Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

for

N-Aminophthalimide-Mediated Aerobic Deborohydroxylation of

Boronic Acid in Air

Tao Chen,^{a,b} Wenzheng Zhang,^a Zhenxing Yan,^a Ze-Feng Xu^{*a,c} and Chuan-Ying Li^{*a}

 ^a School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, 310018, China.
 ^b School of Materials Science and Engineering, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, 310018, China
 ^c Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
 e-mail: xuzefeng@zstu.edu.cn; licy@zstu.edu.cn. Phone: (+86)-571-86843094

Page	Content
S2	(A) General Information
S3-S7	(B) Optimization of Reaction Conditions
S8-S12	(C)Computational details
S13-S19	(D) Procedures for starting materials
S19	(E) General procedure for deborohydroxylation of arylboronic acids
S20-S27	(F) Characterization of products
S28	(G)References
S29-S69	(H)NMR spectra

(A) General information

All reactions were carried out by standard procedures under air condition at room temperature unless stated otherwise. All boronic acid materials are commercially available unless stated otherwise. All solvents were freshly distilled prior to use in synthesis unless otherwise noted. Flash column chromatography was performed using silica gel (200-300 mesh). ¹H, ¹³C and ¹⁹F NMR spectra were measured on Brucker Avance IIDMX 400 MHz spectrometers (400 MHz for ¹H NMR, 101 MHz for ¹³C NMR and 289 MHz for ¹⁹F NMR). Chemical shifts are reported in parts per million (ppm) relative to TMS (0.00) for the ¹H NMR, residual signals in solvents (CDCl₃ at $^{\delta}$ 77.16 ppm) for the ¹³C NMR and CDF₃ (0.00 ppm) for the ¹⁹F NMR measurements. Coupling constant (*J*) are quoted in Hz.

(B) Optimization of Reaction Conditions

1. Base Optimization

Under air atmosphere, dry CH₃CN (2.0 mL) was added to an oven-dried reaction tube charged with arylboronic acid **1a** (1.0 equiv, 0.2 mmol), *N*-aminophthalimide **2a** (1.2 equiv, 0.24 mmol), Base (1.2 equiv, 0.24 mmol) and a stirring bar; then the reaction mixture was stirred at 60 °C heated by oil bath. Upon the completion of the reaction, the mixture was cooled to room temperature and quenched with saturated aqueous NH₄Cl (4 mL). The mixture was then extracted with diethyl ether (10 mL) for three times. The combined organic phase was continually washed with 10 mL brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography to give the desired product **3a**.

Entry	Base	Time (h)	Yield of 3a
			(%)
1	DBU	22	67
2	DABCO	24	trace
3	Et ₃ N	24	0
4	K ₂ CO ₃	24	0
5	Cs_2CO_3	24	12
6	t-BuOK	24	0
7	КОН	24	0

Table S1. Base Optimization.

2. Solvent Optimization

Under air atmosphere, dry solvent (2.0 mL) was added to an oven-dried reaction tube charged with arylboronic acid **1a** (1.0 equiv, 0.2 mmol), *N*-aminophthalimide **2a** (1.2 equiv, 0.24 mmol), DBU (1.2 equiv, 0.24 mmol) and a stirring bar; then the reaction mixture was stirred at 60 °C heated by oil bath. Upon the completion of the reaction, the mixture was cooled to room temperature and quenched with saturated aqueous NH_4Cl (4 mL). The mixture was then extracted with diethyl ether (10 mL) for three times. The combined organic phase was continually washed with 10 mL brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography to give the desired product **3a**.

Entry	Solvent	Time (h)	Yield of 3a (%)
1	CH ₃ CN	22	67
2	DMF	24	59
3	DMA	24	44
4	EtOAc	24	47
5	CH ₃ NO ₂	24	30
6	ClCH ₂ CN 24		0
7	toluene	24	32
8	PhF	23	29
9	PhCl	33	33
10	DCE	24	21
11	CH ₃ OH	24	0
12	HFIP	24	0
13	DME	27	33
14	THF	24	48
15	1,4-dioxane	36	52

 Table S2. Solvent Optimization.

_

3. Temperature Optimization

Under air atmosphere, dry CH₃CN (2.0 mL) was added to an oven-dried reaction tube charged with arylboronic acid **1a** (1.0 equiv, 0.2 mmol), *N*-aminophthalimide **2a** (1.2 equiv, 0.24 mmol), DBU (1.2 equiv, 0.24 mmol) and a stirring bar; then the reaction mixture was stirred at different temperature heated by oil bath. Upon the completion of the reaction, the mixture was cooled to room temperature and quenched with saturated aqueous NH₄Cl (4 mL). The mixture was then extracted with diethyl ether (10 mL) for three times. The combined organic phase was continually washed with 10 mL brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography to give the desired product **3a**. **Table S3**. Temperature Optimization.

Entry	Temp (°C)	Time (h)	Yield of 3a (%)
1	rt	24	trace
2	40	26	58
3	60	22	67
4	reflux	16	51

4. Reactant ratio Optimization

Under air atmosphere, dry CH₃CN (2.0 mL) was added to an oven-dried reaction tube charged with arylboronic acid **1a** (1.0 equiv, 0.2 mmol), *N*-aminophthalimide **2a** (x equiv), DBU (y equiv) and a stirring bar; then the reaction mixture was stirred at 60 °C heated by oil bath. Upon the completion of the reaction, the mixture was cooled to room temperature and quenched with saturated aqueous NH_4Cl (4 mL). The mixture was then extracted with diethyl ether (10 mL) for three times. The combined organic phase was continually washed with 10 mL brine, dried over $MgSO_4$, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography to give the desired product **3a**.

Entry	1a:2a:base	Time (h)	Yield of 3a (%)
1	1:1.2:1.2	22	67
2	1:1.5:1.5	18	77
3	1:1.5:2	12	90
4	1:2:2	18	85

Table S4. Reactant ratio Optimization.

5. Mediator Optimization

Under air atmosphere, dry CH₃CN (2.0 mL) was added to an oven-dried reaction tube charged with arylboronic acid **1a** (1.0 equiv, 0.2 mmol), *N*-aminophthalimide **2** (1.5 equiv, 0.3 mmol), DBU (2 equiv, 0.4 mmol) and a stirring bar; then the reaction mixture was stirred at 60 °C heated by oil bath. Upon the completion of the reaction, the mixture was cooled to room temperature and quenched with saturated aqueous NH₄Cl (4 mL). The mixture was then extracted with diethyl ether (10 mL) for three times. The combined organic phase was continually washed with 10 mL brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography to give the desired product **3a**.
 Table S5. Mediator Optimization.

Entry	2	Time (h)	Yield of 3a (%)
1	2a	12	90
2	2b	9	95
3	2c	3	95
4	2d	10	91
5	2e	12	80
6	2f	3	98
7	2g	12	95
8	2h	36	72
9	2i	9	75
10	2ј	48	8
11	2k	24	0

(C) Computational details

All data in this study were calculated with the Gaussian 16 software package (ref. 22 in the main body, similarly hereinafter). The structures were optimized at the B3LYP-GD3(BJ)/6-31G+(d,p) level (ref 23) in conjunction with the SMD solvation model (ref 24) in acetonitrile. Vibrational frequency analysis was computed at the same level to ensure that the minimum points have no imaginary frequency and the transition states have only one imaginary frequency. Accurate single-point energies were obtained at M06-2X-GD3/def2-tzvpd level (ref 25) in conjunction with the SMD solvation model in acetonitrile.

Ref 22: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

	E (hartree)	ΔE (hartree)	ΔE (kcal/mol)
9'	-1126.5842199	0.0000000	0
TS1	-1126.5391734	0.0450465	28.2
FLP	-1126.659358	-0.0751381	-47.1
14'	-1126.7177743	-0.1335544	-83.8

	Thermal correction	G (hartree)	ΔG (hartree)	ΔG (kcal/mol)
	to Gibbs Free			
	Energy			
9'	0.203489	-1126.3807309	0	0
TS1	0.199755	-1126.3394184	0.0413125	25.9
14'	0.204545	-1126.5132293	-0.1324984	-83.1

XYZ Coordinates for optimized structures: 9'

Number of imaginary frequencies: 0

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Ζ
1	6	0	3.504824	2.304802	-1.371033
2	6	0	2.867767	3.028556	-0.354751
3	6	0	2.131683	2.375673	0.645591
4	6	0	2.054663	0.991683	0.580965
5	6	0	2.687993	0.267955	-0.437284
6	6	0	3.425954	0.904328	-1.423813
7	6	0	1.349523	0.031029	1.467866
8	7	0	1.608764	-1.238514	0.920675
9	6	0	2.415267	-1.182654	-0.231042
10	8	0	2.813654	-2.140164	-0.865283
11	8	0	0.722199	0.229981	2.493310
12	7	0	1.003023	-2.415016	1.354798
13	8	0	-0.098857	-2.744261	0.560615
14	8	0	-1.122536	-1.672500	0.656928
15	5	0	-1.442436	-1.121351	-0.732177
16	8	0	-0.278009	-0.549677	-1.417239
17	8	0	-1.957027	-2.182687	-1.601525
18	6	0	-2.545241	0.035391	-0.338739
19	6	0	-3.858158	0.005918	-0.842057
20	6	0	-4.789108	1.012966	-0.555373
21	6	0	-4.425745	2.091016	0.258179
22	6	0	-3.127207	2.146393	0.778660
23	6	0	-2.210840	1.131302	0.483361
24	1	0	4.067857	2.836813	-2.131441
25	1	0	2.944354	4.111186	-0.342235
26	1	0	1.636835	2.931942	1.434836
27	1	0	3.918075	0.343164	-2.211311
28	1	0	0.655787	-2.212681	2.297492
29	1	0	-0.164564	0.375199	-1.171291
30	1	0	-2.515112	-2.775310	-1.084696
31	1	0	-4.154061	-0.822392	-1.482200
32	1	0	-5.794938	0.957740	-0.965742
33	1	0	-5.142632	2.876036	0.484359
34	1	0	-2.832780	2.976963	1.416304
35	1	0	-1.212792	1.191106	0.910860

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Type	Х	Y	Z
1	6	0	5.140888	-1.201013	1.021998
2	6	0	4.431304	-2.329505	0.593226
3	6	0	3.214517	-2.201806	-0.095668
4	6	0	2.746758	-0.917439	-0.329512
5	6	0	3.454925	0.211285	0.100037
6	6	0	4.658838	0.095301	0.777928
7	6	0	1.508260	-0.453472	-1.009555
8	7	0	1.533314	0.941928	-0.940294
9	6	0	2.698679	1.426393	-0.319685
10	8	0	2.996874	2.598742	-0.181801
11	8	0	0.632503	-1.111876	-1.556918
12	7	0	0.572976	1.806880	-1.519383
13	8	0	-0.288736	2.332621	-0.595442
14	8	0	-1.730211	1.114129	-0.218636
15	5	0	-1.574243	0.426168	0.997038
16	8	0	-0.670066	-0.666295	1.138115
17	8	0	-1.697539	1.111576	2.242863
18	6	0	-3.181277	-0.092199	0.276155
19	6	0	-3.269480	-1.242725	-0.518349
20	6	0	-4.513696	-1.812269	-0.806110
21	6	0	-5.686470	-1.215811	-0.326628
22	6	0	-5.605781	-0.044633	0.436313
23	6	0	-4.359295	0.522641	0.720921
24	1	0	6.079659	-1.331043	1.551176
25	1	0	4.828615	-3.318865	0.797021
26	1	0	2.662561	-3.074494	-0.428915
27	1	0	5.208328	0.970621	1.108446
28	1	0	0.047569	1.210267	-2.166661
29	1	0	-0.518048	-1.074035	0.276335
30	1	0	-2.139706	1.957422	2.102438
31	1	0	-2.368028	-1.707116	-0.909689
32	1	0	-4.568891	-2.715600	-1.408379
33	1	0 Ŭ	-6.654129	-1.654305	-0.553508
34	1	0 Ŭ	-6.512390	0.428714	0.804893
35	1	0 Û	-4 309956	1 436276	1 307515
55	1	U	- - .JU2250	1.730270	1.50/515

TS1 Number of imaginary frequencies: 1

FLP of 10 and 11'

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	-5.146653	1.224513	1.052961
2	6	0	-4.414708	2.358995	0.683384
3	6	0	-3.199587	2.242815	-0.012670
4	6	0	-2.759604	0.963561	-0.315881
5	6	0	-3.493692	-0.170368	0.049012
6	6	0	-4.692797	-0.066933	0.735555
7	6	0	-1.527536	0.497235	-1.009824
8	7	0	-1.613832	-0.886301	-1.080024
9	6	0	-2.769273	-1.375599	-0.456448
10	8	0	-3.105251	-2.544078	-0.374328
11	8	0	-0.590420	1.166595	-1.444011
12	7	0	-0.563460	-1.763995	-1.542671
13	8	0	0.054218	-2.357937	-0.435889
14	8	0	2.163168	-0.756223	-0.047060
15	5	0	1.282969	-0.639643	1.039277
16	8	0	0.483437	0.471880	1.171672
17	8	0	1.433452	-1.397518	2.177618
18	6	0	3.357201	-0.059272	-0.041533
19	6	0	3.429829	1.197222	-0.649410
20	6	0	4.651836	1.872391	-0.681213
21	6	0	5.792681	1.298041	-0.110815
22	6	0	5.708614	0.038233	0.491710
23	6	0	4.492062	-0.644993	0.528842
24	1	0	-6.080177	1.346099	1.593737
25	1	0	-4.789101	3.344273	0.943675
26	1	0	-2.628648	3.120810	-0.296857
27	1	0	-5.263017	-0.946510	1.016421
28	1	0	0.100363	-1.077591	-1.929888
29	1	0	0.434437	0.965540	0.339885
30	1	0	1.967658	-2.182247	2.004670
31	1	0	2.540028	1.627735	-1.097356
32	1	0	4.714574	2.848040	-1.155469
33	1	0	6.740505	1.827228	-0.138981
34	1	0	6.593950	-0.413226	0.931191
35	1	0	4.416548	-1.626663	0.985425

Center	Atomic	Atomic	Coord	dinates (Angst	roms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	5.693422	-0.9/28/8	0.327300	
2	6	0	4.961878	-2.13/488	0.592554	
3	6	0	3.566667	-2.166677	0.443160	
4	6	0	2.946154	-0.998194	0.025446	
5	6	0	3.677137	0.166448	-0.240347	
6	6	0	5.056033	0.203863	-0.096693	
7	6	0	1.509239	-0.706454	-0.210172	
8	7	0	1.450351	0.634163	-0.615236	
9	6	0	2.727203	1.228744	-0.674046	
10	8	0	2.958878	2.373038	-1.015328	
11	8	0	0.540503	-1.446662	-0.105797	
12	7	0	0.297811	1.337693	-0.992115	
13	8	0	-0.278245	1.995124	0.139113	
14	8	0	-2.230810	0.774940	-0.374044	
15	5	0	-1.430283	1.285082	0.819545	
16	8	0	-1.051305	0.204811	1.699426	
17	8	0	-2.118991	2.286906	1.598429	
18	6	0	-3.324860	0.001597	-0.295131	
19	6	0	-3.820559	-0.555614	-1.491932	
20	6	0	-4.964664	-1.354313	-1.488355	
21	6	0	-5.644764	-1.619978	-0.293150	
22	6	0	-5.156796	-1.068011	0.896879	
23	6	0	-4.012923	-0.265198	0.906800	
24	1	0	6.771566	-0.980893	0.452357	
25	1	0	5.483058	-3.031619	0.919661	
26	1	0	2.997593	-3.067149	0.649172	
27	1	0	5.621747	1.106521	-0.302784	
28	1	0	-0.385498	0.630348	-1.283148	
29	1	0	-0.692502	-0.528768	1.182071	
30	- 1	0	-2 257391	3 072042	1 055146	
31	1	0 0	-3.290331	-0.349002	-2.417718	
32	1	0 Ŭ	-5 325599	-1 772141	-2 424856	
32	1	0	-6 534645	-2 242476	-0 290080	
34	1	0 0	-5 672515	-1 262153	1 834337	
25	1	0	-3 640447	0 1565/2	1 831310	
55	1	U	-3.040447	0.130342	1.051510	

14' Number of imaginary frequencies: 0

(D) Procedures for starting materials

Route 1: To a solution of *N*-hydroxyphthalimide (489 mg, 3.0 mmol, 1.0 equiv) in pH 7.0 phosphate buffer (30 mL) was added phenylhydrazine (0.293 mL, 3.0 mmol, 1.0 equiv) at room temperature. The mixture was stirred for 15 h at room temperature and then filtered and washed with water. The solid was filtered and dissolved with ethyl acetate (150 mL), and then the solution was washed with 5% aq. HCl (30 mL for twice) and the organic phase was dried with brine and MgSO₄, filtered and concentrated in

vacuo and purified by silica gel column chromatography (PE:EtOAc = 2:1) to give product as a bright yellow solid.^[1]

Route 2: To a solution of anhydride (1.0 equiv, 3.5 mmol) and hydroxylamine hydrochloride (2.0 equiv, 7.0 mmol) in pyridine (10 mL) was heated at 80 °C for 4 h and then cooled to room temperature. The mixture was diluted by adding 20 mL water and acidified to pH 2 with concentrated HCl. The precipitate was filtrated and washed with water. The filtrate was dried in vacuo and purified by recrystallization with EtOH. The next step is the same as route 1 to get the product.^[2]

Route 3: *N*-Aminophthalimide (165 mg, 1 mmol) was mixed with benzoic anhydride (1130 mg, 5 mmol) in a round bottom flask and warmed to 120 °C, forming a homogeneous yellow solution which turned colorless as heating was continued for 1 h. Afterwards, the reaction mixture was cooled to room temperature, forming colorless prismatic needles. The excess anhydride was drawn off and the residue was washed with a small amount of cold ether to get the product.^[3]

Route 4: Produce A: To a suspension *tert*-butylcarbazate (1 equiv) in toluene, phthalic anhydride (1 equiv) was added. The suspension was refluxed in a two-neck round bottom flask fitted with a Dean-Stark trap for 4 h. The mixture was cooled to room temperature and concentrated. The crude product was purified by column chromatography using hexanes and ethyl acetate as the eluting solvent.^[4]

Produce B: To a solution of *N-tert* butyloxycarbonylaminophthalimide (1 equiv), PPh₃ (1.5 equiv) and methanol (3 equiv) in anhydrous THF and under N₂ atmosphere was added one portion of Diethyl azodicarboxylate (DEAD) (1.5 equiv) under stirring at 0-5 °C. The resulting solution was stirred overnight and concentrated under vacuum. The crude was purified by column chromatography on silica gel using hexanes and ethyl acetate.^[4]

Produce C: To a solution of *N*-alkyl-*N*-*tert* butyloxycarbonylaminophthalimide (1 equiv) in anhydrous CH_2Cl_2 was added trifluoroacetic acid (8% TFA in CH_2Cl_2) (25 equiv) dropwise at 0 °C. The mixture was brought to room temperature and stirred

overnight. After completion, the solution was concentrated under vacuum. The crude was dissolved in ethyl acetate and the organic layer was sequentially washed with water $(2 \times 10 \text{ mL})$, saturated NaHCO₃ (2 × 10 mL) and finally with brine (2 × 10 mL). The organic layer was dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure to yield crude product. After concentrating the organic layer, the desired compound was purified by column chromatography on silica gel using hexanes and ethyl acetate mixture.^[4]

The spectra data of **2b**, **2c**, **2d**, **2g**, **2h**, **2i**, **2j**, **2k**, were consistent with literature reported.^[1]

The spectral data of compounds 2e, 2f, 2l were shown below.

4-((1,3-dioxoisoindolin-2-yl)amino)benzonitrile (2e): 73% yield, yellow solid. m.p. 267.0-267.8 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 9.32 (s, 1H), 8.12 – 7.86 (m, 4H), 7.61 (d, J = 8.7 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H). ¹³C NMR (101 MHz, DMSO) δ 166.59, 151.27, 135.54, 134.15, 130.17, 124.13, 120.13, 112.79, 101.34. HRMS (ESI) m/z calcd for C₁₅H₁₀N₃O₂⁺ [M + H]⁺ 264.0768, found 267.0774.

2-((2,6-dimethylphenyl)amino)isoindoline-1,3-dione (**2f**): 63% yield, yellow solid. m.p 175.3-175.8 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.91 (s, 4H), 6.96 (d, *J* = 7.5 Hz, 2H), 6.81 (t, *J* = 7.4 Hz, 1H), 2.23 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 167.52, 142.90, 135.60, 129.68, 129.41, 127.72, 123.84, 122.68, 18.80. HRMS (ESI) m/z calcd for C₁₅H₁₂N₂O₂⁺ [M + H]⁺ 267.1128, found 267.1132.

4-fluoro-2-(phenylamino)isoindoline-1,3-dione (21): 70% yield, yellow solid. m.p 190.1-190.3 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.80 (m, 1H), 7.78 (d, *J* = 7.2 Hz, 1H), 7.49 (t, *J* = 8.4 Hz, 1H), 7.36 – 7.20 (m, 2H), 7.04 – 6.95 (m, 1H), 6.92 – 6.81 (m, 2H), 6.30 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.33 (d, *J* = 2.9 Hz), 163.18, 157.71 (d, *J* = 267.1 Hz), 145.51, 137.36 (d, *J* = 7.8 Hz), 131.95, 129.40, 123.19 (d, *J* = 19.6 Hz), 122.54, 120.21 (d, *J* = 3.6 Hz), 115.93 (d, *J* = 12.7 Hz). 114.29. HRMS (ESI) m/z calcd for C₁₄H₁₀FN₂O₂⁺ [M + H]⁺ 257.0721, found 257.0727.

Methvl 2-(1-(4-chlorobenzene)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (**2ad**): SOCl₂ (7.7 mmol, 1.5 mL) was dropwise added to a solution of Indometacin (4 mmol, 1.43 g) and MeOH (10 mL) at 0 °C. Subsequently, the temperature is from 0 °C to rt. After the reaction, the reaction mixture was concentrated under reduced pressure to give ester as a white solid. Then, A mixture of ester (1 mmol, 372 mg), bis(pinacolato)diboron (B₂pin₂, 3 mmol, 762 mg), Pd(OAc)₂ (4 mol%, 9 mg), 2dicyclohexylphosphino-2',6'-dimethoxybiphenyl (S-Phos, 10 mol%, 41 mg), KOAc (3 mol, 295 mg) was stirred in 1, 4-dioxane (4 mL) under N2 atmosphere at 80 °C. After the reaction, the reaction mixture was diluted with H₂O and extracted with ethyl acetate $(\times 3)$. The combined organics were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The resulting crude mixture was chromatographed on silica gel using petroleum ether/ethyl acetate (PE/EA = 10/1) as eluent to give 2ad. ^[5]

Ethyl 4-(8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydro-11Hbenzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidine-1-carboxylate (**2ae**): A mixture of Loratadine (1 mmol, 383 mg), bis(pinacolato)diboron (B₂pin₂, 3 mmol, 762 mg), Pd(OAc)₂ (4 mol%, 9 mg), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (S-Phos, 10 mol%, 41 mg), KOAc (3 mol, 295 mg) was stirred in 1,4-dioxane (4 mL) under N₂ atmosphere at 80 °C. After the reaction, the reaction mixture was diluted with H₂O and extracted with ethyl acetate (×3). The combined organics were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The resulting crude mixture was chromatographed on silica gel using petroleum ether/ethyl acetate (PE/EA = 1/1) as eluent to give **2ae**. ^[5]

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3yl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (**2af**): 4-boronobenzoic acid (3 mmol), pinacol (3.3 mmol) were dispersed in 40 mL DCM. The reaction mixture was stirred at room temperature for overnight. Then, the reaction solution was filtered to remove all solid impurities. The solid was rinsed by DCM 3 times. The combined solution was concentrated to get the product.

Under nitrogen, a 20-mL vial was charged with Acid (3.0 mmol), Cholesterol (3.6 mmol), DCC (4.5 mmol), DMAP (0.60 mmol) and dry THF (10 mL). The vial was sealed with a Teflon-lined cap and stirred at 40 °C for 1.5 d. The reaction was quenched with water (20 mL) and extracted with ethyl acetate (20 mL × 3). The organic layer was condensed, and the residue was purified by flash column chromatography (hexane/ethyl acetate = 40/1) to afford the **2af** as white solid. ^[6]

Isopropyl 2-methyl-2-(4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoyl) phenoxy) propanoate (**2ag**): A mixture of Fenofibrate (1 mmol, 361 mg),

bis(pinacolato)diboron (B₂pin₂, 3 mmol, 762 mg), Pd(OAc)₂ (4 mol%, 9 mg), 2dicyclohexylphosphino-2',6'-dimethoxybiphenyl (S-Phos, 10 mol%, 41 mg), KOAc (3 mol, 295 mg) was stirred in 1,4-dioxane (4 mL) under N₂ atmosphere at 80 °C. After the reaction, the reaction mixture was diluted with H₂O and extracted with ethyl acetate (×3). The combined organics were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The resulting crude mixture was chromatographed on silica gel using petroleum ether/ethyl acetate (PE/EA = 10/1) as eluent to give **2ag**. ^[5]

The spectral data of compounds 2ad, 2ae, 2af, 2ag were shown below.

methyl 2-(5-methoxy-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoyl)-1Hindol-3-yl)acetate (**2ad**): 70% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 7.9 Hz, 2H), 7.68 (d, *J* = 7.7 Hz, 2H), 6.95 (d, *J* = 2.5 Hz, 1H), 6.88 (d, *J* = 9.0 Hz, 1H), 6.64 (dd, *J* = 9.1, 2.5 Hz, 1H), 3.82 (s, 3H), 3.69 (s, 3H), 3.66 (s, 2H), 2.36 (s, 3H), 1.37 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 171.44, 169.54, 156.05, 137.96, 136.10, 135.00, 130.97, 130.65, 128.67, 115.24, 112.41, 111.60, 101.25, 84.38, 55.75, 52.18, 30.22, 24.94, 13.47.

ethyl 4-(8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydro-11Hbenzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidine-1-carboxylate (**2ae**): 53% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.37 (d, *J* = 4.6 Hz, 1H), 7.64 – 7.57 (m, 2H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.20 (d, *J* = 7.5 Hz, 1H), 7.05 (dd, *J* = 7.7, 4.7 Hz, 1H), 4.12 (q, *J* = 7.2 Hz, 2H), 3.87 – 3.70 (m, 2H), 3.54 – 3.25 (m, 2H), 3.18 – 3.06 (m, 2H), 2.95 – 2.74 (m, 2H), 2.55 – 2.24 (m, 4H), 1.31 (s, 12H), 1.24 (t, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.10, 155.57, 146.57, 142.51, 137.60, 137.07, 136.92, 135.41, 133.73, 132.58, 128.69, 122.17, 83.83, 61.33, 44.92, 31.89, 31.61, 30.82, 30.58, 24.91, 24.85, 14.74.

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3yl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (**2af**): 31% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, J = 8.1 Hz, 2H), 7.86 (d, J = 8.1 Hz, 2H), 5.54 – 5.31 (m, 1H), 5.08 – 4.71 (m, 1H), 2.47 (d, J = 8.1 Hz, 2H), 2.10 – 1.67 (m, 6H), 1.63 – 1.43 (m, 8H), 1.36 (s, 12H), 1.24 – 0.96 (m, 14H), 0.92 (d, J = 6.5 Hz, 3H), 0.87 (dd, J = 6.7, 1.8 Hz, 6H), 0.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.07, 139.73, 134.64, 133.09, 128.61, 122.82, 84.19, 74.74, 56.76, 56.20, 50.11, 42.39, 39.81, 39.58, 38.26, 37.11, 36.72, 36.25, 35.86, 32.00, 31.95, 28.30, 28.08, 27.93, 24.94, 24.36, 23.90, 22.89, 22.63, 21.12, 19.45, 18.79, 11.93.

isopropyl 2-methyl-2-(4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzoyl)phenoxy)propanoate: 66% yield (**2ag**); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (d, J = 8.1 Hz, 2H), 7.74 (d, J = 8.8 Hz, 2H), 7.70 (d, J = 8.1 Hz, 2H), 6.84 (d, J= 8.8 Hz, 2H), 5.07 (p, J = 6.3 Hz, 1H), 1.64 (s, 6H), 1.35 (s, 12H), 1.19 (d, J = 6.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 195.69, 173.17, 159.68, 140.43, 134.54, 132.12, 130.58, 128.73, 117.18, 84.19, 79.41, 69.35, 25.43, 24.93, 21.55.

(E) General procedure for deborohydroxylation of arylboronic acids

Under air atmosphere, dry CH₃CN (2.0 mL) was added to an oven-dried reaction tube charged with arylboronic acid **1** (1.0 equiv, 0.2 mmol), **2f** (1.5 equiv, 0.3 mmol), DBU (2.0 equiv, 0.4 mmol) and a stirring bar; then the reaction mixture was stirred at 60 °C heated by oil bath. Upon the completion of the reaction, the mixture was cooled to room temperature and quenched with saturated aqueous NH_4Cl (4 mL). The mixture was then extracted with diethyl ether (10 mL) for three times. The combined organic phase was continually washed with 10 mL brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography to give the desired product **3**.

(F) Characterization of products

1,1'-biphenyl]-4-ol (**3a**)¹⁰: 98% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (d, *J* = 7.6 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 1H), 7.30 (t, *J* = 7.3 Hz, 1H), 6.91 (d, *J* = 8.2 Hz, 2H), 4.97 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 155.09, 140.79, 134.51, 134.07, 128.79, 128.46, 126.77, 115.69.

Phenol (**3b**)¹⁰: 92% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 (t, *J* = 7.1 Hz, 2H), 6.93 (t, *J* = 7.5 Hz, 1H), 6.84 (d, *J* = 7.4 Hz, 2H), 5.14 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 155.49, 129.75, 120.88, 115.37.

p-cresol (3c)¹⁰: 92% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.09 (d, J = 7.9 Hz, 2H), 6.80 (d, J = 7.9 Hz, 2H), 5.19 (s, 1H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.29, 130.12, 129.99, 115.16, 20.52.

4-(tert-butyl)phenol (**3d**)¹⁰: 86% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (d, *J* = 8.7 Hz, 2H), 6.83 (d, *J* = 8.7 Hz, 2H), 4.93 (s, 1H), 1.34 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.13, 143.62, 126.51, 114.82, 34.14, 31.60.

3,5-dimethylphenol (**3e**)¹²: 83% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.63 (s, 1H), 6.51 (s, 2H), 4.78 (s, 1H), 2.31 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.43, 139.61, 122.62, 113.08, 21.31.

2,4,6-trimethylphenol (**3f**)¹²: 93% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.71 (s, 1H), 4.38 (s, 1H), 2.14 (s, 3H), 2.13 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 149.94, 129.36, 129.18, 122.85, 20.46, 15.90.

4-methoxyphenol (**3g**)¹²: 99% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.96 – 6.61 (m, 4H), 4.99 (s, 1H), 3.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.74, 149.55, 116.14, 114.96, 55.91.

benzo[*d*][1,3]dioxol-5-ol (**3h**)⁵: 83% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.69 (d, *J* = 8.3 Hz, 1H), 6.47 (d, *J* = 2.5 Hz, 1H), 6.31 – 6.27 (m, 1H), 5.95 (s, 2H), 4.79 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.69, 148.34, 141.63, 108.20, 106.70, 101.23, 98.35.

tert-butyl(4-hydroxyphenyl)carbamate (**3i**)¹⁵: 81% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.20 (d, J = 8.3 Hz, 2H), 6.77 (d, J = 8.8 Hz, 2H), 6.39 (s, 1H), 5.49 (s, 1H), 1.55 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.74, 152.24, 130.83, 121.64, 115.82, 80.56, 28.44.

1-(4-hydroxyphenyl)ethan-1-one (**3j**)¹⁰; 85% yield: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, J = 8.8 Hz, 2H), 7.76 (s, 1H), 6.99 (d, J = 8.8 Hz, 2H), 2.63 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.70, 161.42, 131.31, 129.63, 115.62, 26.39.

methyl 4-hydroxybenzoate (**3k**)¹⁰: 86% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 6.74 (s, 1H), 3.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.44, 160.27, 132.01, 122.38, 115.33, 52.13.

4-hydroxybenzonitrile (**31**)¹⁰: 87% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 6.30 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.90, 134.37, 119.25, 116.45, 103.58.

4-hydroxybenzoic acid $(3m)^5$: 92% yield,¹H NMR (400 MHz, DMSO-*d*₆) δ 12.46 (s, 1H), 10.25 (s, 1H), 7.81 (d, *J* = 8.3 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.40, 166.86, 136.79, 126.56, 120.37.

4-hydroxybenzaldehyde $(3n)^5$: 68% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.86 (s, 1H), 7.83 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 8.4 Hz, 2H), 6.71 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.51, 161.86, 132.66, 129.76, 116.11.

4-(methylthio)phenol (**30**)¹¹: 79% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 (d, J = 8.7 Hz, 2H), 6.78 (d, J = 8.6 Hz, 2H), 5.02 (s, 1H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.09, 130.43, 128.94, 116.13, 18.11.

4-vinylphenol (**3p**)⁵: 70% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 (d, *J* = 8.3 Hz, 2H), 6.79 (d, *J* = 8.5 Hz, 2H), 6.64 (dd, *J* = 17.5, 10.9 Hz, 1H), 5.60 (d, *J* = 17.6 Hz, 1H), 5.12 (d, *J* = 10.8 Hz, 1H), 4.95 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 155.29, 136.18, 130.73, 127.67, 115.43, 111.73.

4-(trimethylsilyl)phenol (**3q**)¹²: 90% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 (d, *J* = 7.3 Hz, 2H), 6.83 (d, *J* = 7.2 Hz, 2H), 5.15 (s, 1H), 0.23 (d, *J* = 1.2 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 156.20, 135.02, 131.68, 114.95, -0.88.

4-isopropylphenol (**3r**)¹²: 91% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.11 (d, *J* = 8.5 Hz, 2H), 6.78 (d, *J* = 8.4 Hz, 2H), 4.96 (s, 1H), 2.86 (p, *J* = 6.9 Hz, 1H), 1.23 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 153.49, 141.29, 127.52, 115.15, 33.33, 24.27.

4-chlorophenol (**3s**)¹²: 85% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 (d, J = 8.9 Hz, 1H), 6.76 (d, J = 8.9 Hz, 1H), 5.37 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.08, 129.62, 125.79, 116.76.

4-bromophenol $(3t)^5$: 84% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 (d, J = 6.7 Hz, 1H), 6.76 (d, J = 6.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.56, 132.56, 117.27, 113.04.

4-iodophenol (**3u**)⁵: 86% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (d, J = 8.8 Hz, 1H), 6.55 (d, J = 8.8 Hz, 1H), 5.11 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 155.36, 138.53, 117.89, 82.81.

2-iodophenol $(3v)^{12}$: 88% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (d, J = 7.9 Hz, 1H), 7.34 – 7.28 (m, 1H), 7.04 (d, J = 8.2 Hz, 1H), 6.76 – 6.68 (m, 1H), 5.31 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.84, 138.32, 130.29, 122.50, 115.22, 85.82.

naphthalen-2-ol (**3w**)⁵: 80% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (t, J = 8.5 Hz, 2H), 7.67 (dd, J = 8.2, 1.2 Hz, 1H), 7.47 – 7.39 (m, 1H), 7.36 – 7.30 (m, 1H), 7.14 (d, J = 2.5 Hz, 1H), 7.10 (dd, J = 8.8, 2.6 Hz, 1H), 5.28 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 153.39, 134.65, 129.93, 129.00, 127.84, 126.61, 126.44, 123.70, 117.82, 109.58.

phenanthren-9-ol $(3\mathbf{x})^5$: 81% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.67 (d, J = 8.1 Hz, 1H), 8.62 – 8.56 (m, 1H), 8.39 – 8.27 (m, 1H), 7.77 – 7.61 (m, 3H), 7.57 – 7.45 (m, 2H), 6.99 (s, 1H), 5.33 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.54, 132.71, 131.60, 127.29, 127.01, 126.79, 126.48, 125.58, 124.35, 122.77, 122.65, 122.40, 106.16.

dibenzo[*b*,*d*]furan-4-ol (**3**y)⁵: 88% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 – 7.77 (m, 1H), 7.53 – 7.44 (m, 1H), 7.41 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.39 – 7.33 (m, 1H), 7.25 (t, *J* = 7.5, 1.0 Hz, 1H), 7.12 (t, *J* = 7.8 Hz, 1H), 6.93 (dd, *J* = 7.9, 1.1 Hz, 1H), 5.51 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.11, 144.12, 141.19, 127.34, 125.82, 124.65, 123.75, 123.06, 121.09, 113.68, 112.88, 111.85.

quinolin-3-ol (**3z**)¹¹: 73% yield; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.32 (s, 1H), 8.60 (d, *J* = 2.6 Hz, 1H), 8.04 – 7.87 (m, 1H), 7.85 – 7.69 (m, 2H), 7.61 – 7.46 (m, 4H). ¹³C NMR (101 MHz, DMSO) δ 151.39, 144.41, 142.93, 129.54, 129.11, 127.22, 127.03, 126.34, 115.78.

Cyclohexanol (**3aa**)¹⁰: 46% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 3.71 – 3.51 (m, 1H), 2.00 – 1.84 (m, 2H), 1.76 – 1.68 (m, 2H), 1.63 – 1.44 (m, 1H), 1.38 – 1.13 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 70.31, 35.56, 25.49, 24.18.

decan-1-ol (**3ab**)¹¹: 60% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 3.64 (t, *J* = 6.6 Hz, 2H), 1.63 – 1.52 (m, 2H), 1.49 (s, 1H), 1.40 – 1.18 (m, 14H), 0.88 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 63.12, 32.84, 31.95, 29.67, 29.61, 29.49, 29.38, 25.79, 22.73, 14.17.

'OH

9H-fluoren-3-ol (**3ac**)¹⁴: 90% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 8.2 Hz, 1H), 7.54 (d, J = 7.4 Hz, 1H), 7.46 – 7.35 (m, 1H), 7.29 (d, J = 7.0 Hz, 1H), 7.07 (d, J = 2.4 Hz, 1H), 6.94 – 6.84 (m, 1H), 5.02 (s, 1H), 3.89 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.03, 145.43, 142.67, 141.62, 135.01, 126.80, 125.72, 124.92, 120.75, 119.09, 114.14, 112.28, 36.94.

methyl 2-(1-(4-hydroxybenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (**3ad**)⁵: 60% yield; ¹H NMR (400 MHz, DMSO- d_6) δ 10.56 (s, 1H), 7.56 (d, J = 8.7 Hz, 2H), 7.03 (d, J = 2.5 Hz, 1H), 6.93 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.9 Hz, 1H), 6.71 (dd, J = 9.0, 2.5 Hz, 1H), 3.80 (s, 2H), 3.78 (s, 3H), 3.65 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 171.71, 168.85, 162.81, 155.66, 136.03, 132.88, 131.06, 130.53, 125.72, 116.12, 114.54, 111.86, 111.65, 101.78, 55.89, 52.27, 29.69, 13.19.

ethyl 4-(8-hydroxy-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11ylidene)piperidine-1-carboxylate (**3ae**)⁵: 62% yield; ¹H NMR (400 MHz, Chloroform*d*) δ 8.38 – 8.30 (m, 1H), 7.49 (dd, J = 7.7, 1.7 Hz, 1H), 7.12 (dd, J = 7.7, 4.9 Hz, 1H), 6.90 (d, J = 8.2 Hz, 1H), 6.68 (d, J = 2.4 Hz, 1H), 6.62 (dd, J = 8.3, 2.5 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.87 – 3.71 (m, 1H), 3.71 – 3.58 (m, 1H), 3.43 – 3.24 (m, 2H), 3.17 – 3.03 (m, 2H), 2.95 – 2.66 (m, 2H), 2.53 – 2.10 (m, 4H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.00, 156.89, 155.62, 145.59, 138.95, 138.11, 136.69, 134.52, 134.12, 130.26, 129.80, 122.40, 116.53, 113.36, 61.40, 44.75, 32.09, 31.57, 30.57, 14.72.

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3yl 4-hydroxybenzoate: 81% yield (**3af**)¹³; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 8.3 Hz, 2H), 6.86 (d, *J* = 8.3 Hz, 2H), 5.51 – 5.34 (m, 1H), 4.94 – 4.76 (m, 1H), 2.45 (d, *J* = 8.1 Hz, 2H), 2.07 – 1.77 (m, 7H), 1.73 – 1.43 (m, 7H), 1.42 – 1.29 (m, 10H), 1.19 –1.13 (m, 3H), 1.03 – 0.98 (m, 2H), 0.92 (d, *J* = 6.5 Hz, 3H), 0.87 (d, *J* = 6.6 Hz, 6H), 0.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.90, 159.74, 139.75, 131.91, 123.42, 122.78, 115.14, 74.44, 56.75, 56.20, 50.09, 42.38, 39.58, 38.33, 37.09, 36.71, 35.86, 31.99, 31.94, 28.29, 28.07, 27.99, 23.90, 22.87, 22.62, 21.11, 19.43, 18.77, 11.92.

isopropyl 2-(4-(4-hydroxybenzoyl)phenoxy)-2-methylpropanoate $(3ag)^5$: 75% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, J = 4.8 Hz, 2H), 7.69 (d, J = 4.5 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 5.09 (p, J = 6.3 Hz, 1H), 1.65 (s, 6H), 1.21 (d, J = 6.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 195.29, 173.48, 160.39, 159.29, 132.71, 131.91, 131.20, 130.10, 117.35, 115.27, 79.45, 69.53, 25.43, 21.56.

All the¹⁹F NMR were conducted in MeCN without adding deuterium reagent.

(G) References

- B. Holmes, J. Lee, K. A. Landon, A. Benavides-Serrato, T. Bashir, M. E. Jung, A. Lichtenstein and J. Gera, *J. Biol. Chem.*, 2016, **291**, 14146-14159.
- (2) Y. Li, J. Zhang, D. Li and Y. Chen, Org. Lett., 2018, 20, 3296-3299.
- (3) R. Samanta, J. O. Bauer, C. Strohmann and A. P. Antonchick, Org. Lett., 2012, 14, 5518–5521.
- (4) A. Iyer, S. Jockusch and J. Sivaguru, Chem. Commun., 2017, 53, 1692-1695.
- (5) Y. Jia, J. Meng, D. Hu, H. Kang and X. Jiang, Org. Chem. Front., 2023, 10, 2688-2694.
- (6) P.-F. Dai, X.-S. Ning, H. Wang, X.-C. Cui, J. Liu, J.-P. Qu and Y.-B. Kan, *Angew. Chem. Int. Ed.*, 2019, **58**, 5392-5395.
- (7) A. Gualandi, A. Savoini, R. Saporetti, P. Franchi, M. Lucarini and P. G. Cozzi, Org. Chem. Front., 2018, 5, 1573-1578.
- (8) X. Zhang, K. P. Rakesh, L. Ravindar and H.-L. Qin, *Green Chem.*, 2018, 20, 4790–4833.
- (9) W. Yin, X. Pan, W. Leng, J. Chen and H. He, Green Chem., 2019, 21, 4614-4618.
- (10) C.-H. Fan, T. Xu, Z. Ke and Y.-Y. Yeung, Org. Chem. Front., 2022, 9, 4091-4096.
- (11) L. Wei, J. Zhang and L. Xu, ACS Sustainable Chem. Eng., 2020, 8, 13894-13899.
- (12) Y.-T. Xu, C.-Y. Li, X.-B. Huang, W.-X. Gao, Y.-B. Zhou, M.-C. Liu and H.-Y.
 Wu, *Green Chem.*, 2019, 21, 4971-4975.
- (13) L. Min, J. Lin and W. Shu, Chin. J. Chem., 2023, 41, 2773-2778.
- (14) D. L. J. Clive and R. Sunasee, Org. Lett., 2007, 9, 2677-2680.
- (15) V. Elumalai and J. H. Hansen, RSC Adv., 2020, 10, 40582-40587.

