Supplemental Information

Metal-free visible-light-induced cross-dehydrogenative coupling

of benzocyclic imines with water/P(O)H compounds : efficent

access to functionalized benzazepines/ones

Zhicheng Fu^{*}a, Luping Feng ^a, Yu Qin ^a, Xinhui Mu ^a, Xuqing Zhong ^a, Zhouyu Wang ^a, Ting Wang ^a, Jinni Deng ^a, Jingfang Li^{*}^b, and Mingjun Chen^{*}a

 ^a Sichuan Provincial Key Laboratory of Asymmetric Synthesis and Chirality Technology, Department of Chemistry, College of Science, Xihua University, Chengdu 610039, P. R. China.
 ^b School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China.

*Email: cmjchem@126.com, zcf@mail.xhu.edu.cn

Table of Contents

1. General information	S3
2. Optimization of condition	S4
Table S1 Reaction Conditions Optimizations for 3a	S4
Table S2 Control experiment	S5
Table S3 Reaction Conditions Optimizations for 5aA	S5
3. General procedure for the preparation of benzocyclic imine 1	S6
4. Characterization data of compounds 1a-1o	S6
5. General procedure for the synthesis of benzozepinones 3 and 5	S10
Standard Procedure for 3	S10
Standard Procedure for 5	S10
6. Characterization data of compounds 3 and 5	S11
7.Scale up reaction and application	S21
1) Scale up reaction of 3j using continuous flow reactor	S21
2) Synthetic transformations of 3j	S22
3) Scale up reaction of 5qA in continuous flow	S23
4) Flame retardancy of 5qA in epoxy resin	S23
8. Mechanistic Investigation	S25
Radical Trap Experiments	S25
Isotope labeling experiment	S27
The Light On-Off Experiment	S29
The EPR Experiment	
9. Supplemental References	S30
10. Copies of NMR Spectra of Compounds1, 3 and 5	S31

1. General information

All reactions were carried out under inert atmospheres employing standard techniques unless otherwise noted. All reagents and materials were commercially available and used as received, unless otherwise noted. Diglycidyl ether of bisphenol A (DGEBA) with epoxy resin value of 0.44 mol/100 g was purchased from Nantong Xingchen Synthetic Material Co., Ltd., China. 4,4-diaminodiphenyl methane (DDM), 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were purchased from Titan Technology Co., Ltd., China. All solvent was in ultra-dry and anhydrous storage and its purity \geq 99.9%.

The products were purified on column chromatography with silica gel (200–300 mesh). Thinlayer chromatography (TLC) separations were performed on silica gel GF254 plates with a mixture of petroleum ether (PE) and ethyl acetate (EA) as eluent, and the plates were visualized with UV light. ¹H (400 MHz), ¹³C (101 MHz), ¹⁹F NMR (376 MHz), and ³¹P NMR (162 MHz) spectra were recorded on a Bruker AMX 400 NMR spectrometer with TMS as an internal standard in CDCl₃ or DMSO-d₆ solution. Chemical shifts for ¹H NMR were reported in terms of chemical shift in reference to TMS at 0.00 ppm, residual CHCl₃ at 7.26 ppm, or residual DMSO-d₆ at 2.50 ppm (δ ppm). The following abbreviations were used to illustrate the diversities: δ = chemical shifts, *J* = coupling constant, s = singlet, brs = broad singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, m = multiplet. Chemical shifts for ¹³C NMR are reported in terms of chemical shift in reference to the CDCl₃ solvent signal (77.16 ppm, middle peak) and the DMSO-d₆ solvent signal (39.50 ppm, middle peak).

RLR-18CF continuous flow photo reactor is supported by Beijing Bibby scientific Co., Ltd., China. Melting points were obtained on a Yanaco M500 melting point apparatus and are uncorrected. High resolution mass spectra were obtained via an Agilent LC/MSD TOF 6500 series mass spectrometer. According to GB/T 2406.2-2009 standard, the limiting oxygen index (LOI) values were evaluated using the JF-3 oxygen index instrument (Jiangning, China) with sample's dimension of 130 mm \times 6.5 mm \times 3.2 mm. The limiting oxygen index of each sample was the average of five parallel tests. According to GB/T 2408-2008 standard, the vertical burning (UL-94) tests were assessed using the CZF-3 instrument (Jiangning, China) with sample's dimension of 130 mm \times 3.2 mm. The burning time of each sample was the average of five parallel tests.

2. Optimization of condition

	0	Chl	oride salt		.0.	
		H ₂ O — Pho	otocatalyst	> []		
\mathbf{r}		LE	D lights			
N = 2 Solvent, time, rt, N ₂						
1					3a	
entry	chloride salt	photocatalyst	solvent	LED lights	time	3a ^b
1	NaCl	Ir(ppy) ₂ (bpy)PF ₆	DCM	30W blue LEDs	48	45%
2	KCl	Ir(ppy) ₂ (bpy)PF ₆	DCM	30W blue LEDs	48	38%
3	LiCl	Ir(ppy) ₂ (bpy)PF ₆	DCM	30W blue LEDs	48	10%
4	MgCl ₂	Ir(ppy) ₂ (bpy)PF ₆	DCM	30W blue LEDs	48	25%
5	NiCl ₂	Ir(ppy) ₂ (bpy)PF ₆	DCM	30W blue LEDs	48	35%
6	(n-Bu) ₄ N ⁺ Cl ⁻	Ir(ppy) ₂ (bpy)PF ₆	DCM	50W blue LEDs	24	64%
7	(n-Bu) ₄ N ⁺ Cl ⁻	4CzTPN	DCM	50W blue LEDs	24	74%
8	(n-Bu) ₄ N ⁺ Cl ⁻	4CzIPN	DCM	50W blue LEDs	24	67%
9	(n-Bu) ₄ N ⁺ Cl ⁻	Eosin-Y	DCM	50W blue LEDs	24	38%
10	(n-Bu) ₄ N ⁺ Cl ⁻	4CzTPN	CH ₃ CN	50W blue LEDs	24	98%
11	(n-Bu) ₄ N ⁺ Cl ⁻	4CzTPN	CHCl ₃	50W blue LEDs	24	64%
12	(n-Bu) ₄ N ⁺ Cl ⁻	4CzTPN	DMF	50W blue LEDs	24	5%
13	(n-Bu) ₄ N ⁺ Cl ⁻	4CzTPN	PhCl	50W blue LEDs	24	62%
14	$(n-Bu)_4N^+Cl^-$	4CzTPN	EtOH	50W blue LEDs	24	NR

Table S1 Reaction Conditions Optimizations for 3a

^aConditions: **1a** (0.2 mmol), photocatalyst (1 mol %), HAT agents tetrabutyl ammonium chloride (0.5 equiv), and 10 uL of water in solvent (2 mL) under a nitrogen atmosphere irradiation using blue LEDs at room temperature. ^bIsolated yields were shown.

Table S2 Control experiment

	$(n-Bu)_4 N^+ Cl^- (0.5 eq.)$ $+ H_2 O \xrightarrow{(n-Bu)_4 N^+ Cl^- (0.5 eq.)}{LED lights}$ $CH_3 CN, 24h, rt, N_2$	
entry	Conditions ^a	3a ^b
1	No water	trace
2	No (n-Bu) ₄ N ⁺ Cl ⁻	45%
3	No photocatalyst	trace
4 ^c	No light	N.D.
5°	No light, 60°C	N.D.

^aConditions: **1a** (0.2 mmol), 4CzTPN (1 mol %), tetrabutyl ammonium chloride (0.5 equiv), and 10 uL of water in CH₃CN (2 mL) under a nitrogen atmosphere irradiation using 50W blue LEDs at room temperature. ^bIsolated yields were shown. ^c N.D. = not detected.

Table S3 Reaction Conditions Optimizations for 5aA

entry	photocatalyst	solvent	LED lights	time	3a ^b
1	Ir(ppy) ₂ (bpy)PF ₆	DCM	15W blue LEDs	6	54%
2	4CzTPN	DCM	15W blue LEDs	6	58%
3	Eosin Y	DCM	15W blue LEDs	6	trace
4 ^c	4CzTPN	CH ₃ CN	15W blue LEDs	6	N.D.
5	4CzTPN	THF	15W blue LEDs	6	trace
6	4CzTPN	PhCl	15W blue LEDs	6	trace
7	4CzTPN	DMF	15W blue LEDs	6	trace
8	4CzTPN	DCM	20W blue LEDs	8	51%
9	4CzTPN	DCM	50W blue LEDs	12	76%

^a Conditions: the reaction was conducted on a 0.2 mmol scale. **1a** (0.2 mmol), **4a** (0.2 mmol), photocatalyst (5 mmol %) in solvent (2 mL) under a nitrogen atmosphere irradiation using LED lights at room temperature. ^b Isolated yields. ^c N.D. = not detected.

3. General procedure for the preparation of benzocyclic imine 1

2-Aminophenol or 2-aminobenzenethiol **13** (10.0 mmol), 2-fluorobenzaldehyde **14** (10.0 mmol), and potassium carbonate (15.0 mmol, 2.07 g) were stirred in 20 mL DMF solvent and refluxed at 150 °C for 5 h. After cooled to room temperature, the reaction mixture were directly purified by column chromatography (petroleum ether/ethyl acetate = 100/1 to 5/1, v/v) to afford the desired product **1**.

4. Characterization data of compounds 1a-1o^[1,2,7]

N dibenzo[b,f][1,4]oxazepine (1a). Lit.¹. Yellow solid (1.17 g, 60%). ¹H NMR (400 MHz, CDCl₃): 8.52 (s, 1H), 7.44 (ddd, *J* = 8.1, 7.5, 1.7 Hz, 1H), 7.35 (ddd, *J* = 13.4, 7.6, 1.8 Hz, 2H), 7.27 – 7.10 (m, 5H). ¹³C NMR (101 MHz, CDCl₃): 160.8, 160.6, 152.8, 140.6, 133.5, 130.2, 129.3, 128.9, 127.5, 125.8, 125.2, 121.5, 120.8.

3-methyldibenzo[b,f][1,4]oxazepine (1b). Lit.¹ Brown solid (1.8g, 88%). ¹H NMR (400 MHz, CDCl₃): 8.47 (s, 1H), 7.36 (dd, *J* = 7.5, 1.9 Hz, 1H), 7.24 - 7.14 (m, 1H), 7.11 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.01 (d, *J* = 7.8 Hz, 1H), 6.97 (s, 1H), 2.36 (s, 1H). ¹³C NMR (101MHz, CDCl₃): 160.8, 160.5, 152.8, 144.8, 140.7, 130.2, 129.3, 128.8, 125.9, 125.8, 124.8, 121.5, 121.3, 21.5.

3-chlorodibenzo[b,f][1,4]oxazepine (1c). Lit.¹ Yellow solid (0.79g,

34%). ¹¹H NMR (400 MHz, CDCl₃): 8.47 (s, 1H), 7.37 (dd, *J* = 7.5, 1.9 Hz, 1H), 7.27 (d, *J* = 8.9 Hz, 1H), 7.25 – 7.16 (m, 4H), 7.11 (dd, *J* = 7.7, 1.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): 160.9, 159.6, 152.4, 140.3, 139.3, 131.0, 129.5, 129.2, 126.2, 125.9, 125.6, 121.5, 121.5.

3-(trifluoromethyl)dibenzo[b,f][1,4]oxazepine (1d). Lit.¹ Yellow

solid (1.1g, 44%). ¹H NMR (400 MHz, CDCl₃): 8.55 (s, 1H), 7.49 – 7.35 (m, 4H), 7.30 – 7.18 (m, 2H), 7.15 (dd, J = 7.8, 1.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): 160.5, 159.2, 152.3, 140.2, 135.0 (q, $J_{C-F} = 33.3$ Hz), 130.7, 130.2, 129.6, 129.5, 126.3, 123.3 (q, $J_{C-F} = 272.8$ Hz), 122.1 (q, $J_{C-F} = 3.7$ Hz), 121.5, 118.3 (q, $J_{C-F} = 3.7$ Hz). ¹⁹F NMR (376 MHz, CDCl₃): -63.05.

7-fluorodibenzo[b,f][1,4]oxazepine (1e). Lit.² . Yellow solid (1.9

g, 90%). ¹H NMR (400 MHz, CDCl₃): 8.47 (s, 1H), 7.37 (dd, J = 7.5, 1.9 Hz, 1H), 7.27 (d, J = 8.9 Hz, 1H), 7.25 – 7.15 (m, 4H), 7.11 (dd, J = 7.7, 1.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): 163.9 161.4, 160.1 (d, $J_{C-F} = 1.4$ Hz), 159.8, 153.2 (d, $J_{C-F} = 11.3$ Hz), 137.1 (d, $J_{C-F} = 3.7$ Hz), 133.6, 130.3 (t, $J_{C-F} = 4.8$ Hz), 127.2, 125.6, 120.8, 112.8 (d, $J_{C-F} = 21.9$ Hz), 109.1 (d, $J_{C-F} = 24.2$ Hz). ¹⁹F NMR (376 MHz, CDCl₃): 112.79.

7-methyldibenzo[b,f][1,4]oxazepine (1f). Lit.¹ Yellow solid(0.96 g, 46%). ¹H NMR (400 MHz, CDCl₃): 8.47 (s, 1H), 7.44 (td, *J* = 7.8, 1.7 Hz, 1H), 7.33 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.25 - 7.11 (m, 3H), 7.01 - 6.93 (m, 2H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 160.4, 159.9, 152.4, 139.6, 138.0, 133.4, 130.2, 129.1, 127.5, 126.5, 125.1, 121.9, 120.8, 21.0.

6-chlorodibenzo[b,f][1,4]oxazepine (1g). Lit.¹ Yellow solid (1.40 g, 61%). ¹H NMR (400 MHz, CDCl₃): 8.58 (s, 1H), 7.50 (td, *J* = 8.0, 1.5 Hz, 1H), 7.39 - 7.34 (m, 2H), 7.33 - 7.27 (m, 2H), 7.24 (d, *J* = 7.5 Hz, 1H), 7.10 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): 161.3, 156.0, 148.1, 142.0, 133.7, 130.0, 129.0, 127.5, 127.3, 126.7, 125.9, 125.7, 121.6.

9-methyldibenzo[*b*,*f*][1,4]oxazepine (1h). Lit.¹ Yellow solid (1.04 mg, 50%). ¹H NMR (400 MHz, CDCl₃): 8.62 (s, 1H), 7.44 (td, *J* = 7.9, 1.6 Hz, 1H), 7.35 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.20 (td, *J* = 7.5, 0.8 Hz, 1H), 7.13 (dd, *J* = 16.5, 8.3 Hz, 2H), 7.02 (dd, *J* = 18.5, 7.6

Hz, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 160.7, 160.7, 150.6, 140.1, 135.5, 133.4, 130.2, 129.6, 129.5, 127.4, 125.1, 121.1, 120.7, 20.7.

8-methyldibenzo[b,f][1,4]oxazepine (1i). Lit.¹ Yellow solid (0.83 g, 40%). ¹H NMR (400 MHz, CDCl₃): 8.51 (s, 1H), 7.44 (td, *J* = 8.0, 1.7 Hz, 1H), 7.33 (dd, J = 7.6, 1.6 Hz, 1H), 7.22 - 7.09 (m, 3H), 7.02 (s, 2H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 160.7, 160.7, 150.6, 140.1, 135.5, 133.4, 130.2, 129.6, 129.5, 127.4, 125.1, 121.1, 120.7, 20.7.

N dibenzo[b,f][1,4]thiazepine (1j). Lit.¹ White solid (1.68 mg, 80%). ¹H NMR (400 MHz, CDCl₃): 8.90 (s, 1H), 7.47 - 7.30 (m, 7H), 7.21 - 7.13 (m, 1H). ¹³C NMR (101

MHz, CDCl3): 162.3, 148.6, 139.4, 137.3, 132.8, 131.7, 131.5, 129.5, 129.3, 128.9, 128.3, 127.3, 126.9.

3-methyldibenzo[b,f][1,4]thiazepine (1k). Lit.² Yellow solid (1.8 g, 80%). ¹H NMR (400 MHz, CDCl₃): 8.68 (s, 1H), 7.24 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.19 - 7.10 (m, 2H), 7.07 - 7.03 (m, 2H), 6.95 (ddd, *J* = 17.5, 11.7, 4.8 Hz, 2H), 2.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 162.1, 148.6, 142.1, 138.9, 134.4, 132.6, 131.9, 129.3, 129.1, 128.8, 128.7, 126.9, 126.85, 21.0.

3-chlorodibenzo[b,f][1,4]thiazepine (11). Lit.¹ Brown solid (2.3 g,

93%). ¹H NMR (400 MHz, CDCl₃): 8.75 (s, 1H), 7.37 - 7.30 (m, 2H), 7.28 - 7.20 (m, 4H), 7.12 - 7.07 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): 161.2, 148.5, 141.0, 137.8, 135.6, 133.0, 131.5, 130.4, 129.7, 128.6, 128.1, 127.6, 127.1. ¹⁹F NMR (376 MHz, CDCl₃): -62.96.

3-(trifluoromethyl)dibenzo[b,f][1,4]thiazepine (1m). Lit.¹ Yellow

solid (2.4 g, 85%). ¹H NMR (400 MHz, CDCl₃): 8.80 (s, 1H), 7.58 (s, 1H), 7.47 (dd, J = 8.0, 0.9 Hz, 1H), 7.38 (d, J = 8.0 Hz, 1H), 7.34 - 7.30 (m, 1H), 7.27 - 7.19 (m, 2H), 7.08 (ddd, J = 7.9, 6.7, 2.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): 160.9, 148.4, 140.6, 140.1, 133.3 (q, $J_{C-F} = 33.2$ Hz), 133.0, 129.8, 129.7, 128.6 (q, $J_{C-F} = 3.7$ Hz), 127.9, 127.8, 127.2, 125.3 (q, $J_{C-F} = 3.7$ Hz), 123.40 (q, $J_{C-F} = 272.9$ Hz).

3-chloro-7-fluorodibenzo[b,f][1,4]oxazepine (1n). Lit.² Yellow

solid (1.8 g, 76%). ¹H NMR (400 MHz, CDCl₃): 8.40 (s, 1H), 7.33 (dd, J = 8.8, 6.2 Hz, 1H), 7.28 (d, J = 2.6 Hz, 1H), 7.22 (dd, J = 8.2, 1.9 Hz, 1H), 7.15 (d, J = 1.8 Hz, 1H), 6.92 (ddd, J = 8.8, 7.7, 2.8 Hz, 1H), 6.84 (dd, J = 8.7, 2.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): 162.7 (d, $J_{C-F} = 250.0$ Hz), 159.9, 158.7 (d, $J_{C-F} = 1.7$ Hz), 152.6 (d, $J_{C-F} = 11.1$ Hz), 139.2, 136.9 (d, $J_{C-F} = 3.7$ Hz), 130.9, 130.5 (d, $J_{C-F} = 9.9$ Hz), 125.9, 125.7, 121.4, 113.1 (d, $J_{C-F} = 22.0$ Hz), 109.1 (d, $J_{C-F} = 24.4$ Hz).

3-chloro-7-methyldibenzo[b,f][1,4]oxazepine (10). Lit.² White

solid (1.2g, 89%). ¹H NMR (400 MHz, CDCl₃): 8.33 (s, 1H), 7.19 – 7.15 (m, 2H), 7.12 – 7.06 (m, 2H), 6.92 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.84 (d, *J* = 1.2 Hz, 1H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 160.65, 158.7, 151.9, 139.9, 138.9, 137.9, 130.9, 129.3, 126.8, 126.1, 125.5, 121.9, 121.5, 20.9.

benzo[b]pyrido[3,2-f][1,4]oxazepine (1p). Lit.⁷ Yellow solid (0.36g, 37%). ¹H NMR (400 MHz, CDCl₃): 8.43 (s, 1H), 8.39 (dd, *J* = 4.9, 1.9 Hz, 1H), 7.75 (dd, *J* = 7.5, 2.0 Hz, 1H), 7.38 (d, *J* = 7.6 Hz, 1H), 7.30 – 7.27 (m, 2H), 7.25 – 7.19 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): 163.8, 157.8, 151.6, 150.6, 140.0, 139.5, 129.7, 129.4, 126.3, 122.4, 121.8, 121.7.

5. General procedure for the synthesis of benzozepinones 3 and 5

Benzocyclic imine 1 (0.2 mmol), 4CzTPN (1.6 mg, 0.002 mmol, 1 mmol%), and tetrabutyl ammonium chloride (27.8 mg, 0.1 mmol) were placed in 10 mL Schlenk tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), water (10 uL) and CH₃CN (2.0 mL) was added, the vial was sealed and exposed to blue LEDs (50 W LED light) at room temperature for 12 h. The reaction mixture was diluted with H₂O (15 mL) and washed with dichloromethane (3 x 10 mL). The organic phase was dried over anhydrous sodium sulfate and purified directly by column chromatography to afford the product **3**.

Standard Procedure for 5

Benzocyclic imine 1 (0.2 mmol), 4CzTPN (8.0 mg, 0.010 mmol, 5 mmol%), and P(O)H compound (0.2 mmol) were placed in 10 mL Schlenk tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), DCM (2.0 mL) was added, the vial was sealed and exposed to blue LEDs (50 W LED light) at room temperature for 12 h. The reaction mixture was diluted with H₂O (15 mL) and washed with dichloromethane (3 x 10 mL). The organic phase was dried over anhydrous sodium sulfate and purified directly by column chromatography to afford the product **5**.

6. Characterization data of compounds 3 and 5^[3-6]

O dibenzo[*b*,*f*][1,4]oxazepin-11(10H)-one (3a). lit⁵. White solid. M.p.: 118-120 °C, 41mg, 98% yield. ¹H NMR (400 MHz, CDCl₃): 7.48 (s, 1H), 6.76 – 6.66 (m, 1H), 6.32 – 6.21 (m, 1H), 6.05 – 5.96 (m, 3H), 5.94 – 5.80 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): 167.8, 159.8, 151.0, 134.6, 132.1, 130.7, 125.9, 125.3, 121.8, 121.4, 120.9. HRMS (ESI) calcd. for $C_{13}H_{10}NO_2^+$ (M + H⁺) *m/z* 212.0707, found 212.0704.

3-methyldibenzo[b,f][1,4]oxazepin-11(10H)-one (3b). White solid. M.p.:

138-140 °C, 23mg, 57% yield. ¹H NMR (400 MHz, CDCl₃): 8.95 (s, 1H), 8.01 (d, J = 8.3 Hz, 1H), 7.45 – 7.39 (m, 1H), 7.33 – 7.19 (m, 5H), 2.56 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 158.7, 149.9, 144.9, 130.9, 129.9, 125.2, 124.9, 124.8, 121.3, 120.8, 120.4, 120.3, 20.5. HRMS (ESI) calcd. for C₁₄H₁₂NO₂⁺ (M + H⁺) *m/z* 226.0863, found 226.0863.

3-chlorodibenzo[*b*,*f*][1,4]oxazepin-11(10H)-one (3c). Yellow oil. 42mg, 86% yield. ¹H NMR (400 MHz, DMSO): 10.61 (s, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.55 (d, J = 2.0Hz, 1H), 7.42 – 7.34 (m, 2H), 7.23 – 7.12 (m, 3H). ¹³C NMR (101 MHz, DMSO): 164.8, 159.2, 149.9, 138.1, 132.9, 130.9, 126.3, 125.8, 125.4, 124.7, 121.7, 121.4, 120.9. HRMS (ESI) calcd. for $C_{13}H_9CINO_2^+$ (M + H⁺) *m/z* 246.0316, found 246.0318.

3-(trifluoromethyl)dibenzo[b,f][1,4]oxazepin-11(10H)-one (3d). White

solid, M.p: 181-182 °C, 23mg, 41% yield for 24 h (54% yield for 48 h). ¹H NMR (400 MHz, CDCl₃): 9.16 (s, 1H), 8.08 (d, J = 7.8 Hz, 1H), 7.51 (d, J = 8.2 Hz, 2H), 7.30 (dd, J = 7.4, 1.9 Hz, 1H), 7.22 – 7.12 (m, 3H). ¹³C NMR (101 MHz, DMSO): 1, 158.9, 150.1, 133.9 (q, $J_{C-F} = 32.6$ Hz), 132.9, 130.7, 129.6, 126.4, 125.5, 123.1 (q, $J_{C-F} = 272.8$ Hz). 122.1 (q, $J_{C-F} = 3.6$ Hz) 121.9, 121.5, 118.1 (q, $J_{C-F} = 3.5$ Hz). HRMS (ESI) calcd. for C₁₄H₉F₃NO₂⁺ (M + H⁺) m/z 280.0580, found 280.0582.

7-fluorodibenzo[b,f][1,4]oxazepin-11(10H)-one (3e). White solid, M.p.:

204 - 206 °C. 26 mg, 57% yield. ¹⁹F-NMR (69Hz, CDCl₃) = 115.5. ¹H NMR (400 MHz, CDCl₃): 8.16 (s, 1H), 7.87 (dd, J = 7.8, 1.7 Hz, 1H), 7.47 (td, J = 8.0, 1.6 Hz, 1H), 7.24 – 7.20 (m, 1H), 7.17 – 7.13 (m, 2H), 6.94 (dt, J = 8.5, 4.0 Hz, 2H), 6.85 – 6.77 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): 170.6, 163.7, 163.9 (d, $J_{C-F} = 243.1$ Hz), 156.2 (d, $J_{C-F} = 11.3$ Hz), 138.1 (d, $J_{C-F} = 300.9$ Hz), 133.1 (d, $J_{C-F} = 3.4$ Hz), 130.9, 130.7, 127.7 (d, $J_{C-F} = 9.7$ Hz), 125.8, 117.9 (d, $J_{C-F} = 22.4$ Hz), 114.1 (d, $J_{C-F} = 24.6$ Hz), 84.2 (t, $J_{C-F} = 33.2$ Hz). HRMS (ESI) calcd. for C₁₃H₉FNO₂⁺ (M + H⁺) m/z 230.0612, found 230.0614.

7-methyldibenzo[b,f][1,4]oxazepin-11(10H)-one (3f). White solid. M.p.:

170-175°C, 27mg, 61% yield. ¹H NMR (400 MHz, CDCl₃): 8.57 (s, 1H), 7.94 (dd, J = 7.7, 1.5 Hz, 1H), 7.51 (td, J = 7.8, 1.7 Hz, 1H), 7.30 – 7.19 (m, 2H), 7.08 (s, 1H), 7.00 – 6.89 (m, 2H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 167.5, 159.8, 151.0), 136.3, 134.5, 132.1, 128.0, 126.6, 125.3, 122.2, 121.1, 120.9, 20.8. HRMS (ESI) calcd. for C₁₄H₁₂NO₂⁺ (M + H⁺) *m/z* 226.0863, found 226.0863.

O 6-chlorodibenzo[*b*,*f*][1,4]oxazepin-11(10H)-one (3g). White solid. M.p.: 225-226°C, 38mg, 77% yield. ¹H NMR (400 MHz, CDCl₃) 8.45 (s, 1H), 7.94 (d, J = 5.8 Hz, 1H), 7.75 – 7.39 (m, 3H), 7.16 – 6.89 (m, 2H). ¹³C NMR (101 MHz, DMSO): 159.9, 152.7, 140.3, 129.1, 127.6, 126.0, 121.0, 120.5, 120.2, 120.1, 119.8, 115.3, 115.0. HRMS (ESI) calcd. for C₁₃H₉ClNO₂⁺ (M + H⁺) m/z 246.0317, found 246.0318.

9-methyldibenzo[*b*,*f*][1,4]oxazepin-11(10H)-one (trans:cis = 58:42) (3h). Yellow oil, 31mg, 69% yield. ¹H NMR (400 MHz, CDCl₃): 8.62 (s, 1H), 7.91 (dd, J = 7.6, 1.4 Hz, 1H), 7.75 (s, 1H), 7.51 (td, J = 7.8, 1.7 Hz, 1H), 7.44 (td, J = 8.0, 1.6 Hz, 1H), 7.36 (dd, J = 7.6, 1.5 Hz, 1H), 7.25 – 7.17 (m, 3H), 7.17 – 7.07 (m, 3H), 7.06 – 6.96 (m, 4H), 2.42 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 167.0, 156.0, 151.8, 134.6, 131.9, 129.5, 129.2, 127.6, 125.7, 125.5, 125.4, 120.9, 119.6, 17.9. HRMS (ESI) calcd. for C₁₄H₁₂NO₂⁺ (M + H⁺) *m/z* 226.0863, found 226.0863.

8-methyldibenzo[*b*,*f*][1,4]oxazepin-11(10H)-one (3i). Yellow oil, 37mg, 82% yield. ¹H NMR (400 MHz, CDCl₃): 9.25 (s, 1H), 7.95 (dd, J = 7.7, 1.5 Hz, 1H), 7.51 (td, J = 7.9, 1.7 Hz, 1H), 7.23 (d, J = 8.6 Hz, 2H), 7.14 (d, J = 8.1 Hz, 1H), 6.96 – 6.88 (m, 2H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 167.8, 156.0, 149.0, 136.0, 134.5, 132.1, 130.3, 126.5, 125.3, 125.2, 121.8, 121.4, 120.9, 20.9. HRMS (ESI) calcd. for C₁₄H₁₂NO₂⁺ (M + H⁺) *m/z* 226.0863, found 226.0863.

O dibenzo[*b*,*f*][1,4]thiazepin-11(10H)-one (3j). White solid. M.p.: 202 – 205°C. 44mg, 96% yield. ¹H NMR (400 MHz, CDCl₃): 8.76 (s, 1H), 7.85 (d, J = 7.0 Hz, 1H), 7.54 (dd, J = 24.0, 7.4 Hz, 2H), 7.45 – 7.33 (m, 2H), 7.33 – 7.27 (m, 1H), 7.22 – 7.09 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): 169.8, 139.4, 137.5, 137.0, 133.2, 132.4, 132.0, 131.99, 130.4, 129.9, 128.9, 126.2, 122.7. HRMS (ESI) calcd. for C₁₃H₁₀NOS⁺ (M + H⁺) *m/z* 228.0478, found 228.0492.

3-methyldibenzo[*b*,*f*][1,4]thiazepin-11(10H)-one (3k). White solid.

M.p.320-321 °C, 29mg, 58% yield. ¹H NMR (400 MHz, DMSO): 10.60 (s, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.54 (dd, J = 7.7, 1.4 Hz, 1H), 7.38 – 7.32 (m, 2H), 7.23 (td, J = 8.1, 1.1 Hz, 2H), 7.13 (td, J = 7.5, 1.4 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, DMSO): 167.9, 141.9, 139.5, 135.5, 134.4, 131.9, 131.2, 130.8, 129.3, 129.0, 128.3, 124.8, 122.6, 20.0. HRMS (ESI) calcd. for C₁₄H₁₂NOS⁺ (M + H⁺) m/z 242.0634, found 242.0640.

3-chlorodibenzo[*b*,*f*][1,4]thiazepin-11(10H)-one (3I). White solid. M.p. 104-106 °C, 48mg, 92% yield. ¹H NMR (400 MHz, DMSO): 10.77 (s, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.61 (d, J = 2.1 Hz, 1H), 7.56 (dd, J = 7.7, 1.3 Hz, 1H), 7.50 (dd, J = 8.4, 2.1 Hz, 1H), 7.38 (td, J = 7.9, 1.5 Hz, 1H), 7.24 (dd, J = 8.0, 1.1 Hz, 1H), 7.16 (td, J = 7.6, 1.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): 171.9, 144.3, 142.6, 141.0, 140.7, 137.4, 137.2, 135.1, 134.6, 133.5, 132.7, 130.1, 127.8. HRMS (ESI) calcd. for C₁₃H₉CINOS⁺ (M + H⁺) m/z 262.0688, found 242.0698.

3-(trifluoromethyl)dibenzo[*b*,*f*][1,4]thiazepin-11(10H)-one (3m)

White solid. M.p. 207-209 °C. 34mg, 58% yield. ¹H NMR (400 MHz, CDCl₃): 9.03 (s, 1H), 7.95

(d, J = 8.1 Hz, 1H), 7.79 (s, 1H), 7.60 (dd, J = 11.0, 4.0 Hz, 2H), 7.35 (td, J = 8.0, 1.1 Hz, 1H), 7.24 – 7.14 (m, 2H).¹³C NMR (101 MHz, CDCl₃): 169.1, 140.4, 139.2, 138.7, 134.2, 133.8, 133.4, 132.5, 130.3, 129.5, 128.8 (dd, J _{C-F} = 7.3, 3.6 Hz), 126.6, 125.6 (q, $J_{C-F} = 3.4$ Hz), 123.1. HRMS (ESI) calcd. for C₁₄H₉F₃NOS⁺ (M + H⁺) m/z 296.0352, found 296.0354.

O **3-chloro-7-fluorodibenzo**[*b*,*f*][1,4]oxazepin-11(10H)-one (3n). White solid. M.p. 225-227 °C. 31mg, 59% yield. ¹H NMR (400 MHz, DMSO): 10.61 (s, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.55 (d, J = 1.9 Hz, 1H), 7.43 (dd, J = 8.4, 2.0 Hz, 1H), 7.34 (dd, J = 9.0, 2.8 Hz, 1H), 7.19 (dd, J = 8.9, 5.9 Hz, 1H), 7.10 (td, J = 8.5, 2.8 Hz, 1H). ¹³C NMR (101 MHz, DMSO): 164.9, 159.3 (d, J = 243.4 Hz), 159.2, 150.9 (d, J = 11.5 Hz), 138.6, 133.4, 128.1 (d, J = 3.2 Hz), 126.6, 124.9, 123.2 (d, J = 9.6 Hz), 121.5, 113.7 (d, J = 22.5 Hz), 109.6 (d, J = 24.8 Hz). HRMS (ESI) calcd. for $C_{13}H_8CIFNO_2+(M + H^+) m/z$ 264.0223, found 264.0222.

O 3-chloro-7-methyldibenzo[*b*,*f*][1,4]oxazepin-11(10H)-one (**3o**). White solid. M.p. 192-195 °C. 45mg, 86% yield. ¹H NMR (400 MHz, DMSO): 10.52 (s, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.51 (d, J = 2.0 Hz, 1H), 7.39 (dd, J = 8.4, 2.1 Hz, 1H), 7.18 (d, J = 1.0 Hz, 1H), 7.02 (dt, J = 8.1, 4.6 Hz, 2H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 170.6, 164.5, 155.0, 143.7, 140.3, 137.6, 133.0, 131.5, 130.2, 129.5, 126.5, 126.4, 125.8, 25.4. HRMS (ESI) calcd. for C₁₄H₁₁ClNO₂⁺ (M + H⁺) *m/z* 260.0473, found 260.0475.

O benzo[*b*]pyrido[*3*,*2-f*][1,4]oxazepin-5(6H)-one (**3p**)^[8]. Yellow solid. M.p. 128-129 °C. 35mg, 83% yield. ¹H NMR (400 MHz, DMSO): 10.74 (s, 1H), 8.50 (dd, J = 4.7, 1.8 Hz, 1H), 8.26 (dd, J = 7.5, 1.8 Hz, 1H), 7.45 (dd, J = 7.5, 4.8 Hz, 1H), 7.33 (d, J = 7.7 Hz, 1H), 7.25 – 7.10 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): 165.0, 162.9, 152.9, 148.6, 142.9, 126.9, 126.1, 123.0, 122.4, 122.2, 120.6. HRMS (ESI) calcd. for C₁₂H₉N₂O₂+ (M + H⁺) *m/z* 213.0659, found 213.0660.

Ph dibenzo[*b*,*f*][1,4]oxazepin-11-yldiphenylphosphine oxide (5aA) White solid. M.p. 167-169 °C. 62mg, 78% yield. ¹H NMR (400 MHz, CDCl₃) 8.17 (d, J = 7.5 Hz, 1H), 8.03 – 7.91 (m, 4H), 7.56 – 7.39 (m, 7H), 7.28 – 7.21 (m, 2H), 7.20 – 7.12 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): 168.4, 167.2, 160.5 (d, $J_{C-P} = 7.2$ Hz), 151.3, 139.6 (d, $J_{C-P} = 27.2$ Hz), 132.7, 131.6, 131.4, 131.3, 131.1 (d, $J_{C-P} = 2.8$ Hz), 130.6, 129.6, 128.9, 127.7 (d, $J_{C-P} = 1.3$ Hz), 127.5, 127.4, 125.74 (d, $J_{C-P} = 27.2$ Hz), 124.8, 124.3, 120.2, 119.9. ³¹P NMR (162 MHz, CDCl₃) 26.26. HRMS (ESI) calcd. for C₂₅H₁₉NO₂P⁺ (M + H⁺) *m/z* 396.1148, found 396.1149.

Ph (3-methyldibenzo[*b*,*f*][1,4]oxazepin-11-yl)diphenylphosphine oxide (5bA). White solid. M.p. 169-170 °C. 38mg, 46% yield. ¹H NMR (400 MHz, CDCl₃): 8.04 (d, J =8.4 Hz, 1H), 7.99 – 7.89 (m, 4H), 7.57 – 7.42 (m, 6H), 7.25 – 7.12 (m, 2H), 7.00 – 6.94 (m, 2H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 168.6 (d, J = 125.2 Hz), 161.5 (d, J = 7.3 Hz), 152.3, 145.0, 140.7 (d, J = 27.7 Hz), 132.7, 132.3, 132.3, 132.0, 132.0, 131.6, 130.4, 129.7, 128.6 (d, J =1.3 Hz), 128.5, 128.4, 126.1, 125.7, 124.0 (d, J = 27.5 Hz), 121.4, 121.1, 21.5. ³¹P NMR (162 MHz, CDCl₃) 26.34. HRMS (ESI) calcd. for C₂₆H₂₁NO₂P⁺ (M + H⁺) *m/z* 410.1305, found 410.1306.

(3-chlorodibenzo[*b*,*f*][1,4]oxazepin-11-yl)diphenylphosphine oxide (5cA). White solid. M.p. 157-159 °C. 18mg, 21% yield. ¹H NMR (400 MHz, CDCl₃): 8.16 (d, J =8.2 Hz, 1H), 7.99 – 7.85 (m, 4H), 7.58 – 7.44 (m, 6H), 7.29 – 7.26 (m, 1H), 7.25 – 7.13 (m, 5H). ¹³C NMR (101 MHz, CDCl₃): 160.8 (d, J = 189.8 Hz), 151.8, 140.2 (d, J = 9.3 Hz), 139.5, 133.2, 132.3, 132.2, 132.2, 131.5, 131.2, 130.1, 128.8, 128.6, 128.5, 126.4, 126.2, 125.8, 125.8, 121.9, 121.4 (d, J = 12.3 Hz), 121.4 (d, J = 36.3 Hz). ³¹P NMR (162 MHz, CDCl₃) 26.56. HRMS (ESI) calcd. for C₂₅H₁₈ClNO₂P⁺ (M + H⁺) *m/z* 430.0759, found 430.0763.

diphenyl(3-(trifluoromethyl)dibenzo[b,f][1,4]oxazepin-11-

yl)phosphine oxide (5dA). White solid. M.p. 100-102 °C. 12mg, 13% yield. ¹H NMR (400 MHz, CDCl₃): 8.32 (d, J = 8.1 Hz, 1H), 8.00 – 7.90 (m, 4H), 7.60 – 7.39 (m, 8H), 7.33 – 7.27 (m, 2H), 7.23 – 7.15 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): 167.9 (d, J = 124.5 Hz), 161.4 (d, J = 7.0 Hz), 151.7, 140.2 (d, J = 26.4 Hz), 135.1 (d, J = 33.3 Hz), 132.6, 132.32, 132.31, 132.2, 132.0, 131.4, 131.0, 130.4, 129.6 (d, J = 26.9 Hz), 129.57 (dd, J = 321.4, 294.5 Hz).128.9 (d, J = 1.3 Hz), 128.7, 128.6, 126.3, 122.2 (dd, J = 7.2, 3.6 Hz), 121.2, 118.3(dd, J = 7.2, 3.6 Hz). ³¹P NMR (162 MHz, CDCl₃) 26.45. HRMS (ESI) calcd. for C₂₆H₁₈F₃NO₂P⁺ (M + H⁺) *m/z* 464.1022, found 464.1029.

^η (7-fluorodibenzo[*b,f*][1,4]oxazepin-11-yl)diphenylphosphine oxide

(5eA). White solid. M.p. 189-192 °C. 50mg, 61% yield. ¹H NMR (400 MHz, CDCl₃): 8.16 (d, J = 7.9 Hz, 1H), 7.97 – 7.89 (m, 4H), 7.58 – 7.37 (m, 7H), 7.24 – 7.11 (m, 3H), 6.92 – 6.82 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): 168.2 (dd, J = 125.1, 1.5 Hz), 164.5, 162.0, 160.8 (d, J = 7.1 Hz),

152.7 (d, J = 11.3 Hz), 137.1 (dd, J = 28.1, 3.6 Hz), 133.8, 132.4, 132.3, 132.2, 132.1 (d, J = 2.6 Hz), 131.4, 130.7, 129.8 (dd, J = 10.1, 1.3 Hz), 128.5 (d, J = 12.3 Hz), 126.7, 126.5, 125.7, 120.9, 112.9 (d, J = 22.3 Hz), 108.8 (d, J = 24.5 Hz). ³¹P NMR (162 MHz, CDCl₃) 26.58. HRMS (ESI) calcd. for C₂₅H₁₈FNO₂P⁺ (M + H⁺) *m/z* 414.1054, found 414.1055.

Ph (7-methyldibenzo[*b*,*f*][1,4]oxazepin-11-yl)diphenylphosphine oxide (5fA). White solid. M.p. 165-167 °C. 35mg, 43% yield. ¹H NMR (400 MHz, CDCl3): 8.15 (d, J = 7.9 Hz, 1H), 7.96 (dd, J = 11.6, 7.0 Hz, 4H), 7.57 – 7.38 (m, 7H), 7.21 – 7.10 (m, 3H), 6.96 (d, J = 7.6 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 167.3, 166.1, 160.3 (d, $J_{C-P} =$ 7.3 Hz), 150.9, 139.8, 137.1 (d, $J_{C-P} =$ 27.7 Hz), 132.5, 131.8, 131.3, 131.3, 130.9 (d, $J_{C-P} =$ 2.5 Hz), 130.7, 129.6, 127.5, 127.4, 126.0, 125.7, 125.5, 124.2, 120.6, 119.9, 20.2. ³¹P NMR (162 MHz, CDCl₃) 26.19. HRMS (ESI) calcd. for C₂₆H₂₁NO₂P+ (M + H⁺) *m/z* 410.1305, found 410.1306.

Ph (6-chlorodibenzo[*b*,*f*][1,4]oxazepin-11-yl)diphenylphosphine oxide (5gA). White solid. M.p. 201-203 °C. 46mg, 54% yield. ¹H NMR (400 MHz, CDCl3): 8.20 (dd, J = 7.8, 1.1 Hz, 1H), 7.98 – 7.85 (m, 4H), 7.57 – 7.43 (m, 7H), 7.40 – 7.28 (m, 2H), 7.23 – 7.18 (m, 1H), 7.15 – 7.02 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): 169.8 (d, J = 123.5 Hz), 161.0 (d, J = 7.1 Hz), 147.5, 141.8 (d, J = 27.5 Hz), 133.9, 132.3, 132.21, 132.19, 132.17, 131.1, 130.6, 129.6, 128.6, 128.5, 128.5, 128.4, 126.8 (d, J = 1.3 Hz), 126.7, 126.5 (d, J = 1.6 Hz), 125.7 (d, J = 2.9 Hz), 121.5. ³¹P NMR (162 MHz, CDCl₃) 26.91. HRMS (ESI) calcd. for C₂₅H₁₈CINO₂P⁺ (M + H⁺) *m/z* 430.0759, found 430.0763.

Ph (9-methyldibenzo[*b*,*f*/[1,4]oxazepin-11-yl)diphenylphosphine oxide (5hA). White solid. M.p. 177-179 °C. 52mg, 63% yield. ¹H NMR (400 MHz, CDCl₃) : 8.26 (dd, J = 7.8, 1.0 Hz, 1H), 8.01 – 7.79 (m, 4H), 7.61 – 7.33 (m, 7H), 7.16 (dt, J = 17.8, 8.2 Hz, 3H), 6.98 (t, J = 7.0 Hz, 2H), 2.02 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 166.7, 165.5, 160.5 (d, $J_{C-P} = 7.0$ Hz), 151.6, 138.0 (d, $J_{C-P} = 26.7$ Hz), 136.5 (d, $J_{C-P} = 1.3$ Hz), 132.6, 131.4, 131.3, 131.1 (d, $J_{C-P} = 2.8$ Hz), 130.3, 129.5, 128.5, 127.5, 127.4, 126.4, 126.2, 125.9, 124.4, 119.8, 117.5, 17.2. ³¹P NMR (162 MHz, CDCl₃) 29.31. HRMS (ESI) calcd. for C₂₆H₂₁NO₂P⁺ (M + H⁺) *m/z* 410.1305, found 410.1306.

Ph (8-methyldibenzo[*b*,*f*][1,4]oxazepin-11-yl)diphenylphosphine oxide (5iA). White solid. M.p. 120-122 °C. 53mg, 65% yield. ¹H NMR (400 MHz, CDCl₃): 8.12 (dd, J = 7.8, 1.2 Hz, 1H), 7.99 – 7.90 (m, 4H), 7.63 – 7.37 (m, 7H), 7.24 – 7.10 (m, 3H), 7.04 (s, 2H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): 168.7 (d, J = 125.1 Hz), 161.6 (d, J = 7.0 Hz), 150.1, 140.1 (d, J = 27.5 Hz), 135.6, 133.6, 132.6, 132.33, 132.31, 132.0 (d, J = 2.6 Hz), 131.8, 131.7, 131.6, 130.5 (d, J = 11.5 Hz), 128.8 (d, J = 1.3 Hz), 128.7, 128.6, 128.5, 128.4, 125.2, 120.8 (d, J = 7.6 Hz), 20.7. ³¹P NMR (162 MHz, CDCl₃) 26.29. HRMS (ESI) calcd. for C₂₆H₂₁NO₂P+ (M + H⁺) *m/z* 410.1305, found 410.1313.

Ph dibenzo[*b*,*f*][1,4]thiazepin-11-yldiphenylphosphine oxide (**5jA**). White solid. M.p. 168-170 °C. 83mg, 87% yield. ¹H NMR (400 MHz, CDCl₃) : 7.98 – 7.88 (m, 2H), 7.79 – 7.67 (m, 3H), 7.54 – 7.35 (m, 7H), 7.20 – 7.05 (m, 3H), 6.94 – 6.88 (m, 1H), 6.60 (td, J = 7.7, 1.3 Hz, 1H), 6.49 (dd, J = 8.1, 1.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): 145.0 (d, J = 11.4 Hz), 140.2 (d, J = 3.7 Hz), 137.2 (d, J = 13.3 Hz), 132.8 (d, J = 5.6 Hz), 132.1, 131.9 (d, J = 2.8 Hz), 131.8, 131.6, 131.5, 131.2, 131.0, 130.9, 130.5, 128.9, 128.8 (d, J = 1.9 Hz), 128.7 (d, J = 3.6 Hz), 128.6 (d, J = 3.2 Hz), 128.2 (d, J = 4.7 Hz), 119.8 (d, J = 26.5 Hz), 117.7. ³¹P NMR (162 MHz, CDCl₃) 31.53. HRMS (ESI) calcd. for C₂₅H₁₉NOPS⁺ (M + H⁺) *m/z* 412.0920, found 412.0924.

diphenyl(3-(trifluoromethyl)dibenzo[b,f][1,4]thiazepin-11-yl)phosphine

oxide (**5mA**) White solid. M.p. 168-170 °C. 83mg, 87% yield. ¹H NMR (400 MHz, CDCl₃): 9.50 (s, 1H), 8.17 – 7.91 (m, 3H), 7.79 (s, 1H), 7.72 – 7.41 (m, 7H), 7.39 – 7.28 (m, 2H), 7.25 – 7.10 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): 161.4 (d, J = 7.0 Hz), 151.7, 140.2 (d, J = 26.5 Hz), 135.1 (d, J = 33.4 Hz), 132.4, 132.3, 132.3, 132.2, 132.0, 131.4, 130.9, 130.4, 129.6 (q, J = 294.5 Hz), 129.4 (d, J = 1.3 Hz), 128.9 (d, J = 1.2 Hz), 128.7, 128.6, 126.5, 126.3, 124.6, 122.2 (dd, J = 6.5, 3.1 Hz), 121.2, 118.3 (d, J = 3.6 Hz). ³¹P NMR (162 MHz, CDCl₃) 26.76. HRMS (ESI) calcd. for C₂₆H₁₈F₃NOPS⁺ (M + H⁺) m/z 480.0794, found 480.0780.

(3-chloro-7-fluorodibenzo[b,f][1,4]oxazepin-11-

yl)diphenylphosphine oxide (5nA). White solid. M.p. 179-181 °C. 31mg, 35% yield. ¹H NMR (400 MHz, CDCl₃): 8.17 (d, J = 8.4 Hz, 1H), 7.96 – 7.87 (m, 4H), 7.60 – 7.43 (m, 6H), 7.22 – 7.14 (m, 3H), 6.94 – 6.85 (m, 2H). ³¹P NMR (162 MHz, CDCl₃) 26.90. ¹³C NMR (101 MHz, CDCl₃): 164.6, 162.1, 161.1 (d, $J_{P-C} = 6.7$ Hz), 152.2 (d, $J_{P-C} = 11.2$ Hz), 139.6, 132.3, 132.3, 132.2, 132.1, 131.5, 131.1, 123.0 (d, $J_{P-C} = 9.0$ Hz), 128.7, 128.5, 126.1, 121.5, 113.4 (d, $J_{P-C} = 22.2$ Hz), 108.9 (d, $J_{P-C} = 24.6$ Hz). HRMS (ESI) calcd. for C₂₅H₁₇ClFNO₂P⁺ (M + H⁺) *m/z* 448.0664, found 448.0669.

Ph (3,4-dihydroquinolin-2-yl)diphenylphosphine oxide (5qA). Yellow liquid. ³¹P NMR (162 MHz, CDCl₃) 31.57. HRMS (ESI) calcd. for $C_{21}H_{19}NOP^+$ (M + H⁺) m/z 332.1199, found 332.1200.

S Ph benzo[d]thiazol-2-yldiphenylphosphine oxide (5rA). lit ³.Yellow solid. M.p. 175-178 °C. 43mg, 63% yield. ¹H NMR (400 MHz, CDCl₃): 8.20 (d, J = 8.1 Hz, 1H), 8.05 – 7.89 (m, 5H), 7.61 – 7.42 (m, 8H). ¹³C NMR (101 MHz, CDCl₃): 154.5 (d, $J_{C-P} = 21.2$ Hz), 135.9, 131.8 (d, $J_{C-P} = 2.2$ Hz), 131.4 (d, $J_{C-P} = 2.1$ Hz), 131.1 (d, $J_{C-P} = 10.2$ Hz), 130.6, 129.5, 127.8 (d, $J_{C-P} = 12.8$ Hz), 125.8 (d, $J_{C-P} = 4.8$ Hz), 123.9, 121.2. ³¹P NMR (162 MHz, CDCl₃) 20.08. HRMS (ESI) calcd. for C₁₉H₁₅NOPS⁺ (M + H⁺) *m/z* 336.0606, found 336.0612.

OEt diethyl dibenzo[*b*,*f*][1,4]oxazepin-11-ylphosphonate (5aB). White solid. M.p. 61-63 °C. 30mg, 45% yield. ¹H NMR (400 MHz, CDCl₃): ¹H NMR (400 MHz, CDCl₃): 7.97 (dd, J = 7.8, 1.1 Hz, 1H), 7.43 – 7.37 (m, 1H), 7.32 (dd, J = 7.7, 1.4 Hz, 1H), 7.23 – 7.03 (m, 5H), 4.25 (p, J = 7.2 Hz, 4H), 1.29 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): 164.0 (d, J = 221.5 Hz), 160.6 (d, $J_{C-P} = 9.9$ Hz), 151.5, 139.4 (d, $J_{C-P} = 33.2$ Hz), 132.6, 129.1, 128.8, 127.9 (d, $J_{C-P} = 2.0$ Hz), 125.3 (d, $J_{C-P} = 34.7$ Hz), 124.9, 124.3, 120.1 (d, $J_{C-P} = 0.9$ Hz), 119.9 (d, $J_{C-P} = 1.2$ Hz), 63.0 (d, $J_{C-P} = 6.9$ Hz), 15.4 (d, $J_{C-P} = 6.2$ Hz). ³¹P NMR (162 MHz, CDCl₃) 6.67. HRMS (ESI) calcd. for C₁₇H₁₉NO₄P⁺ (M + H⁺) *m/z* 332.1047, found 332.1051.

/ dibenzo[$b_{,f}$][1,4]oxazepin-11-ylbis(3,5-dimethylphenyl)phosphine oxide (**5aC**). White solid. M.p. 161-163 °C. 46mg, 51% yield. ¹H NMR (400 MHz, CDCl₃): 8.12 (d, J =7.7 Hz, 1H), 7.56 (d, J = 12.1 Hz, 4H), 7.40 (t, J = 7.7 Hz, 1H), 7.23 (dd, J = 15.4, 7.3 Hz, 2H), 7.14 (d, J = 8.5 Hz, 6H), 2.33 (s, 12H). ¹³C NMR (101 MHz, CDCl₃): 169.2 (d, J = 123.6 Hz), 161.5 (d, J = 7.1 Hz), 152.3, 140.7 (d, J = 27.2 Hz), 138.1, 137.9, 133.8 (d, J = 2.8 Hz), 133.5, 132.3, 131.3, 130.7, 129.8, 129.8, 129.6, 128.5 (d, J = 0.9 Hz), 126.9, 126.7, 125.7, 125.2, 121.1, 120.7, 21.5. ³¹P NMR (162 MHz, CDCl₃) 27.26. HRMS (ESI) calcd. for C₂₉H₂₇NO₂P⁺ (M + H⁺) m/z 452.1774, found 452.1767.

OMe dibenzo[*b*,*f*][1,4]oxazepin-11-ylbis(4-methoxyphenyl)phosphine oxide (**5aD**). White solid. M.p. 151-153 °C. 28mg, 31% yield. ¹H NMR (400 MHz, CDCl₃): 8.14 (dd, J = 7.7, 1.2 Hz, 1H), 7.90 – 7.81 (m, 4H), 7.42 (td, J = 7.8, 1.5 Hz, 1H), 7.25 – 7.21 (m, 2H), 7.20 – 7.12 (m, 4H), 6.97 (dd, J = 8.9, 2.3 Hz, 4H), 3.84 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): 169.5 (d, J = 125.1 Hz), 162.6 (d, J = 2.8 Hz), 161.5 (d, J = 7.3 Hz), 152.3, 140.7 (d, J = 27.2 Hz), 134.2, 134.1, 133.5, 130.7, 129.7, 128.6 (d, J = 1.0 Hz), 126.9, 126.7, 125.8, 125.3, 124.1, 124.0, 123.6, 122.9, 120.9 (d, J = 28.6 Hz), 116.1, 114.2, 114.0. ³¹P NMR (162 MHz, CDCl₃) 26.72. HRMS (ESI) calcd. for C₂₇H₂₃NO₄P⁺ (M + H⁺) *m/z* 456.1359, found 456.1360.

dibenzo[*b*,*f*][1,4]oxazepin-11-yldi(naphthalen-2-yl)phosphine oxide (**5aE**). Yellow oil. 41mg, 41% yield. ¹H NMR (400 MHz, CDCl₃): 8.50 (d, *J* = 14.0 Hz, 2H), 8.17 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.96 – 7.86 (m, 2H), 7.82 (dd, *J* = 8.3, 3.2 Hz, 4H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.53 – 7.39 (m, 4H), 7.38 – 7.28 (m, 1H), 7.21 – 7.11 (m, 2H), 7.10 – 7.01 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): 168.9 (d, *J* = 125.8 Hz), 161.6 (d, *J* = 7.2 Hz), 152.3, 140.6 (d, *J* = 27.5 Hz), 134.9 (d, *J* = 2.2 Hz), 134.5, 134.1 (d, *J* = 8.9 Hz), 133.7, 132.6, 132.5, 132.1, 130.6, 129.8 (d, *J* = 5.5 Hz), 129.2, 128.9, 128.8, 128.7, 128.6, 128.3, 128.2, 128.1, 127.9, 127.3, 127.3, 127.2, 126.9 (d, *J* = 4.7 Hz), 126.7, 125.9, 125.8, 125.3, 125.2, 121.7, 121.4, 121.0 (d, *J* = 26.5 Hz). ³¹P NMR (162 MHz, CDCl₃) 26.97. HRMS (ESI) calcd. for $C_{33}H_{23}NO_2P^+$ (M + H⁺) *m/z* 496.1461, found 496.1468.

F dibenzo[b,f][1,4]oxazepin-11-ylbis(4-fluorophenyl)phosphine oxide (**5aF**).Yellow oil. 26mg, 30% yield. ¹H NMR (400 MHz, CDCl₃): 8.07 (d, J = 7.9 Hz, 1H), 7.92 – 7.80 (m, 4H), 7.38 (td, J = 7.9, 1.5 Hz, 1H), 7.23 – 7.01 (m, 10H). ¹³C NMR (101 MHz, CDCl₃): 168.5 (d, J = 127.2 Hz), 166.6 (d, J = 3.4 Hz), 164.1 (d, J = 3.4 Hz), 161.5 (d, J = 7.3 Hz), 152.2, 140.4 (d, J = 27.7 Hz), 134.8 (dd, J = 10.4, 9.1 Hz), 133.9, 130.3 (d, J = 39.2 Hz), 128.6 (d, J = 1.3Hz), 128.3 (d, J = 3.4 Hz), 127.3 (d, J = 3.4 Hz), 126.5 (d, J = 27.7 Hz), 125.7 (d, J = 53.0 Hz), 121.1 (d, J = 25.1 Hz), 116.0 (dd, J = 21.5, 13.4 Hz). ³¹P NMR (162 MHz, CDCl₃) 24.69. HRMS (ESI) calcd. for C₂₅H₁₇F₂NO₂P⁺ (M + H⁺) m/z 432.0960, found 432.0990.

6-(dibenzo[*b*,*f*][1,4]oxazepin-11-yl)dibenzo[c,e][1,2]oxaphosphinine oxide (**5aG**). White solid. M.p. 291-293 °C. 37mg, 45% yield. ¹H NMR (400 MHz, CDCl₃): 8.32 (dd, *J* = 7.8, 1.0 Hz, 1H), 8.09 (dd, *J* = 12.5, 7.6 Hz, 1H), 7.91 (ddd, *J* = 9.3, 7.8, 3.6 Hz, 2H), 7.69 (t, *J* = 7.7 Hz, 1H), 7.50 (ddd, *J* = 15.9, 8.2, 2.2 Hz, 2H), 7.37 – 7.27 (m, 1H), 7.25 – 7.18 (m, 2H), 7.17 – 7.08 (m, 2H), 7.03 (dd, *J* = 15.9, 7.6 Hz, 3H), 6.89 (d, *J* = 7.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): 166.4 (d, *J* = 165.9 Hz), 161.5 (d, *J* = 8.7 Hz), 152.1, 149.5 (d, *J* = 8.3 Hz), 140.3 (d, *J* = 32.7 Hz), 137.3 (d, *J* = 6.5 Hz), 133.9, 133.7 (d, *J* = 2.3 Hz), 131.9 (d, *J* = 9.5 Hz), 130.4, 129.9 (d, *J* = 4.5 Hz), 128.8 (d, *J* = 1.6 Hz), 128.4 (d, *J* = 13.8 Hz), 125.7, 125.4, 125.4, 125.3, 124.8, 124.4, 123.8 (d, *J* = 10.6 Hz), 123.4, 123.3, 123.1, 121.0, 120.3 (d, *J* = 6.3 Hz). ³¹P NMR (162 MHz, CDCl₃) 22.82. HRMS (ESI) calcd. for C₂₅H₁₇NO₃P⁺ (M + H⁺) *m/z* 410.0941, found 410.0938.

7.Scale up reaction and application

1) Scale up reaction of 3j using continuous flow reactor

To a 250 mL solution bottle was added dibenzo[b,f][1,4]thiazepine 1j (10 mmol, 2.11 g), photocatalyst 4CzTPN (0.1 mmol, 100 mg), and tetrabutyl ammonium chloride (10 mmol, 2.8 g), Consequently, the reactants were dissolved in 20 mL CH₃CN and 0.5 mL water, then charged with N₂ atmosphere. It was moved into a 10 mL coiled tubing loaded by a peristaltic pump. The reaction mixture was passed to a micro flow reactor which was illuminated with eight 50 W, 455 nm RLR-18CF blue LEDs. A circulating water system used to keep the reactor's temperature be constant. And the reaction was keeping the flow rate of 2 mL per min and underwent continuous rection for 12 h. The obtained yellow mixture was filtered and dried, the white product **3j** was gave in 61% yield.

Figure S1 Scale up reaction of 3j using continuous flow reactor.

2) Synthetic transformations of 3j

To a 10 mL Schlenk tube containing a stir bar were charged with dibenzo[$b_i f$][1,4]thiazepin-11(10H)-one 3j (227 mg, 1 mmol), Lawesson's Reagent (1.01 g, 2.5 mmol, 2.5 equiv), and PhCl (3 mL). The resulting solution was stirred at 120 °C for 12 h. The obtained light yellow mixture was filtered and dried, the yellow product **3j** was gave in 98% yield. M.p. 112.5-114.7 °C. ¹H NMR (400 MHz, DMSO): 12.85 (s, 1H), 7.88 – 7.83 (m, 1H), 7.57 (dd, J = 7.7, 1.3 Hz, 1H), 7.47 – 7.36 (m, 4H), 7.35 – 7.30 (m, 1H), 7.23 (td, J = 7.6, 1.5 Hz, 1H). ¹³C NMR (101 MHz, DMSO): 199.9, 142.5, 139.9, 134.1, 132.5, 132.1, 131.2, 130.9, 129.4, 128.3, 126.6, 123.4. HRMS (ESI) calcd. for C₁₃H₁₀NS₂⁺ (M + H⁺) *m/z* 244.0250, found 244.0255.

Figure S2 ¹H NMR Spectrum of Compound 6

Figure S3 ¹³C NMR Spectrum of Compound 6

3) Scale up reaction of 5qA in continuous flow

To a 250 mL solution bottle was added benzo[d]thiazole 1q (10 mmol, 1.35 g), photocatalyst Eosin Y (0.5 mmol, 324 mg), and diphenylphosphine oxide (30 mmol, 6.0 g), Consequently, the reactants were dissolved in 20 mL DMSO and charged with N₂ atmosphere. It was moved into a 10 mL coiled tubing loaded by a peristaltic pump. The reaction mixture was passed to a micro flow reactor which was illuminated with eight 50 W, 455 nm RLR-18CF blue LEDs. A circulating water system used to keep the reactor's temperature be constant. And the reaction was keeping the flow rate of 2.5 mL per min and underwent continuous rection for 6 h. The result mixture was added with brine water (100 mL), then extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers dried over NaSO₄. After removal of the solvent in vacuum the residue was purified by flash chromatography (silica gel, 20% EtOAc in PE) to give 2.14 g (64%) of the desired product **5qA**.

4) Flame retardancy of 5qA in epoxy resin

To a 500 mL breaker was added the flame retardant 5qA (5.0 g) and bisphenol-A diglycidyl ether type epoxy resin (DGEBA) (76.0 g), and the white uniform mixture were mechanically stirred at 90 °C for 30 min. Then the curing agent 4,4-diaminodiphenylmethane (DDM) (19.0 g) was added to the resulting mixture and mechanically stirred for 5 min, and poured into a preheated stainless steel mold and film fixation rapidly. Finally, put it into an air blast oven for curing at 100 °C for 2 h, and heated to 150 °C for curing for 2 h to obtain a flame retardant epoxy resin. The cured epoxy

resins containing 5 wt% 5qA were denoted as EP-NS_{5%.}

According to GB/T 2406.2-2009 standard, the limiting oxygen index (LOI) values were evaluated using the JF-3 oxygen index instrument (Jiangning, China) with sample's dimension of 130 mm \times 6.5 mm \times 3.2 mm. The limiting oxygen index of each sample was the average of five parallel tests. According to GB/T 2408-2008 standard, the vertical burning (UL-94) tests were assessed using the CZF-3 instrument (Jiangning, China) with sample's dimension of 130 mm \times 3.2 mm. The burning time of each sample was the average of five parallel tests.

Figure S4 The vertical burning (UL-94) tests of EP-NS $_{5\%}$

8. Mechanistic Investigation

Radical Trap Experiments

Following the standard procedure, the reaction of dibenzo[b_if][1,4]oxazepine 1a (0.2 mmol), 4CzTPN (1.6 mg, 0.002 mmol, 1 mmol%), tetrabutyl ammonium chloride (27.8 mg, 0.1 mmol), and TEMPO (62.5 mg, 0.40 mmol, 2.0 equiv) were placed in 10 mL Schlenk tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), water (10 uL) and CH₃CN (2.0 mL) was added, the vial was sealed and exposed to blue LEDs (50 W LED light) at room temperature for 12 h. No product 3a was observed. The compound 7 and and 8 was detected by HRMS.

11-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)-10,11-

dihydrodibenzo[b,f][1,4]oxazepine 7. HRMS (ESI) calcd. for C₂₂H₂₉N₂O₂⁺ (M + H⁺) m/z 353.2224, found 353.2215.

Figure S5 The HRMS spectrum of compound 7

 \sim 1-hydroperoxy-2,2,6,6-tetramethylpiperidine **8**. HRMS (ESI) calcd. for C₉H₂₀NO₂+ (M + H+) m/z 174.1468, found 174.1462.

Figure S6 HRMS spectrum of compound 8

Following the standard procedure, the reaction of dibenzo[b,f][1,4]oxazepine **1a** (0.2 mmol), 4CzTPN (1.6 mg, 0.002 mmol, 1 mmol%), tetrabutyl ammonium chloride (27.8 mg, 0.1 mmol), and BHT (88 mg, 0.40 mmol, 2.0 equiv) were placed in 10 mL Schlenk tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), water (10 uL) and CH₃CN (2.0 mL) was added, the vial was sealed and exposed to blue LEDs (50 W LED light) at room temperature for 12 h. product **3a** was observed in 15% yield.

Isotope labeling experiment

Following the standard procedure. When 10 uL D₂O was added to replace H₂O, the desired deuterated-3a **10** was obtained in 68% yield with 15% deuteration. And the compound 10 was detected by HRMS as well. ¹H NMR (400 MHz, CDCl₃): 9.00 (s, 1H), 7.96 (dd, J = 8.1, 1.7 Hz, 1H), 7.56 - 7.49 (m, 1H), 7.29 - 7.21 (m, 3H), 7.16 - 7.09 (m, 3H).

Figure S8 HRMS spectra of compound 10

Following the standard procedure. When 10 uL H_2O^{18} was added to replace H_2O , the desired **12** was obtained in 89% yield and detected by HRMS as well.

Figure S9 HRMS spectra of compound 12

The Light On-Off Experiment

Following the standard procedure. Yield was determined by ¹ H NMR of the crude mixture using 1,3,5- trimethoxybenzene (3.7 mg, 0.022 mmol) as internal standard.

Figure S10 The light on-off experiment

The EPR Experiment

Following the standard procedure. Dibenzo[b,f][1,4]oxazepine **1a** (0.2 mmol), 4CzTPN (1.6 mg, 0.002 mmol, 1 mmol%), tetrabutyl ammonium chloride (27.8 mg, 0.1 mmol), and BHT (88 mg, 0.40 mmol, 2.0 equiv) were placed in 10 mL Schlenk tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), water (10 uL) and CH₃CN (2.0 mL) was added, the vial was sealed and exposed to blue LEDs (50 W LED light) at room temperature for 4 h. Then, to the resulted mixture was added radical scavenger 5,5-Dimethyl -1-pyrroline N-oxide (DMPO) (226 mg, 2 mmol) and followed by detecting the EPR signal.

Figure S11 EPR spectra of the reaction mixture.

9. Supplemental References

1. Lin, Y. C.; Li, N. C.; Cheng, Y. J. J. Heterocycl. Chem., 2014, 51, 808-814.

2. Z. C. Fu, Y. L. Lei, F. Sun and J. Xu. Org. Chem. Front., 2022, 9, 2464-2470.

3. S. F. Sun. D. H. Guo, F. Y. Li and J. Wang. Org. Chem. Front., 2022, 9, 356.

4. Q. Yang, H. Cao, A. Robertson, and H. Alper. J. Org. Chem. 2010, 75, 6297–6299.

5. K. Luo,, Y. Z. Chen, W. C. Yang, J. Zhu, and L. Wu. Org. Lett. 2016, 18, 3, 452–455.

6. X. Liu. S. T. Yuan, Y. Liu, M. J. Ni, J. B. Xu, S. G. Gui, Y. Y. Peng, Q. P. Ding. J. Org. Chem. **2023**, 88, 1, 198–210.

7. N. Kalinina; N. Kruglyak; S. B. Kurochkin. *Pharmaceutical Chemistry Journal.* **1997**, 31, 431–434.

8. A.Kavitha; B. Poongavanam; N. H. Puttappa,; K. S. Sujit. *Synthetic Communications*, **2020**, 50, 348–360.

10. Copies of NMR Spectra of Compounds1, 3 and 5

Copies of ¹H (400 MHz), ³¹P (167 MHz) and ¹³C (101 MHz) spectra of products 1a-1o in CDCl₃ or DMSO-d6

¹³C NMR Spectrum of Compound 1a

¹³C NMR Spectrum of Compound 1b

¹³C NMR Spectrum of Compound 1f

¹³C NMR Spectrum of Compound 1k

¹⁹F NMR Spectrum of Compound 1m

¹H NMR Spectrum of Compound 1n

Copies of ¹H (400 MHz), ¹⁹F (67 MHz) and ¹³C (101 MHz) spectra of products 3a-3q in CDCl₃ or DMSO-d6

¹³C NMR Spectrum of Compound 3g

¹³C NMR Spectrum of Compound 3h

¹³C NMR Spectrum of Compound 3i

¹³C NMR Spectrum of Compound 3m

¹³C NMR Spectrum of Compound 3n

¹³C NMR Spectrum of Compound 30

¹³C NMR Spectrum of Compound **3**p

Copies of ¹H (400 MHz), ³¹P (377 MHz) and ¹³C (101 MHz) spectra of products 5aA-5aG in CDCl₃ or DMSO-d6

¹H NMR Spectrum of Compound 5bA

¹³C NMR Spectrum of Compound 5bA

8,166 7,930 7,931 7,932 7,932 7,932 7,932 7,932 7,932 7,932 7,553 7,553 7,553 7,553 7,553 7,554 7,553 7,554 7,552 Ph 0.93 5.99 5.18 7.18 16 14 13 12 11 10 0 15 9 8 fl (ppm) 6 5 4 3 2 ¹H NMR Spectrum of Compound 5cA -26.558 C 0 Ph

³¹P NMR Spectrum of Compound 5cA

90 80 70 60 50 40 30 20 10 0 -20

150 130

110

-40 -60 -80 -100 -120 -140 -160 -180 fl (ppm)

-240

-200

-220

¹H NMR Spectrum of Compound 5dA

-26.447

³¹P NMR Spectrum of Compound 5eA

¹H NMR Spectrum of Compound 5fA

-26.194

¹³C NMR Spectrum of Compound 5fA

¹H NMR Spectrum of Compound 5hA

¹³C NMR Spectrum of Compound 5hA

¹³C NMR Spectrum of Compound 5iA

7. 2551 7. 2551 7. 2551 7. 251 7. 2521 7. 2522 7. 2522 7. 2522 7. 2522 7. 2522 7. 2522 7. 2522 7. 2522 7. 2524 7.

¹H NMR Spectrum of Compound 5jA

¹³C NMR Spectrum of Compound 5jA

³¹P NMR Spectrum of Compound 5mA

¹H NMR Spectrum of Compound 5nA

¹³C NMR Spectrum of Compound 5nA

-31.565

¹H NMR Spectrum of Compound 5qA

¹³C NMR Spectrum of Compound 5qA

¹³C NMR Spectrum of Compound 5aC

-26.726

³¹P NMR Spectrum of Compound 5aD

¹H NMR Spectrum of Compound 5aE

¹³C NMR Spectrum of Compound 5aE

³¹P NMR Spectrum of Compound 5aF

¹³C NMR Spectrum of Compound 5aG

Copies of ¹H (400 MHz) in CDCl₃ of the light on-off experiments

¹H NMR Spectrum of 6h

¹H NMR Spectrum of 12h

6 fl (ppm)

7

13

14

16 15

12

11

10

9

-3 -4

-2

-1

2

i 0

¹H NMR Spectrum of 24h