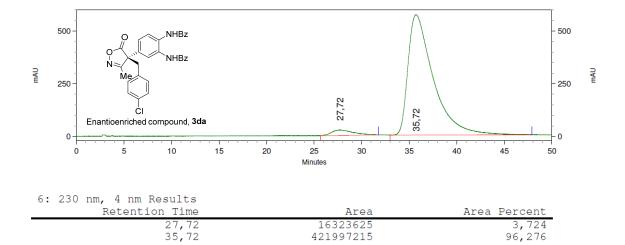


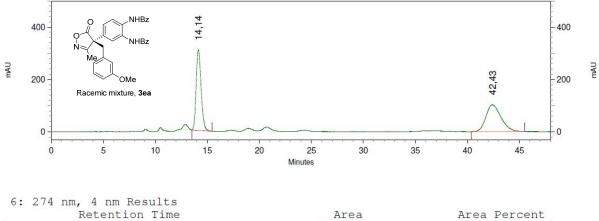


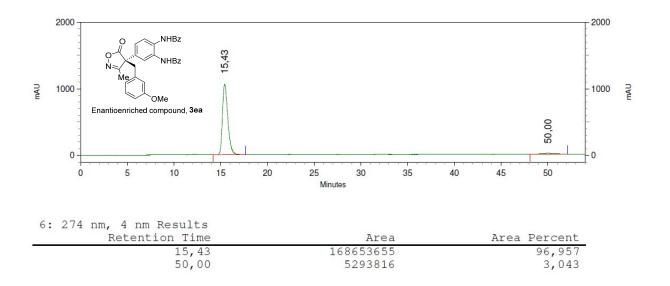


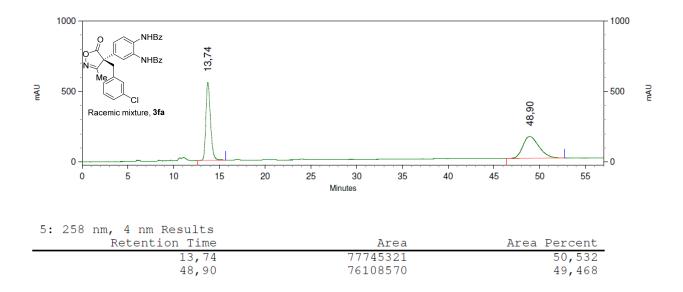


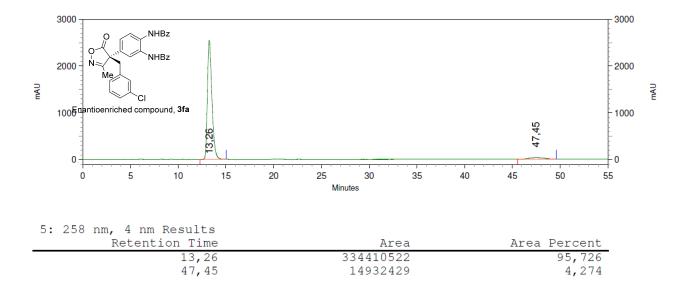


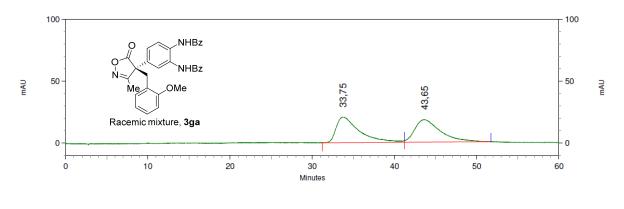


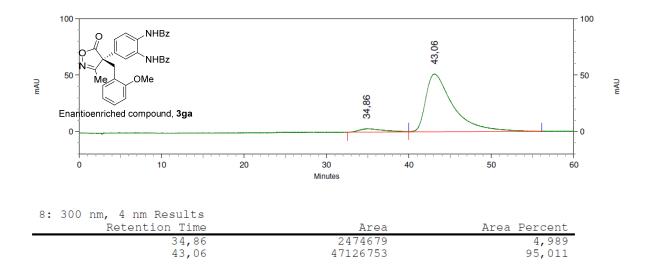


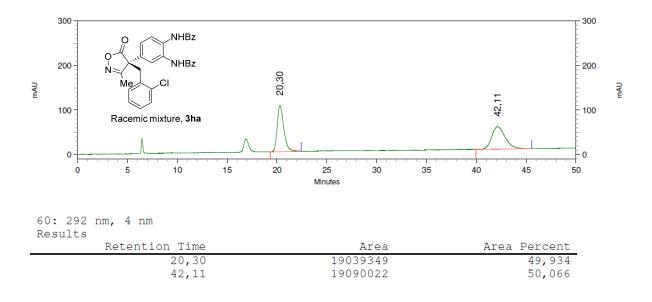


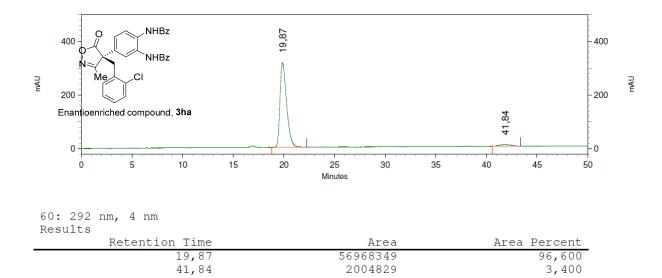


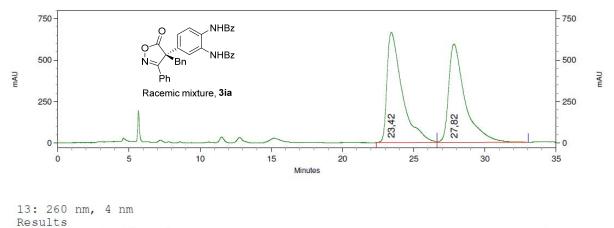




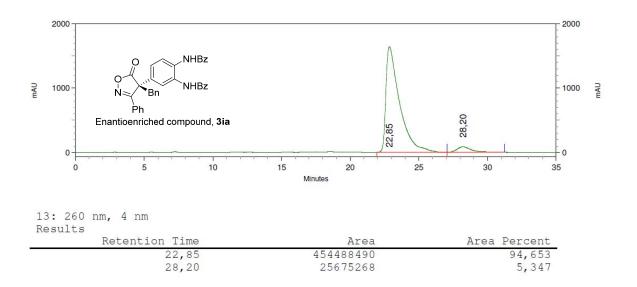


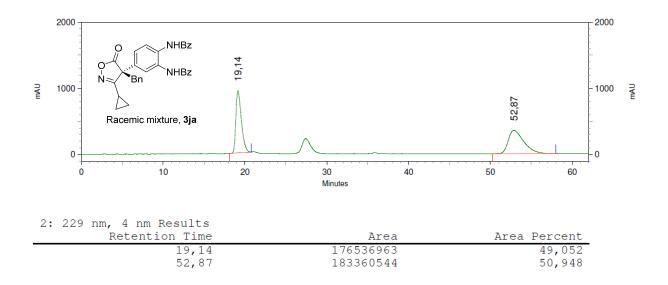


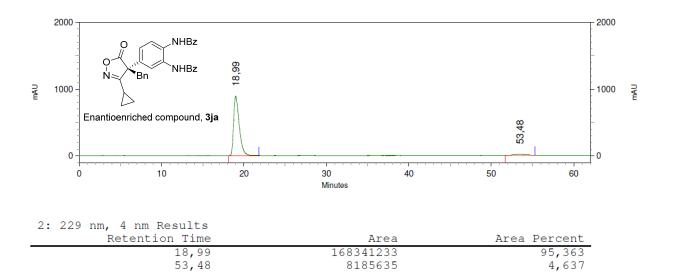


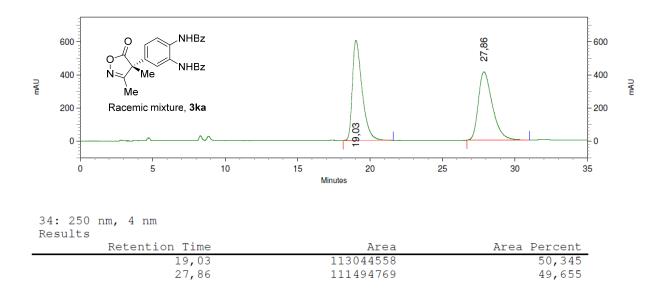


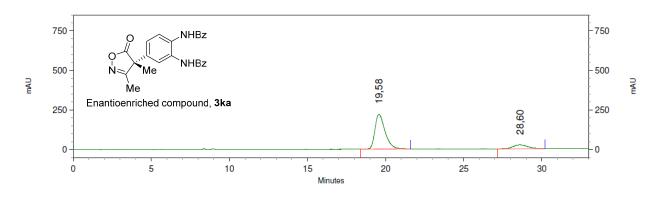
8: 300 nm, 4 nm Results Retention Time	Area	Area Percent
33,75	16089537	50,418
43,65	15822833	49,582

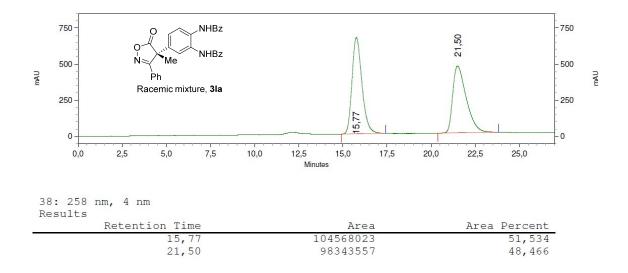


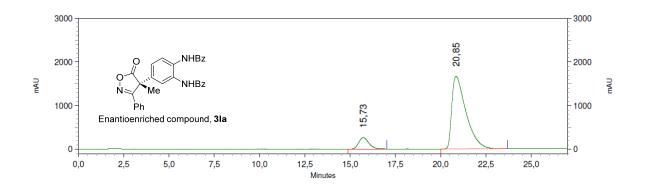


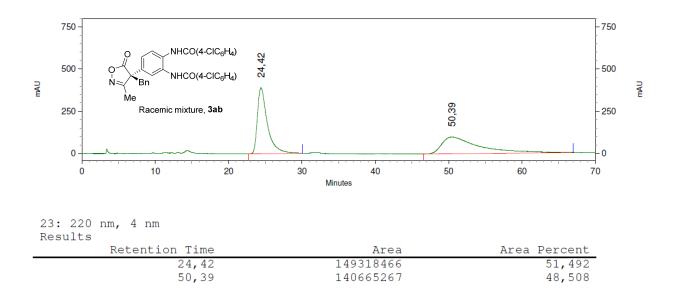


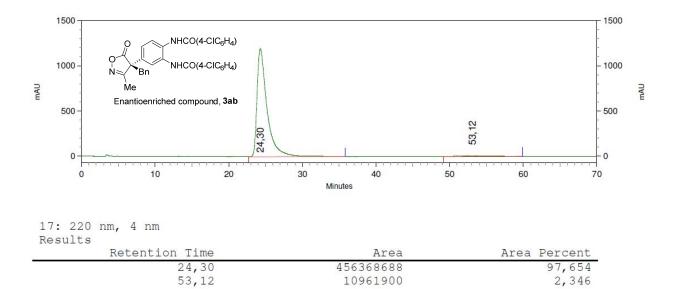


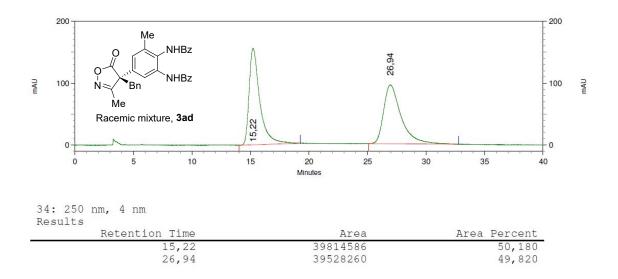

Retention Time	Area	Area Percent
23,42	196474641	50,929
27,82	189310414	49,071

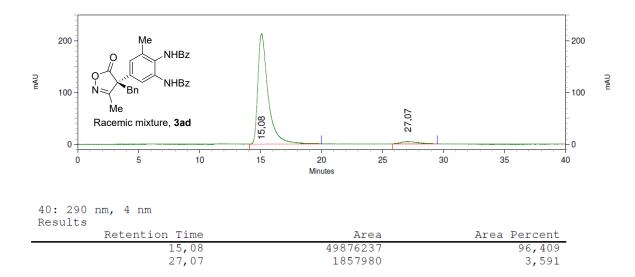


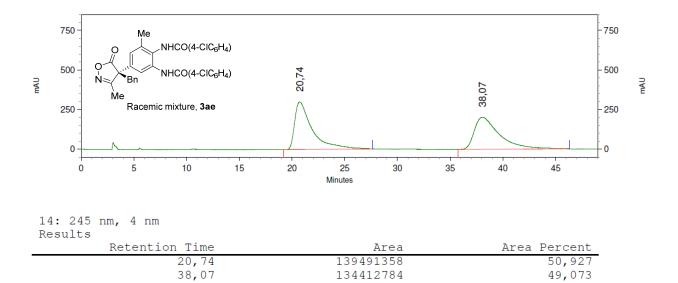


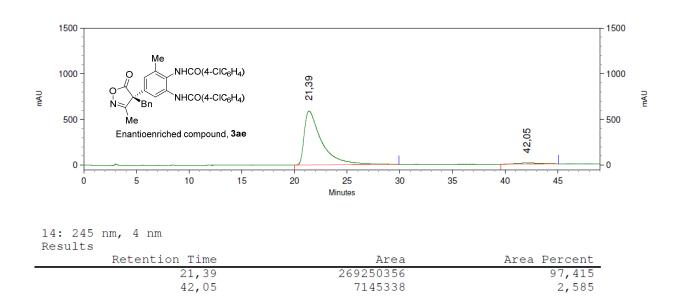

34: 250 nm, 4 nm Results

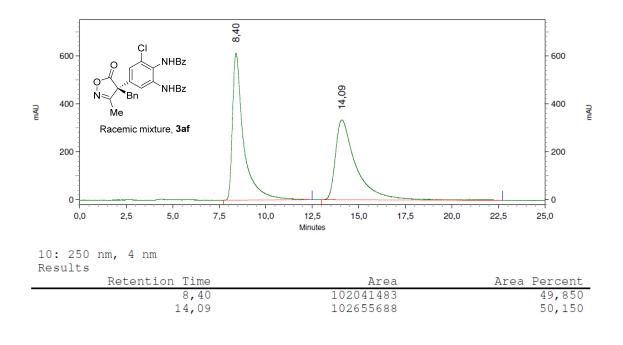

Retention Time	Area	Area Percent
19,58	39579031	85,741
28,60	6582371	14,259

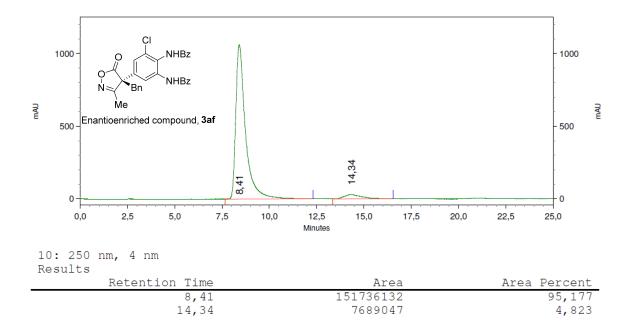


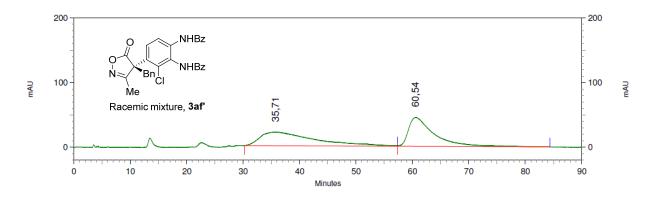



38: 258 nm, 4 nm Results		
Retention Time	Area	Area Percent
15,73	40183605	9,972
20,85	362767420	90,028

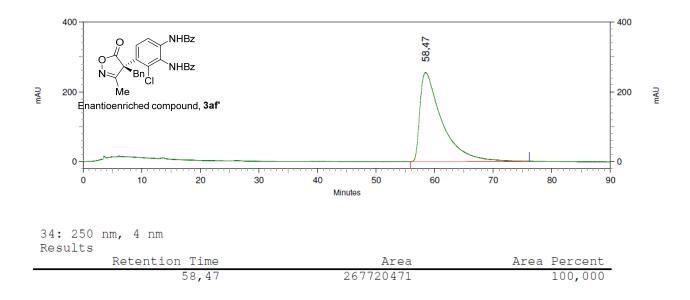


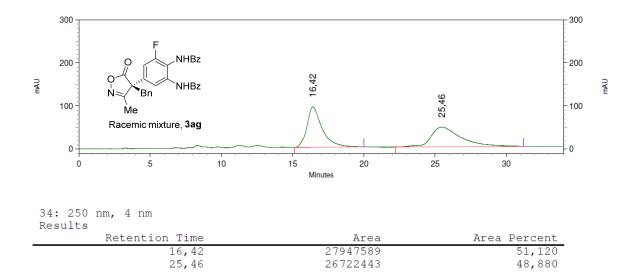


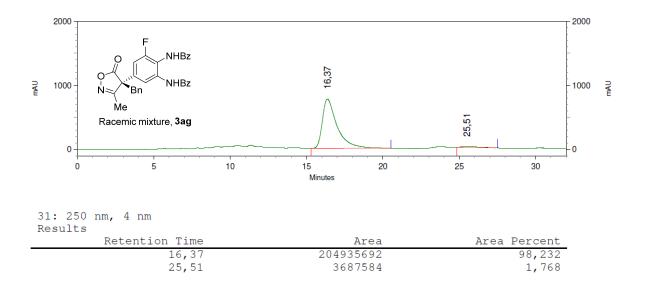


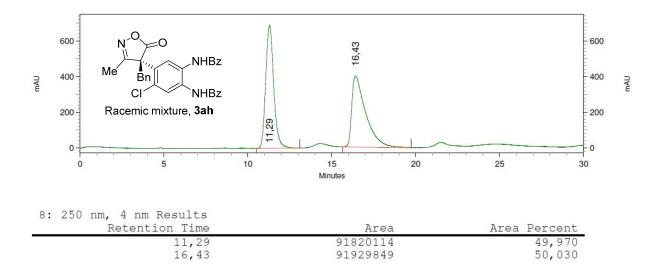


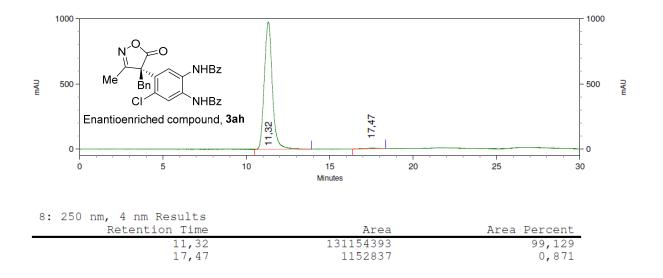
134412784

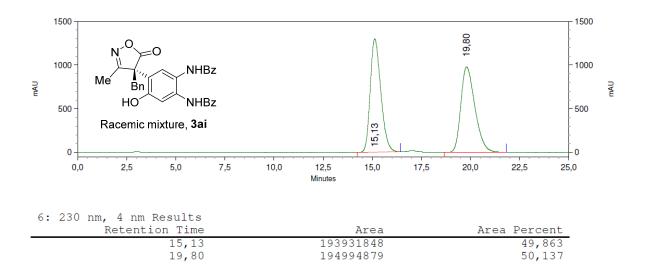


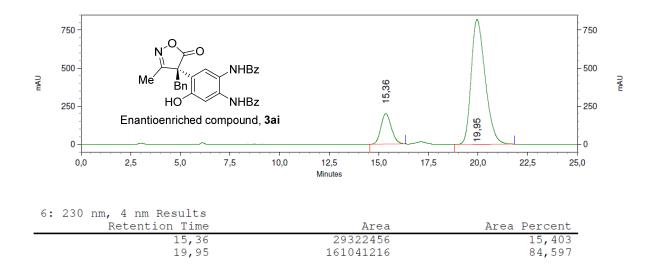


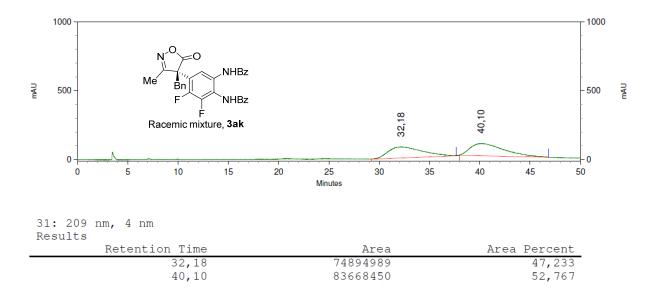


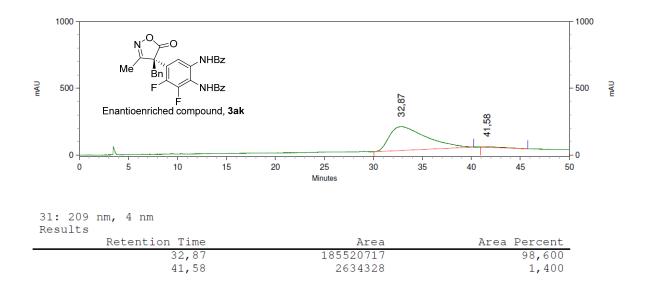


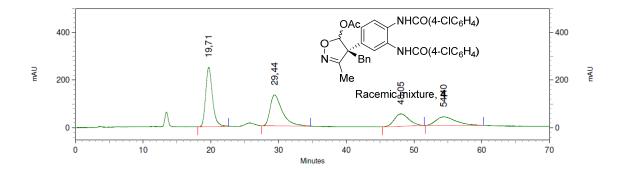

34: 250 nm, 4 nm Results		
Retention Time	Area	Area Percent
35,71	56649854	49,885
60,54	56910792	50,115

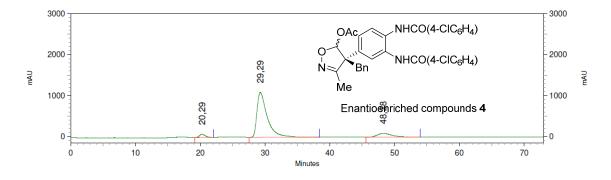


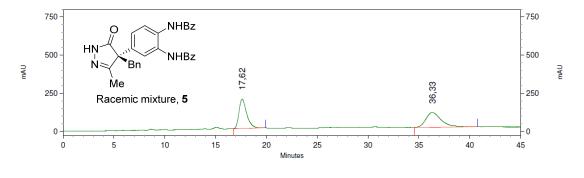




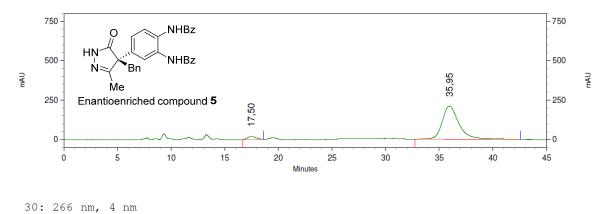




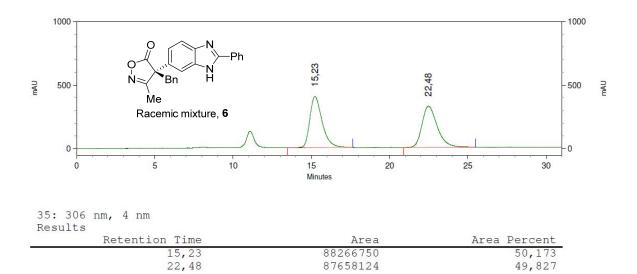


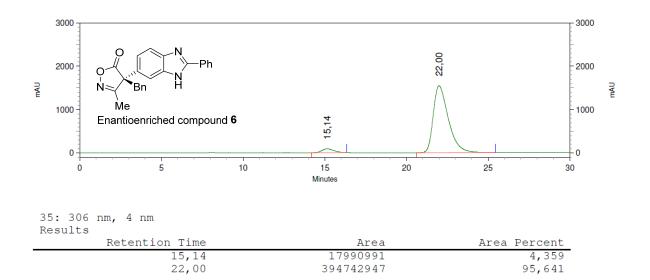


12: 248 nm, 4 nm Results		
Retention Time	Area	Area Percent
19,71	69702963	35,573
29,44	65140759	33,244
48,05	31280648	15,964
54,40	29820377	15,219

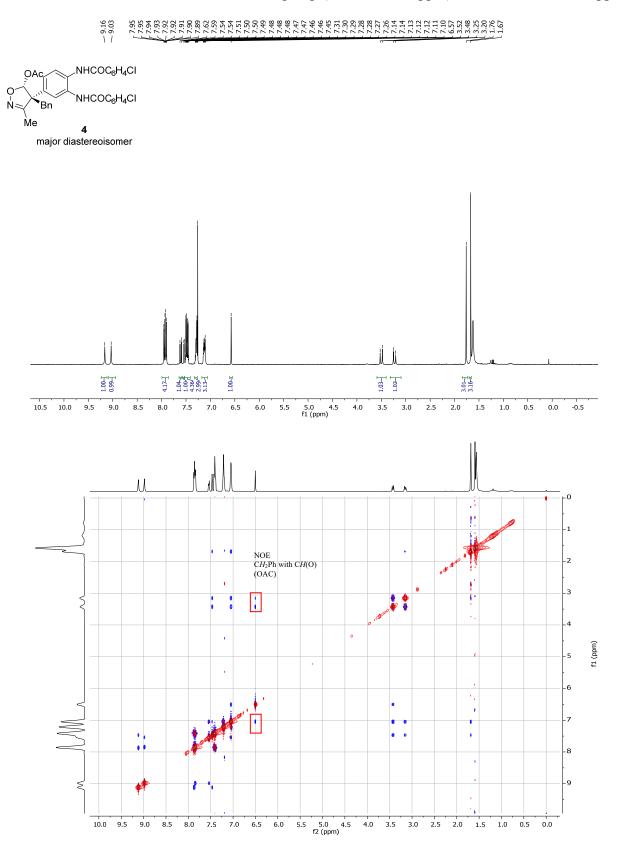


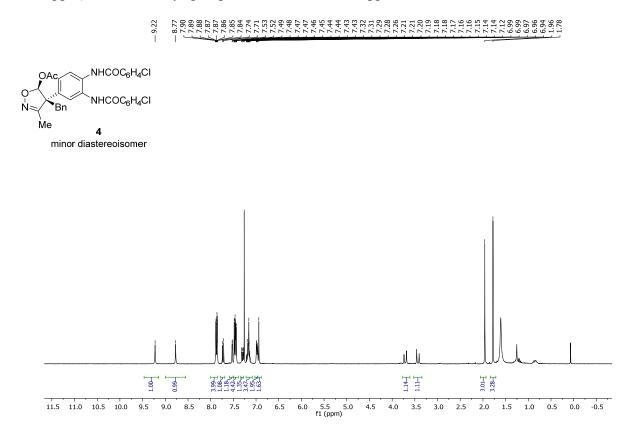
12:	248	nm,	4	nm
Resi	llts			

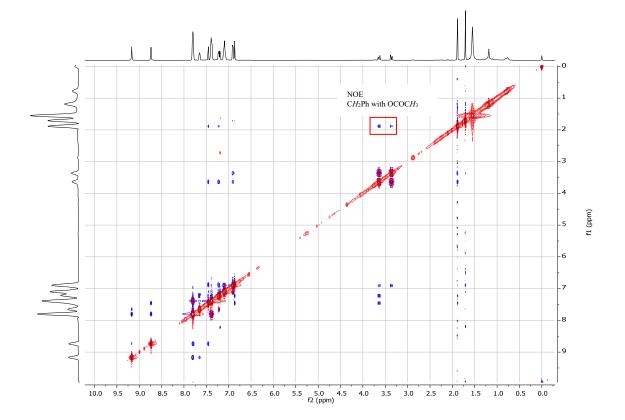

Retention Time	Area	Area Percent
20,29	18956358	3,379
29,29	483909310	86,265
48,28	58093035	10,356



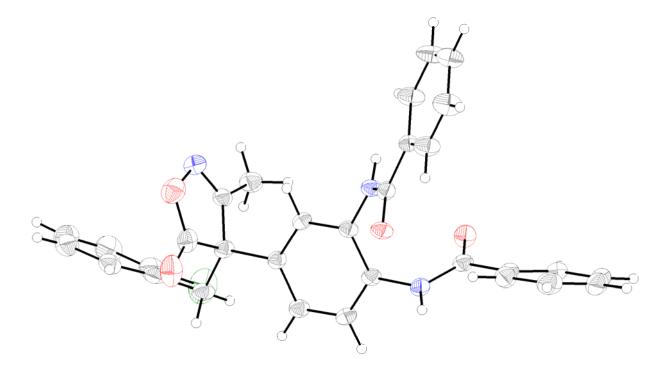
30: 266 nm, 4 nm Results		
Retention Time	Area	Area Percent
17,62	40520209	49,814
36,33	40822821	50,186


Results			
	Retention Time	Area	Area Percent
	17,50	4105407	4,257
	35,95	92342778	95,743




Determination of the relative stereochemistry of compounds 4

The relative stereochemistry of lactols 4 ws determine by NOESY experiments. Major diastereoisomer showed interaction between tha CH_2 of the Bn group (3.23 and 3.50 ppm) and lactol CH at 6.57 ppm



On the other hand the minor diastereoisomer showed interaction between the CH₂ of the Bn group (3.47 and 3.70 ppm) and the methyl group of the acetate at 1.96 ppm.

X-Ray structure of compound 3ha. CCDC 2292242

Figure S1. Ortep plot for compound **3ha**. Ellipsoids drawn at 50% probability level. Flack parameter 0.042(10).

Structural determination of compounds 3ad-3ag.

The structural determination of compounds **3ad-3ag** (regiochemistry) was carried out by analyzing the coupling constants (*J*) of the two aromatic hydrogens within the tetrasubstituted aryl ring.

In the NMR spectrum of compound **3ad**, signals corresponding to these protons were overlapped with those of the aromatic hydrogens of the thre other aromatic rings. Consequently, he structural assignment of 3ad was made based on its similarity to compound **3ae**, which exhibited a singlet signal at δ 7.53 (1H) and an unresolved doublet at δ 7.30 (1H) consistent with a 1,2,3,5-tetrasubstituted ring.

The differentiation between the structures of regioisomers **3af** and **3'af** followed a similar approach. The major regioisomer **3af** displayed two signals at 7.74 (1H, d, J = 3.0 Hz) and 7.65 (1H, d, J = 3.0 Hz) ppm, with a *meta* coupling value, indicating a 1,2,3,5-tetrasubstituted aryl ring. Conversely, the minor regioisomer **3'af** exhibited two doublets at 8.09 (1H, d, J = 9.0 Hz, Ar) and 7.94 (1H, d, J = 9.0 Hz, Ar) and 7.94 (1H, d, J = 9.0 Hz, Ar) confirming the *ortho* disposition of both hydrogens, in line with a 1,2,3,4-tetrasubstituted aryl ring.

Finally, the fluorinated compound **3ag** displayed a partially resolved double doublet at 7.86 (1H) with $J_{H-F} = 1.8$ Hz (*para* H-F coupling) and $J_{H-H} = 2.0$ Hz (*meta* H-H coupling) along with a double doublet at 6.91 (1H) with $J_{H-F} = 10.7$ Hz (*ortho* H-F coupling) and $J_{H-H} = 2.2$ Hz (*meta* H-H coupling). These findings indicated the *meta* disposition of both hydrogens in a 1,2,3,5-tetrasubstituted aryl ring featuring a fluorine atom at position 3.

References

- a) N. Capreti, I. D. Jurberg Org. Lett. 2015, 17, 2490-2493; b) A. A. G. Fernandes, M. L. Stivanin, I. D. Jurberg Chem. Select. 2019, 4, 3360. c) H. Zhang, B. Wang, L. Cui, X. Bao, J. Qu, Y. Song, Eur. J. Org. Chem. 2015, 2143; d) R. Torán, C. Vila, A. Sanz-Marco, M. C. Muñoz, J. R. Pedro, G. Blay, Eur. J. Org. Chem. 2020, 627.
- [2] A. Lavios, P. Martinez-Pardo, A. Sanz-Marco, C. Vila, Jose R. Pedro, G. Blay, Org. Lett. 2023, 25, 5608.