Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

for

Stereoselective Synthesis of $\Delta(1)$ -Pyrroline Sulfonamides *via* Chiral

Aldehyde Mediated Cascade Reaction

Wei Wen^{*†a}, Zhao-Pin Ai^{†a}, Zhu-Lian Wu^a, Tian Cai^a, Qi-Xiang Guo^{*a}

^a Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.

Table of Contents

1. General data	1
2. The synthesis of aldehyde catalysts 3g and 3h	1
3. Reaction conditions optimization	7
4. General procedure for the catalytic asymmetric reaction	8
5. Control experiment and mechanism research	30
6. X-Ray Structure of 4b	36
7. References	36
8. The spectrums of ¹ H NMR and ¹³ C NMR	. 37

1. General data

Solvents for reactions were dried appropriately before use: toluene, THF and Et₂O were dried by refluxing with sodium and benzophenone as indicator. All other reagents were directly used as purchased from Adamas-beta[®] or Energy Chemical. ¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance 600 MHz spectrometer. Chemical shifts (δ) are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Proton signal multiplicities are given as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad) or a combination of them. *J*-values are in Hz. HRMS (ESI-Q-TOF) spectra were recorded on Bruker Impact-II mass spectrometer. Enantiomer ratios were determined by HPLC (Chiralpak AD-H, IB-IG columns were purchased from Daicel Chemical Industries, LTD). Optical rotations were determined at $\lambda = 589$ nm (sodium D line) by using a Rudolph-API automatic polarimeter. The substrates $2^{[1]}$ and glycinate ester hydrochlorides^[2-3] were prepared according to previous literature, and the glycine tert-butyl ester was directly used as purchased. Chiral aldehyde catalysts $3a-3f^{[4]}$ were synthesized according to literature procedures.

2. The synthesis of aldehyde catalysts 3g and 3h

To a solution of (S)-1,1'-bi-2-naphthol (5.720 g, 20 mmol) and K₂CO₃ (8.292 g, 60 mmol) in

acetone (40 mL) was added KI (3.124 g, 1.37 mL, 22 mmol). The mixture was refluxed for 12 h. The mixture was filtered and washed with dichloromethane. The filtrate was evaporated under vacuum and the residue was purified by chromatography on silica gel (petroleum ether/dichloromethane = 3/1) to obtain **S-1** as white solid (5.219 g, 87 % yield).

A solution of NaH (1.114 g, 27.84 mmol, 60% W) in dry 40 mL THF was cool to 0 °C. S-1 (5.219 g, 17.40 mmol) was added slowly at 0 °C and stirred for 15 minutes. The mixture returned to room temperature and was stirred for 1 h. Bromomethyl methyl ether (3.263 g, 26.10 mmol) was added dropwise slowly to the mixture at 0 °C. The mixture returned to room temperature and was stirred for 5 h. A saturated ammonium chloride solution was added at 0 °C to quench the reaction. Then, the reaction mixture was extracted with EtOAc, and the organic phase was dried over anhydrous Na₂SO₄. After the solution was filtered and the solvent was evaporated under vacuum, the residue was recrystallized with petroleum ether and dichloromethane to give S-2 as white solid (5.096 g, 85 % yield).

To a 250 mL of three-necked round-bottle flask was added S-2 (5.096 g, 14.8 mmol), followed by dry THF (80 mL) and TMEDA (2.231 g, 2.88 mL, 19.2 mmol) under N₂. Hexane solution of ^{*n*}BuLi (7.7 mL, 19.2 mmol, 2.5 M in Hexane) was added dropwise slowly at -78 °C, and the mixture was stirred at room temperature. After stirring for 5 h, B(OMe)₃ (4.613 g, 4.96 mL, 44.4 mmol) was added dropwise slowly at -78 °C. After stirring at room temperature for 24 h, HCl (20 mL, 1M) was added at 0 °C and the mixture was stirred for 0.5 h. Then, the reaction mixture was extracted with EtOAc, and the organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum to give the crude S-3.

To a solution of the residue S-3 in CH₃Cl (50 mL) was added H₂O₂ (10.7 mL, 103.6 mmol, 30% W) at 0 °C. The reaction mixture was stirred at room temperature and monitored by TLC. After the reaction was completed, a saturated Na₂SO₃ solution was added until no bubbles were generated. Then, the reaction mixture was extracted with EtOAc, and the organic phase was dried over anhydrous Na₂SO₄. After the solution was filtered and the solvent was evaporated under vacuum, the residue was purified by chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 40/1/2) to obtain S-4 (3.073 g, 58 % yield).

(S)-2'-methoxy-2-(methoxymethoxy)-[1,1'-binaphthalen]-3-ol (S-4):

White solid; m.p. = 144-146 °C; $R_f = 0.22$ (petroleum ether/ethyl acetate = 5:1); [α]_D²⁵ = -37.45 (c = 0.32, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, J = 9.0 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.75 (d, J = 8.2 Hz, 1H), 7.47 (s, 1H), 7.43 (d, J = 9.1 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.23 (d, J = 7.8 Hz, 1H), 7.10 –

7.05 (m, 2H), 7.03 (d, J = 8.4 Hz, 1H), 4.75 (d, J = 6.1 Hz, 1H), 4.63 (d, J = 6.1 Hz, 1H), 3.77 (s,

3H), 3.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 154.74, 148.16, 145.08, 133.85, 132.24, 130.00, 129.06, 128.49, 127.98, 126.83, 126.68, 126.07, 125.77, 125.54, 125.14, 123.81, 123.76, 118.61, 113.51, 111.26, 99.68, 57.45, 56.54; HRMS(ESI): calcd. for C₂₃H₂₁O₄ (M+H)⁺: 361.1434, found: 361.1434.

To a solution of S-4 (3.073 g, 8.5 mmol) and K_2CO_3 (3.524 g, 25.5 mmol) in acetone (28 mL) was added CH₃I (4.828 g, 2.12 mL, 34 mmol). The reaction mixture was refluxed and monitored by TLC. After the reaction was completed, the mixture was filtered and washed with dichloromethane. The filtrate was evaporated under vacuum to give the residue S-5.

To a solution of S-5 in dioxane (20 mL) was added HCl (8.5 mL, 4 M), and the reaction mixture was stirred at 60 °C. After the reaction was completed, the mixture was cooled to room temperature, extracted with EtOAc. The combined organic layer was dried over anhydrous Na₂SO₄, filtrated and concentrated under vacuum. The residue was then purified by chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 40/1/2) to obtain S-6 (2.255 g, 80 % yield).

(S)-2',3-dimethoxy-[1,1'-binaphthalen]-2-ol (S-6):

White solid; m.p. = 209-211 °C; $R_f = 0.17$ (petroleum ether/ethyl acetate = 5:1); [α]_D²⁵ = -67.11 (c = 0.38, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, J =9.0 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.45 (d, J = 9.0Hz, 1H), 7.34 – 7.26 (m, 2H), 7.25 (s, 1H), 7.22 (d, J = 6.8 Hz, 1H), 7.18 (d, J =

8.5 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 7.04 (d, J = 8.3 Hz, 1H), 5.78 (s, 1H), 4.05 (s, 3H), 3.77 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 155.25, 147.32, 143.32, 133.76, 130.08, 129.29, 128.98, 128.02, 126.78, 126.64, 125.09, 124.82, 124.24, 123.82, 123.72, 117.62, 116.07, 114.08, 105.76, 56.86, 55.85; HRMS(ESI): calcd. for C₂₂H₁₉O₃ (M+H)⁺: 331.1329, found: 331.1328.

To a solution of **S-6** (2.255 g, 6.8 mmol) and DIPEA (2.193 g, 2.80 mL, 17.0 mmol) in dry CH_2Cl_2 (20 mL) was added Tf_2O (3.835 g, 2.29 mL, 13.6 mmol) at 0 °C. After the reaction mixture was stirred for 0.5 h, a saturated NaHCO₃ was added at 0 °C to quench the reaction. The mixture was extracted with CH_2Cl_2 . The combined organic layer was dried over anhydrous Na₂SO₄, filtrated and concentrated under vacuum. The residue was then purified by chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 60/1/2) to obtain **S-7** (2.826 g, 90 % yield).

(S)-2',3-dimethoxy-[1,1'-binaphthalen]-2-yl trifluoromethanesulfonate (S-7):

OMe OTf OMe

White solid; m.p. = 182-184 °C; $R_f = 0.27$ (petroleum ether/ethyl acetate = 5:1); $[\alpha]_D^{25} = +26.87$ (c = 0.26, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, J = 9.0 Hz, 1H), 7.90 - 7.78 (m, 2H), 7.51 - 7.45 (m, 1H), 7.43 (d, J = 9.1 Hz, 1H), 7.39 (s, 1H), 7.32 (t, J = 7.3 Hz, 1H), 7.24 (d, J = 8.3 Hz, 1H), 7.21 – 7.15 (m, 2H), 7.04 (d, J = 8.5 Hz, 1H), 4.09 (s, 3H), 3.81 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 155.17, 149.37, 137.68, 133.56, 133.16, 131.03, 128.79, 128.19, 127.97, 127.28, 126.94, 126.91, 126.83, 124.91, 124.79, 123.68, 121.32, 119.20, 117.07, 114.99, 112.98, 107.90, 56.30, 56.08; HRMS(ESI): calcd. for C₂₃H₁₇F₃NaO₅S (M+Na)⁺: 485.0641, found: 485.0640.

To a 100 mL of three-necked round-bottle flask was added **S-7** (2.826 g, 6.1 mmol) and NiCl₂(dppp) (0.331 g, 0.61 mmol) under N₂, followed by dry THF (20 mL). CH₃MgBr (9.2 mL, 27.5 mmol, 3.0 M in THF) was added dropwise at 0 °C, and then the mixture was refluxed. After the reaction was completed, H₂O was added to quench the reaction. The mixture was extracted with EtOAc. The combined organic layer was dried over anhydrous Na₂SO₄, filtrated and concentrated under vacuum. The residue was then purified by chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 80/1/2) to obtain **S-8** (1.795 g, 91 % yield).

(S)-2',3-dimethoxy-2-methyl-1,1'-binaphthalene (S-8):

White solid; m.p. = 232-235 °C; $R_f = 0.40$ (petroleum ether/ethyl acetate = 20:1); [α]_D²⁵ = -27.84 (c = 0.49, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J =9.0 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.43 (d, J = 9.0Hz, 1H), 7.37 – 7.27 (m, 2H), 7.22 (s, 1H), 7.19 (t, J = 7.5 Hz, 1H), 7.11 – 6.93 (m, 3H), 4.01 (s, 3H), 3.74 (s, 3H), 1.97 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 156.47, 154.44, 134.02, 133.63, 133.15, 129.37, 129.09, 128.62, 128.05, 127.87, 126.65, 126.52, 125.86, 125.24, 125.15, 123.59, 123.43, 121.89, 113.80, 104.39, 56.61, 55.30, 13.68; HRMS(ESI): calcd. for C₂₃H₂₁O₂ (M+H)⁺: 329.1536, found: 329.1536.

To a 100 mL of round-bottle flask was added S-8 (1.795 g, 5.5 mmol), NBS (8.811 g, 49.5 mmol) and AIBN (0.090 g, 0.55 mmol), followed by cyclohexane (40 mL). Then, the mixture was stirred at 80 °C for 48 h. The mixture was cooled to room temperature, diluted with H₂O, and extracted with EtOAc. The combined organic layer was dried over anhydrous Na₂SO₄, filtrated and concentrated under vacuum. The residue was then purified by chromatography on silica gel (petroleum ether/ethyl acetate = 80/1) to obtain S-9h.

A solution of **S-9h** in DMF (22 mL) was added KOAc (2.695 g, 27.5 mmol) and ${}^{n}Bu_{4}NBr$ (0.886 g, 2.75 mmol), the mixture was stirred at 80 °C. After the reaction was completed, the mixture was cooled to room temperature, diluted with EtOAc and saturated NaCl, extracted with EtOAc. The combined organic layer was washed with saturated NaCl five times, dried over anhydrous Na₂SO₄, filtrated and concentrated under vacuum to obtain the residue.

Dissolve the residue in 14 mL dioxane and KOH solution (14 mL, 50% W) was added, the mixture was stirred at 80 °C. After the reaction was completed, the mixture was cooled to room

temperature, diluted with EtOAc and H₂O, extracted with EtOAc. The combined organic layer was dried over Na_2SO_4 , filtrated and concentrated under vacuum. The residue was then purified by chromatography on silica gel (petroleum ether/ethyl acetate = 100/1) to obtain **S-10h** (1.5123 g, 55% yield).

(S)-(3',4-dibromo-2',3-dimethoxy-[1,1'-binaphthalen]-2-yl)methanol (S-10h):

White solid; m.p. = 149-152 °C; $R_f = 0.20$ (petroleum ether/ethyl acetate = 5:1); $[\alpha]_D^{25} = +36.69$ (c = 0.19, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.36 (d, J = 8.5 Hz, 1H), 8.05 (s, 1H), 7.94 (d, J = 9.1 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.49 (d, J = 9.1 Hz, 1H), 7.27 (d, J = 10.1 Hz, 1H), 7.22 (t, J = 7.6 Hz,

1H), 7.00 (d, J = 8.4 Hz, 1H), 6.79 (d, J = 9.0 Hz, 1H), 4.67 – 4.58 (m, 1H), 4.30 – 4.22 (m, 1H), 4.15 (s, 3H), 3.79 (s, 3H), 2.45 – 2.32 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 154.67, 154.58, 134.45, 134.37, 133.09, 132.36, 131.28, 130.46, 130.19, 129.98, 129.50, 127.71, 127.08, 126.85, 126.63, 126.16, 120.50, 118.09, 116.54, 114.64, 62.33, 59.82, 56.83; HRMS(ESI): calcd. for C₂₃H₁₈Br₂NaO₃ (M+Na)⁺: 522.9515, found: 522.9514.

To a solution of **S-10h** (1.5123 g, 3 mmol) in dry DCM (30 mL) was added DMP (3.816 g, 9 mmol) at 0 °C. Then, the mixture was stirred at room temperature. After the reaction was completed, saturated $Na_2S_2O_3$ was added to quench the reaction. The mixture was extracted with DCM. The combined organic layer was dried over Na_2SO_4 , filtrated and concentrated under vacuum. The residue was then purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) to obtain **S-11h** (1.387 g, 92% yield).

(S)-3',4-dibromo-2',3-dimethoxy-[1,1'-binaphthalene]-2-carbaldehyde (S-11h):

To a solution of **S-11h** (1.387 g, 2.77 mmol) in dry DCM (28 mL) was added BBr₃ (12.47 mL, 12.47 mmol, 1.0 M in DCM) at -78 $^{\circ}$ C under N₂. After stirring at -78 $^{\circ}$ C for 1 h, continue stirring the mixture at room temperature for 0.5 h, and the HCl (1.0 M) was added to quench the reaction. The mixture was extracted with DCM. The combined organic layer was dried over Na₂SO₄, filtrated and concentrated under vacuum. The residue was then purified by chromatography on

silica gel (petroleum ether/ethyl acetate = 100/1) to obtain **3h** (1.094 g, 84% yield). (S)-3',4-dibromo-2',3-dihydroxy-[1,1'-binaphthalene]-2-carbaldehyde (3h):

1H), 6.82 (d, J = 9.0 Hz, 1H), 5.30 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 197.05, 153.66, 151.99, 140.42, 136.97, 132.81, 132.05, 131.07, 130.59, 130.27, 129.83, 127.89, 127.17, 126.67, 126.23, 125.77, 120.52, 118.69, 118.10, 113.06, 108.85; HRMS(ESI): calcd. for C₂₁H₁₃Br₂O₃ (M+H)⁺: 470.9226, found: 470.9225.

To a 100 mL of round-bottle flask was added S-8 (1.207 g, 3.68 mmol), NBS (3.275 g, 18.4 mmol) and AIBN (0.060 g, 0.37 mmol), followed by cyclohexane (26 mL). Then, the mixture was stirred at 80 °C for 6 h. The mixture was cooled to room temperature, extracted with EtOAc. The combined organic layer was dried over Na₂SO₄, filtrated and concentrated under vacuum. The residue was then purified by chromatography on silica gel (petroleum ether/ethyl acetate = 80/1) to obtain S-9g.

S-10g, S-11g and 3g were prepared according to the steps of preparing S-10h, S-11h, and 3h. (S)-(4-bromo-2',3-dimethoxy-[1,1'-binaphthalen]-2-yl)methanol (S-10g):

Br OMe V OH [0] OMe 8

White solid; m.p. = 134-137 °C; $R_f = 0.21$ (petroleum ether/ethyl acetate = 5:1); $[\alpha]_D^{25} = +16.67$ (c = 0.29, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.35 (d, J =8.5 Hz, 1H), 8.03 (d, J = 9.1 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.54 (t, J = 7.6Hz, 1H), 7.47 (d, J = 9.1 Hz, 1H), 7.34 (t, J = 7.4 Hz, 1H), 7.24 – 7.21 (m, 2H),

7.06 (d, J = 8.4 Hz, 1H), 6.91 (d, J = 8.5 Hz, 1H), 4.64 (d, J = 11.6 Hz, 1H), 4.27 (d, J = 11.6 Hz, 1H), 4.15 (s, 3H), 3.78 (s, 3H), 2.41 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 154.58, 154.39, 135.16, 134.44, 133.83, 133.05, 131.46, 130.44, 129.19, 128.07, 127.60, 127.16, 126.99, 126.86, 125.99, 124.97, 124.20, 120.24, 116.28, 113.67, 62.34, 59.84, 56.84; HRMS(ESI): calcd. for C₂₃H₁₉BrNaO₃ (M+Na)⁺: 445.0410, found: 445.0410.

(S)-4-bromo-2',3-dimethoxy-[1,1'-binaphthalene]-2-carbaldehyde (S-11g):

Br OMe OMe Pale yellow solid; m.p. = 134-136 °C; $R_f = 0.41$ (petroleum ether/ethyl acetate = 5:1); $[\alpha]_D^{25} = +3.82$ (c = 0.13, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 9.82 (s, 1H), 8.39 (d, J = 8.6 Hz, 1H), 8.05 (d, J = 9.1 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.69 – 7.61 (m, 1H), 7.43 (d, J = 9.1 Hz, 1H), 7.33 (d, J = 7.1 Hz, 1H), 7.28 – 7.22

(m, 3H), 6.94 (d, J = 8.5 Hz, 1H), 4.07 (s, 3H), 3.77 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 191.00, 154.82, 153.69, 142.05, 135.17, 133.88, 131.09, 130.90, 130.09, 128.94, 128.72, 128.14, 127.36, 127.35, 127.30, 126.57, 124.67, 123.97, 117.89, 117.32, 112.81, 62.51, 56.35;

HRMS(ESI): calcd. for $C_{23}H_{18}BrO_3 (M+H)^+$: 421.0434, found: 421.0433. (S)-4-bromo-2',3-dihydroxy-[1,1'-binaphthalene]-2-carbaldehyde (3g):

Br Vellow solid; m.p. = 169-171 °C;
$$R_f = 0.18$$
 (petroleum ether/ethyl acetate = 5:1);
 $[\alpha]_D^{25} = -45.55$ (c = 0.54, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 11.94 (s, 1H),
OH 9.55 (s, 1H), 8.31 (d, J = 8.5 Hz, 1H), 7.98 (d, J = 8.9 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.44 - 7.32 (m, 2H), 7.32 - 7.26 (m, 2H), 7.24

-7.19 (m, 1H), 6.94 (d, J = 8.4 Hz, 1H), 5.12 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 197.42, 153.67, 151.66, 141.37, 136.94, 134.29, 131.95, 131.56, 128.72, 128.28, 128.03, 127.83, 127.40, 126.56, 125.61, 124.49, 124.21, 120.61, 117.49, 112.74, 108.50; HRMS(ESI): calcd. for C₂₁H₁₄BrO₃ (M+H)⁺: 391.0121, found: 391.0120.

3. Reaction conditions optimization

Table S1: Aldehyde catalyst screening

O H ₂ N Ja	0,0 S-N 2a	S-3 (10 mol%) <u>TMG (1.0 equiv.)</u> toluene, 60 °C Ph	Ph N COO'Bu O'NH ₂ ent-4a	$\begin{array}{c} \textbf{S-3a: } R = H \\ \textbf{OH} \textbf{S-3b: } R = TMS \\ \textbf{S-3b: } R = TMS \\ \textbf{S-3c: } R = Me \\ \textbf{S-3d: } R = Ph \\ \textbf{S-3e: } R = I \\ \end{array}$
entry	3	t (min)	yield (%) ^[b]	ee (%) ^[c]
1	3a	60	20	12
2	3b	50	16	30
3	3c	35	15	20
4	3d	35	10	10
6	3e	20	3	0

[a] Unless noted otherwise, reaction conditions: 1a (0.15 mmol), 2a (0.10 mmol), S-3 (0.01 mmol) and TMG (0.10 mmol) in toluene (1.0

mL), carried out in air at 60 °C. [b] Isolated yield. [c] Determined by chiral HPLC analysis.

Table S2: Screening the volume of toluene

2	1.0	6	92	88:12	72
3	2.0	5	78	89:11	69

[a] Unless noted otherwise, reaction conditions: **1a** (0.15 mmol), **2a** (0.10 mmol), *ent*-**3h** (0.01 mmol) and pyrrolidine (0.1 mmol) in toluene, carried out in air at 60 $^{\circ}$ C. [b] Isolated yield. [c] Determined by chiral HPLC analysis. [d] Determined by chiral HPLC analysis.

Table S3: Temperature screening

H ₂ N 0	< + S N 2a	<i>ent-</i> 3h (7 Pyrrolidine toluene (0.4 Ph	10 mol%) (<u>1.5 equiv.)</u> 5 mL), T °C S O 4a	Ph COO ^t Bu	Br OH OH OH ent- 3h
entry	Τ ([°] C)	T (h)	yield (%) ^[b]	$\mathbf{dr}^{[c]}$	ee (%) ^[d]
1	60	5	96	88:12	77
2	40	5	96	87:13	80
3	20	5	92	88:12	82
4	0	5	86	87:13	87
5	-10	5	89	89:11	87
6	-20	5	71	92:8	88

[a] Unless noted otherwise, reaction conditions: **1a** (0.15 mmol), **2a** (0.10 mmol), **3h** (0.01 mmol) and pyrrolidine (0.15 mmol) in toluene (0.5 mL), carried out in air at T $^{\circ}$ C. [b] Isolated yield. [c]Determined by chiral HPLC analysis. [d] Determined by chiral HPLC analysis.

4. General procedure for the catalytic asymmetric reaction

General procedure a. A dry and clean tube was charged with 2a (53.8 mg, 0.2 mmol) and aldehyde catalyst *ent*-3h (9.4 mg, 0.02 mmol). After the addition of toluene (2.0 mL), the reaction mixture was stirred at 0 °C for 5 minutes. Then, glycine tert-butyl ester 1a (0.3 mmol), quinuclidine (22.2 mg, 0.2 mmol) and pyrrolidine (7.1 mg, 0.1 mmol) were added, the reaction mixture was stirred at 0 °C and monitored by TLC. After the reaction was completed, the solvent was removed by rotary evaporation, and the residue was purified by flash chromatography column on silica gel (eluent: petroleum ether/ethyl acetate =3/1) to give the product 4a.

General procedure b. A dry and clean tube was charged with glycinate ester hydrochloride **1** (0.3 mmol), K_2CO_3 (20.7 mg, 0.15 mmol). After the addition of toluene (2.0 mL), the reaction mixture was stirred at room temperature for 30 minutes. Then, the reaction mixture was stirred at 0 °C for 5 minutes. **2a** (53.8 mg, 0.2 mmol), aldehyde catalyst *ent*-**3h** (9.4 mg, 0.02 mmol), quinuclidine (22.2 mg, 0.2 mmol) and pyrrolidine (7.1 mg, 0.1 mmol) were added. The reaction mixture was stirred at 0 °C and monitored by TLC. After the reaction was completed, the solvent was removed under vacuum, and the residue was purified by flash chromatography column on silica gel (eluent: petroleum ether/ethyl acetate =3/1) to give the corresponding product **4**.

tert-butyl (2S,3R)-3-phenyl-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (4a):

Colorless oil (74.2 mg, 93%); $R_f = 0.29$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 94% by HPLC analysis on Daicel Chirapak IB column (hexane/isopropanol = 80/20, flow rate 0.5 mL/min, T = 30 °C), UV 220 nm, t_R (major) 19.257 min, t_R (minor) 24.205

min; $[\alpha]_D^{25} = +29.82$ (c = 0.63, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 7.8 Hz, 1H), 7.61 (t, J = 7.5 Hz, 1H), 7.59 – 7.51 (m, 2H), 7.39 – 7.34 (m, 2H), 7.34 –7.30 (m, 2H), 7.26 (t, J =7.1 Hz, 1H), 6.30 (s, 2H), 4.92 (d, J = 6.9 Hz, 1H), 3.91 –3.80 (m, 1H), 3.71 –3.61 (m, 1H), 3.23 – 3.10 (m, 1H), 1.47 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.25, 170.77, 142.62, 141.17, 133.23, 132.09, 129.98, 129.25, 128.91, 128.50, 127.29, 127.05, 83.50, 82.32, 48.55, 46.44, 28.03; HRMS(ESI): calcd. for C₂₁H₂₅N₂O₄S (M+H)⁺: 401.1530, found: 401.1527.

methyl (2S,3R)-3-phenyl-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (4b):

White solid (62.9 mg, 88%); m.p. = 123-126 °C; $R_f = 0.11$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 91% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol =

70/30, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, $t_R(major)$ 57.801 min, $t_R(minor)$ 67.474 min; $[\alpha]_D^{25} = +38.44$ (c = 0.42, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, *J* = 7.5 Hz, 1H), 7.62 (t, *J* = 7.1 Hz, 1H), 7.59 – 7.51 (m, 2H), 7.39 – 7.34 (m, 2H), 7.34 – 7.30 (m, 2H), 7.29 – 7.26 (m, 1H), 6.21 (s, 2H), 5.05 (d, *J* = 6.5 Hz, 1H), 3.96 – 3.87 (m, 1H), 3.78 (s, 3H), 3.74 – 3.65 (m, 1H), 3.22 – 3.12 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 176.98, 172.07, 142.46, 141.08, 133.15, 132.15, 130.06, 129.16, 129.04, 128.48, 127.20, 127.16, 82.73, 52.55, 48.83, 46.13; HRMS(ESI): calcd. for C₁₈H₁₉N₂O₄S (M+H)⁺: 359.1060, found: 359.1058.

ethyl (2S,3R)-3-phenyl-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (4c):

White solid (56.4 mg, 76%); m.p. = 101-103 °C; $R_f = 0.15$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 88% by HPLC analysis on Daicel Chirapak ID column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 23.847 min,

t_R(minor) 38.562 min; $[α]_D^{25}$ = +31.15 (c = 0.32, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, *J* = 7.8 Hz, 1H), 7.64 – 7.60 (m, 1H), 7.59 – 7.51 (m, 2H), 7.40 – 7.34 (m, 2H), 7.34 –7.30 (m, 2H), 7.29 – 7.26 (m, 1H), 6.21 (s, 2H), 5.02 (d, *J* = 6.6 Hz, 1H), 4.32 – 4.19 (m, 2H), 3.95 –3.87 (m, 1H), 3.74 – 3.65 (m, 1H), 3.22 – 3.14 (m, 1H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.82, 171.63, 142.50, 141.13, 133.21, 132.14, 130.04, 129.18, 129.01, 128.51, 127.21, 127.17, 82.82, 61.64, 48.74, 46.24, 14.17; HRMS(ESI): calcd. for C₁₉H₂₁N₂O₄S (M+H)⁺: 373.1217, found: 373.1213.

isopropyl (2S,3R)-3-phenyl-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (4d):

O O O O O O O O O O O O Pr O O O Pr O O O Pr White solid (62.7 mg, 81%); m.p. = 121-124 °C; $R_f = 0.21$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 92% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 34.947 min,

t_R(minor) 29.745 min; $[α]_D^{25}$ = +26.84 (c = 0.49, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, *J* = 7.8 Hz, 1H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.58 – 7.51 (m, 2H), 7.39 – 7.34 (m, 2H), 7.34 –7.30 (m, 2H), 7.29 – 7.26 (m, 1H), 6.24 (s, 2H), 5.16 – 5.07 (m, 1H), 4.98 (d, *J* = 6.8 Hz, 1H), 3.92 – 3.84 (m, 1H), 3.72 – 3.64 (m, 1H), 3.23 – 3.14 (m, 1H), 1.27 (t, *J* = 6.2 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 176.67, 171.22, 142.47, 141.14, 133.24, 132.12, 130.00, 129.18, 128.96, 128.50, 127.25, 127.13, 82.90, 69.38, 48.66, 46.45, 21.78, 21.74; HRMS(ESI): calcd. for C₂₀H₂₃N₂O₄S (M+H)⁺: 387.1373, found: 387.1371.

tert-butyl (2S,3R)-5-(2-sulfamoylphenyl)-3-(o-tolyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (4e):

White solid (80.3 mg, 97%); m.p. = 167-169 °C; $R_f = 0.25$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 94% by HPLC analysis on Daicel Chirapak IB column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 25.895 min,

t_R(minor) 19.701 min; $[α]_D^{25}$ = +18.31 (c = 0.58, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, *J* = 7.8 Hz, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.58 – 7.52 (m, 2H), 7.27 – 7.21 (m, 2H), 7.19 – 7.13 (m, 2H), 6.33 (s, 2H), 5.01 (d, *J* = 5.8 Hz, 1H), 4.19 – 4.11 (m, 1H), 3.76 – 3.65 (m, 1H), 3.11 – 3.01(m, 1H), 2.43 (s, 3H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.22, 170.74, 141.67, 141.21, 135.58, 133.19, 132.11, 130.46, 130.02, 129.42, 128.56, 127.03, 126.78, 126.01, 83.80, 82.42, 48.65, 41.08, 28.03, 19.98; HRMS(ESI): calcd. for C₂₂H₂₇N₂O₄S (M+H)⁺: 415.1686, found: 415.1686.

tert-butyl (2S,3R)-3-(2-methoxyphenyl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2carboxylate (4f):

White solid (75.7 mg, 88%); m.p. = 148-150 °C; $R_f = 0.26$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 82% by HPLC analysis on Daicel Chirapak ID column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R(major) 12.510 min,

 $t_{R}(\text{minor})$ 19.032 min; $[\alpha]_{D}^{25} = +5.07$ (c = 0.72, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, J = 7.8 Hz, 1H), 7.60 (t, J = 7.4 Hz, 1H), 7.55 – 7.50 (m, 2H), 7.28 – 7.23 (m, 2H), 6.94 (t, J = 7.5Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H), 6.38 (s, 2H), 5.06 (d, J = 7.2 Hz, 1H), 3.99 – 3.93 (m, 1H), 3.85 (s, 3H), 3.53 – 3.45 (m, 1H), 3.34 – 3.27 (m, 1H), 1.46 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.30, 171.47, 157.27, 141.17, 133.67, 132.02, 129.87, 129.76, 129.29, 128.47, 128.29, 120.76, 110.83, 81.95, 81.24, 55.17, 46.44, 42.95, 28.03; HRMS(ESI): calcd. for C₂₂H₂₇N₂O₅S (M+H)⁺: 431.1635, found: 431.1632.

Peak	RetTime [min]	Туре	Width[min]	Area[mAU^s]	Height[mAU]	Area%	Peak	RetTime [min]	Туре	Width[min]	Area[mAU^s]	Height[mAU]	Area%
	12.538	BV	1.8670	15568.1018	383.8908	50.0978		12.510	BM m	0.6308	20225.1202	492.8299	90.9600
	18.572	BB	4.5683	15507.3471	288.0930	49.9022		19.032	BM m	0.7960	2010.0533	37.6418	9.0400

tert-butyl (2S,3R)-3-(2-fluorophenyl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2carboxylate (4g):

COO'Bu N O S'NH2 White solid (70.0 mg, 82%); m.p. = 145-147 °C; $R_f = 0.33$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 91% by HPLC analysis on Daicel Chirapak IE column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 23.814 min,

t_R(minor) 31.253 min; $[\alpha]_D^{25} = +18.31$ (c = 0.58, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 7.9 Hz, 1H), 7.61 (t, J = 7.5 Hz, 1H), 7.58 – 7.51 (m, 2H), 7.35 (t, J = 7.6 Hz, 1H), 7.29 – 7.23 (m, 1H), 7.15 (t, J = 7.5 Hz, 1H), 7.11 – 7.03 (m, 1H), 6.26 (s, 2H), 4.98 (d, J = 7.4 Hz, 1H), 4.08 – 3.99 (m, 1H), 3.65 – 3.56 (m, 1H), 3.27 – 3.181 (m, 1H), 1.47 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.27, 170.73, 161.64, 160.02, 141.14, 133.32, 132.11, 129.95, 129.51, 129.48, 129.18, 129.09, 128.77, 128.72, 128.48, 124.66, 124.64, 115.87, 115.72, 82.43, 81.93, 47.21, 40.76, 27.96; HRMS(ESI): calcd. for C₂₁H₂₄FN₂O₄S (M+H)⁺: 419.1435, found: 419.1432.

tert-butyl (2S,3R)-3-(3-fluorophenyl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2carboxylate (4h):

White solid (33.2 mg, 40%); m.p. = 135-138 °C; $R_f = 0.20$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 91% by HPLC analysis on Daicel Chirapak ID column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 10.421 min,

t_R(minor) 17.672 min; $[\alpha]_D^{25} = +24.56$ (c = 0.26, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, J = 7.8 Hz, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.57 (t, J = 7.7 Hz, 1H), 7.54 (d, J = 7.5 Hz, 1H), 7.32 (dd, J = 14.1, 7.7 Hz, 1H), 7.11 (d, J = 7.6 Hz, 1H), 7.04 (d, J = 9.9 Hz, 1H), 6.96 (t, J = 8.4 Hz, 1H), 6.25 (s, 2H), 4.90 (d, J = 6.9 Hz, 1H), 3.92 – 3.81 (m, 1H), 3.70 – 3.62 (m, 1H), 3.21 – 3.11 (m, 1H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.11, 170.50, 163.85, 162.22, 145.12,

145.08, 141.20, 133.09, 132.14, 130.52, 130.47, 130.09, 129.19, 128.54, 122.97, 122.95, 114.43, 114.28, 114.08, 113.94, 83.28, 82.58, 48.36, 46.16, 46.16, 28.04; **HRMS(ESI)**: calcd. for C₂₁H₂₄FN₂O₄S (M+H)⁺: 419.1435, found: 419.1434.

 $tert-butyl\ (2S, 3R)-3-(3-chlorophenyl)-5-(2-sulfamoylphenyl)-3, 4-dihydro-2H-pyrrole-2H-pyrrole-2H-pyrrol$

carboxylate (4i):

White solid (32.2 mg, 37%); m.p. = 109-112 °C; $R_f = 0.21$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 87% by HPLC analysis on Daicel Chirapak IB column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 18.705 min,

t_R(minor) 21.935 min; $[α]_D^{25}$ = +17.32 (c = 0.26, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, *J* = 7.8 Hz, 1H), 7.62 (t, *J* = 7.3 Hz, 1H), 7.57 (t, *J* = 7.6 Hz, 1H), 7.54 (d, *J* = 7.5 Hz, 1H), 7.32 (s, 1H), 7.30 (t, *J* = 7.8 Hz, 1H), 7.25 (d, *J* = 8.1 Hz, 1H), 7.22 (d, *J* = 7.5 Hz, 1H), 6.25 (s, 2H), 4.89 (d, *J* = 7.0 Hz, 1H), 3.88 – 3.80 (m, 1H), 3.70 – 3.60 (m, 1H), 3.20 – 3.11 (m, 1H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.09, 170.46, 144.55, 141.20, 134.60, 133.06, 132.15, 130.28, 130.10, 129.19, 128.55, 127.65, 127.28, 125.49, 83.24, 82.61, 48.30, 46.13, 28.04; HRMS(ESI): calcd. for C₂₁H₂₄ClN₂O₄S (M+H)⁺: 435.1140, found: 435.1139.

tert-butyl (2S,3R)-5-(2-sulfamoylphenyl)-3-(m-tolyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (4j):

White solid (74.8 mg, 90%); m.p. = 112-114 °C; $R_f = 0.24$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 93% by HPLC analysis on Daicel Chirapak IB column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 14.566 min,

 $t_{R}(\text{minor})$ 22.791 min; $[\alpha]_{D}^{25} = +28.05$ (c = 0.59, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, J = 8.0 Hz, 1H), 7.64 – 7.59 (m, 1H), 7.58 – 7.52 (m, 2H), 7.24 (t, J = 7.6 Hz, 1H), 7.14 (s, 1H), 7.11 (d, J = 7.8 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 6.30 (s, 2H), 4.95 – 4.87 (m, 1H), 3.86 – 3.77 (m, 1H), 3.68 – 3.60 (m, 1H), 3.21 – 3.11 (m, 1H), 2.36 (s, 3H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.26, 170.83, 142.61, 141.20, 138.60, 133.26, 132.10, 129.99, 129.32, 128.81, 128.53, 128.05, 127.79, 124.29, 83.53, 82.30, 48.52, 46.32, 28.05, 21.46; HRMS(ESI): calcd. for C₂₂H₂₇N₂O₄S (M+H)⁺: 415.1686, found: 415.1683.

tert-butyl (2S,3R)-3-(3-methoxyphenyl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2carboxylate (4k):

Colorless oil (66.6 mg, 77%); $R_f = 0.21$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 90% by HPLC analysis on Daicel Chirapak IE column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 17.350 min, t_R (minor) 26.127

min; $[\alpha]_D^{25} = +30.46$ (c = 0.52, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 7.8 Hz, 1H), 7.62 (t, J = 7.4 Hz, 1H), 7.58 – 7.52 (m, 2H), 7.26 (t, J = 7.9 Hz, 1H), 6.90 (d, J = 7.6 Hz, 1H), 6.87 (s, 1H), 6.83 – 6.78 (m, 1H), 6.29 (s, 2H), 4.94 (d, J = 6.6 Hz, 1H), 3.86 – 3.78 (m, 4H), 3.71 – 3.61 (m, 1H), 3.20 – 3.11 (m, 1H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.26, 170.76, 160.09, 144.48, 141.18, 133.21, 132.12, 130.01, 129.90, 129.29, 128.50, 119.55, 112.80, 112.56, 83.59, 82.35, 55.34, 48.53, 46.31, 28.05; HRMS(ESI): calcd. for C₂₂H₂₇N₂O₅S (M+H)⁺: 431.1635, found: 431.1634.

tert-butyl (2S,3R)-3-(4-fluorophenyl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (4l):

White solid (47.2 mg, 56%); m.p. = 148-150 °C; $R_f = 0.19$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 92% by HPLC analysis on Daicel Chirapak ID column (hexane/isopropanol = 80/20, flow rate 1.0 mL/min, T = 30 °C), UV 220

nm, $t_R(major)$ 19.693 min, $t_R(minor)$ 34.195 min; $[\alpha]_D^{25} = +28.26$ (c = 0.39, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, J = 7.8 Hz, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.59 – 7.51 (m, 2H), 7.32 – 7.27 (m, 2H), 7.04 (t, J = 8.6 Hz, 2H), 6.26 (s, 2H), 4.87 (d, J = 6.9 Hz, 1H), 3.88 – 3.80 (m, 1H), 3.70 – 3.62 (m, 1H), 3.17 – 3.07 (m, 1H), 1.47 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.21, 170.63, 162.68, 161.05, 141.17, 138.29, 138.27, 133.14, 132.13, 130.07, 129.22, 128.86, 128.81, 128.53, 115.81, 115.67, 83.53, 82.44, 48.58, 45.80, 28.04; HRMS(ESI): calcd. for C₂₁H₂₄FN₂O₄S (M+H)⁺: 419.1435, found: 419.1433.

tert-butyl (2S,3R)-3-(4-chlorophenyl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (4m):

White solid (53.0 mg, 61%); m.p. = 140-144 °C; $R_f = 0.21$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 90% by HPLC analysis on Daicel Chirapak ID column (hexane/isopropanol = 80/20, flow rate 1.0 mL/min, T = 30 °C), UV 220

nm, $t_R(major)$ 19.969 min, $t_R(minor)$ 36.705 min; $[\alpha]_D^{25} = +28.09$ (c = 0.41, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 7.8 Hz, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.53 (d, J = 7.5 Hz, 1H), 7.34 –7.30 (m, 2H), 7.29 – 7.24 (m, 2H), 6.26 (s, 2H), 4.87 (d, J = 6.9 Hz, 1H), 3.88 – 3.78 (m, 1H), 3.69 – 3.60 (m, 1H), 3.17 – 3.06 (m, 1H), 1.47 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.14, 170.53, 141.18, 141.07, 133.07, 132.86, 132.14, 130.10, 129.21, 129.05, 128.72, 128.53, 83.41, 82.53, 48.47, 45.88, 28.05; HRMS(ESI): calcd. for C₂₁H₂₄ClN₂O₄S (M+H)⁺: 435.1140, found: 435.1138.

tert-butyl (2S,3R)-3-(4-bromophenyl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (4n):

White solid (50.3 mg, 53%); m.p. = 143-145 °C; $R_f = 0.21$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 90% by HPLC analysis on Daicel Chirapak ID column (hexane/isopropanol = 80/20, flow rate 1.0 mL/min, T = 30 °C), UV 220

nm, $t_R(major)$ 20.245 min, $t_R(minor)$ 37.980 min; $[\alpha]_D^{25} = +23.31$ (c = 0.36, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.19 – 8.13 (m, 1H), 7.65 – 7.60 (m, 1H), 7.58 – 7.55 (m, 1H), 7.55 – 7.51 (m, 1H), 7.50 – 7.45 (m, 2H), 7.24 – 7.16 (m, 2H), 6.24 (s, 2H), 4.90 – 4.82 (m, 1H), 3.87 – 3.78 (m, 1H), 3.69– 3.62 (m, 1H), 3.15 –3.08 (m, 1H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.13, 170.51, 141.61, 141.17, 133.05, 132.15, 132.01, 130.11, 129.21, 129.09, 128.54, 120.91, 83.37, 82.56, 48.43, 45.92, 28.05; HRMS(ESI): calcd. for C₂₁H₂₄BrN₂O₄S (M+H)⁺: 479.0635, found: 479.0633.

Peak	RetTime [min]	Туре	Width[min]	Area[mAU^s]	Height[mAU]	Area%	Peak	RetTime [min]	Туре	Width[min]	Area[mAU^s]	Height[mAU]	Area%
	20.317	BB	7.7467	42257.0251	266.2135	50.0766		20.245	MM m	2.5017	71348.7626	446.1725	95.2471
	36.625	BB	12.5133	42127.6720	378.7731	49.9234		37.980	MM m	1.6104	3560.3659	32.9551	4.7529

tert-butyl (2S,3R)-3-(4-cyanophenyl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (40):

White solid (74.1 mg, 87%); m.p. = 175-177 °C; $R_f = 0.25$ (petroleum ether/ethyl acetate = 3:2); the enantiomeric excess was determined to be 80% by HPLC analysis on Daicel Chirapak IC column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 220

nm, $t_R(major)$ 74.437 min, $t_R(minor)$ 51.344 min; $[\alpha]_D^{25} = +27.36$ (c = 0.57, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 7.8 Hz, 1H), 7.67 – 7.61 (m, 3H), 7.61 – 7.56 (m, 1H), 7.54 (d, J = 7.5 Hz, 1H), 7.46 (d, J = 8.2 Hz, 2H), 6.23 (s, 2H), 4.91 (d, J = 6.9 Hz, 1H), 3.95 – 3.88 (m, 1H), 3.74 – 3.66 (m, 1H), 3.19 – 3.11 (m, 1H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 175.93, 170.13, 148.10, 141.18, 132.78, 132.22, 130.26, 129.16, 128.58, 128.29, 118.68, 111.06, 83.29, 82.83, 48.33, 46.40, 28.03; HRMS(ESI): calcd. for C₂₂H₂₄N₃O₄S (M+H)⁺: 426.1482, found: 426.1487.

tert-butyl (2S,3R)-3-(4-nitrophenyl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2carboxylate (4p):

White solid (52.6 mg, 59%); m.p. = 182-185 °C; $R_f = 0.22$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 77% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 80/20, flow rate 1.0 mL/min, T = 30 °C), UV 220

nm, $t_R(major)$ 28.506 min, $t_R(minor)$ 44.724 min; $[\alpha]_D^{25} = +20.55$ (c = 0.45, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.22 (d, J = 8.7 Hz, 2H), 8.17 (d, J = 7.8 Hz, 1H), 7.67 – 7.62 (m, 1H), 7.62 – 7.57 (m, 1H), 7.55 (d, J = 7.5 Hz, 1H), 7.52 (d, J = 8.7 Hz, 2H), 6.22 (s, 2H), 4.93 (d, J = 6.9 Hz, 1H), 4.04 – 3.93 (m, 1H), 3.79 – 3.67 (m, 1H), 3.24 – 3.13 (m, 1H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 175.90, 170.06, 150.13, 147.08, 141.20, 132.76, 132.23, 130.29, 129.15, 128.59,

128.38, 124.23, 83.30, 82.92, 48.39, 46.19, 28.04; **HRMS(ESI)**: calcd. for $C_{21}H_{24}N_3O_6S$ (M+H)⁺: 446.1380, found: 446.1379.

tert-butyl (2S,3R)-5-(2-sulfamoylphenyl)-3-(p-tolyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (4q):

_€COO^tBu

NH₂

White solid (82.7 mg, >99%); m.p. = 126-128 $^{\circ}$ C; R_f = 0.27 (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 94% by HPLC analysis on Daicel Chirapak ID column (hexane/isopropanol = 80/20, flow rate 0.8 mL/min, T = 30 $^{\circ}$ C), UV 220

nm, $t_R(major)$ 24.550 min, $t_R(minor)$ 46.225 min; $[\alpha]_D^{25} = +28.01$ (c = 0.70, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 7.7 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.57 – 751 (m, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 7.9 Hz, 2H), 6.30 (s, 2H), 4.94 – 4.84 (m, 1H), 3.86 – 3.78 (m, 1H), 3.67 – 3.60 (m, 1H), 3.18 – 3.10 (m, 1H), 2.34 (s, 3H), 1.47 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.30, 170.87, 141.17, 139.57, 136.68, 133.30, 132.10, 129.97, 129.58, 129.29, 128.51, 127.17, 83.54, 82.29, 48.56, 46.08, 28.05, 21.05; HRMS(ESI): calcd. for C₂₂H₂₇N₂O₄S (M+H)⁺: 415.1686, found: 415.1686.

tert-butyl (2S,3R)-3-([1,1'-biphenyl]-4-yl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2carboxylate (4r):

White solid (90.3 mg, 95%); m.p. = 178-180 $^{\circ}$ C; R_f = 0.27 (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be

92% by HPLC analysis on Daicel Chirapak IE column (hexane/isopropanol = 80/20, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 41.688 min, $t_R(minor)$ 67.374 min; $[\alpha]_D^{25}$ = +24.25 (c = 0.76, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.18 (d, *J* = 7.8 Hz, 1H), 7.64 – 7.54 (m, 7H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.40 (d, *J* = 8.1 Hz, 2H), 7.35 (t, *J* = 7.4 Hz, 1H), 6.29 (s, 2H), 4.97 (d, *J* = 6.9 Hz, 1H), 3.96 – 3.86 (m, 1H), 3.73 – 3.64 (m, 1H), 3.26 – 3.15 (m, 1H), 1.49 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.26, 170.76, 141.69, 141.20, 140.67, 140.04, 133.23, 132.14, 130.05, 129.30, 128.83, 128.55, 127.76, 127.63, 127.35, 127.04, 83.53, 82.44, 48.54, 46.11, 28.08; HRMS(ESI): calcd. for C₂₇H₂₉N₂O₄S (M+H)⁺: 477.1843, found: 477.1842.

tert-butyl (2S,3R)-3-(4-methoxyphenyl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (4s):

Pale yellow solid (65.4 mg, 76%); m.p. = 133-136 °C; $R_f = 0.25$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 92% by HPLC analysis on Daicel Chirapak ID column (hexane/isopropanol = 80/20, flow rate 1.0 mL/min, T = 30 °C), UV 254

nm, t_R(major) 29.487 min, t_R(minor) 55.798 min; $[\alpha]_D^{25} = +31.99$ (c = 0.523, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, *J* = 7.8 Hz, 1H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.57 – 7.51 (m, 2H), 7.24 (d, *J* = 8.6 Hz, 2H), 6.89 (d, *J* = 8.6 Hz, 2H), 6.30 (s, 2H), 4.87 (d, *J* = 6.9 Hz, 1H), 3.83 – 3.78 (m, 4H), 3.67 – 3.60 (m, 1H), 3.16 – 3.07 (m, 1H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.34, 170.89, 158.62, 141.15, 134.60, 133.29, 132.10, 129.97, 129.29, 128.50, 128.30, 114.28, 83.56, 82.26, 55.33, 48.56, 45.79, 28.06; HRMS(ESI): calcd. for C₂₂H₂₇N₂O₅S (M+H)⁺: 431.1635, found: 431.1634.

Peak	RetTime [min]	Туре	Width[min]	Area[mAU^s]	Height[mAU]	Area%							
	29.131	MM m	2.3256	66039.4017	340.5227	44.1715							
	36.076	MM m	1.3763	8869.5204	93.9564	5.9325	Peak	RetTime [min]	Туре	Width[min]	Area[mAU^s]	Height[mAU]	Area%
	44.903	MM m	2.0708	8467.2980	53.8116	5.6635		29.487	MM m	2.8350	45339.8401	234.5704	96.2231
	50.702	MM m	2.5641	66130.5004	333.2544	44.2325		55.798	MM m	1.9464	1779.6725	12.0478	3.7769

tert-butyl (2S,3R)-3-(4-(benzyloxy)phenyl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate (4t):

White solid (83.7 mg, 83%); m.p. = 159-162 $^{\circ}$ C; R_f = 0.23 (petroleum COO^tBu

ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 92% by HPLC analysis on Daicel Chirapak IG column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, $t_R(major)$ 14.361 min, $t_R(minor)$ 21.144 min; $[\alpha]_D^{25} = +28.01$ (c = 0.73, CH₂Cl₂); ¹H NMR (**600 MHz, CDCl**₃) δ 8.16 (d, *J* = 7.8 Hz, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.57 – 7.51 (m, 2H), 7.43 (d, J = 7.4 Hz, 2H), 7.38 (t, J = 7.5 Hz, 2H), 7.32 (t, J = 7.2 Hz, 1H), 7.23 (d, J = 8.6 Hz, 2H), 6.96 (d, J = 8.6 Hz, 2H), 6.28 (s, 2H), 5.06 (s, 2H), 4.87 (d, J = 6.9 Hz, 1H), 3.85 - 3.75 (m, 1H), 3.67 - 3.55 (m, 1H), 3.16 - 3.07 (m, 1H), 1.47 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.33, 170.87, 157.83, 141.16, 136.98, 134.91, 133.30, 132.11, 129.98, 129.30, 128.62, 128.51, 128.34, 128.00, 127.48, 115.25, 83.57, 82.28, 70.09, 48.55, 45.79, 28.07; HRMS(ESI): calcd. for $C_{28}H_{31}N_2O_5S (M+H)^+$: 507.1948, found: 507.1948.

tert-butyl (2S,3R)-3-(4-(dimethylamino)phenyl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2Hpyrrole-2-carboxylate (4u):

Colorless oil (87.9 mg, >99%); $R_f = 0.21$ (petroleum ether/ethyl acetate = 3:2); the enantiomeric excess was determined to be 84% by HPLC analysis on Daicel Chirapak IE column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 29.103 min,

 $t_{R}(\text{minor})$ 48.832 min; $[\alpha]_{D}^{25} = +30.10$ (c = 0.63, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 7.5 Hz, 1H), 7.60 (t, J = 7.4 Hz, 1H), 7.57 – 7.51 (m, 2H), 7.19 (d, J = 8.6 Hz, 2H), 6.73 (d, J = 8.5 Hz, 2H), 6.32 (s, 2H), 4.87 (d, J = 6.8 Hz, 1H), 3.82 - 3.73 (m, 1H), 3.66 - 3.57 (m, 1H),

3.17 - 3.08 (m, 1H), 2.93 (s, 6H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.43, 171.05, 149.68, 141.14, 133.41, 132.05, 129.87, 129.34, 128.46, 128.08, 127.89, 113.03, 83.57, 82.10, 48.47, 45.65, 40.70, 28.05; HRMS(ESI): calcd. for C₂₃H₃₀N₃O₄S (M+H)⁺: 444.1952, found: 444.1950.

tert-butyl (2S,3R)-3-(2,6-dichlorophenyl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2carboxylate (4v):

Colorless oil (74.3 mg, 79%); $R_f = 0.18$ (petroleum ether/ethyl acetate = 3:1); the enantiomeric excess was determined to be 83% by HPLC analysis on Daicel Chirapak IB column (hexane/isopropanol = 80/20, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 9.527 min, t_R (minor) 8.524 min;

 $[\alpha]_D^{25} = -50.37 \text{ (c} = 0.68, \text{CH}_2\text{Cl}_2\text{); }^1\text{H}$ NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 7.8 Hz, 1H), 7.61 (t, J = 7.5 Hz, 1H), 7.57 – 7.48 (m, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.17 (t, J = 8.0 Hz, 1H), 6.30 (s, 2H), 5.34 (d, J = 7.8 Hz, 1H), 4.80 – 4.67 (m, 1H), 3.59 – 3.45 (m, 1H), 1.48 (s, 9H); 13 C NMR (151 MHz, CDCl₃) δ 175.83, 171.10, 141.19, 136.48, 133.57, 132.05, 129.81, 129.43, 128.81, 128.66, 128.54, 82.66, 80.02, 45.46, 40.99, 27.93; HRMS(ESI): calcd. for C₂₁H₂₃N₂O₅S (M+H)⁺: 469.0750, found: 469.0748.

tert-butyl (2S,3R)-3-(4-phenoxyphenyl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2carboxylate (4w):

White solid (84.6 mg, 86%); m.p. = 163-166 °C; $R_f = 0.20$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 90% by HPLC analysis on Daicel Chirapak IE column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254

nm, $t_R(major)$ 19.335 min, $t_R(minor)$ 25.639 min; $[\alpha]_D^{25} = +30.31$ (c = 0.65, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, J = 7.8 Hz, 1H), 7.62 (t, J = 7.4 Hz, 1H), 7.64 – 7.59 (m, 2H), 7.33 (t, J = 7.8 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 7.10 (t, J = 7.3 Hz, 1H), 7.04 – 6.96 (m, 4H), 6.27 (s, 2H).4.90 (d, J = 6.9 Hz, 1H), 3.89 – 3.80 (m, 1H), 3.70 – 3.61 (m, 1H), 3.20 – 3.09 (m, 1H), 1.49 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.29, 170.76, 157.16, 156.29, 141.18, 137.35, 133.23, 132.12, 130.03, 129.78, 129.26, 128.60, 128.53, 123.35, 119.22, 118.89, 83.53, 82.39, 48.54, 45.88, 28.07; HRMS(ESI): calcd. for C₂₇H₂₉N₂O₅S (M+H)⁺: 493.1792, found: 493.1791.

tert-butyl

(2S,3R)-3-(4-(pyridin-4-yl)phenyl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2-carboxyl ate (4x):

Colorless oil (94.8 mg, >99%); $R_f = 0.21$ (petroleum ether/ethyl acetate = 1:2); the enantiomeric excess was determined to be 88% by HPLC analysis on Daicel Chirapak IE column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 94.068

min, $t_R(minor)$ 136.391 min; $[\alpha]_D^{25} = +7.33$ (c = 0.84, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.65 (d, J = 5.9 Hz, 2H), 8.18 (d, J = 7.8 Hz, 1H), 7.67–7.61 (m, 3H), 7.59–7.55 (m, 2H), 7.52– 7.49 (m, 2H), 7.46 (d, J = 8.3 Hz, 2H), 6.38 (s, 2H), 4.97 (d, J = 6.8 Hz, 1H), 3.97–3.87 (m, 1H), 3.76–3.66 (m, 1H), 3.25–3.15 (m, 1H), 1.50 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.18, 170.58, 150.27, 147.80, 143.82, 141.24, 136.89, 133.09, 132.13, 130.10, 129.25, 128.54, 128.15, 127.53, 121.48, 121.42, 83.49, 82.54, 48.50, 46.12, 28.06; HRMS(ESI): calcd. for C₂₆H₂₈N₃O₄S (M+H)⁺: 478.1795, found: 478.1794.

tert-butyl (2S,3R)-3-(naphthalen-1-yl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2carboxylate (4y):

 $\bigcup_{\substack{\mathsf{N} \\ \mathsf{N} \\ \mathsf{$

White solid (86.8 mg, 96%); m.p. = 144-147 °C; $R_f = 0.22$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 91% by HPLC analysis on Daicel Chirapak IB column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 19.372 min,

t_R(minor) 25.698 min; $[α]_D^{25}$ = +23.61 (c = 0.69, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.18 (d, *J* = 7.6 Hz, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 8.1 Hz, 1H), 7.78 (d, *J* = 6.8 Hz, 1H), 7.63 – 7.58 (m, 1H), 7.58 – 7.54 (m, 3H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.49 – 7.44 (m, 2H), 6.37 (s, 2H), 5.24 (d, *J* = 5.8 Hz, 1H), 4.72 – 4.61 (m, 1H), 3.88 – 3.77 (m, 1H), 3.34 – 3.24 (m, 1H), 1.44 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.51, 170.74, 141.22, 138.61, 134.10, 133.14, 132.12, 131.19, 130.06, 129.41, 129.19, 128.57, 127.75, 126.35, 125.78, 125.70, 124.43, 123.12, 82.86, 82.50, 48.46, 41.80, 27.97; HRMS(ESI): calcd. for C₂₅H₂₇N₂O₄S (M+H)⁺: 451.1686, found: 451.1685.

 $tert-butyl\ (2S, 3R)-3-(naphthalen-2-yl)-5-(2-sulfamoylphenyl)-3, 4-dihydro-2H-pyrrole-2-yl)-5-(2-sulfamoylphenyl)-3, 4-dihydro-2H-pyrrole-2-yl)-5-(2-sulfamoylphenyl)-5-(2-sulfamoylphenyl)-3, 4-dihydro-2H-pyrrole-2-yl)-5-(2-sulfamoylphenyl)-5-($

carboxylate (4z):

White solid (76.6 mg, 85%); m.p. = 133-136 °C; $R_f = 0.20$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be

92% by HPLC analysis on Daicel Chirapak IE column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 22.423 min, $t_R(minor)$ 30.302 min; $[\alpha]_D^{25} = +19.63$ (c = 0.66, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.18 (d, *J* = 7.9 Hz, 1H), 7.85 (d, *J* = 8.5 Hz, 1H), 7.82 (d, *J* = 6.8 Hz, 2H), 7.77 (s, 1H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.59 – 7.54 (m, 2H), 7.50 – 7.42 (m, 3H), 6.31 (s, 2H), 5.04 (d, *J* = 6.8 Hz, 1H), 4.08 – 3.99 (m, 1H), 3.78 – 3.67 (m, 1H), 3.31 – 3.21 (m, 1H) 1.47 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.28, 170.76, 141.22, 139.85, 133.49, 133.21, 132.51, 132.11, 130.03, 129.32, 128.89, 128.54, 127.70, 127.67, 126.36, 126.12, 125.84, 125.15, 83.45, 82.38, 48.53, 46.56, 28.04; HRMS(ESI): calcd. for C₂₅H₂₇N₂O₄S (M+H)⁺: 451.1686, found: 451.1685.

tert-butyl (2S,3R)-3-(benzo[d][1,3]dioxol-5-yl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2Hpyrrole-2-carboxylate (4aa):

COO^tBu

`NH₂

White solid (28.1 mg, 32%); m.p. = 133-135 °C; $R_f = 0.31$ (petroleum ether/ethyl acetate = 3:2); the enantiomeric excess was determined to be 93% by HPLC analysis on Daicel Chirapak ID column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254

nm, $t_R(major)$ 20.173 min, $t_R(minor)$ 37.501 min; $[\alpha]_D^{25} = +28.49$ (c = 0.22, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 7.8 Hz, 1H), 7.62 (t, J = 7.4 Hz, 1H), 7.58 – 7.50 (m, 2H), 6.82 (s, 1H), 6.79 – 6.74 (m, 2H), 6.27 (s, 2H), 5.95 (s, 2H), 4.86 (d, J = 6.8 Hz, 1H), 3.83 – 3.73 (m, 1H), 3.67 – 3.59 (m, 1H), 3.15 – 3.06 (m, 1H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.28, 170.76, 148.10, 146.58, 141.15, 136.43, 133.22, 132.11, 130.01, 129.25, 128.51, 120.51, 108.45, 107.45, 101.10, 83.54, 82.39, 48.58, 46.27, 28.06; HRMS(ESI): calcd. for C₂₂H₂₅N₂O₆S (M+H)⁺: 445.1428, found: 445.1426.

Peak	RetTime [min]	Туре	Width[min]	Area[mAU^s]	Height[mAU]	Area%	Peak	RetTime [min]	Туре	Width[min]	Area[mAU^s]	Height[mAU]	Area%
	20.336	MM m	2.1529	15463.4167	110.6186	50.2212		20.173	MM m	2.1036	22557.0371	165.5514	96.7033
	35.928	MM m	1.5900	15327.1960	137.4412	49.7788		37.501	MM m	1.4494	768.9830	7.2444	3.2967

tert-butyl (2S,3R)-3-(2,3-dihydrobenzofuran-5-yl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2Hpyrrole-2-carboxylate (4ab):

White solid (59.3 mg, 67%); m.p. = 144-147 °C; $R_f = 0.12$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 92% by HPLC analysis on Daicel Chirapak IF column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 11.697 min,

t_R(minor) 19.290 min; $[α]_D^{25} = +25.25$ (c = 0.49, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 7.3 Hz, 1H), 7.64 – 7.59 (m, 1H), 7.58 – 7.52 (m, 2H), 7.17 (s, 1H), 7.03 (d, J = 8.1 Hz, 1H), 6.74 (d, J = 8.2 Hz, 1H), 6.30 (s, 2H), 4.87 (d, J = 6.8 Hz, 1H), 4.57 (t, J = 8.7 Hz, 2H), 3.83 – 3.73 (m, 1H), 3.67 – 3.59 (m, 1H), 3.20 (t, J = 8.6 Hz, 2H), 3.15 – 3.07 (m, 1H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.34, 170.89, 159.15, 141.13, 134.62, 133.25, 132.10, 129.98, 129.32, 128.50, 127.80, 127.05, 123.66, 109.30, 83.75, 82.25, 71.35, 48.72, 46.00, 29.77, 28.0; HRMS(ESI): calcd. for C₂₃H₂₇N₂O₅S (M+H)⁺: 443.1635, found: 443.1633.

White solid (80.3 mg, 88%); m.p. = 151-154 °C; $R_f = 0.22$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 80% by HPLC analysis on Daicel Chirapak IB column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 21.593 min,

t_R(minor) 29.930 min; $[α]_D^{25}$ = +33.72 (c = 0.60, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.18 (d, *J* = 7.8 Hz, 1H), 7.89 (d, *J* = 7.9 Hz, 1H), 7.81 (d, *J* = 7.7 Hz, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.59 – 7.52 (m, 2H), 7.43 – 7.43 (m, 2H), 7.33 (s, 1H), 6.30 (s, 2H), 5.18 (d, *J* = 6.0 Hz, 1H), 4.34 – 4.25 (m, 1H), 3.82 – 3.68 (m, 1H), 3.33 – 3.22 (m, 1H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.54, 170.55, 141.19, 140.94, 137.67, 136.68, 133.10, 132.14, 130.11, 129.35, 128.57, 124.56, 124.22, 123.24, 122.23, 121.69, 82.62, 81.43, 46.81, 39.94, 28.03; **HRMS(ESI)**: calcd. for $C_{23}H_{25}N_2O_4S_2$ (M+H)⁺: 457.1250, found: 457.1249.

tert-butyl (2S,3R)-5-(2-sulfamoylphenyl)-3-(thiophen-3-yl)-3,4-dihydro-2H-pyrrole-2carboxylate (4ad):

White solid (62.4 mg, 77%); m.p. = 126-128 °C; $R_f = 0.23$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 92% by HPLC analysis on Daicel Chirapak IE column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R(major) 16.107 min, t_R(minor)

21.028 min; $[\alpha]_D^{25} = +42.5$ (c = 0.52, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, J = 7.8 Hz, 1H), 7.61 (t, J = 7.4 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.37 – 7.29 (m, 1H), 7.18 – 7.13 (m, 1H), 7.08 (d, J = 4.9 Hz, 1H), 6.29 (s, 2H), 4.88 (d, J = 6.9 Hz, 1H), 4.03 – 3.92 (m, 1H), 3.68 – 3.55 (m, 1H), 3.20 – 3.07 (m, 1H), 1.50 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.39, 170.74, 142.76, 141.13, 133.22, 132.11, 130.01, 129.26, 128.51, 126.62, 126.56, 120.91, 82.45, 47.56, 41.72, 28.06; HRMS(ESI): calcd. for C₁₉H₂₃N₂O₄S₂ (M+H)⁺: 407.1094, found: 407.1092.

tert-butyl (2S,3S)-5-(2-sulfamoylphenyl)-3-(thiophen-2-yl)-3,4-dihydro-2H-pyrrole-2carboxylate (4ae):

Pale yellow solid (65.9 mg, 80%); m.p. = 99-101 °C; $R_f = 0.29$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 93% by HPLC analysis on Daicel Chirapak IB column (hexane/isopropanol = 80/20, flow rate 0.5 mL/min, T = 30 °C), UV 254 nm, t_R (major) 18.824 min, t_R (minor)

23.607 min; $[\alpha]_D^{25} = +22.94$ (c = 0.62, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.14 (d, J = 7.8 Hz, 1H), 7.61 (t, J = 7.4 Hz, 1H), 7.58 – 7.48 (m, 2H), 7.20 (d, J = 4.9 Hz, 1H), 7.01 – 6.94 (m, 2H), 6.25 (s, 2H), 4.91 (d, J = 7.2 Hz, 1H), 4.24 – 4.12 (m, 1H), 3.72 – 3.55 (m, 1H), 3.30 – 3.15 (m, 1H), 1.51 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.02, 170.30, 145.15, 141.16, 133.12, 132.11, 130.03, 129.18, 128.53, 127.19, 124.57, 123.91, 83.17, 82.75, 48.59, 41.74, 28.05; HRMS(ESI): calcd. for C₁₉H₂₃N₂O₄S₂ (M+H)⁺: 407.1094, found: 407.1092.

tert-butyl (2S,3S)-3-(furan-2-yl)-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2-

carboxylate (4af):

White solid (59.5 mg, 76%); m.p. = 135-138 °C; $R_f = 0.24$ (petroleum ether/ethyl acetate = 2:1); the enantiomeric excess was determined to be 93% by HPLC analysis on Daicel Chirapak IB column (hexane/isopropanol = 80/20, flow rate 0.5 mL/min, T = 30 °C), UV 254 nm, t_R (major) 16.467 min, t_R (minor)

20.061 min; $[\alpha]_D^{25} = +39.62$ (c = 0.55, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, J = 7.9 Hz, 1H), 7.63 – 7.58 (m, 1H), 7.57 – 7.50 (m, 2H), 7.38 (d, J = 1.1 Hz, 1H), 6.36 – 6.32 (m, 1H), 6.23 (s, 2H), 6.21 (d, J = 3.2 Hz, 1H), 5.00 – 4.91 (m, 1H), 4.03 – 3.93 (m, 1H), 3.53 – 3.43 (m, 1H), 3.35 – 3.24 (m, 1H), 1.51 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.09, 170.38, 154.07, 141.84, 141.15, 133.21, 132.08, 129.97, 129.16, 128.52, 110.47, 106.17, 82.61, 80.07, 45.07, 39.96, 28.03; HRMS(ESI): calcd. for C₁₉H₂₃Cl₂N₂O₄S (M+H)⁺: 391.1322, found: 391.1317.

tert-butyl (2S,3R)-2-methyl-3-phenyl-5-(2-sulfamoylphenyl)-3,4-dihydro-2H-pyrrole-2carboxylate (4ag):

White solid (50.3 mg, 61%); m.p. = 158-161 °C; $R_f = 0.18$ (petroleum ether/ethyl acetate = 3:1); the enantiomeric excess was determined to be 68% by HPLC analysis on Daicel Chirapak IE column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 11.852 min,

t_R(minor) 13.876 min; $[\alpha]_D^{25} = -15.79$ (c = 0.33, CH₂Cl₂); ¹H NMR (**600 MHz, CDCl**₃) δ 8.16 (d, J = 7.8 Hz, 1H), 7.63 (t, J = 7.4 Hz, 1H), 7.60 – 7.50 (m, 2H), 7.37 – 7.24 (m, 5H), 6.29 (s, 2H), 4.10 (t, J = 8.8 Hz, 1H), 3.54 (dd, J = 17.6, 9.1 Hz, 1H), 3.39 (dd, J = 17.6, 8.6 Hz, 1H), 1.53 (s, 9H), 1.16 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 174.72, 173.45, 141.06, 138.55, 133.54, 132.12, 129.89, 129.24, 128.77, 128.44, 128.35, 127.22, 83.18, 82.16, 49.57, 45.23, 28.02, 20.38; HRMS(ESI): calcd. for C₂₂H₂₇N₂O₄S (M+H)⁺: 415.1686, found: 455.1685.

5. Control Experiment

Stability experiment of 2a. Add **2a** (52.8 mg, 0.2 mmol), H₂O (3.6 uL, 0.02 mmol), (*R*)-**3h** (9.4 mg, 0.02 mmol), pyrrolidine (7.1 mg, 0.1 mmol), quinuclidine (22.2 mg, 0.2 mmol), and toluene (2.0 mL) to a dry and clean tube containing a magnetic stir bar. The control experiment was stopped after stirring for 3 h at 0 $^{\circ}$ C, and then the remaining **2a** was isolated by flash chromatography on silica gel with a recovered yield of 69%.

The experiment of replacing pyrrolidine with *N*-methylpyrrolidine. Add 1a (39.3 mg, 0.3 mmol), 2a (52.8 mg, 0.2 mmol), (*R*)-3h (9.4 mg, 0.02 mmol), quinuclidine (22.2 mg, 0.2 mmol), *N*-methylpyrrolidine (8.5 mg, 0.1 mmol) and toluene (2.0 mL) to a dry and clean tube containing a magnetic stir bar. The reaction mixture was stirred at 0 $^{\circ}$ C for 24 h, after the solvent was removed under vacuum, and the residue was purified by flash chromatography column on silica gel to give 4a in 35% yield with 95% ee and 95:5 dr.

The reaction of (*R*)-3h and pyrrolidine. Add (*R*)-3h (9.4 mg, 0.02 mmol), pyrrolidine (2.1 mg, 0.03 mmol), CH₂Br₂ (3.5 mg, 0.02 mmol) and toluene- d_8 (0.5 mL) to a dry and clean NMR tube. After shaking the mixture several times at room temperature, the yield of 10 was immediately determined by ¹H NMR using CH₂Br₂ as an internal standard to be 69%.

The reaction of 10 and *tert*-butyl glycine ester (1a). Subsequently, add *tert*-butyl glycine ester (7.9 mg, 0.06 mmol) to the aforementioned NMR tube. After shaking the mixture several times at room temperature, the yield of **5a** was immediately determined by ¹H NMR using CH_2Br_2 as an internal standard to be 89%.

The reaction of (*R*)-3h and 1a with and without pyrrolidine. Add (*R*)-3h (9.4 mg, 0.02 mmol), 1a (8.7 mg, 0.06 mmol), CH_2Br_2 (3.5 mg, 0.02 mmol), pyrrolidine (0.7 mg, 0.01 mmol) and toluene- d_8 (0.5 mL) to a dry and clean NMR tube. After shaking the mixture several times at room temperature, the yield of 5a was immediately determined by ¹H NMR using CH_2Br_2 as an internal standard.

Following the above procedure, the reaction of (*R*)-**3h** and **1a** was carried out in the absence of pyrrolidine, and the yield of **5a** was immediately determined by ¹H NMR using CH_2Br_2 as an internal standard.

The reaction of (*R*)-3h and 1e. Add (*R*)-3h (9.4 mg, 0.02 mmol), 1e (8.7 mg, 0.06 mmol), CH_2Br_2 (3.5 mg, 0.02 mmol) and toluene- d_8 (0.5 mL) to a dry and clean NMR tube. After shaking the mixture several times at room temperature, the yield of 5b was immediately determined by ¹H NMR using CH_2Br_2 as an internal standard.

Monitoring the amine exchange reaction of 1a and 5b. Add (*R*)-3h (14.2 mg, 0.03 mmol), 1e (13.1 mg, 0.09 mmol), CH₂Br₂ (5.2 mg, 0.03 mmol) and toluene- d_8 (0.75 mL) to a dry and clean tube containing a magnetic stir bar and stir at room temperature for 5 min. Then proceed with the subsequent reaction according to conditions **A** or **B**.

Condition A: Add **1a** (11.8 mg, 0.09 mmol) to the above mixture and stir at room temperature. The reaction was stopped at 10, 20, 30, 70 or 250 min, and then the yield of **5a** and the de of **5b'** were determined by ¹H NMR using CH_2Br_2 as an internal standard.

Condition B: Add **1a** (11.8 mg, 0.09 mmol) and pyrrolidine (1.1 mg, 0.015 mmol) to the above mixture and stir at room temperature. The reaction was stopped at 10, 20, 30, 70 or 250 min, and then the yield of **5a** and the de of **5b'** were determined by ¹H NMR using CH_2Br_2 as an internal standard.

Table S4:	Yields (of 5a ar	d de	values	of 5b'	versus	the re	action	time

	Yield of	f 5a (%)	De of 5b' (%)			
Time (min)	Condition A	Condition B	Condition A	Condition B		
0	0	0	92	92		
10	46	43	90	66		
20	47	43	84	28		
30	47	44	76	14		
70	50	44	62	0		
250	50	43	48	0		
6. X-Ray Structure of 4b

PLATON-Apr 13 12:50:04 2023 - (281122) C11 C12 C12 C12 C12 C12 C12 C12	NOMOVE FORCED $Prob = 50$ Temp = 291 C22 C23 C24 C24 C25 C
Z -79 wen20230404 P 1 21 1	R = 0.04 RES= 0 -63 X
Chemical Formula	$2(C_{18}H_{18}N_2O_4S)$
Formula weight	358.40
Temperature	291 K
wavelength	1.54184 Managlinia D1 21 1
Crystal system, space group	11 11448(15)
a, A b Á	7 69074(13)
c, Á	20 9891(3)
α°	90
а, В ^о	98 9225(14)
γ, ^ο	90
$V, Å^3$	1772.41(5)
F (000)	752.0
Z. Calculated density	4. 1.343 g/cm^3

The absolute structure of **4b** was determined by X-ray diffraction analysis.

7. References

[1] Feng, X.; Zhou, Z.; Ma, C.; Yin, X.; Li, R.; Dong, L.; Chen, Y.-C. *Angew. Chem. Int. Ed.* **2013**, *52*, 14172-14176.

[2] Dudhe, P.; Venkatasubbaiah, K.; Pathak, B.; Chelvam, Venkatesh. Org. Biomol. Chem. 2020, 18, 1582-1587.

[3] J. Zhang, M. Liu, C. Li, Y.-J. Xu, L. Dong, Org. Chem. Front. 2020, 7, 420-424.

[4] W. Wen, L. Chen, M.-J. Luo, Y. Zhang, Y.-C. Chen, Q. Ouyang, Q.-X. Guo, J. Am. Chem. Soc. **2018**, *140*, 9774-9780.

8. The spectrums of ¹H NMR and ¹³C NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

